Min \(f(x) \)

\[\begin{align*}
\text{s.t. } & h(x) = 0 \quad \text{m equality constraints} \\
& g(x) \leq 0 \quad \text{k inequality constraints}
\end{align*} \]

Theorem: Consider a regular point such that \(h(x^*) = 0 \) and \(g(x^*) \leq 0 \).

- First order necessary condition (KKT):
 If \(x^* \) is a local solution, then there exist constants \(\lambda_1, ..., \lambda_m \) and \(\mu_1, ..., \mu_k \) such that:
 \[
 \begin{align*}
 \nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla h_i(x^*) + \sum_{i=1}^{k} \mu_i \nabla g_i(x^*) &= 0 \\
 \mu_i g_i(x^*) &= 0 \quad i = 1, ..., k \\
 \mu_i &\geq 0 \quad i = 1, ..., k
 \end{align*}
 \]

- Second order necessary condition:
 If \(x^* \) is a local solution, then
 \[
 \Delta x^T \left(\nabla^2 f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla^2 h_i(x^*) + \sum_{i=1}^{k} \mu_i \nabla^2 g_i(x^*) \right) \Delta x \geq 0
 \]
 for every \(\Delta x \) that is orthogonal to the gradients of all active constraints at \(x^* \).

- Second order sufficiency condition:
 \(x^* \) is a local solution if there exists \(\lambda_1, ..., \lambda_m \) and \(\mu_1, ..., \mu_k \) such that:
1. is satisfied

2. is satisfied as strict inequality as long as $\Delta x \neq 0$ and Δx is orthogonal to the gradients of all active constraints at x^*.

Example: \[\min_{x \in \mathbb{R}^2} \quad 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2 \]

s.t. \[x_1^2 + x_2^2 \leq 5 \]
\[3x_1 + x_2 \leq 6 \]

- It was shown last time that $x_1^* = 1$, $x_2^* = 2$, $\mu_1 = 1$, $\mu_2 = 0$ is a KKT point.
- Let's show that $x^* = [1, 2]'$ is a local min.

\[\Delta x^T \left(\nabla^2 f(x^*) + \mu_1 \nabla^2 g_1(x^*) + \mu_2 \nabla^2 g_2(x^*) \right) \Delta x \]

\[= \Delta x^T \left(\begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} + (1) \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \right) \Delta x \]

\[= \Delta x^T \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \Delta x \]
\(g_1(x^*) = 0 \) and \(g_2(x^*) < 0 \)

- Due to second order sufficiency condition, \(x^* \) is a local min if

\[
\Delta x^T \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \Delta x > 0 \quad \text{for all } \Delta x \text{ such that } \Delta x \neq 0 \text{ and } \nabla g_1(x^*) \Delta x = 0
\]

- Note that \(\begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} > 0 \)

\[
\Rightarrow \Delta x^T \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \Delta x > 0 \quad \text{for all nonzero } \Delta x.
\]

\[
\Rightarrow x^* = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is a local minimum.}
\]

Sensitivity analysis:

- Consider

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{subject to} & \quad h(x) = 0 \\
& \quad g(x) \leq 0
\end{align*}
\]

Assume \(x^* \) is a local minimum, is a regular point, and satisfies second order sufficiency condition.
- Denote the optimal objective value as \(f^* = f(x^*). \)

- Perturb the problem as

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{s.t.} & \quad h_i(x) = \varepsilon_i \\
& \quad h_m(x) = \varepsilon_m \\
& \quad g_i(x) \leq \bar{\varepsilon}_i \\
& \quad g_k(x) \leq \bar{\varepsilon}_k
\end{align*}
\]

\[
\text{optimal objective value} = f^* - \sum_{i=1}^{m} \lambda_i \varepsilon_i - \sum_{i=1}^{k} \mu_i \bar{\varepsilon}_i
\]

- If \(\mu_i \) or \(\lambda_i \) is zero, a small perturbation of the corresponding constraint doesn't affect the solution around \(x^* \). \(\Rightarrow \) Those constraints are unimportant and may be removed without changing the local solution.
Exact penalty method:

- Consider \(\min_{x \in \mathbb{R}^n} f(x) \) s.t. \(h(x) = 0 \) \(\Rightarrow \) Assume that \(g(x) \leq 0 \)

\(x_* \) is a local solution, is a regular point and satisfies second order sufficiency condition.

- Does this constrained optimization have an unconstrained optimization counterpart?

- Consider the unconstrained problem:

\[
\min_{x \in \mathbb{R}^n} f(x) + c \left[\sum_{i=1}^{m} |h_i(x)| + \sum_{i=1}^{k} \max(0, g_i(x)) \right]
\]

Note that \(c |h_i(x)| \) and \(c \times \max(0, g_i(x)) \) are very large if \(h_i(x) \neq 0 \) or \(g_i(x) > 0 \), as long as \(\xi \) is a large penalty term.

Theorem: If \(c > 1 |h_1|, \ldots, 1 |h_m|, \mu_1, \ldots, \mu_k \),

then \(x_* \) is a local solution of the unconstrained optimization problem too.
- How can we guarantee that every local solution is a global one?
- Note that first and second order conditions are just about local solutions.
- Convexity helps.

- Recall that $f(x)$ is convex if
 1. For every two points y and z, the segment connecting $(y, f(y))$ to $(z, f(z))$ is above the function.

2.01, if

$$\alpha f(y) + (1-\alpha) f(z) \geq f(\alpha y + (1- \alpha) z)$$

for all $y, z \in \mathbb{R}^n$ and $\alpha \in [0,1]$.

[Diagram showing a convex function with points A and B on the curve and line segments AB and AC, where A and C are points on the curve, and AC is above the line segment AB.]

$$A = \alpha f(y) + (1-\alpha) f(z)$$
$$B = f(\alpha y + (1- \alpha) z)$$
Consider the problem:

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{s.t.} & \quad h_i(x) = 0 \\
& \quad h_m(x) = 0 \\
& \quad g_j(x) \leq 0 \\
& \quad g_{i_c}(x) \leq 0
\end{align*}
\]

Theorem: If \(f(x) \) is convex, \(h_i(x), \ldots, h_m(x) \) are linear, and \(g_j(x), \ldots, g_{i_c}(x) \) are convex, then every local solution is a global solution.

Note: Such an optimization (convex functions for objective and constraints) is called a **convex optimization**.

Proof: By contradiction, assume that \(x^* \) is a local solution that is not global.

\[f(x^*) > f(\bar{x}) \]
\[h(x^*) = h(x) = 0 \quad \text{but} \quad f(x^*) > f(x) \]

- We perturb \(x^* \) a bit as \(x = (1-\varepsilon) x^* + \varepsilon \bar{x} \)

Illustration for \(n = 2 \):

- Note that

\[h_i(x) = h_i((1-\varepsilon) x^* + \varepsilon \bar{x}) = (1-\varepsilon) h_i(x^*) + \varepsilon h_i(\bar{x}) \]

\[= 0 \quad \text{Linearity of } h_i(.) \]

\[g_i(x) = g_i((1-\varepsilon) x^* + \varepsilon \bar{x}) \leq (1-\varepsilon) g_i(x^*) + \varepsilon g_i(\bar{x}) \]

\[\leq 0 \quad \text{Convexity of } g_i(.) \]

\[\Rightarrow x \text{ is feasible.} \]

- Also, \(f(x) = f((1-\varepsilon) x^* + \varepsilon \bar{x}) \leq (1-\varepsilon) f(x^*) + \varepsilon f(\bar{x}) \)

\[\leq (1-\varepsilon + \varepsilon) f(x^*) = f(x^*) \]
So, for a small ϵ, x is a point close to x^* but has a better objective value.

\Rightarrow x^* can't be a local solution \Rightarrow Contradiction.

Example:

$$\begin{align*}
\min_{x \in \mathbb{R}^2} & \quad e^{x_1 + x_2} + (x_1 - x_2)^2 + x_4^4 \\
\text{s.t.} & \quad x_1 - x_2 = 2 \\
& \quad e^{x_1} + e^{x_2} + (x_1 - 4x_2)^4 \leq 5 \\
\end{align*}$$

\Rightarrow This is a convex optimization.

\Rightarrow Every local solution is a global one.