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Abstract—This paper is concerned with numerically finding
a global solution of constrained optimal control problems with
many local minima. The focus is on the optimal decentralized
control (ODC) problem, whose feasible set is recently shown
to have an exponential number of connected components and
consequently an exponential number of local minima. The rich
literature of numerical algorithms for nonlinear optimization
suggests that if a local search algorithm is initialized in an
arbitrary connected component of the feasible set, it would search
only within that component and find a stationary point there. This
is based on the fact that numerical algorithms are designed to
generate a sequence of points (via searching for descent directions
and adjusting the step size), whose corresponding continuous
path is trapped in a single connected component. In contrast with
this perception rooted in convex optimization, we numerically
illustrate that local search methods for non-convex constrained
optimization can obliviously jump between different connected
components to converge to a global minimum, via an aggressive
step size adjustment using backtracking and the Armijio rule.
To support the observations, we prove that from almost every
arbitrary point in any connected component of the feasible set, it
is possible to generate a sequence of points using local search to
jump to different components and converge to a global solution.
However, due to the NP-hardness of the problem, such fine-tuning
of the parameters of a local search algorithm may need prior
knowledge or be time consuming. This paper offers the first result
on escaping non-global local solutions of constrained optimal
control problems with complicated feasible sets.

I. INTRODUCTION

The linear-quadratic regulator (LQR) optimal control prob-
lem has been extensively studied in the past century [1], [2].
A renewed interest in this classical topic is partially driven by
tools in machine learning, where the successful applications of
general optimization methods call for new theoretical analy-
ses [3], [4]. The behavior of more complex methods like policy
gradient in reinforcement learning [5] can also be understood
in their application to linear-quadratic problems. They serve
as a suitable baseline, because they admit well-known linear
optimal solutions given by the Riccati equations [6] and an
elegant parametrization of all sub-optimal solutions [7]. Both
properties, however, break down when we impose structures
such as locality and delay on the controller [8].

The problem of finding an optimal controller subject to
structural constraints is known as the optimal decentralized
control (ODC) problem. ODC has been proved to be NP-
hard [9], and an extensive research effort has been devoted to
identifying structures or approximations that bypass the worse-
case exponential complexity. It is known that the existence
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of stabilizing dynamic structured feedback is captured by the
notion of decentralized fixed modes [10]. When the system
is spatially invariant [11], hierarchical [12], positive [13], or
quadratic invariant [14], ODC has a convex formulation. A
System Level Approach [15] also convexifies ODC at the
expense of working with a series of impulse response matrices.
Various approximation [16], [17], [18] and convex relaxation
techniques [19], [20], [21] also exist in the literature.

On the algorithmic side, nonlinear programming methods
have been applied to instances of ODC to promote sparsity
in controllers [22], or to approximate the optimal solution
with prior constraints [23], [24], [25]. Early works have been
summarized in the survey [26], where various convergence
rates have been discussed in the centralized controller case.
In the decentralized case, the control literature lacks strate-
gies to escape saddle points, or a guarantee of no spurious
local optimum, or even an efficient initialization strategy that
promotes convergence to a globally optimal solution. Those
considerations in contrast have been extensively analyzed for
many unconstrained problems in statistical learning [27], [28],
[29]. We also mention that an interesting continuation method
with risk-averse objective has been touched upon in [30].

An often-overlooked aspect in ODC is that its feasible set
can be disconnected. In fact, even for the simplest chain
structure, the number of connected components may grow
exponentially in the order of the system [31]. This means that
since methods based on feasible-direction local search almost
always assume connectivity in the underlying feasible set, they
may not be effective for finding a globally optimal solution
to a general optimal decentralized control problem (because
there are an exponential number of connected components,
which implies at least the same number of local solutions
and initializations in order to start in the correct connected
component). More precisely, each connected component has
a local solution and, therefore, feasible-direction local search
methods should know which connected component has the
global solution in order to start the iterations within that
component. Note that such numerical algorithm generates a
path from the initial point to the final stationary point being
found by the algorithm. For convergence analysis, this path is
often considered to be the discrete samples of a continuous
path that is trapped within a single connected component
where the algorithm is initialized.

In this work, we show that numerical optimization algo-
rithms are oblivious to the geometry of the feasible set and the
discrete path of iterative points could potentially jump between
connected components without realizing the existence of dis-
continuity. We also study a potentially infeasible-direction
local search method, named augmented Lagrangian [25], for
which the structural constraints can be violated at the be-



ginning of the iterations but will be satisfied asymptotically
as the number of iterations increases. This paper shows em-
pirically that for constrained optimal control problems with
many local minima, jumping between components is likely
with random initializations and aggressive step-size rules. This
allows jumps from the sub-optimal component to the globally-
optimal component and vice versa. Moreover, we prove that a
succession of jumps to the globally optimal component with
descent directions is possible for almost all initializations.
The phenomenon of jumping between connected components
is appealing, though finding the correct step size could be
challenging in general, due to the NP hardness of the problem.
In summary, this work shows that unlike convex optimization
where a small step size is used, an aggressive step size is
the only viable method for escaping non-global local minima
created by the discontinuity of the feasible set.

A road-map for the remainder of the paper is as follows.
Notations and problem formulations are given in Section II.
Section III gives an overview of two common local search
algorithms, whose empirical performances are compared in
Section IV. Section V proves that almost all initializations can
be connected to the globally optimal component via descent
directions. Concluding remarks are drawn in Section VI.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

with an unknown initial state x(0) = x0, where x0 is treated
as a random variable with a zero mean and the positive-
definite covariance matrix D0. Consider also the quadratic
performance measure

J(K) = Ex0

{∫ ∞
0

[
x>(t)R1x(t) + 2x>(t)R12u(t)

+ u>(t)R2u(t)
]
dt
}
, (2)

where the matrix
[
R1 R12

R>12 R2

]
is positive smei-definite and R2

is positive definite (the symbol E{·} denotes the expectation
operator). We focus on the static case where the control input
u(t) is to be determined by a static output-feedback law
u(t) = −Ky(t). The objective is to design a decentralized
controller K that belongs to a linear subspace S ⊆ Rm×p,
which models a user-defined decentralized control structure
(note that m and p denote the dimensions of the input and
output vectors, respectively). LetM denote the set of matrices
K for which all eigenvalues of A − BKC are in the open
left-half plane. The constrained optimal control problem of
minimizing J(K) over the feasible setM∩S is named optimal
decentralized control (ODC) and can be formulated as

minimize
K∈M

trace(P (K)D0)

subject to K ∈ S
(P1)

where the matrix P (K) denotes the closed-loop observability
Gramian

P (K) =

∫ ∞
0

[
e(A−BKC)>t[R1 −R12KC − C>K>R>12

+ C>K>R2KC]e(A−BKC)t
]
dt,

(3)
which can be equivalently obtained by solving the Lyapunov
equation

(A−BKC)>P + P (A−BKC)

= −(R1 −R12KC − C>K>R>12 + C>K>R2KC).
(4)

In optimization (P1), since the open setM is a connected but a
highly sophisticated set that cannot be efficiently characterized
by algebraic equations, we regard it as the domain of the
definition of the objective function J(K). In contrast, even
though the constraint K ∈ S causes the ODC to become NP-
hard, it is a simple convex set and therefore we keep it as an
explicit constraint in the problem. To handle the constraint
K ∈ S, one can impose it as a hard constraint or a soft
constraint through a penalty function. To explain the latter
approach, let h : Rm×p → R be an arbitrary penalty function
with the following properties: (i) h(K) is continuous, (ii)
h(K) ≥ 0 for all K ∈ Rm×p, (iii) h(K) = 0 if and only
if K ∈ S. Given a large positive constant c, the unconstrained
counterpart of optimization (P1) is

minimize
K∈M

trace(P (K)D0) + ch(K) (P ′1)

It is known that, under mild conditions, (P ′1) can be used
to find local minima of (P1) precisely for certain types of
non-differentiable penalty functions (e.g., 1-norm penalty) and
approximately with arbitrarily small errors for almost all
differentiable penalty functions (e.g., quadratic penalty). To
solve ODC numerically, we make the assumption that an initial
feasible controller K0 is available. This means the availability
of a decentralized stabilizing controller K0 ∈M∩S for (P1)
and a centralized stabilizing controller K0 ∈ M for (P ′1).
Any descent algorithm generates a sequence of controllers
K0,K1,K2, . . .. The main difference between (P1) and (P ′1)
is whether the constraint K ∈ S should be satisfied for all
points of the sequence or only at its limit. The limit point of
the sequence, if exists, could be a saddle point or a local
minimum of the corresponding optimization problem. The
work [32] states that, under some conditions, the gradient
descent algorithm with a random initialization and sufficiently
small constant step sizes does not become stuck in a saddle
point almost surely. However, since it is important to find a
global solution of ODC, a question arises as to how many local
minima (P1) or (P ′1) has. The following result is a by-product
of our recent work [31].

Lemma 1. Suppose that C has full row rank and
[

R1 R12

R>
12 R2

]
is positive definite. There are instances of the ODC problem
for which the constrained optimization problem (P1) and its
penalized counterpart (P ′1) both have an exponential number
of local minima (with respect to n) if c is sufficiently large.

Proof. Consider any instance of the class of ODC problems
given in [31] with the property that the feasible set of the



problem has an exponential number of connected components.
Due to the coercive property proven in Lemma 3 (stated later
in the paper), each connected component must have a local
minimum. Therefore, (P1) has an exponential number of local
minima. Let O denote the set of all local minima in any
arbitrary connected component of the feasible set of ODC,
and O(ε) ⊆ Rm×p be the set of all points in the feasible set
of (P ′1) that are at most ε away from O, for any given ε > 0.
If (P ′1) is numerically solved using gradient descent for an
initial point in O(ε), it follows from the proof technique given
in [33] that the algorithm will converge to a local minimum
that is in the interior of O(ε) and approaches O as c goes to
infinity. This implies that (P ′1) has at least one local minimum
corresponding to the set O. Therefore, (P ′1) has an exponential
number of local minima.

It should be noted that the work [3] shows that if c = 0,
then (P ′1) has a single local solution (which should be global
as well). However, the above result indicates the complexity
added by softly penalizing the sparsity pattern of the controller.

A. Summary of Contribution

Given the existence of many local minima for ODC in
general, it is important to understand how effective local search
algorithms are. These algorithms often have two parameters to
design at every iteration: (i) descent direction, (ii) step size.
Rooted in convex optimization, there is a large literature on
how to design these two parameters to guarantee convergence
to a solution. In particular, the existing solvers often use the
backtracking technique to design a step size, which starts with
a guess for the step size and then reduces it by a constant
factor iteratively until an appropriate value is found. The initial
guess for backtracking is often considered small since a large
number does not offer any major benefits for convex problems.
In this work, we show the contrary and prove that a large
initial step for backtracking, which we name aggressive local
search, has the ability to skip local minima by jumping from
one connected component of the feasible set to another one.
We first numerically illustrate this idea and then theoretically
show that there exist values for the parameters (i) and (ii)
of local search to guarantee convergence to a global solution
from almost every feasible point. This positive result implies
that local search does not necessarily become stuck even with
a bad initialization, but finding the right parameters (i) and (ii)
would be difficult in the worst case due to the NP-hardness of
the problem.

B. Algebraic Characterization of Structural Constraints

Similar to [22] and [25], we introduce a structural identity
matrix IS of the linear subspace S to algebraically characterize
the structural constraint K ∈ S . The (i, j)-entry of IS is
defined as

[IS ]ij =

{
1, if Kij is a free variable,
0, if Kij = 0 is required.

Let IcS := 1− IS be the structural identity of the complemen-
tary subspace Sc, where 1 is the matrix with all its entries
equal to one. One can write

K ∈ S ⇐⇒ K � IS = K ⇐⇒ K � IcS = 0

where � denotes the entry-wise multiplication of matrices.
The Formulation (P1) can be written as

minimize
K∈M

trace(D0P (K))

subject to K � IcS = 0
(P2)

C. Inverse Optimal Control

It is known in the context of inverse optimal control [34] that
any static state-feedback gain Kopt is the unique minimizer of
some quadratic performance measure (2) for all initial states.
One such measure is∫ ∞

0

[
(u(t) +KoptCx(t))>R2(u(t) +KoptCx(t))

]
dt. (5)

Accordingly, we write R1 and R12 as

R1 = C>Kopt>R2K
optC, R12 = C>Kopt>R2. (6)

If Kopt ∈ S, the construction in (6) ensures that Kopt is the
globally optimal controller in both the decentralized and the
centralized settings. We will use this fact to conduct case
studies later in this paper.

III. LOCAL SEARCH ALGORITHMS

In this section, we give an overview of two optimization
frameworks that have been applied to instances of ODC to deal
with structural constraints: the projection-based method [22]
and the augmented Lagrangian method [25].

We first derive the objective function’s first and second
derivatives. This will lead to the necessary optimality con-
dition that can be exploited to develop local search algo-
rithms to solve the ODC problem. Applying the standard
techniques [23], [35] to the LTI system (1) with the quadratic
performance measure (2), we obtain the first- and second-order
derivatives of J as follows.

Proposition 1. The gradient of J is given by

∇J(K) = 2(R2KC −R>12 −B>P )LC>, (7)

where L and P are the controllability and observability
Gramians of the closed-loop system, given by

(A−BKC)L+ L(A−BKC)> = −D0, (FON − L)

and

(A−BKC)>P + P (A−BKC)

= −(R1 −R12KC − C>K>R>12 + C>K>R2KC).
(FON − P )

Proposition 2. The second-order approximation of J is de-
termined by

J(K+ K̃) ≈ J(K) + 〈∇J(K), K̃〉+ 1

2
〈HJ(K, K̃), K̃〉, (8)



where HJ(K, K̃) is

2
(

(RK̃C−B>P̃ )LC>+(R2KC−R>12−B>P )L̃C>
)
, (9)

and L̃ and P̃ are the solutions of the following Lyapunov
equations:

(A−BKC)L̃+ L̃(A−BKC)> = BK̃CL+ (BK̃CL)>,
(10)

(A−BKC)>P̃ + P̃ (A−BKC) = (R>12 +B>P

−R2KC)>K̃C +
(

(R>12 +B>P −R2KC)>K̃C
)>
.

(11)

Note that the notation 〈·, ·〉 used above is the inner product
operator. To solve the constrained optimal control problem nu-
merically, we can start with an initial stabilizing K0 ∈ S and
generate a descent stabilizing sequence {Ki} using the update
Ki+1 = Ki + siK̃i, where K̃i ∈ S is a descent direction
determined by the first-order and possibly the second-order
information, and si is the step size.

A. Projection-based method
Since the structural constraint K � IcS = 0 is linear, we

can project the gradient ∇J(K) and HJ(K, K̃) onto the
linear subspace S to guarantee the satisfaction of the structural
constraints. The projected gradient of J can be expressed as

∇J(K)� IS = 2
(
(R2KC −R>12−B>P )LC>

)
� IS . (12)

Then, given L and P , the first-order optimality condition
∇J(K)� IS = 0 is a linear equation involving an entry-wise
product. Based on the first-order condition (12), the alternating
method (the so-called Anderson-Moore or A-M method) [2]
can be employed. Starting with a decentralized stabilizing
controller K ∈ S , this method alternates between solving
the two Lyapunov equations (FON − L) and (FON − P ),
and solving the linear equation (12). It is shown in [35] that
the difference between two consecutive steps Ki+1 − Ki is
a descent direction and therefore the alternating method will
converge to a stationary point of (P2). The advantage of this
algorithm lies in its fast convergence compared to the gradient
method [26], [35].

We next consider the second-order information. With the
structural constraint K ∈ S, the second-order approximation
of J can be expressed as

J(K) + 〈∇J(K)� IS , K̃〉+
1

2
〈HJ(K, K̃)� IS , K̃〉, (13)

where ∇J(K) and HJ(K, K̃) are defined in (7) and (9).
Based on the second-order information and its corresponding
necessary optimality condition, Newton’s method can be ap-
plied to determine the descent direction by minimizing the
second-order approximation (13) of the objective function
with the structural constraints. To avoid inverting the large
Hessian matrix explicitly, the conjugate gradient method can
be employed to compute the Newton direction [36, Chapter 5].

Both descent directions described above can be combined
with line search methods. The commonly applied backtrack-
ing with Armijo rule selects si as the largest number in
{s̄, s̄β, s̄β2, ...} such that Ki + siK̃i is stabilizing and

J(Ki + siK̃i) < J(Ki) + αsi〈∇J(Ki), K̃i〉, (14)

where α, β ∈ (0, 1) and s̄ is the initial step step size. Selecting
a large value for s̄ corresponds to aggressive local search.

B. Augmented Lagrangian method

Instead of forcing the sparsity constraint by projecting
∇J(K) and HJ(K, K̃) onto the subspace S, the augmented
Lagrangian method [25] minimizes a sequence of unstructured
problems. The augmented Lagrangian function for (P2) is
given by

Lc(K,V ) = J(K) + 〈V,K � IcS〉+
c

2
‖K � IcS‖2, (15)

where the penalty weight c is a positive scalar, ‖ · ‖ is
the Frobenius norm, and the Lagrangian multiplier V ∈ Sc
together with a local minimum of (P2) is assumed to satisfy
the second-order sufficient optimality conditions. The aug-
mented Lagrangian method starts from an initial estimate of
the Lagrangian multiplier V 0, and then alternates between
minimizing Lc(K,V

i) with respect to the unstructured K for
fixed V i:

Ki = argminLc(K,V
i),

and updating the Lagrangian multiplier:

V i+1 = V i + c(Ki � IcS).

To ensure convergence and avoid the ill-conditioning in mini-
mizing Lc(K,V ), a practical scheme is to update the penalty
weight as ci+1 = γci with γ > 1 until it reaches a
certain threshold value τ . The augmented Lagrangian method
terminates as soon as ‖K � IcS‖ < ε is reached.

Similar with the projection-based method, we can use the
alternating method or Newton’s method combined with the
Armijo rule to solve the unconstrained augmented Lagrangian
function Lc(K,V

i). The gradient of Lc(K,V
i) can be ex-

pressed as

∇Lc(K,V
i) = 2(R2KC−R>12−B>P )LC>+V i+c(K�IcS)

(16)
Then, given L and P , the first-order optimality condition
Lc(K,V

i) = 0 is a linear equation involving an entry-wise
product. Based on the first-order condition (12), the alternating
method solves the two Lyapunov equations (FON − L) and
(FON − P ), and then solves the linear equation (16). It is
proven in [25] that the difference between two consecutive
steps Ki+1 − Ki is also a descent direction for the uncon-
strained augmented Lagrangian function, thereby ensuring the
convergence to a stationary point of Lc(K). Newton’s method
can also be applied to minimize Lc(K) since it is well-suited
for ill-conditioned Lc(K) when the penalty weight c becomes
large [37, Section 5.2]. To do so, we only need to minimize
the second-order approximation of Lc(K):

Lc(K) + 〈∇Lc(K), K̃〉+
1

2
〈HL(K, K̃), K̃〉, (17)

where HL(K, K̃) is

2
(

(RK̃C−B>P̃ )LC>+(R2KC−R>12−B>P )L̃C>
)

+cK̃,

and then use the conjugate gradient method to compute the
Newton direction.



IV. CASE STUDIES

In this section, we test the methods of Section III on
examples in [31], where the feasible set of the constrained
optimal control problem has an exponential number of con-
nected components and consequently an exponential number
of local minima. Consider the LTI system in (1) such that A
is of the form

A =



f1 + ε f2 0 · · · · · · 0

−h2 ε f3
. . .

...

0 −h3 ε f4
. . .

...
...

. . . . . . . . . . . . 0
...

. . . −hn−1 ε fn
0 · · · · · · 0 −hn ε


, (18)

where ε > 0, f1 < 0, and (−1)i(fi − hi+1) > 0 for i =
2, . . . , n. Let B ∈ Rn×n, C ∈ Rn×n, D0 ∈ Rn×n and IS ∈
Rn×n be of the form

B =


0 1

−1
. . . . . .
. . . 0 1

−1 0

 , C = I, D0 = I, IS = I

(19)

It is proven in [31] that for a small enough ε ≥ 0, the set

K = {K : A−BKC is stable/Hurwitz, K ∈ S}

has at least Fn connected components, where F0 = 1, F1 =
1, Fi+2 = Fi+1 + Fi for i = 0, 1, . . . is the Fibonacci
sequence. Note that Fn grows exponentially in n.

A. Performance of projection-based method

Although the observations to be discussed next are also valid
for large values of n, we restrict the simulations to n = 3
so that the results can be visualized. Consider the third-order
system (n = 3) with f1 = −1, f2 = h2 = 10, f3 = h3 = 1
and

Kc = 20I, R2 =

 20 1 −1
1 5 2
−1 2 2

 , ε = 0 (20)

where Kc is the optimal centralized controller, and R1 and
R12 are accordingly computed by (6). Assume that the set
S consists of only purely diagonal matrices, meaning that a
decentralized controller is to be designed. The feasible set
of the ODC problem has 3 connected components with no
margin between the closures of the components (as shown
in Fig. 1). The parameters of the Armijo rule are set as
s̄ = 1, β = 0.5, α = 10−2 and the stopping criterion is
‖∇J(K) � IS‖ < 10−3. The initial points are randomly
sampled among the structured stabilizing controllers.

Table I: Jump behavior for the projection-based method with
ε = 0

K0 A-M Newton
K+ J(K+) K+ J(K+)

D1(40, 40, 40) Kc 0 Kc 0
D1(97, 80, 121) Kc 0 K3 7357.5
D1(135, 126, 171) Kc 0 K3 7357.5

D2(0, 0, 0) K2 16237.0 K2 16237.0
D2(−54,−26,−41) K2 16237.0 Kc 0
D2(−34,−12,−5) Kc 0 K2 16237.0
D3(−10, 5, 10) K3 7357.5 K3 7357.5
D3(−19, 5, 6) Kc 0 K3 7357.5
D3(−25, 6, 5) Kc 0 K3 7357.5

1) Jumping bewteen connected components: Some of the
convergence results from random initializations are summa-
rized in Table I and some of the trajectories are plotted in
Fig. 1. We use Dj(x) to denote the diagonal matrix where the
vectorized diagonal elements are the vector x and the subscript
j is the index of the connected component that the correspond-
ing feedback gain belongs to. For example, D1(40, 40, 40)
represents the diagonal feedback gain with the diagonal entries
40, 40, 40 in the connected component 1. We also use the
notation K+ to denote any locally optimal solution and Kj to
denote any locally optimal solution in the component j. In this
example, we have K1 = Kc, K2 = D2(6.06,−3.16,−0.63)
and K3 = D3(6.48, 6.46, 3.02). Note that Kc is by design the
best centralized controller and since it is already diagonal, it
is the globally optimal solution of ODC.

From Table I, we can see that a jump can occur from the
globally optimal component to the sub-optimal component and
vice versa. Therefore, on the one hand, the projection-based
method can not guarantee the convergence to the globally
optimal solution even if initialized in the the globally optimal
component. On the other hand, even if initialized in the sub-
optimal component, the projection-based local search is still
likely to find the globally optimal solution by jumping to the
globally optimal component. This observation also supports
the conclusion in Section V that except for a set of measure
zero, all initial points of the decentralized LQR problem can
be connected to the globally optimal decentralized controller
via a path that involves only descent directions.

2) Strict separation and exponential number of connected
components: We next consider the same system in (20) but
with ε = 0.05. In this case, the connected components will
be strictly separated (as shown in Fig. 2). As ε increases,
the disconnected components become more separated [31].
Although the jump between the connected components still
occurs, the projection-based local search methods is more
likely to become stuck in the connected component that
contains the initial point since the step size is not adaptively
designed. Table II compares the number of jumps from the
sub-optimality components to the globally optimality compo-
nent in 10, 000 random initialization trials for different values
of ε. With the slightly abuse of notation, we use D2 and D3

to denote the component 2 and 3 that are the sub-optimal
components.

We comment that in this example, as the dimension n
increases, the number of connected components increases
exponentially. Therefore, the likelihood of jumping from the



Table II: Number of jumps from sub-optimality components
to globally optimality component with different ε.

A-M Newton
ε = 0 ε = 0.05 ε = 0.1 ε = 0 ε = 0.05 ε = 0.1

D2 105 29 7 1841 586 101
D3 143 135 102 0 0 0

Table III: Number of jumps from sub-optimal components to
globally optimal component with different s0, β.

A-M Newton
s0 = 1 s0 = 5 s0 = 1 s0 = 5
β = 0.5 β = 0.9 β = 0.5 β = 0.9

D2 29 178 586 6674
D3 136 169 0 0

sub-optimal component to the globally optimal component is
slim with a small step size.

3) Aggressive step size: Table III compares the number of
jumps from the sub-optimal components D2 and D3 to the
globally optimal component in 10, 000 random initialization
trials for different initial step sizes s̄ and β. The trajectories
initialized at the same points but with the different step size
parameters are plotted in Fig. 1 and Fig. 2. From the above
numerical results, we can see that the projection-based local
search method would fail if the step size is restricted to
be small in the backtracking of the Armijo rule. In convex
optimization as well as those nonlinear problems with a
connected feasible region, the common practice is to consider
the step size in descent algorithms to be small to guarantee
the convergence to a locally/globally optimal solution. Note
that the upper bound on the step size is often considered to
be less than a constant factor of the inverse of the Lipschitz
constant of the objective function [37]. But, using a small step
size in the above example, we almost always obtain a non-
global local solution whenever we initialize the algorithm in a
sub-optimal component. However, since numerical algorithms
are oblivious to the geometry of the feasible sets, they can be
deceived by selecting large step sizes to make them jump from
one connected component to another one without realizing
discontinuity.

B. Performance of augmented Lagrangian method

We consider the third-order system given in (18) and (19)
with f1 = −1, f2 = h2 = 2, f3 = h3 = 1 and

Kc =

 6 −10 0
0 2 −10
4 0 0

 , R2 = I, ε = 0. (21)

where R1 and R12 are accordingly computed by (6). Here,
the parameters of the augmented Lagrangian method are set
as V 0 = 0, c0 = 10, γ = 3, τ = 105 and the parameters
of the Armijo rule are set as s0 = 1, β = 0.5, α = 10−2.
The stopping criterion for the augmented Lagrangian method
is ‖K � IS‖ < 10−4 and the stopping criterion for mini-
mizing the unconstrained augmented Lagrangian function is
‖∇Lc(K)‖ < 10−2.

Since it is generally NP-hard to solve the ODC prob-
lem [8], [38], there is no efficient method to find a globally
optimal decentralized controller with guarantees. However,

(a) Alternating method

(b) Newton’s method

Figure 1: The trajectory of the sequence {Ki} obtained by the projection-
based method with ε = 0. The cubes are the connected components for the
decentralized controller. Solid lines correspond to s0 = 1, β = 0.5 and the
dashed lines correspond to s0 = 5, β = 0.9. (a): The blue, red and green
line are initialized at the points D1(40, 40, 40), D2(−28.3,−8.9,−4.4)
and D3(−30.1, 7.1, 12.6), respectively. (b): The blue, red and green line
are initialized at the points D1(40, 40, 40), D2(−21.9,−12.9,−18.3) and
D3(−20, 6, 30), respectively. Note that K11, K22 and K33 denote the
diagonal entries of the controller K.

from the fact that a random initialization in our simulation
yields at least 2 local solutions with different objective values,
we can still conclude that the augmented Lagrangian method
with the random initialization fails to find the globally optimal
decentralized controller. Some of the convergence results are
summarized in Table IV. Here, local optimal solutions are
K1 = D1(6.31, 6.10, 3.34), K2 = D2(0.69,−0.12,−0.34)
and K3 = D3(0.69,−0.12,−0.34) and initial points are

K01=

 172 −260 42
130 184 −130
352 0 −140

,K02=

 28 −18.2 31
9 −6 −9
18 0 40

 .
Table IV: Numerical results for the augmented Lagrangian
method with c0 = 10

K0 Alternating Newton
K+ J(K+) K+ J(K+)

Kc K2 332.5 K2 332.5
K01 K1 454.3 K2 332.5
K02 K2 332.5 K1 454.3

1) Locally strong convexity and aggressive step size: Table
V compares the number of convergences to K1, K2 and K3

respectively in 700 random initialization1 trials for different
initial penalty weight c0.

1Here, we only randomly sample the diagonal elements of K ∈ Rn×n and
then solve the feasibility problem such that the eigenvalues of A−BKC are
all in the open left half plane



(a) Alternating method

(b) Newton’s method

Figure 2: The trajectory of the sequence {Ki} obtained by the projection-
based method with ε = 0.05. The blue regions are the connected components
for the decentralized controller. Solid lines correspond to s0 = 1, β = 0.5
and dashed lines correspond to s0 = 5, β = 0.9. (a): The blue, red and green
line are initialized at the points D1(40, 40, 40), D2(−14.2,−20.7,−6)
and D3(−28.2, 6.1, 10), respectively. (b): The blue, red and green line
are initialized at the points D1(40, 40, 40), D2(−18.3,−3.6,−16) and
D3(−20, 6, 30), respectively.

Penalty methods like the augmented Lagrangian method,
which allow the violation of the structure constraints during
the iterations, seem more likely to overcome the discontinuity
of the feasible region than the projection-based method. How-
ever, the locally strong convexity introduced by the augmented
Lagrangian function makes the local search more sensitive
to the initial point. That is, as the initial penalty weight
c0 increases, the locally strong convexity near the subspace
IS also increases, which tends to attract the initial point to
its closet local solution. Therefore, for these problems with
a disconnected feasible region, the augmented Lagrangian
method is not robust and can easily become stuck in a local
solution. To overcome the locally strong convexity associated
with the sub-optimal component, an aggressive step size is
desirable.

Table V: Numerical results for the augmented Lagrangian
method with different c0

Alternating Newton
K1 K2 K3 K1 K2 K3

C0 = 10 2 698 0 18 682 0
C0 = 50 531 169 0 325 375 0
C0 = 5000 543 154 3 328 363 9

V. PATH TO THE GLOBALLY OPTIMAL SOLUTION

In this section, we show that except for a set of measure
zero, all initial stabilizing points of the decentralized LQR
problem can be connected to the globally optimal decentral-
ized controller via a path that involves only descent directions.
The proof requires the result below on convergence to local
minimizers. Given a twice continuously differentiable function
J(K), its stationary point K+ solves ∇J(K+) = 0. The
function J is said to satisfy strict saddle property [39] if each
critical point K+ of J is either a local minimizer or a “strict
saddle”, that is, ∇2J(K+) has at least one strictly negative
eigenvalue.

Lemma 2 ([32]). If f : Rd → R is twice continuously
differentiable and satisfies the strict saddle property, then
gradient descent with a random initialization and sufficiently
small constant step sizes converges to a local minimizer or
negative infinity almost surely.

To apply the lemma above, we first show that the LQR
problem has a certain structure that disallows the locally
optimal stabilizing K to have arbitrary magnitude.

Lemma 3. Consider the decentralized LQR problem in (P1).
Suppose that C has full row rank,

[
R1 R12

R>
12 R2

]
is positive

definite, and K ∈ S is stabilizing. Then, J(K) → ∞
whenever ‖K‖2 → ∞ or when K approaches the boundary
of the set of stabilizing controllers. Therefore, any descent
method yields a bounded sequence of stabilizing controllers.

Proof. We have

P (K) =

∫ ∞
0

et(A−BKC)>R̂(K)et(A−BKC)dt,

where

R̂(K) = R1 −R12KC − C>K>R12 + C>K>R2KC.

When K is stabilizing, P (K) is well-defined. As K ap-
proaches a finite K† on the boundary of the set of stabilizing
controllers, we show that ‖P (K)‖2 → ∞. By assumption,
the symmetric matrix R̂(K) in the integral is positive definite,
because it can be written as

R̂(K†) =
[
I −C>K>†

] [R1 R12

R>12 R2

] [
I

−K†C>
]
.

Therefore, its minimum eigenvalue λmin(R̂(K†)) > 0, and
when K is close to K†, R̂(K) � 1

2λmin(R̂(K†))I . We make
the estimate

trace(P (K))≥1

2
λmin(R̂(K†))

∫ ∞
0

trace
(
et(A−BKC)>et(A−BKC)

)
dt

≥ 1

2
λmin(R̂(K†))

∫ ∞
0

‖et(A−BKC)‖22dt

=
1

2
λmin(R̂(K†))

∫ ∞
0

e2t·spabs(A−BKC)dt,

where spabs(·) denotes the spectral abscissa (maximum real
part of the eigenvalues). The estimate above shows that
trace(P (K)) → ∞ as K approaches K† from the stabilizing
set, hence J(K) = trace(P (K)D0) ≥ trace(P (K))λmin(D0)
also approaches infinity.



In case ‖K‖2 →∞ from the stabilizing set, we use the fact
that P (K) is the unique solution to the equation

(A−BKC)>P + P (A−BKC) + R̂(K) = 0.

It follows from the triangle inequality that

λmin(R2)σ2
min(C)‖K‖22 ≤ ‖C>K>R2KC‖2

≤ 2‖A−BKC‖2‖P‖2 + ‖R1‖2 + 2‖R12‖2‖K‖2‖C‖2
≤ 2(‖A‖2 + ‖B‖2‖K‖2‖C‖2)‖P‖2+

‖R1‖2 + 2‖R12‖2‖K‖2‖C‖2.

where σmin(C) is the minimum singular value of C. There-
fore,

‖P‖2 ≥
λmin(R2)σ2

min(C)‖K‖22 − ‖R1‖2 − 2‖R12‖2‖K‖2‖C‖2
2(‖A‖2 + ‖B‖2‖K‖2‖C‖2)

.

Hence, ‖P (K)‖2 → ∞ as ‖K‖2 → ∞ inside the stabilizing
set. Similarly J(K) = trace(P (K)D0) ≥ ‖P (K)‖2λmin(D)
also approaches infinity.

Lemma 3 guarantees existence of a locally optimal de-
centralized controller in any connected component of the
stabilizing set. Next, we show that around any strict local
minimum of J(K), there exists a controller from which a
descent direction point towards a neighborhood of the globally
optimal controller.

Lemma 4. Suppose that K+ is a strict local minimum of
J(K), and K+ is not equal to a globally optimal solution
K∗. Then, for all δ0 > 0, there exist a stabilizing K̂+ with
‖K̂+ − K+‖ ≤ δ0 and a number δ1 > 0, such that for all
stabilizing K̂∗ with ‖K̂∗−K∗‖ ≤ δ1, the direction K̂∗− K̂+

is a descent direction at K̂0.

Proof. Since K+ is a strict local minimum, there is a number
δ′0 ∈ (0, δ0) such that when ‖K − K+‖ ≤ δ′0, we have
∇2J(K) � 0. This implies that f is strongly convex in this
δ′0-neighborhood of K+, that is, whenever ‖K −K+‖ ≤ δ′0,
it holds that

〈−∇J(K),K+−K〉=〈∇J(K+)−∇J(K),K+−K〉>0.
(22)

Especially, for K̂+ with ‖K̂+−K+‖ ≤ δ′0 and K+− K̂+ =
β(K∗ − K̂+) for some β > 0, (22) implies that K∗ − K̂+ is
a descent direction at K̂+. By continuity, there is a δ1 > 0
such that for all ‖K̂∗−K∗‖ ≤ δ1, K̂∗− K̂+ is also a descent
direction.

Remark 1. When ∇J(K) is smooth, the claim of Lemma 4
can be strengthened. At a non-degenerate zero K+ of the
vector field ∇J(K), the index of the vector field is nonzero.
Within the set of stabilizing controllers, a suitably small lower-
level set of J around K+can be regarded as a manifold X
with boundary; its Gauss map to the unit sphere will have a
non-zero degree [40, §6]. Sard’s theorem [40] implies that
almost all directions in the unit sphere are achievable by
some gradient of J at the boundary of X . When X is small,
the direction K∗ − K+ is not so different from K∗ − K;

hence almost all points in a neighborhood of K∗ can be made
arbitrarily close to some ray K − α∇J(K), α > 0 with a
suitable K ∈ X .

Theorem 1. Consider a decentralized LQR problem with the
same assumption as in Lemma 3. Suppose that J(K) satisfies
the strict-saddle property and its local minima are all strict.
Then, except for a set of measure zero, from every initial
stabilizing controller, there is a path to a globally optimal
decentralized controller that involves only descent directions.

Proof. Denote by K∗ a globally optimal decentralized con-
troller. Suppose that the initialization is at a point K0. If
∇J(K0) = 0, we initialize at a local minimum and can never
escape. This scenario occurs on a measure-zero set since by
assumption the local minima are isolated. When ∇J(K0) 6= 0,
there are two cases: (1) if 〈K∗−K,∇J(K)〉 < 0, then K∗−K
is a descent direction, and it is possible to jump to the globally
optimal solution in one step; (2) If 〈K∗ − K,∇J(K)〉 ≥ 0,
the global optimal solution is on the other side of the local
gradient. We will prove that it is still possible turn around near
a locally optimal controller, which exists in any connected
components due to Lemma 3.

From Lemma 2, for almost any initial point K0, gradient
descent and a small enough step size is able to come arbitrarily
close to some local minimum K+. Since K+ is a strict local
minimum, there is some ε > 0 such that when ‖K−K+‖ ≤ ε,
we have ∇2J(K) � 0, which means that J is strongly convex
in this ε-neighborhood of K+. Suppose that at n-th iteration,
we are at some point Kn in this ε-neighborhood. It followings
from strong convexity that

〈−∇J(Kn),K+−Kn〉=〈∇J(K+)−∇J(Kn),K+−Kn〉>0

which means that K+−Kn is a descent direction at Kn. By
continuity, there is a small 0 < δ < ε such that K − Kn

is a descent direction whenever ‖K − K+‖ ≤ δ, Applying
Lemma 4 with this δ0 = δ to obtain K̂+ and K̂∗, and K̂∗ may
be selected so close to K∗ that gradient descent initialized at
K̂∗ converges to K∗. Assigning Kn+1 = K̂+ and Kn+2 =
K̂∗, with only descent directions we can connect K0 to a
neighborhood of K∗ where gradient descent converges.

VI. CONCLUSIONS
We studied the numerical behavior of local search methods

when they are applied to the optimal decentralized control
(ODC) problem with a disconnected feasible set. We found
different behaviors between projection-based and augmented
Lagrangian methods when there are multiple local minima.
Moreover, we proved that a succession of jumps to the globally
optimal component with descent directions is possible for
almost all initializations. The existence of a path that involves
many connected components provides a theoretical way to
escape local minima that are created by the discontinuity of
the feasible set of constrained optimal control problems. It
should be noted that our existence result does not directly
imply an algorithm that decides the best opportunity to take a
jump to the optimal component. Using prior information about
the optimal component to identify the best jump strategy is a
promising direction of future research.
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