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Abstract—This paper is concerned with the optimal static
distributed control problem for linear discrete-time deterministic
and stochastic systems. The objective is to design a stabilizing
static distributed controller whose performance is close to that
of the optimal centralized controller. To this end, we fist consider
deterministic systems, where the initial state is either given
or belongs to a known bounded region. Given an arbitrary
centralized controller, we derive a condition under which there
exists a distributed controller that generates input and state
trajectories close to their counterparts in the centralized closed-
loop system. This condition for the design of a distributed
controller is translated into an optimization problem, where the
optimal objective value of this problem quantifies the close-
ness of the designed distributed and given centralized control
systems. The results are then extended to stochastic systems
that are subject to input disturbance and measurement noise.
The proposed optimization problem has a closed-form solution
(explicit formula) and can be efficiently solved for large-scale
systems. The mathematical framework developed in this paper
is utilized to design a near-globally optimal distributed controller
based on the optimal centralized controller, and strong theoretical
lower bounds on the global optimality guarantee of the obtained
distributed controller are derived. We show that if the optimal
objective value of the proposed convex program is sufficiently
small, the designed controller is stabilizing and nearly globally
optimal. To illustrate the effectiveness of the proposed method,
case studies on aircraft formation and frequency control of power
systems are offered.

I. INTRODUCTION

The area of distributed control has been created to address
computation and communication challenges in the control of
large-scale real-world systems. The main objective is to design
a controller with a prescribed structure, as opposed to the
traditional centralized controller, for an interconnected system
consisting of an arbitrary number of interacting local subsys-
tems. This structurally constrained controller is composed of
a set of local controllers associated with different subsystems,
which are allowed to interact with one another according
to the given control structure. The names “decentralized”
and “distributed” are interchangeably used in the literature to
refer to structurally constrained controllers (the latter term is
often used for geographically distributed systems). It has been
known that solving the long-standing optimal decentralized
control problem is a daunting task due to its NP-hardness [1],
[2]. Since it is not possible to design an efficient algorithm
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to solve this complex problem in its general form unless P =
NP , several methods have been devoted to solving the optimal
distributed control problem for special structures, such as
spatially distributed systems [3], [4], localizable systems [5],
[6], strongly connected systems [7], optimal static distributed
systems [8], decentralized systems over graphs [9], [10], and
quadratically-invariant systems [11].

Due to the evolving role of convex optimization in solving
complex problems, more recent approaches for the optimal
distributed control problem have shifted toward a convex refor-
mulation of the problem [12]–[20]. This has been carried out in
the seminal work [21] by deriving a sufficient condition named
quadratic invariance, which has been specialized in [22] by
deploying the concept of partially order sets. These conditions
have been further investigated in several other papers [23]–
[25]. A different approach is taken in the recent papers [26]
and [27], where it has been shown that the distributed control
problem can be cast as a convex program for positive systems.
Using the graph-theoretic analysis developed in [28], [29],
it is shown in [30]–[32] that a semidefinite programming
(SDP) relaxation of the distributed control problem has a
low-rank solution for finite- and infinite-time cost functions
in both deterministic and stochastic settings. The low-rank
SDP solution may be used to find a near-globally optimal
distributed controller. Moreover, it is proved in [33] that either
a large input weighting matrix or a large noise covariance can
convexify the optimal static distributed control problem for
stable systems, and hence one can use a variety of iterative al-
gorithms to find globally optimal static distributed controllers.
Since SDPs and iterative algorithms are often computationally
prohibitive for large-scale problems, it is desirable to develop
a computationally-cheap method for designing suboptimal
distributed controllers.

A. Contributions
The gap between the optimal costs of the optimal centralized

and distributed control problems could be arbitrarily large in
practice (as there may not exist a stabilizing controller with
the prescribed structure). This paper is focused on systems for
which this gap is expected to be relatively small. The main
problem to be addressed is the following: given a centralized
controller, is it possible to design a stabilizing static distributed
controller with a given structure whose performance is close
to that of the centralized one? The primary objective of this
paper is to propose a candidate distributed controller via an
explicit formula, which is indeed a solution to a system of
linear equations.
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In this work, we first study deterministic systems and
derive a necessary and sufficient condition under which the
states and inputs produced by a candidate static distributed
controller and the given optimal centralized controller are
identical for a given initial state. We translate the condition
into an optimization problem, where the closeness of the given
centralized and distributed control systems are captured by
the smallness of the optimal objective value of this convex
program. We then incorporate a regularization term into the
objective function of the optimization problem to account
for the stability of the closed-loop system. In real-world
problems, it is often the case that the initial state is not
known precisely. Therefore, in addition to closed-loop stability
guarantee, the designed distributed controller should offer
some optimality guarantee for every initial state belonging to
a given uncertainty region. To address this issue, the proposed
optimization problem is generalized to handle uncertain initial
states as well. This optimization problem has a closed-form
solution, which depends on the prescribed sparsity pattern
of the to-be-designed controller as well as the properties of
the uncertainty region of the initial state. A lower bound is
obtained to guarantee the performance of the designed static
distributed controller. This lower bound quantifies the distance
between the performances of the designed controller and the
given centralized one in the worst case. We show that the
proposed convex program indirectly maximizes the derived
lower bound while striving to achieve closed-loop stability.
By building upon the derived results for deterministic systems,
the proposed method is extended to stochastic systems that are
subject to disturbance and measurement noises. We show that
these systems benefit from similar lower bounds on optimality
guarantee.

In this paper, we design a suboptimal distributed controller
based on the optimal centralized controller. However, find-
ing the best centralized controller could be computationally
expensive for large-scale systems with tens of thousands of
states. Under such circumstances, one may need to find an
approximate solution of the Ricatti equations corresponding to
the optimal centralized controller as delineated in [34]–[37].
The memory and computational complexities of these iterative
methods are almost linearly proportional to the size of the
problem, and they benefit from a quadratic convergence. This
would lead to a near-global centralized controller, which can
then be used to design a suboptimal distributed controller using
the optimization problem proposed in this work. More pre-
cisely, the developed mathematical framework can be applied
to any arbitrary centralized controller to obtain a distributed
controller with a given sparsity pattern such that the centralized
and distributed control systems perform similarly.

To demonstrate the efficacy of the developed mathematical
framework, we consider two case studies in this paper. The
first one is an instance of the control problem for multi-
agent systems. In particular, we consider the aircraft formation
problem in which each aircraft should make decisions solely
based on its relative distance from the neighboring agents [38],
[39]. In the second case study, we consider the frequency
control problem for power systems with different topological
restrictions on the distributed controller [32]. We will show

that the synthesized distributed controllers offer high perfor-
mance and closed-loop stability guarantees in both of the case
studies.

The rest of this paper is organized as follows. The problem
is formulated in Section II. Deterministic systems are studied
in Section III, followed by an extension to stochastic systems
in Section IV. The complexity analysis of the developed
method is discussed in Section V. Case studies are provided
in Section VI. Concluding remarks are drawn in Section VII.
Some of the proofs are given in the appendix.

Notations: The space of real numbers is denoted by R.
The symbol trace{W} denotes the trace of a matrix W .
Im denotes the identity matrix of dimension m, where the
subscript m is dropped when the dimension is implied by the
context. The symbol (⋅)T is used for transpose. The symbols
∥W ∥2 and ∥W ∥F denote the 2-norm and Frobenius norm of
W , respectively. The (i, j)th entry of a matrix W is shown
as W (i, j) or Wij , whereas the ith entry of a vector w is
shown as w(i) or wi. The symbols λmax

W or λmax(W ) refer
to the maximum eigenvalue of a symmetric matrix W . The
maximum absolute value of the eigenvalues of W is denoted
by ρ(W ), and is called the spectral radius of the matrix W .
The notation W ⪰ 0 means that the symmetric matrix W is
positive semidefinite. For a real number y, the notation (y)+
denotes the maximum of 0 and y. The expected value of a
random variable x is shown as E{x}.

II. PROBLEM FORMULATION

In this paper, the optimal static distributed control prob-
lem for systems with quadratic cost functions is studied.
For simplicity of notation, this problem is referred to as
optimal distributed control (ODC) henceforth (note that the
term “ODC” is used only for static controllers and does not
imply dynamic controllers in this paper). The objective is to
develop a cheap, fast and scalable algorithm for the design
of distributed controllers for large-scale systems. It is aimed
to obtain a static distributed controller with a pre-determined
structure that achieves a high performance compared to the
optimal centralized controller. We implicitly assume that the
gap between the optimal values of the optimal centralized
and distributed control problems is not too large (otherwise,
our method cannot produce a high-quality static distributed
controller since there is no such controller). The mathematical
framework to be developed here is particularly well-suited for
mechanical and electrical systems such as power networks that
are not highly unstable, for which it is empirically known
that the above-mentioned gap is relatively small (note that the
design problem is still hard even if the gap is small).

Definition 1. Define K ⊆ Rm×n as a linear subspace with
some pre-specified sparsity pattern (enforced zeros in certain
entries). A feedback gain belonging to K is called a dis-
tributed (decentralized) controller with its sparsity pattern
captured by K. In the case of K = Rm×n, there is no structural
constraint imposed on the controller, which is referred to as
a centralized controller. Throughout this paper, we use the
notations Kc, Kd, and K to show an optimal centralized
controller gain, a designed (near-globally optimal) distributed
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controller gain, and a variable controller gain (serving as a
variable of an optimization problem), respectively.

In this work, we will study two versions of the ODC
problem, which are stated below.

Infinite-horizon deterministic ODC problem: Consider the
discrete-time system

x[τ + 1] = Ax[τ] +Bu[τ], τ = 0,1, ...,∞ (1)

with the known matrices A ∈ Rn×n, B ∈ Rn×m, where the
initial state x[0] ∈ Rn may or may not be known a priori.
The objective is to design a stabilizing static controller u[τ] =
Kx[τ] to satisfy certain optimality and structural constraints.
Associated with the system (1) under an arbitrary controller
u[τ] = Kx[τ], we define the following cost function for the
closed-loop system:

J(K) =
∞
∑
τ=0

(x[τ]TQx[τ] + u[τ]TRu[τ]) (2)

where Q and R are constant positive-definite matrices of
appropriate dimensions. Assume that the pair (A,B) is stabi-
lizable. The minimization problem of

min
K∈Rm×n

J(K) (3)

subject to (1) and the closed-loop stability condition is an
optimal centralized control problem and the optimal controller
gain can be obtained from the Riccati equation. However, if
there is an enforced sparsity pattern on the controller via the
linear subspace K, the additional constraint K ∈ K should be
added to the optimal centralized control problem, and it is
well-known that Riccati equations cannot be used to find an
optimal static distributed controller in general. We refer to this
problem as the infinite-horizon deterministic ODC problem.

Infinite-horizon stochastic ODC problem: Consider the
discrete-time system

{ x[τ + 1] = Ax[τ] +Bu[τ] +Ed[τ]
y[τ] = x[τ] + Fv[τ] τ = 0,1,2, ... (4)

where A,B,E,F are constant matrices, and d[τ] and v[τ]
denote the input disturbance and measurement noise, respec-
tively. Furthermore, y[τ] is the noisy state measured at time
τ . Associated with the system (4) under an arbitrary controller
u[τ] =Ky[τ], consider the cost functional

J(K) = lim
τ→+∞E {x[τ]

TQx[τ] + u[τ]TRu[τ]} (5)

The infinite-horizon stochastic ODC problem aims to min-
imize the above objective function for the system (4) with
respect to a stabilizing distributed controller K belonging to K
(note that the operator limτ→+∞ in the definition of J(K)
can be alternatively changed to limτ ′→+∞ 1

τ ′ ∑
τ ′

τ=0 without
affecting the solution, due to the closed-loop stability).

Finding an optimal static distributed controller with a pre-
defined structure is NP-hard and intractable in its worst case.
Therefore, we seek to find a near-globally optimal static
distributed controller. To measure the performance of the

designed suboptimal distributed controller, the value of the ob-
jective function evaluated at the designed distributed controller
is compared to that of the optimal centralized controller.

Definition 2. Consider the system (1) or (4) with the cost
function (2) or (5), respectively. Given Kd ∈ K and a number
µ ∈ [0,1], it is said that the distributed controller has the global
optimality guarantee µ if it satisfies the inequality

J(Kc)
J(Kd)

≥ µ (6)

We interchangeably denote the global optimality guarantee as
a number µ between 0 and 1 or in percentage as 100 × µ%.
For example, if µ = 0.95, then the inequality (6) implies that
the underlying distributed controller Kd is at most 5% worse
than the optimal centralized controller Kc. This means that if
there exists a better distributed controller, it would outperform
Kd by at most 5%.

The problem under investigation in this paper is as follows:
Given the deterministic system (1) or the stochastic system (4),
find a distributed controller u[τ] =Kdx[τ] such that

i) The design procedure for obtaining Kd is based on a
simple formula with respect to Kc, rather than solving
an optimization problem.

ii) The controller u[τ] =Kdx[τ] has a high global optimal-
ity guarantee.

iii) The system (1) is stable under the controller u[τ] =
Kdx[τ].

III. DISTRIBUTED CONTROLLER DESIGN: DETERMINISTIC
SYSTEMS

In this section, we study the design of static distributed
controllers for deterministic systems. First, we assume that
the initial state of the system is known a priori. For the sake
of simplicity of notations, the initial state x[0] is denoted as
x henceforth. We consider two criteria in order to design a
distributed controller. The first criterion is about the perfor-
mance of the to-be-designed controller. The second criterion
is concerned with the stability of the system under the designed
controller. Next, we generalize the results to the case where
the initial state is not known, but belongs to an uncertainty
region.

A. Performance Criterion
Consider the optimal centralized controller u[τ] = Kcx[τ]

and an arbitrary distributed controller u[τ] = Kdx[τ]. Let
xc[τ] and uc[τ] denote the state and input of the system (1)
under the centralized controller. Likewise, define xd[τ] and
ud[τ] as the state and input of the system (1) under the
distributed controller. Given the initial state of the system, the
next theorem derives a necessary and sufficient condition under
which the centralized and distributed controllers generate the
same state and input trajectories for the system (1).

Theorem 1. Given the optimal centralized gain Kc, an
arbitrary gain Kd ∈ K, and the initial state x, the relations

uc[τ] = ud[τ], τ = 0,1,2, ... (7a)
xc[τ] = xd[τ], τ = 0,1,2, ... (7b)
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hold if and only if

(Kc −Kd)(A +BKc)τx = 0, τ = 0,1,2, ... (8)

Proof. The proof is provided in the appendix.

To exploit the condition introduced in Theorem 1, an
optimization problem will be introduced below.

Optimization A. This problem is defined as

min
K

trace{(Kc −K)Px(Kc −K)T } (9a)

s.t. K ∈ K (9b)

where the symmetric positive-semidefinite matrix Px ∈ Rn×n
is the unique solution of the Lyapunov equation

(A +BKc)Px(A +BKc)T − Px + xxT = 0 (10)

Since Px is positive semidefinite and the feasible set K is
linear, Optimization A is convex. The next theorem explains
how this optimization problem can be used to study the
analogy of the centralized and distributed control systems.

Theorem 2. Given the optimal centralized gain Kc, an
arbitrary gain Kd ∈ K, and the initial state x, the relations

uc[τ] = ud[τ], τ = 0,1,2, ... (11a)
xc[τ] = xd[τ], τ = 0,1,2, ... (11b)

hold if and only if the optimal objective value of Optimiza-
tion A is zero and Kd is a minimizer of this problem.

Proof. In light of Theorem 1, we need to show that con-
dition (8) is equivalent to the optimal objective value of
Optimization A being equal to 0. To this end, define the semi-
infinite matrix

X = [x (A +BKc)x (A +BKc)2x ⋯ ] (12)

Now, observe that (8) is satisfied if and only if the Frobenius
norm of (Kc −Kd)X is equal to 0 or equivalently

trace{(Kc −Kd)XXT (Kc −Kd)T } = 0 (13)

On the other hand, if Px is defined as XXT , then it is the
unique solution of (10). This completes the proof.

Theorem 2 states that if the optimal objective value of
Optimization A is 0, then there exists a distributed controller
ud[τ] = Kdxd[τ] with the structure induced by K whose
global optimality guarantee is 100%. Roughly speaking, a
small optimal value for Optimization A implies that the
centralized and distributed control systems can become close
to each other. This statement will be formalized later in the
paper. One may speculate that since the optimal centralized
controller is unique, these does not exist a different (dis-
tributed) controller with the same performance and therefore
the optimality guarantee of 100% is not reachable. However,
note that the designed distributed controller and its optimal
centralized counterpart would perform identically at the given
initial state, but could be completely different in another initial
state. In fact, it will later be shown that if the exact value of the
initial state is not known, the optimality guarantee of precisely

100% is not achievable in general, but there is a way to modify
Theorem 2 to make the optimality guarantee close to 100%.

Consider a general discrete Lyapunov equation

MPMT − P +HHT = 0 (14)

for constant matrices M and H . It is well known that if M is
stable, the above equation has a unique positive semidefinite
solution P . Extensive amount of work has been devoted to the
behavior of the eigenvalues of the solution of (14) whenever
HHT is low rank. [35], [36], [40]–[42]. Those papers show
that if HHT possesses a small rank compared to the size of
P , the eigenvalues of P tend to decay quickly. As a result,
one can notice that since xxT has rank 1 in the Lyapunov
equation (10), the matrix Px tends to have a small number
of dominant eigenvalues. In the extreme case, if the closed-
loop matrix A + BKc is 0 (the most stable discrete system)
or alternatively if x is chosen to be one of the eigenvectors
of A + BKc, the matrix Px becomes rank-1. If there exists
a distributed controller Kd ∈ K such that Kc − Kd belongs
to the subspace spanned by those eigenvectors corresponding
to the insignificant eigenvalues of Px, the optimal objective
value of Optimization A would be small. In this case, although
achieving the optimality guarantee of 100% is not possible, the
guarantee would be close to 100% (this will be proven in this
paper). From another perspective, this implies that although
the infinite-horizon deterministic ODC problem with a known
initial state may have a unique globally optimal solution in the
form of a centralized controller, it may also possess several
near-optimal controllers in the form of distributed controllers.

B. Stability Criterion

In the preceding subsection, we obtained a condition to
guarantee an identical behavior for the centralized and dis-
tributed control systems associated with a given initial state.
However, the condition does not necessarily ensure the sta-
bility of the distributed closed-loop system. In fact, whenever
the centralized and distributed control systems have identical
trajectories, the initial state x resides in the stable manifold
of the system x[τ + 1] = (A+BKd)x[τ], but the closed-loop
system is not necessarily stable. To address this issue, notice
that A + BKd could be interpreted as a structured additive
perturbation of the closed-loop system matrix corresponding
to the centralized controller Kc, i.e.,

A +BKd = A +BKc +B(Kd −Kc) (15)

Lemma 1. There exists a strictly positive number ε such that
an arbitrary distributed controller u[τ] =Kdx[τ] with a gain
Kd ∈ K stabilizes the system (1) if the norm of B(Kd −Kc)
at the point Kd is less than ε.

Proof. The proof follows from (15).

Motivated by Lemma 1, the aim of the next optimization
problem is to minimize the Frobenius norm of B(Kd −Kc).
Optimization B. This problem is defined as

min
K

trace{(Kc −K)TBTB(Kc −K)} (16a)

s.t. K ∈ K (16b)
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Note that there are several techniques in matrix perturbation
and robust control to maximize or find a sub-optimal value
ε [43]. Note also that the stability criterion (16a) is conserva-
tive, and can be improved by exploiting any possible structure
in the matrices A and B together with the set K.

C. Candidate Distributed Controller

Optimization A and Optimization B were introduced earlier
to separately guarantee a high performance and closed-loop
stability for a to-be-designed controller Kd. To benefit from
both approaches, they will be merged into a single convex
program below. To this end, define the functions

C1(K,P ) =trace{(Kc −K)P (Kc −K)T } (17a)

C2(K) =trace{(Kc −K)TBTB(Kc −K)} (17b)

C(K,P,ω) =ω ×C1(K,P ) + (1 − ω) ×C2(K) (17c)

where the parameters P , K and ω belong to Rm×n, Rn×n and
R, respectively.

Optimization C. Given a constant number ω ∈ [0,1] and an
n × n positive semidefinite matrix P , this problem is defined
as the minimization of the function C(K,P,ω) with respect
to the matrix variable K ∈ K.

Note that C(K,Px, ω) has two terms, where C1(K,Px)
accounts for the performance of the distributed controller
while C2(K) indirectly enforces closed-loop stability. Assume
that each matrix in the space K has l free entries to be
designed. Denote these unknown parameters as h1, h2, ...hl.
Furthermore, let M1, ...,Ml ∈ Rm×n be constant 0-1 matrices
such that Mt(i, j) is equal to 1 if the pair (i, j) is the location
of the free entry ht in K ∈ K and is zero otherwise, for every
t ∈ {1,2, ..., l}. It is desirable to prove that the solution of
Optimization C can be found via an explicit formula.

Theorem 3. Given a constant number ω ∈ [0,1] and an n×n
positive semidefinite matrix P , consider the matrix X ∈ Rl×l
and the vector y ∈ Rl with the entries

X(i, j) = ω trace{MiPM
T
j }

+ (1 − ω) trace{MT
i B

TBMj} (18a)

y(i) = ω trace{MiPK
T
c }

+ (1 − ω) trace{MT
i B

TBKc} (18b)

for every i, j ∈ {1,2, ..., l}. A matrix Kd is an optimal solution
of Optimization C if and only if it can be expressed as Kd =
∑li=1Mihi such that the vector h defined as [h1 ⋯ hl]T is a
solution to the linear equation Xh = y.

Proof. The space of permissible controllers can be character-
ized as

K ≜ {
l

∑
i=1
Mihi ∣ h ∈ Rl} (19)

for M1, ...,Ml ∈ Rm×n (note that hi’s are the entries of h).
Substituting Kd = ∑li=1Mihi into (17) and taking its gradient

with respect to h lead to the optimality condition

l

∑
j=1

ω trace{MiPM
T
j }hj

+
l

∑
j=1

(1 − ω) trace{MT
i B

TBMj}hj

= ω trace{MiPK
T
c } + (1 − ω) trace{MT

i B
TBKc}

(20)

The above equation can be written in a compact form as Xh =
y. Note that since (17) is convex with respect to h and the
constraint Kd ∈ K is linear, the above optimality condition is
necessary and sufficient for the optimality of h.

D. Unknown Initial State

Consider the case where the initial state of the system is not
known precisely a priori. In this case, the equation (10) cannot
be used because it depends on the unknown initial state x. In
this subsection, the objective is to modify (10) to accommodate
uncertainty on the initial state in the framework proposed
earlier for designing a high-performance distributed controller.
Assume that the initial state belongs to the uncertainty region
E . Throughout the rest of this paper, we assume that the
uncertainty region is defined as

E = {a +Mu ∶ u ∈ Rn×n, ∥u∥2 ≤ 1} (21)

for some a ∈ Rn×1 and M ∈ Rn×n. If E does not have the
above ellipsoidal expression, one may use an outer ellipsoidal
approximation of this region at the expense of designing
distributed controllers with a lower performance (see [44] for
more details). Define

L(P,x)=(A +BKc)P (A +BKc)⊺−P + xx⊺ (22)

Normally, there does not exist a common matrix P satisfying
L(P,x) = 0 for every initial state in E . To bypass this issue,
we introduce a new optimization problem to design a matrix P
such that L(P,x) is maintained close to zero for every initial
state in the uncertainty region. This problem is defined as

min
α,P

α (23a)

s.t. − αI ⪯ L(P,x) ⪯ αI, ∀x ∈ E (23b)
P ⪰ 0 (23c)

Notice that (23) is a semidefinite programming (SDP) with an
infinite number of constraints. There are two potential issues.
First, using the optimal solution of (23) as a surrogate for
Px in (10) may not necessarily lead to a high performance
distributed controller (since the optimality condition intro-
duced in Theorem 2 may no longer hold for the distributed
controller designed based on the optimal solution of (23)). Fur-
thermore, (23) is an infinite-dimensional optimization problem
and cannot be solved efficiently unless it is formulated as a
finite-dimensional problem. In the sequel, we remedy both of
the above-mentioned problems. First, we contrive an explicit
solution that is nearly optimal for (23). Second, we derive a
lower bound on the performance of the distributed controller
designed based on the obtained explicit solution to guarantee
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the near global optimality of the decontroller for all initial
states belonging to the uncertainty region. Define

s(E) = max
∣∣y∣∣2=1

{∣a⊺y∣ × ∥My∥2} (24)

The following theorem studies the solution of the optimization
problem (23).

Theorem 4. Suppose that α∗ is the optimal objective value
of (23). Furthermore, define P ∗ as the unique solution of the
Lyapunov equation

(A +BKc)P ∗(A +BKc)⊺ − P ∗ + aa⊺ +M2 = 0 (25)

Then, the following statements hold:

1. (β,P ∗) is a feasible solution for (23), where

β = 2 max{s(E), (λmax
M )2} (26)

2. 0 ≤ β − α∗ ≤ ((λmax
M )2 − s(E))+

Proof. The proof is provided in appendix.

Remark 1. Notice that if s(E) ≥ (λmax
M )2, the tuple (β,P ∗)

is an optimal solution of (23). One sufficient condition for the
satisfaction of s(E) ≥ (λmax

M )2 is the inequality ∥Ma∥2 ≥
(λmax
M )2. Roughly speaking, this condition holds for those

ellipsoids with the properties that the ratio of the largest to
smallest diameters is not large and that the center of the
ellipsoid is sufficiently far from the origin. For example, the
condition is automatically satisfied whenever the uncertainty
region is equal to a norm-2 ball that does not include the
origin.

In the next subsection, we will use Optimization C with
the input P = P ∗ to design a high-performance controller.
Note that although Theorem 4 does not offer closed-form
formulas for α∗ and β, only the matrix P ∗ is needed in
Optimization C which can be found efficiently by solving
the Lyapunov equation (25). In summary, two steps should
be taken to design a distributed controller,:

1. Solve the Lyapunov equation (25) in order to find P ∗.
2. Solve Optimization C with the input P = P ∗ to obtain

Kd.

Note that when E consists of a single initial state x, P ∗

coincides with Px.

E. Lower Bound on Optimality Guarantee

Consider Optimization C with the input P = P ∗. A dis-
tributed controller can be designed by solving this problem,
which has an explicit solution due to Theorem 3. In this sub-
section, the objective is to derive a lower bound on the global
optimality guarantee of the designed distributed controller. In
particular, it is desirable to show that the optimality guarantee
depends on how small the optimal value of C1(K,P ∗) is.
To this end, we first derive an upper bound on the deviation
of the state and input trajectories generated by the distributed
controller from those of the centralized controller.

Lemma 2. Given the optimal centralized gain Kc, an ar-
bitrary stabilizing gain Kd ∈ K and an initial state x, the
relations
∞
∑
τ=0

∥xd[τ] − xc[τ]∥22 ≤ ( κ(V )∥B∥2
1 − ρ(A +BKd)

)
2

C1(Kd, Px)

(27a)
∞
∑
τ=0

∥ud[τ] − uc[τ]∥22 ≤ (1 + κ(V )∥Kd∥2∥B∥2
1 − ρ(A +BKd)

)
2

C1(Kd, Px)

(27b)

hold, where κ(V ) is the condition number in 2-norm of the
eigenvector matrix V of A +BKd.

Proof. The proof is provided in the appendix.

Notice that, according to the statement of Lemma 2, the
upper bounds in (27a) and (27b) are valid if the distributed
controller gain Kd makes the system stable. According to (12)
and (13), one can verify that

C1(Kd, Px) =
∞
∑
τ=0

∥(Kd −Kc)(A +BKc)τx∥22 (28)

An important observation can be made on the connection
between Optimization C and the upper bounds in (27a) and
(27b). Note that Optimization C minimizes a combination
of C1(K,P ) and C2(K). While the second term indirectly
accounts for stability, the first term C1(K,P ) directly appears
in the upper bounds in (27a) and (27b) (recall that P ∗ = Px if
E consists of the single initial state x). Hence, Optimization C
aims at minimizing the deviation between the trajectories of
the distributed and centralized control systems.

Definition 3 ( [45]). For a stable matrix X , define the radius
of stability as r(X) = inf0≤θ≤2π ∥(eiθ −X)−1∥−1.

It can be verified that r(X) > 0 and r(X) + ρ(X) ≤ 1.

Lemma 3. Assume that R satisfies the Lyapunov equation
XRXT −R + Y = 0 for a stable matrix X . Then, we have

∥R∥2 ≤
∥Y ∥2
r(X)2 (29)

Proof. See [46] and [45].

Lemma 4. The relation

∥P − Px∥2 ≤
α

r(A +BKc)2
(30)

holds for every x ∈ E and every feasible solution (α,P ) of the
optimization problem (23).

Proof. One can write

−αI ⪯ L(P,x) ⪯ αI (31)

for every x ∈ E . Subtracting L(Px, x) = 0 from (31) yields

− αI ⪯ L(P − Px,0) ⪯ αI (32)

According to (32) and Lemma 3, one can write

∥P − Px∥2 ≤
∥L(P − Px,0)∥2
r(A +BKc)2

≤ α

r(A +BKc)2
(33)
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Theorem 5. Assume that Q = In and R = Im. Consider
the optimal centralized gain Kc, an arbitrary stabilizing gain
Kd ∈ K, and a feasible solution (α,P ) for the optimization
problem (23). Suppose that the matrix A+BKd is diagonaliz-
able. The controller u[τ] =Kdx[τ] has the global optimality
guarantee µ for every initial state x ∈ E , where

µ = 1

(1 + ζ
√
C1(Kd, P ) + ηα)

2
(34)

and

ζ = max

⎧⎪⎪⎨⎪⎪⎩

κ(V )∥B∥2
(1 − ρ(A +BKd))

√
∑∞τ=0 ∥xc[τ]∥22

,

1 − ρ(A +BKd) + κ(V )∥Kd∥2∥B∥2
(1 − ρ(A +BKd))

√
∑∞τ=0 ∥uc[τ]∥22

⎫⎪⎪⎬⎪⎪⎭
(35a)

η = ∥Kc −Kd∥2F
r(A +BKc)2

(35b)

Proof. The proof is provided in appendix

Theorem 5 quantifies the similarity between the behaviors
of the system under the optimal centralized controller and an
arbitrary distributed controller. The developed bound depends
on C1(Kd, P ) and ρ(A+BKd), which are both taken care of
by Optimization C with the tradeoff coefficient ω. Hence, this
paper proposes designing the distributed controller Kd based
on Optimization C with the input P = P ∗. Since this controller
can be explicitly characterized in terms of the centralized
controller Kc and the sparsity space K using Theorem 3, the
global optimality guarantee of this controller depends on Kc

and K via a closed-form formula. This formula could be used
to study how changing the sparsity pattern of the controller
space affects the performance loss with respect to the optimal
centralized controller.

Remark 2. Notice that Theorem 5 is developed for the case
of Q = In and R = Im. However, its proof can be adopted
to derive similar bounds for the general case. Alternatively,
for arbitrary positive-definite matrices Q and R, one can
transform them into identity matrices through a reformulation
of the ODC problem. Define Qd and Rd as Q = QTdQd and
R = RTdRd, respectively. The ODC problem with the tuple
(A,B,x[⋅], u[⋅]) can be reformulated with respect to a new
tuple (Ā, B̄, x̄[⋅], ū[⋅]) defined as

Ā ≜ QdAQ−1
d , B̄ ≜ QdBR−1

d ,

x̄[τ] ≜ Qdx[τ], ū[τ] ≜ Rdu[τ],
Furthermore, in order to extend the result of Theorem 3 to
general positive definite Q and R, the following mapping for
the basis matrices M1, ...,Ml is required

M̄i ≜ RdMiQ
−1
d , i ∈ {1,2, ..., l}

Remark 3. Although Kc is assumed to be the optimal central-
ized controller, none of the results developed in this paper uses
the optimality property of Kc. This implies that the proposed
mathematical framework works for every arbitrary stabilizing

controller Kc, which produces a distributed controller Kd

based on Kc together with a lower bound on the ratio J(Kc)
J(Kd) .

As a by-product of this result, since finding the best centralized
controller could be computationally expensive for large-scale
systems with tens of thousands of states, one could consider
Kc as a suboptimal centralized controller that is easy to obtain
using the existing heuristic or approximation methods, and
then design a distributed controller based on Kc. Then, one can
conclude that the global optimality guarantee of the designed
distributed controller Kd is equal to the product of µ given in
Theorem 5 and the global optimality guarantee of Kc.

IV. DISTRIBUTED CONTROLLER DESIGN: STOCHASTIC
SYSTEMS

In this section, the results developed earlier are generalized
to stochastic systems. For input disturbance and measurement
noise, define the covariance matrices

Σd = E {Ed[τ]d[τ]TET } , Σv = E {Fv[τ]v[τ]TFT } (36)

for all τ ∈ {0,1, ...,∞}. It is assumed that d[τ] and v[τ] are
identically distributed and independent random vectors with
Gaussian distribution and zero mean for all times τ . Let Kc

denote the gain of the optimal static centralized controller
u[τ] = Kcy[τ] minimizing (5) for the stochastic system (4).
Note that if F = 0, the matrix Kc can be found using the
Riccati equation. The goal is to design a stabilizing distributed
controller u[τ] = Kdy[τ] with a high global optimality guar-
antee such that Kd ∈ K. For an arbitrary discrete-time random
process a[τ] with τ ∈ {0,1, ...,∞}, denote the random variable
lim
τ→+∞a[τ] as a[∞] if the limit exists. Note that the closeness
of the random tuples (uc[∞], xc[∞]) and (ud[∞], xd[∞])
is sufficient to guarantee that the centralized and distributed
controllers lead to similar performances. This is due to the
fact that only the limiting behaviors of the states and inputs
determine the objective value of the optimal control problem
in (5).

Lemma 5. Given the optimal centralized gain Kc and an
arbitrary stabilizing distributed controller gain Kd ∈ K, the
relation

E {∥xc[∞] − xd[∞]∥22} = trace{P1 + P2 − P3 − P4} (37)

holds, where P1, P2, P3 and P4 are the unique solutions of the
equations

(A+BKd)P1(A+BKd)T − P1 +Σd + (BKd)Σv(BKd)T = 0
(38a)

(A+BKc)P2(A+BKc)T − P2 +Σd + (BKc)Σv(BKc)T = 0
(38b)

(A+BKd)P3(A+BKc)T − P3 +Σd + (BKd)Σv(BKc)T = 0
(38c)

(A+BKc)P4(A+BKd)T − P4 +Σd + (BKc)Σv(BKd)T = 0
(38d)

Proof. The proof is provided in the appendix.

Lemma 5 implies that in order to minimize
E {∥xc[∞] − xd[∞]∥22}, the trace of P1 + P2 − P3 − P4
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should be minimized subject to (38) (by substituting K
with Kd) and K ∈ K. However, this is a hard problem
in general. In particular, the minimization of the singleton
trace{P1} subject to (38a) and K ∈ K is equivalent to the
ODC problem under study (if Q and R are identity matrices).
Due to the possible intractability of the minimization of
E {∥xc[∞] − xd[∞]∥22}, we aim to minimize an upper bound
on this function (similar to the deterministic case).

Define Ps as the unique solution of the matrix equation

(A +BKc)Ps(A +BKc)T − Ps +Σd + (BKc)Σv(BKc)T = 0
(39)

Lemma 2 will be generalized to stochastic systems next.

Lemma 6. Given the optimal centralized gain Kc and an
arbitrary stabilizing gain Kd ∈ K, the relations

E {∥xc[∞]−xd[∞]∥22} ≤ ( κ(V )∥B∥2
1 − ρ(A +BKd)

)
2

×C1(Kd, Ps +Σv) (40a)

E {∥uc[∞]−ud[∞]∥22} ≤ (1+κ(V )∥Kd∥2∥B∥2
1 − ρ(A +BKd)

)
2

×C1(Kd, Ps +Σv) (40b)

hold, where κ(V ) is the condition number in 2-norm of the
eigenvector matrix V of A +BKd.

Proof. The proof is omitted due to the similarity to the proof
of Lemma 2, and is moved to [47].

In what follows, the counterpart of Theorem 5 will be
presented for stochastic systems.

Theorem 6. Assume that Q = In and R = Im. Consider the
optimal centralized gain Kc and an arbitrary stabilizing gain
Kd ∈ K for which A +BKd is diagonalizable. The controller
u[τ] =Kdx[τ] has the global optimality guarantee µs, where

µs =
1

(1 + ζs
√
C1(Kd, Ps +Σv))

2
(41)

and

ζs = max

⎧⎪⎪⎨⎪⎪⎩

κ(V )∥B∥2
(1 − ρ(A +BKd))

√
E{∥xc[∞]∥22}

,

1 − ρ(A +BKd) + κ(V )∥Kd∥2∥B∥2
(1 − ρ(A +BKd))

√
E{∥uc[∞]∥22}

⎫⎪⎪⎬⎪⎪⎭

(42)

Proof. The proof is a consequence of Lemma 6 and the
argument made in the proof of Theorem 5.

Similar to the deterministic case, one can extend the results
of Theorem 6 to stochastic systems with general positive-
definite matrices Q and R, using Remark 2 after two additional
changes of parameters

Ē ≜ QdE, F̄ ≜ QdF

Theorem 6 quantifies the similarity between the behaviors of
the system under the optimal centralized controller and an arbi-
trary distributed controller, which depends on C1(Kd, Ps+Σv)
and ρ(A +BKd). Since both of these terms are incorporated

into Optimization C with the tradeoff coefficient ω, this paper
proposes designing the distributed controller Kd based on
Optimization C with the input P = Ps + Σv . This controller
has a closed-form solution due to Theorem 3, which enables
expressing its global optimality guarantee as a function of the
optimal centralized controller Kc and the sparsity space K.

Remark 4. It is well-known that finding the optimal cen-
tralized controller in the presence of measurement noise is a
difficult problem in general. If the optimal controller Kc is
not available, one can use a near-globally optimal feedback
gain as a substitute for Kc in Optimization C (in order to
design a distributed controller that performs similarly to the
near-globally optimal centralized controller, as described in
Remark 3). Such a controller could be designed using a convex
relaxation or the Riccati equation for the LQG problem. To
evaluate the optimality guarantee of the designed distributed
controller, one can compare J(Kd) against a lower bound on
J(Kc) (e.g., using the SDP relaxation proposed in [32]).

V. COMPLEXITY ANALYSIS

So far, we have proposed a unified framework to design a
near-globally optimal distributed controller in three cases of
deterministic systems with known initial states, deterministic
systems with unknown initial states, and stochastic systems.
The controller synthesis procedures are all based on Optimiza-
tion C, each with a different matrix input P . On the other
hand, Theorem 3 states that Optimization C has a closed-form
solution. It is desirable to study the computational complex-
ity of the proposed designed procedures, which amounts to
the same complexity as finding the closed-form solution of
Optimization C.

Notice that in order to find the elements of X and y in
(18), one should first obtain BTB and P . The complexity of
finding BTB is O(m2n), using ordinary matrix multiplica-
tion. Furthermore, P can be found by solving the Lyapunov
equation (10), (25), or (39), depending on the type of the
distributed controller problem under study. The complexity of
solving the Lyapunov equation isO(n3) in the worst case [35].
However, in case where the optimal solution benefits from a
low-rank approximation (which is the case in (10) or (25) with
a small uncertainty region), there are some iterative algorithms
that can be used to find the solution of (10) more efficiently.
For instance, [48] shows that the low-rank property of the
optimal solution can be used to design an iterative algorithm
with the complexity of O(n) per iteration and a quadratic
convergence. Next, we need to construct the matrix X and the
vector y. A naive way of finding the entries of X and y is to
resort to the matrix multiplications shown in (18). However,
X and y can be found more efficiently. First, consider the
term MiPM

T
j in (18a). If we denote the respective locations

of the entries hi and hj in Kd as (ri, ki) and (rj , kj), one
can easily verify that trace{MiPM

T
j } is equal to P (ki, kj) if

ri = rj and is zero otherwise. Similarly, it can be shown that
trace{MT

i B
TBMj} is equal to the (ri, rj)th element of BTB

if ki = kj and is zero otherwise. Therefore, instead of using
matrix multiplications to find X , one can determine the entries
of this matrix based on the locations of the free elements in
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Kd and their corresponding entries in P and BTB, which can
be performed with the complexity of O(l2). Likewise, finding
the vector y has the complexity of O((n +m)l).

Finally, consider the complexity of obtaining h in the
equation Xh = y. Using the LU factorization, this can be
performed in O(l3). However, notice that the matrix X is
sparse in many cases where a sparse distributed controller
is sought. This is due to the fact that, based on the above
explanation, X(i, j) is equal to zero for all pairs of hi
and hj that do not belong to the same row or column of
Kd. For instance, if the subspace of admissible distributed
controllers K has a diagonal structure, X shares the same
structure and therefore the complexity of finding h reduces to
O(l). Inspired by this observation, one can utilize the general
sparsity structure of X and find the solution of Xh = y using
a sparse LU factorization. The complexity analysis of solving
a system of sparse linear equations using LU factorization is
beyond the scope of this paper and can be found in [49].

The above analysis implies that in the natural case where
m ≤ n and l = O(n), the complexity of the proposed controller
design procedure is almost the same as that of the inversion
of an n×n matrix. This analysis assumes that the centralized
controller Kc is provided as an input. It is often the case that
the complexity of finding the optimal centralized controller
using Riccati equations dominates the complexity of finding
its corresponding distributed controller based on the method
developed in this paper.

VI. NUMERICAL RESULTS

Two case studies will be offered in this section to demon-
strate the efficacy of the proposed controller design technique.
The simulations are run on a laptop computer with an Intel
Core i7 quad-core 2.50 GHz CPU and 16GB RAM. The results
are reported based on a serial implementation in MATLAB.

A. Multi-Agent Systems

To illustrate the performance of the method developed in
this paper on multi-agent systems, consider the planar vertical
takeoff and landing (PVTOL), where the model for each
aircraft (agent) is given as [50]:

Ẍi(t) = v(t), θ̈i(t) = 1

δ
(sin θi(t) + vi(t) cos θi(t)) (43)

Note that X and θ are the horizontal position and angle of
aircraft i, respectively, and δ depends on the coupling between
the rolling moment and lateral acceleration of the aircraft.
Assuming that all agents are stabilized vertically, we only
consider their horizontal position in this problem. Consider
the feedback rule

vi(t) = αẊi(t) + βθi(t) + γθ̇i(t) + ui(t) (44)

for the control of aircraft i. The first three terms in (44) are
used for the internal stability of the horizontal speed and angle
of each aircraft. The last term needs to be designed using a
controller with the structure to be delineated so that the agents
maintain their relative positions. In particular, the goal is to

design a distributed controller Kd that minimizes the objective
function

Jc(Kd) = ∫
∞

0
(y(t)⊺Qy(t) + u(t)⊺Ru(t))dt (45)

while ensuring the stability of the closed-loop system. The
structure of the distributed controller is captured via an undi-
rected graph. If there exists an edge between agents i and j, it
means that both agents have access to their relative distance.
To illustrate our technique, consider a system consisting of
4 aircraft whose communication structure is in the form of
a path graph. This communication structure also defines the
sparsity of the to-be-designed distributed controller. Assume
that the desired distance between adjacent agents is equal to
d. By defining the state of aircraft i ∈ {1,2,3,4} as

xi(t) = [Ẋi(t), θi(t), θ̇i(t)]⊺ (46)

the linearized model of each agent can be described as (1)
where

A =
⎡⎢⎢⎢⎢⎢⎣

α β γ
0 0 1
α
δ

β+1
δ

γ
δ

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

1
0
1
δ

⎤⎥⎥⎥⎥⎥⎦
(47)

(please refer to [51] for more details). Note that the parameters
α,β, and γ are used to guarantee the internal stability of each
aircraft. As explained in [51], for δ = 0.1, the values α = 90.62,
β = −42.15 and γ = −13.22 for the state feedback controller
of each agent ensure their internal stability. Since the agents
have access to their relative distance from their neighbors, we
define

zi(t) = [Xi(t) −Xi+1(t) − d, xi(t)⊺]⊺ (48)

for 1 ≤ i ≤ 3 and z4(t) = x4(t). Based on the above definition,
the state-space model of the whole system can be described
as

ż(t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ã H4 0 0

0 Ã H4 0

0 0 Ã H3

0 0 0 A

⎤⎥⎥⎥⎥⎥⎥⎥⎦

z(t)+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B̃ 0 0 0

0 B̃ 0 0

0 0 B̃ 0
0 0 0 B

⎤⎥⎥⎥⎥⎥⎥⎥⎦

u(t) (49)

Note that the vectors z(t) and u(t) are the concatenations of
zi(t) and ui(t) for all agents, respectively. Moreover, H4 is
a 4 × 4 matrix whose (i, j)th entry is equal to −1 if (i, j) =
(1,2) and is zero otherwise. Similarly, H3 is a 3 × 3 matrix
whose (i, j)th entry is equal to −1 if (i, j) = (1,1) and is zero
otherwise. Finally, Ã and B̃ are defined as

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 α β γ
0 0 0 1

0 α
δ

β+1
δ

γ
δ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
δ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(50)

The structure of the distributed controller for the system
described in (49) can be viewed as

Kd=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
⋆ 0 0 0 ⋆ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ⋆ 0 0 0 ⋆ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ⋆ 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(51)
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Fig. 1: Formation of 4 aircraft over the horizontal axis with d = 4.

where each “⋆” corresponds to a to-be-designed free element
of the distributed controller. Since the goal is to bring ev-
ery aircraft to its pre-specified relative location as quickly
as possible with the least amount of effort, we define the
weighting matrix Q to be a diagonal matrix with Q(k, k)
equal to 100 if the kth element of x(t) corresponds to the
relative positions of neighboring agents and equal to one
otherwise. Furthermore, we choose R to be the identity matrix
with appropriate dimension. Suppose that our estimate of
the initial state of the whole system is equal to a vector
a whose kth element is uniformly drawn from the interval
[−2 2]. Furthermore, assume that due to the uncertainty in
our estimation, we consider a maximum amount of 0.2 × ∣a∣
as our estimation error, where ∣ ⋅ ∣ is the entry-wise absolute
value operator. This means that the initial state of the system
can reside anywhere between a − 0.2 × ∣a∣ and a + 0.2 × ∣a∣. It
is easy to observe that the smallest-volume outer ellipsoidal
approximation of this uncertainty region can be described as
E = {a +Mu ∶ u ∈ R15×1, ∥u∥2 ≤ 1}, where M is a diagonal
matrix with the kth diagonal entry equal to 0.2 × ∣ak ∣ ×

√
15.

We discretize the system using the zero-order hold method
with the sampling time equal to 0.01 and then find the
distributed controller via the method presented in this paper.
The regularization coefficient ω in Optimization C is chosen to
be 0.9. The free entries of the designed distributed controller
are obtained as:

Kd(1,1)= −8.84, Kd(2,1)= 4.72, Kd(2,5)= −7.30 (52)
Kd(3,5) = 6.18, Kd(3,9) = −4.90, Kd(4,9) = 9.67 (53)

This controller makes the closed-loop system stable. We also
find the optimal centralized LQR controller for the continuous
system in order to measure the optimality guarantee of the
designed distributed controller. For 100 uniformly and inde-
pendently chosen initial states from the uncertainty region,
the average cost function using the optimal centralized LQR
controller is 7793.49, whereas the average cost function for
the designed distributed controller is 8178.40 (both costs
correspond to the original continuous-time system). Moreover,
the average optimality guarantee of these trials is 95.28% with
the standard deviation of 0.32. Figure 1 shows a snapshot of
the coordination of the four aircraft for one of these trials.

To assess the performance of the proposed technique for the
design of the distributed controller in larger-scale problems,
consider an extended instance of the described multi-agent

problem with 100 agents. This system has 399 states and 100
inputs. The initial state has an estimate of a whose elements
are drawn from standard uniform distribution. Furthermore,
we consider a maximum amount of 0.1× ∣a∣ as our estimation
error. Similar to the previous case, one can verify that the
outer ellipsoidal approximation of this uncertainty region is
equal to E = {a + Mu ∶ u ∈ R15×1, ∥u∥2 ≤ 1}, where M
is a diagonal matrix with the kth diagonal entry equal to
0.1 × ∣ak ∣ ×

√
399. The design of the optimal LQR controller

using the function dlqr in MATLAB has a runtime of 4.82
seconds. The second step is to find the unique solution of the
Lyapunov equation (25) . The average elapsed time for solving
this equation is 0.15 seconds using the function dlyap. The
last step is to solve Optimization C. We use Theorem 3 to
cast Optimization C as a system of linear equations. Using the
function mldivide in MATLAB that automatically exploits
the sparsity structures of X and y, this system of linear equa-
tions can be solved in 0.18 seconds. The designed distributed
controller makes the closed-loop system stable and provides an
optimality guarantee of 79%. An important observation can be
made based on this case study as follows: the design of a high
performance and sparse controller using the proposed method
can be carried out with a negligible overhead compared to the
design of the optimal LQR controller. Finally, we compare our
method to the ODC solver in [52], which is based on the SDP
relaxation of the optimal distributed control problem. Within
a time limit of 30 minutes, the solver was terminated because
it did not converge to a meaningful solution. This is due to the
fact that the computational complexity of solving SDPs makes
them prohibitive to use in medium- and large-sized problems.

B. Power Networks

In this case study, we consider the frequency control prob-
lem for power systems. The aim is to control the frequency
of a power system with a distributed controller that respects
a certain sparsity structure. This sparsity structure determines
which generators can share their rotor angle and frequency
with each other. We consider the IEEE 39-bus New England
Power System whose single line diagram is given in Figure 2.
The relationship between the rotor angle of different generators
and their frequency can be described by the per-unit swing
equation

Miθ̈i +Diθ̇i = PMi − PEi (54)

where θi is the voltage (or rotor) angle at a generator bus i (in
rad), PMi denotes the mechanical power input to the generator
at bus i (in per unit), PEi shows the electrical active power
injection at bus i (in per unit), Mi is the inertia coefficient of
the generator at bus i (in pu-sec2/rad), and Di is the damping
coefficient of the generator at bus i (in pu-sec/rad) [53].
The relationship between the electrical active power injection
PEi and the voltage angles can be described by a nonlinear
equation, known as AC power flow equation. In order to
simplify these equations and to linearize the representation of
the system, a widely-used method is to utilize the following
DC power flow equations as an approximation of the nonlinear
relationship between the active power injection and voltage
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Fig. 2: Single-line diagram of IEEE 39-Bus New England Power System.

angles:

PEi =
n

∑
j=1

Bij(θi − θj) (55)

where n is the number of buses in the system and Bij is
the susceptance of the line (i, j). Writing (55) in a matrix
form gives rise to the following state space representation of
frequency control problem:

[ θ̇(t)
ẇ(t)]=[

0n×n In
−M−1L −M−1D][θ(t)

w(t)]+[
0n×n
M−1]PM(t) (56)

where θ(t) = [θ1(t), . . . , θn(t)]T and w(t) =
[w1(t), . . . ,wn(t)]T represent the state of the rotor
angles and the frequency of generators at time t,
respectively. Furthermore, M = diag(M1, . . . ,Mn) and
D = diag(D1, . . . ,Dn).

The goal is to first discretize the system with the sampling
time of 0.2 second, and then design a distributed controller
to stabilize the system while achieving a high degree of
optimality. The 39-bus system has 10 generators, labeled as
G1,G2, ...,G10. We consider four different topologies for the
structure of the controller: distributed, localized, star and ring.
A visual illustration of these topologies is provided in Figure 3,
where each node represents a generator and each line specifies
what generators are allowed to communicate. The state and
input weighting matrices are chosen to be I and 0.1 × I ,
respectively.

Deterministic Case: In this experiment, the uncertainty region
is considered as an sphere centered at [1,1, ...,1]T with
the radius ψ to be specified later. In order to evaluate the
performance of the proposed method, we analyze the global
optimality guarantee of the designed distributed controller
for different topologies with respect to the radius of the
uncertainty region varied from 0.1 to 6. Furthermore, the
regularization coefficient ω in Optimization C is set to 0.5.
For each radius and topology, we consider 1000 independent
trials with initial states uniformly chosen from the spherical
uncertainty region. The results are provided in Figure 4. It can
be observed that the ring topology has the best performance
for different radii. The maximum and minimum optimality

(a) Fully Distributed (b) Localized

(c) Star Topology (G10 in center) (d) Ring

Fig. 3: Communication structures studied in Example 1 for the IEEE 39-Bus
test System (borrowed from [32]).
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Fig. 4: Global optimality guarantee of the designed distributed controller
for different topologies.

guarantees for this structure are equal to 99.97% and 97.70%
(corresponding to the radii 0.1 and 6), respectively. Moreover,
the worst performance corresponds to the fully distributed
controller with the maximum and minimum optimality guar-
antees equal to 99.83% and 90.85%, respectively. Finally, it
can be observed that the star and localized structures have
relatively similar performances with respect to the radius of
the uncertainty region.

Stochastic Case: Suppose that the power system is subject
to input disturbance and measurement noise. The disturbance
may be caused by certain non-dispatchable supplies and fluc-
tuating loads. The measurement noise could arise from the
inaccuracy of the rotor angle and frequency measurements. We
assume that Σd = I and Σv = σI , with σ varying from 0 to
5. The ω is chosen as 0.5. First, a near-globally optimal static
centralized controller Kc is designed using the SDP relaxation
of the problem given in [32]. This static centralized controller
is then used in Optimization C to obtain the distributed con-
troller Kd, as explained in Remark 4. The simulation results
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are provided in Figure 5. It can be observed that the designed
controllers are all stabilizing with no exceptions. Moreover,
the global optimality guarantees for the ring, star, localized,
and fully distributed topologies are above 95%, 91.8%, 88%,
and 61.7%, respectively. Note that the optimality guarantee of
the designed fully distributed controller is relatively low. This
may be due to the potential large gap between the globally
optimal costs of the optimal centralized and fully distributed
control problems.

VII. CONCLUSION

This paper studies the optimal static distributed control
problem for linear discrete-time systems. The goal is to
design a stabilizing static distributed controller with a pre-
defined structure, whose performance is close to that of the
given (static) centralized controller. To this end, we derive a
necessary and sufficient condition under which there exists
a distributed controller that produces similar input and state
trajectories as the optimal centralized controller for a given
deterministic system with a known initial state. We then
convert this condition into a convex optimization problem.
We also add a regularization term into the objective of the
proposed optimization problem to account for the stability
of the distributed control system indirectly. This optimization
problem is extended to deterministic systems with an unknown
initial state belonging to a bounded uncertainty region. We
derive a theoretical lower bound on the optimality guarantee
of the designed distributed control, and prove that a small
optimal objective value for this optimization problem brings
about a high optimality guarantee for the designed distributed
controller. The proposed optimization problem has a closed-
form solution, which depends on the optimal centralized
controller as well as the prescribed sparsity pattern for the
unknown distributed controller. The results are then extended
to stochastic systems that are subject to input disturbance and
measurement noise. To demonstrate the performance of the
developed design method, extensive simulations are performed
on two real-world problems, namely aircraft formation as a
multi-agent system and the frequency control problem for
power systems.
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APPENDIX

Proof of Theorem 1: Note that

xd[τ] = (A +BKd)τx, xc[τ] = (A +BKc)τx (57)

First, we prove that (7b) holds if and only if

B(Kc −Kd)(A +BKc)τx = 0, τ = 0,1,2, ... (58)

To prove the necessity part, suppose that xd[τ] = xc[τ] and
xd[τ + 1] = xc[τ + 1]. One can write

0 = (A +BKd)τ+1x − (A +BKc)τ+1x
= (A +BKd)(A +BKc)τx − (A +BKc)τ+1x
= B(Kc −Kd)(A +BKc)τx

To prove the sufficiency part, we use a mathematical induction.
The validity of the base case can be easily verified. Assume
that xd[k] = xc[k] for τ = k, and consider the case τ = k + 1.
It follows from the equality BKc(A + BKc)τx = BKd(A +
BKd)τx of the induction step that

(A +BKc)k+1x = A(A +BKd)kx +BKd(A +BKd)kx
= (A +BKd)k+1x

Next, we show that (7a) implies (8). To this end, assume that
the equation (7a) is satisfied. Since xc[0] = xd[0] = x, the
relation xc[τ] = xd[τ] holds for every nonnegative integer τ
(note that the system (1) generates identical state signals under
two identical input signals uc[τ] and ud[τ] ). Now, one can
write

uc[τ] =Kcxc[τ] =Kc(A +BKc)τx (59a)
ud[τ] =Kdxd[τ] =Kd(A +BKd)τx (59b)

On the other hand, the relation xc[τ] = xd[τ] can be ex-
pressed as

(A +BKc)τx = (A +BKd)τx (60)

http://www.ieor.berkeley.edu/~lavaei/ODC_Journal_2016.pdf
http://www.ieor.berkeley.edu/~lavaei/Software.html
http://www.ieor.berkeley.edu/~lavaei/Software.html
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Combining (59) and (60) leads to (8).
To prove that (8) implies (7a), suppose that the equation (8)

is satisfied. By pre-multiplying the left side of (8) with B, it
follows from (58) that xc[τ] = xd[τ]. Therefore,

uc[τ] − ud[τ] =Kcxc[τ] −Kdxd[τ]
=Kcxc[τ] −Kdxc[τ]
= (Kc −Kd)(A +BKc)τx = 0

(61)

This yields the equation (8), and completes the proof ◻
Proof of Theorem 4: The optimization problem (23) can be
written in the form of

min α (62a)
s.t. L(P,x) ⪯ αI, ∀x ∈ E (62b)

− αI ⪯ L(P,x), ∀x ∈ E (62c)
P ⪰ 0 (62d)

Notice that (62b) is equivalent to y⊺L(P,x)y ≤ α for every
x ∈ E and y such that ∥y∥2 = 1. This implies that (62b) is
equivalent to

y⊺L(P,0)y + max
x=a+Mu
∥u∥2=1

(y⊺x)2 ≤ α (63)

for every y such that ∥y∥2 = 1. Now, consider

max
x=a+Mu
∥u∥2≤1

{(y⊺x)2} (64)

Using S-procedure, it can be easily verified that (64) is equal
to (∣a⊺y∣ + ∥My∥2)2. Therefore, (63) can be reduced to

y⊺L(P,0)y + (∣a⊺y∣ + ∥My∥2)2 ≤ α (65)

Now, consider (62c). Similar to the previous case, this con-
straint is equivalent to

− α ≤ y⊺L(P,0)y + min
x=a+Mu
∥u∥2≤1

(y⊺x)2 (66)

for every y such that ∥y∥2 = 1. As before, one can use strong
duality to show that

min
x=a+Mu
∥u∥2≤1

{(y⊺x)2} = ((∣a⊺y∣ − ∥My∥2)+)
2

(67)

Therefore, (66) is equivalent to

− α ≤ y⊺L(P,0)y + ((∣a⊺y∣ − ∥My∥2)+)
2

(68)

Now, it follows from (65) and (68) that the inequalities

0 ≤ α + y⊺L(P,0)y + (∣a⊺y∣ − ∥My∥2)
2

(69a)

0 ≤ α − y⊺L(P,0)y − (∣a⊺y∣ + ∥My∥2)2 (69b)

should be satisfied for every y such that ∥y∥2 = 1 (note that
we did not use the ”+” operator in the above equations).
Combining (69a) and (69b), one can verify that the inequality

2(∣a⊺y∣)∥My∥2 ≤ α (70)

is satisfied for every y such that ∥y∥2 = 1. This implies that

s(E) ≤ α (71)

Next, we will show that the defined pair of (β,P ∗) is indeed
feasible for (62). First, notice that since P ∗ satisfies (25) and
aaT +M2 ⪰ 0, we have P ∗ ⪰ 0. Next, we show the feasibility
of (62b) and (62c) via their equivalence to (65) and (68),
respectively. Combining the definitions of β and P ∗ with (65)
yields that

0 ≤ β + (a⊺y)2 + ∥My∥22 − (∣a⊺y∣ + ∥My∥2)2 (72)

This is equivalent to

2∣a⊺y∣∥My∥2 ≤ β (73)

which holds for every y such that ∥y∥2 = 1, due to the
definition of β. This implies that (β,P ∗) satisfies (62b).
Similarly, one can substitute β and P ∗ in (68) to derive the
inequality

0 ≤ β − (a⊺y)2 − ∥My∥22 + ((∣a⊺y∣ − ∥My∥2)+)2 (74)

If ∣a⊺y∣ ≥ ∥My∥2, the above inequality holds due to (73). Now,
assume that ∣a⊺y∣ < ∥My∥2. We need to show that

(a⊺y)2 + ∥My∥22 ≤ β (75)

for every y such that ∥y∥2 = 1. However, note that

(a⊺y)2 + ∥My∥22 ≤ 2∥My∥22 ≤ 2(λmax
M )2 ≤ β (76)

which certifies that (75) holds for every feasible y. This implies
that (β,P ∗) satisfies (62c) and, hence, it is feasible for (62).
The second part of the theorem follows from the definition of
β and the fact that s(E) ≤ α∗ (due to (71)). ◻

Proof of Lemma 2: Define ∆x[τ] = xd[τ] − xc[τ] for
τ = 0,1,2, .... First, we prove the inequality (27a). It is
straightforward to verify that

∆x[τ + 1] = B(Kd −Kc)xc[τ] + (A +BKd)∆x[τ] (77)

Consider the eigen-decomposition of A + BKd as V −1DV .
Define ∆x̃[τ] = V∆x[τ]. Multiplying both sides of (77) by
V yields that

∆x̃[τ + 1] = V B(Kd −Kc)xc[τ] +D∆x̃[τ] (78)

Taking the 2-norm from both sides of (78) leads to

∥∆x̃[τ + 1]∥2 ≤ ∥V B(Kd −Kc)xc[τ]∥2 + ∥D∥2 × ∥∆x̃[τ]∥2
≤ ∥V B(Kd −Kc)xc[τ]∥2 + ρ(A +BKd) × ∥∆x̃[τ]∥2

(79)
(note that ∥D∆x̃[τ]∥2 ≤ ∥D∥2∥∆x̃[τ]∥2 and ∥D∥2 ≤ ρ(A +
BKd)). It can be concluded from (79) that

(∥∆x̃[τ + 1]∥2 − ρ(A +BKd) × ∥∆x̃[τ]∥2)2

≤ ∥V B(Kd −Kc)xc[τ]∥22 (80)

or equivalently

∥∆x̃[τ + 1]∥22 + ρ(A +BKd)2∥∆x̃[τ]∥22
− 2ρ(A +BKd)∥∆x̃[τ + 1]∥2∥∆x̃[τ]∥2

≤ ∥V B(Kd −Kc)xc[τ]∥22 (81)
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Summing up both sides of (81) over all values of τ gives rise
to the inequality

∞
∑
τ=0

∥∆x̃[τ + 1]∥22 + ρ(A +BKd)2
∞
∑
τ=0

∥∆x̃[τ]∥22

− 2ρ(A +BKd)
∞
∑
τ=0

∥∆x̃[τ + 1]∥2∥∆x̃[τ]∥2

≤
∞
∑
τ=0

∥V B(Kd −Kc)(xc[τ])∥22 (82)

Using the Cauchy-Schwarz inequality, one can write

∞
∑
τ=0

∥∆x̃[τ + 1]∥22 + ρ(A +BKd)2
∞
∑
τ=0

∥∆x̃[τ]∥22

− 2ρ(A +BKd)
¿
ÁÁÀ(

∞
∑
τ=0

∥∆x̃[τ + 1]∥22)(
∞
∑
τ=0

∥∆x̃[τ]∥22)

≤
∞
∑
τ=0

∥V B(Kd −Kc)(xc[τ])∥22 (83)

Note that ∑∞τ=0 ∥∆x̃[τ + 1]∥22 = ∑∞τ=0 ∥∆x̃[τ]∥22. Hence, it can
be inferred from (83) and (28) that

∞
∑
τ=0

∥∆x̃[τ]∥22 ≤ ( ∥V ∥2∥B∥2
1 − ρ(A +BKd)

)
2

C1(Kd, Px) (84)

Since ∆x[τ] = V −1∆x̃[τ], one can write

∞
∑
τ=0

∥∆x[τ]∥22 ≤ ∥V −1∥22
∞
∑
τ=0

∥∆x̃[τ]∥22

≤ (∥V −1∥2∥V ∥2∥B∥2
1 − ρ(A +BKd)

)
2

C1(Kd, Px)
(85)

This proves the inequality (27a). The above argument can be
adopted to prove (27b) after noting that

∆u[τ] = (Kd −Kc)xc[τ] +Kd∆x[τ] (86)

where ∆u[τ] = ud[τ] − uc[τ]. ◻

Proof of Theorem 5: According to Lemma 2, one can write

∞
∑
τ=0

∥xd[τ]∥22+
∞
∑
τ=0

∥xc[τ]∥22≤(
κ(V )∥B∥2

1−ρ(A +BKd)
)
2

C1(Kd, Px)

+ 2
∞
∑
τ=0

∥xc[τ]∥2∥xd[τ]∥2 (87)

Dividing both sides of (87) by ∑∞τ=0 ∥xc[τ]∥22 and using the
Cauchy-Schwarz inequality for ∑∞τ=0 ∥xc[τ]∥2∥xd[τ]∥2 yield
that

∑∞τ=0 ∥xd[τ]∥22
∑∞τ=0 ∥xc[τ]∥22

≤
⎛
⎝

1 + κ(V )∥B∥2
(1 − ρ(A +BKd))

√
∑∞τ=0 ∥xc[τ]∥22

√
C1(Kd, Px)

⎞
⎠

2

(88)

Likewise,

∑∞τ=0 ∥ud[τ]∥22
∑∞τ=0 ∥uc[τ]∥22

≤
⎛
⎝

1 + 1 − ρ(A +BKd) + κ(V )∥Kd∥2∥B∥2
(1 − ρ(A +BKd))

√
∑∞τ=0 ∥uc[τ]∥22

√
C1(Kd, Px)

⎞
⎠

2

(89)
Combining (88) and (89) leads to

J(Kd)
J(Kc)

= ∑
∞
τ=0 ∥xd[τ]∥22 +∑∞τ=0 ∥ud[τ]∥22
∑∞τ=0 ∥xc[τ]∥22 +∑

∞
τ=0 ∥uc[τ]∥22

≤ (1 + ζ
√
C1(Kd, Px))2

(90)

On the other hand, we have

trace{(Kc −Kd)Px(Kc −Kd)T }
=trace{(Kc −Kd)P (Kc −Kd)T }
+ trace{(Kc −Kd)(Px − P )(Kc −Kd)T }

(91)

According to Lemma 4, one can verify that

trace{(Kc −Kd)(Px − P )(Kc −Kd)T }
= trace{(Kc −Kd)T (Kc −Kd)(Px − P )}
(a)
≤ λmax(Px − P )trace{(Kc −Kd)T (Kc −Kd)}
≤ ∥P − Px∥2∥Kc −Kd∥2F

≤ ∥Kc −Kd∥2F
r(A +BKc)2

α (92)

where the third line (a) is due to the inequality

trace{XY } ≤ λmax(X)trace{Y } (93)

for a symmetric matrix X and a positive semi-definite matrix
Y (please refer to [54]). Hence, the relation

C1(Kd, Px) ≤ C1(Kd, P ) + ∥Kc −Kd∥2F
r(A +BKc)2

α (94)

holds for every x ∈ E . The proof is completed after combining
(94) with (89).

Proof of Lemma 5: It is straightforward to verify that

E {∥xc[∞] − xd[∞]∥22} = trace{E {xd[∞]xd[∞]T }}
+ trace{E {xc[∞]xc[∞]T }}
− trace{E {xd[∞]xc[∞]T }}
− trace{E {xc[∞]xd[∞]T }}

(95)

On the other hand, since d[⋅] and v[⋅] are independent
and identically distributed random vectors, the equation
E {d[τ1]d[τ2]T } = E {v[τ1]v[τ2]T } = 0 holds for ev-
ery two different indices τ1 and τ2. In addition, we have
E {v[τ1]d[τ2]T } = E {d[τ1]v[τ2]T } = 0, for all nonnative
integers τ1 and τ2. Therefore,

x[∞] = lim
τ→∞

τ−1
∑
i=0

(A +BK)τ−1−i(Ed[i] +BKFv[i]) (96)

yields

E {xd[τ]xd[τ]T } = P1, E {xc[τ]xc[τ]T } = P2,

E {xd[τ]xc[τ]T } = P3, E {xc[τ]xd[τ]T } = P4,
(97)
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where P1, P2, P3 and P4 satisfy (38). Note that (38a) and
(38b) are Lyapunov equations, whereas (38c) and (38d) are
Stein equations, which all have unique solutions since A+BKd

and A +BKc are stable. This completes the proof. ◻
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