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Abstract

Conic optimization has recently emerged as a powerful tool for designing tractable and guaranteed algo-
rithms for power system operation. On the one hand, tractability is crucial due to the large size of modern
electricity transmission grids. This is a result of the numerous interconnections that have been build over
time. On the other hand, guarantees are needed to ensure reliability and safety for consumers at a time when
power systems are growing in complexity. This is in large part due to the high penetration of renewable
energy sources and the advent of electric vehicles. The aim of this paper is to review the latest literature
in order to demonstrate the success of conic optimization when applied to power systems. The main focus
is on how linear programming, second-order conic programming, and semidefinite programming can be
used to address a central problem named the optimal power flow problem. We describe how they are used
to design convex relaxations of this highly challenging non-convex optimization problem. We also show
how sum-of-squares can be used to strengthen these relaxations. Finally, we present advances in first-order
methods, interior-point methods, and nonconvex methods for solving conic optimization. Challenges for
future research are also discussed.

Keywords: Optimal power flow, semidefinite programming, polynomial optimization, graph theory.

1. Introduction

The last several decades gave rise to formidable developments in operations research for handling non-
convexity in optimization. In the late eighties, it was recognized that one may remove all the nonconvexities
in quadratically-constrained quadratic optimization so as to obtain a convex relaxation [178]. A few years
later, it was observed that integer programs can likewise be relaxed to conic (and convex) optimization prob-
lems. In fact, there is a sequence of conic problems that ultimately yields the integral solutions [125, 177].
At the turn of the century, it was discovered that, hidden behind these contributions, there was a deep con-
nection to measure theory and algebraic geometry [105, 106]. This led to the development of systematic
approaches for solving polynomial optimization problems to global optimality based on sum-of-squares
[166, 167]. Polynomial optimization is very general and englobes many problems arising in operations
research: integer programming, linear programming, mixed integer programming, and quadratic optimiza-
tion, to name a few. What the developments of the last several decades showed was that conic optimization,

Email addresses: fariba.zohrizadeh@uta.edu (Fariba Zohrizadeh), cedric.josz@gmail.com (Cedric Josz),
jinming@berkeley.edu (Ming Jin), ramtin.madani@uta.edu (Ramtin Madani), lavaei@berkeley.edu (Javad
Lavaei), sojoudi@berkeley.edu (Somayeh Sojoudi)

Preprint submitted to Elsevier April 24, 2019



and in particular semidefinite programming, is a central tool in addressing nonconvexity. Fortunately, there
exists a wide array of algorithms for solving these problems to arbitrary accuracy, some of which are highly
efficient and even commercialized [5].

The development of algorithms for conic optimization dates back to the dawn of operations research
with the introduction of the simplex algorithm. While this particular algorithm is well-suited for linear pro-
gramming, it does not generalize to other conic programs such as semidefinite programming. Interior-point
methods for linear programming [90], however, can be applied in the more general setting [16, 158]. One
significant hurdle that needed to be overcome was dealing with complementarity constraints when consid-
ering the optimality conditions of a semidefinite program. This led to several numerical implementations
still used today (e.g. SeDuMi [185], SDPT3 [193]). These can tackle dense problems with up to several
hundred variables reliably, and can tackle larger instances by exploiting problem structure. This includes
symmetries and sparsity. While they are not as mature as linear solvers, there has been great progress in
recent years to develop alternative approaches, named first-order methods. They are inspired by works on
differential equations in the fifties [50] and rely on operator theory.

Parallel to these advances in operations research, the largest engineering system devised by mankind
came into being with the advent of the modern electric grid. With it came highly challenging problems
in operation and planning for transmission system operators. This includes the alternating current optimal
power flow (OPF) problem. OPF is concerned with the optimization of the steady state operating point
of transmission and distribution networks in order to deliver electricity from suppliers to consumers as
efficiently as possible. This fundamental problem was mathematically formulated in 1960s for the first time
[34], and since then, due to the economic importance of OPF, substantial research efforts have been devoted
to finding reliable solution methods to this problem [31, 126, 127].

The classical OPF formulation optimizes nodal complex voltages across a given network in terms of
certain criterion (e.g., generation cost) subject to quadratic equations accounting for Kirchhoff’s law, con-
servation of power, line thermal limits, and voltage stability limits, among other constraints. The reader
is referred to [12, 31, 32] for alternative formulations of OPF. Due to the inherent complexity of physical
laws that model the flow of electricity, some of these constraints are non-convex, which makes the OPF
problem NP-hard in general [110, 113, 19]. One variant of this crucial problem is the security-constrained
OPF where one has to account for contingencies on network components as well. In addition to mini-
mizing the cost, security-constrained OPF concurrently plans for recourse strategies so that in case of an
outage, in-service generators can compensate by adjusting their outputs. In some other variants of this prob-
lem (namely, security constrained unit commitment), unused generators are incorporated to accommodate
changes in demand and to mitigate contingencies. Several other extensions of OPF have been studied under
more general settings, to address considerations such as the security of operation [128, 33, 51, 8], robustness
[49, 123, 209], energy storage [138, 206, 117], distributed platforms [104, 47, 70, 71, 204], uncertainty of
generation [46, 200, 198], hybrid AC-DC grids [7, 199], real-time operation [191, 138], voltage stability
[45, 202], and unit commitment [57, 129, 120, 35], among others [119]. System operators solve different
variants of OPF on a daily basis in order to manage power system operations for which more sophisti-
cated algorithms could lead to far more efficient and reliable decisions. Reliability is a core issue; indeed,
interruptions in power incur nearly $79 billion/year in the United States alone according to the Energy
Information administration [103].

The complexity of OPF is further pronounced when system operators need to determine additional
binary decisions such as commitment of generating units and the on/off status of transmission lines. For in-
stance, quantitative studies on real-world data suggest that decremental changes via switching transmission
lines can simultaneously increase the operational security and reduce the cost of producing power [74, 58].
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However, finding optimal switching strategies is known to be NP-hard in general [73]. From a computa-
tional perspective, exiting algorithms for determining these binary decisions rely on bounds from convex
relaxations for pruning search trees and certifying closeness to global optimality. As a result, better convex
relaxations and numerical methods for OPF can substantially improve the performance of search algorithms
for solving mixed-integer power system problems.

Conventional methods for solving OPF include, linear approximations, local search algorithms, particle
swarm optimization, fuzzy logic (see [164, 152, 153] and the references therein). A large body of literature
has investigated linear programming-based relaxations and approximations of OPF [4, 179, 43, 176, 36, 52,
184, 143]. Local search algorithms for OPF have been studied in [208, 27, 141, 142, 211, 203]. However,
the aforementioned methods do not guarantee the recovery of globally optimal or even feasible points [37].
In order to find globally optimal solutions, a variety of convex relaxations are studied in the literature for
OPF [110, 126, 127, 213, 112, 102, 40, 18, 30, 41, 189, 20, 149]. Current industry practice for solving OPF
involves non-linear optimization methods [38] and their variants; however, the need for modern approaches
to address future grid challenges has been recognized by experts in the electric power industry as well as
academics [156]. With the ever growing use of renewable sources, power grids are currently undergoing
a revolution. New tools are needed to tackle the ever increasing complexity of system operations. By
2040, the penetration of solar power worldwide is expected to be at 29%; electrical vehicles are expected to
comprise 33% of the global fleet; and utility-scale battery storage is predicted to account for 7% of the total
power generation [21].

To remedy the aforementioned complexities, some of the most promising computational tools for solv-
ing OPF are developed based on conic optimization. This approach is proven to be effective in finding
globally optimal points for a variety of power system optimization problems [110]. The benefits and draw-
backs of conic optimization for OPF have been extensively investigated in the literature [78, 54, 55, 56, 10,
28, 114, 148], leading to various improvements in both solution quality [213, 94, 42, 39, 124, 134, 63, 22,
86, 66, 94, 42, 121, 95, 96] and computational cost [9, 80, 104, 150, 24, 6, 128, 182, 180, 134, 82]. This suc-
cess story is the object of this review paper. It is an exciting time that some of the techniques developed in
the operations research community could be applied to a real-world large-scale industrial problem. This has
led the US Department of Energy to initiate the first-ever grid optimization competition with a $4 million
cash prize whose goal is to increase power grid flexibility, reliability, safety, security, and efficiency1.

Conic relaxation is proven to produce a globally optimal point for many special cases of OPF [64, 115,
132, 133, 91, 220, 217, 63, 22, 77, 161, 190]. However, in general, any convex relaxation may fail to pro-
duce physically meaningful solutions for OPF, due to NP-hardness. As a result, a variety of strategies are
proposed in the literature to infer feasible and near-globally optimal points from inexact conic relaxations.
For instance, branch-and-bound algorithms [68, 169, 39] can be used to iteratively partition search spaces
in order to tighten conic relaxations. In [134, 128, 155], penalty terms are incorporated into the objective
of convex relaxations in order ensure the feasibility of solutions produced by conic relaxations for OPF.
In [146, 86, 147], moment-based hierarchies are used to form conic relaxations that result in globally op-
timal solutions for OPF. More recently, sequential and bound-tightening convex optimization method are
proposed in [205] with the aim of recovering OPF feasible points [97, 205, 13, 222]. To overcome the
high computational cost of solving large-scale conic optimization problems, some studies propose more
efficient variants such as second-order cone programming (SOCP) [95, 129] and quadratic programming
(QP) [41, 138]. Some papers have leveraged the sparsity of power networks to decompose large-scale conic
constraints into lower-order ones [150, 6, 24, 128, 69].

1https://gocompetition.energy.gov
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This paper is organized as follows. First, we formulate the optimal power flow problem and present
recently proposed convex relaxations. They are significant due to the theoretical guarantees they come
equipped with. They are also amenable to computations on large-scale power grids. Second, we discuss
the application of sum-of-squares to polynomial optimization. We demonstrate its applicability on power
systems by reviewing several recent publications. Finally, we review the latest progress on algorithms for
solving conic optimization, which has seen a lot of activity in recent years.

1.1. Notations

The symbols R, C, N, Sn, Sn+, and Hn denote the sets of real numbers, complex numbers, nonnegative
integer numbers, n × n real symmetric matrices, n × n symmetric positive-definite matrices, and n × n
Hermitian matrices, respectively. The notations rank{·}, trace{·}, and ‖ · ‖F denote the rank, trace, and
Frobenius norm of a matrix. The notation X � 0 means that X is positive semidefinite. The vectorization
of a matrix X is the column-stacking operation

vec{X} = [X1,1, . . . , Xn,1, X1,2, . . . , Xn,2, . . . , Xn,n]T ,

The cardinality of a set D is shown as |D|. The absolute value of a complex number z is denoted as |z|.
Given two vectors x, y ∈ Cn, the notation |x| ≤ y means that the absolute value of each element of x is
smaller than or equal to the corresponding element of y. Similarly, x2 denotes a vector obtained by taking
the square of the entries of x element-wise. The symbol diag{X} represents a column vector extracting
the diagonal elements of a matrix X . The inner product of two matrices X and Y is denoted as X • Y .
The notation ]x shows the vector of phase angles of the elements of x ∈ Cn. The transpose and conjugate
transpose of a complex-valued matrix X are shown as X> and X∗, respectively. The real and imaginary
parts of a complex number z are denoted as real{z} and imag{z}. The conjugate of z is shown as z. The
imaginary unit is represented by i.

2. Convex relaxations of optimal power flow

In recent years, there has been a formidable progress on designing various kinds of convex relaxations.
These are based on conic optimization such as semidefinite programming, second-order conic programming,
and linear programming. They provide fast and guaranteed approaches for computing bounds on the global
value of the nonconvex optimization problem at hand. We next discuss recent developments in this area. As
some of these relaxations make use of the specific problem structure, we begin by describing the physics of
the problem in detail.

2.1. Optimal power flow formulation

A power network can be represented as a graph H = (N ,L), where N and L denote the set of buses
and lines of the network, respectively. For each bus k ∈ N , let vk ∈ C denote the nodal complex voltage,
whose magnitude |vk| and angle ]vk account for the amplitude and phase of the voltage, respectively.
The complex nodal demand at bus k is denoted by dk ∈ C, whose real and imaginary parts, respectively,
account for active and reactive demand. Let G be the set of generating units, each located at one of the
buses. For each generating unit g ∈ G, the values pg and qg, respectively, denote the amount of active
and reactive powers. The unit incidence matrix C ∈{0, 1}|G|×|V| is defined as a binary matrix whose(g, k)
entry is equal to one if and only if the generating unit g belongs to bus k. Additionally, define the pair of
matrices ~C, ~C ∈{0, 1}|E|×|V| to be the from and to incidence matrices, respectively. The (l, k) entry of ~C
is equal to one if and only if the line l∈E starts at bus k, while the (l, k) entry of ~C is equal to one if and
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only if line l ends at bus k. Define Y ∈C|N |×|N | as the nodal admittance matrix of the power network and
~Y , ~Y ∈C|L|×|N | as the from and to branch admittance matrices, respectively. Using the notations introduced
above, the OPF problem can be formulated as

minimize
p,q ∈R|G|
v ∈C|N|

h(p) (1a)

subject to d+ diag{vv∗Y ∗} = C>(p+ iq), (1b)

|diag{~Cvv∗ ~Y ∗}| ≤ fmax, (1c)

|diag{ ~Cvv∗ ~Y ∗}| ≤ fmax, (1d)

vmin ≤ |v| ≤ vmax, (1e)

pmin ≤ p ≤ pmax, (1f)

qmin ≤ q ≤ qmax, (1g)

]diag{~Cvv∗ ~C} ≤θmax, (1h)

in terms of decision variables p , [pg], q , [qg] and v , [vk]. In the above formulation, objective
function h(p) is a desirable cost function, e.g. power transmission loss or generation loss. Constraint (1b)
is the power balance equation, which accounts for conservation of energy at all buses of the power network.
Imposing this constraint ensures that the voltages across the network are adjusted such that the overall
complex power produced at each bus k ∈ N be equal to the power consumption and power exchanges of
that bus. In order for the transmission lines to operate properly, the flows of power entering the lines of
the network from their starting and ending buses are upper bounded by the vector of thermal/stability limits
fmax ∈ R|L| using constraints (1c) and (1d). Similarly, the voltage magnitudes of all buses as well as the
active and reactive power of the generating units are restricted by constraints (1e) – (1g), given the limits
vmin,vmax ∈ R|N |, pmin,pmax ∈ R|G|, and qmin, qmax ∈ R|G|. In addition, constraint (1h) is imposed to
bound the phase angle difference across the lines of the network by θmax. Due to practical considerations
(such as stability limits), we make the assumption that all elements of θmax are restricted to the interval
[0◦, 90◦].

2.2. Semidefinite programming relaxation

The OPF problem (1a) – (1h) includes nonconvex nonlinear polynomial equations, which render the
optimization problem non-convex and NP-hard [110, 19, 113]. Therefore, determining a global or near-
global solution of this problem in polynomial time is a daunting computational challenge. To tackle the
non-convexity of the OPF problem and reduce its computational complexity, a huge body of research has
focused on convex relaxations. The relaxations provide lower bounds on the unknown globally optimal cost
of the OPF problem and can assure whether a solution to the OPF problem is globally optimal. A relaxation
is said to be exact if the globally optimal solution of the non-convex OPF problem can be recovered by
the optimal solution of the relaxation. The inherent relation between the quadratic function of complex bus
voltages and the complex power imposes quadratic constraint (1b) and makes the OPF problem (1a) – (1h)
NP-hard. Nevertheless, all the non-convexity induced by the quadratic terms disappears if the problem
is reformulated in terms of auxiliary variable W ∈ H|N |, accounting for vv∗ [53, 10, 79, 110]. Using
W , variable v can be dropped from the optimization problem by equivalently replacing the consistency
constraint W = vv∗ with two constraints (i) W � 0 and (ii) rank{W } = 1. Given that, problem
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(1a) – (1h) can be equivalently reformulated as:

minimize
p,q ∈R|G|
W ∈H|N|

h(p) (2a)

subject to d+ diag{WY ∗} = C>(p+ iq), (2b)

|diag{~CW ~Y ∗}| ≤ fmax, (2c)

|diag{ ~CW ~Y ∗}| ≤ fmax, (2d)

(vmin)2 ≤ diag{W } ≤ (vmax)2 (2e)

pmin ≤ p ≤ pmax, (2f)

qmin ≤ q ≤ qmax, (2g)

|imag{Wlm}| ≤ real{Wlm} tan(θmax
lm ), ∀(l,m) ∈ L (2h)

W ∈ COPF, (2i)

where COPF is
COPF ,

{
H ∈ H|N |

∣∣H � 0, rank{H} = 1
}
.

Observe that in the above reformulation, constraint (2i) carries all the nonconvexity and neglecting this
constraint yields a convex problem which can be solved in polynomial time. Motivated by this observation,
a series of work proposed to convexify and efficiently solve the OPF problem through convex relaxation
techniques including conic relaxations [81, 10, 110, 181, 42, 128, 95, 129, 222], quadratic programming
(QP) [41, 222], and Mixed-Integer programming (MIP) [18] relaxations of the OPF problem. The relax-
ations enlarge the nonconvex feasible set COPF into a proper convex set, and then provide a lower bound
on the globally optimal cost associated with the global solution. One of the most promising directions in
solving the OPF problem is based on conic relaxation of the power flow equations. This approach to the
OPF problem has attracted much attention due to its proven ability in obtaining tight lower bounds for sev-
eral practical case studies [108, 109, 110]. In what follows, we will discuss the the commonly-used conic
relaxation techniques for the optimal power flow problem. The SDP relaxation of the non-convex problem
(1a) – (1h) can be obtained by replacing COPF with the cone of |N | × |N | Hermitian positive semidefinite
matrices CSDP defined as:

CSDP ,
{
H ∈ H|N |

∣∣H � 0
}
. (3)

The SDP relaxation is exact and finds globally optimal solution of the OPF problem (1a) – (1h) if and only
if it possesses a solution (pOPT, qOPT,W OPT) such that rank{W OPT} = 1. It has been proven in [110] that
the SDP relaxation is exact for a purely resistive network with no reactive loads. This condition holds for
several test cases of OPF including IEEE benchmark systems with 14, 30, 57, 118 and 300 buses after a
small perturbation in a few entries of the admittance matrix Y . The work [181] showed that the success
of the SDP relaxation is due to the passivity of the power infrastructure, which was formalized in [182]
through the notion of sign-definite weight sets. The papers [111, 212] proved that the SDP relaxation is
guaranteed to be exact if the phase angle difference across every line of the network is sufficiently close
(e.g. θmax ∈ [0, 90◦]). Regardless of the above-mentioned sufficient conditions, it has been shown that the
SDP relaxation may not always be exact for some instances of the OPF problem [114, 28, 148]. In such
cases, the solution of SDP relaxation offers a lower bound on the unknown globally optimal cost of the OPF
problem. The paper [134] observed that exactness of the SDP relaxation heavily depends on the formulation
of the line capacity constraint. Particularly, it has been shown that for a practical circuit, the feasible region
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Figure 1: The IEEE 14-bus power network (left figure) and its minimal tree decomposition (right figure).

associated with constraint (1h) and |vl − vm| ≤ ∆max
lm are very similar in the non-convex space, however,

their relaxations in terms of auxiliary variable W , i.e. constraint (2h) and Wll +Wmm −Wlm −Wml ≤
(∆max

lm )2, no longer preserve this similarity and the latter constraint provides a tighter feasible set in the
lifted space. Motivated by this observation [134] suggests to impose the latter constraint to strengthen the
SDP relaxation and reduce its optimality gap. The papers [42] proposed to amend the feasible set of the
relaxed problem via the following valid inequalities for all (k1, k2) ∈ L:

vσk1v
σ
k2real{Wk1k2e

−iθmax
k1k2} − vmax

k2 vσk2Wk1k1 − vmax
k1 vσk1Wk2k2 ≥ vmax

k1 vmax
k2 (vmin

k1 v
min
k2 − v

max
k1 vmax

k2 ) (4a)

vσk1v
σ
k2real{Wk1k2e

−iθmax
k1k2} − vmin

k2 v
σ
k2Wk1k1 − vmin

k1 v
σ
k1Wk2k2 ≥ vmin

k1 v
min
k2 (vmax

k1 vmax
k2 − v

min
k1 v

min
k2 ) (4b)

where vσk = vmax
k + vmin

k , for k = {1, . . . , |N |}. The papers [146, 86, 147] propose to enhance the tightness
of the relaxation by employing Lasserre hierarchy of moment relaxation [107]. The first-order moment
relaxation of OPF problem in the hierarchy is equivalent to the SDP relaxation (2a) – (2i) and (3). It has
been shown in [146, 86, 147] that increasing the relaxation order of Lasserre hierarchy can strengthen the
approximation and approaches to the global solutions of the OPF problem. Nevertheless, this comes at the
cost of increasing computational complexity. The papers [68, 169] employ a Branch-and-bound algorithm
[118] to iteratively partition the feasible set of the relaxation to find a solution with a smaller gap.

In addition to the exactness issues, SDP relaxation suffers from a high computational cost, which limits
its applicability especially for large-scale real-world networks. This motivates researchers to alleviate the
complexity of solving SDP relaxations by finding computationally cheaper alternatives such as reduced-
SDP relaxation and second-order cone programming (SOCP) relaxation.

2.3. Reduced semidefinite programming relaxation

The computational complexity of SDP relaxation motivates various studies to leverage the sparsity of
power networks through a graph-theoretic analysis, namely tree decomposition [9, 80, 150, 6, 24, 128, 69,
216]. An arbitrary tree decomposition of the power network, denotes as B, decomposes N into several
overlapping subsets B1,B2, . . . ,BB ⊆ N each serving as a node of a tree where: (i) each node Bk is a set
containing a bag of vertices of N , (ii) each vertex in N is contained in at least one bag of B, (iii) each pair
of connected vertices in L is contained in at least one bag, (iv) all bags containing each arbitrary vertex in
N must be a sub-tree. The width of the tree is equal to the cardinality of the biggest {Bk}Bk=1 minus one.
The tree-width of the network graph is the minimum width over all possible tree decompositions ofN . The
graph of the IEEE 14-bus system and its minimal tree decomposition are depicted in Figure 1. Given B with
B nodes, the constraintW � 0 can be represented with a set of small-sized conic constraints as:

W {Bk} � 0, ∀k ∈ {1, 2, ..., B} (5)
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where W {Bk} represents the |Bk| × |Bk| principal sub-matrix of W whose rows and columns are chosen
from Bk. The reduced-SDP relaxation can be obtained by substituting COPF with the cone:

CRSDP ,
{
H ∈ H|N |

∣∣H{Bk} � 0, ∀k ∈ {1, ..., B}}. (6)

The reduced-SDP relaxation is exact if and only if it has a solution (pOPT, qOPT,W OPT) such that rank{W OPT{Bk}} =
1 for k = 1, . . . , B.

Theorem 1 (Theorem 1. [128]). The optimal objective costs of the SDP relaxation and the reduced-SDP
relaxation of the OPF problem are the same.

Theorem 1 implies that the above decomposition provides an equivalent but far more tractable formula-
tion of the SDP relaxation for large-scale power networks with a relatively small tree-width. Nevertheless,
solving large-scale instances of the OPF problem on real-world systems can still be computationally chal-
lenging.

2.4. Second-order conic programming relaxation

The primary limitation of SDP-based relaxations is the rapid growth of problem dimension, which
makes the problem computationally prohibitive to solve for large-scale power systems. A weaker, but com-
putationally less demanding alternative to SDP relaxation is the second-order cone programming (SOCP)
relaxation which was introduced in [81] for acyclic networks and [181] for general networks. The SOCP
relaxation aims to enforce the relation between W and v through conic constraints on 2 × 2 principle
sub-matrices ofW corresponding to each line (k1, k2) ∈ L:

W {(k1, k2)}=

[
Wk1k1 Wk1k2

Wk2k1 Wk2k2

]
� 0, ∀(k1, k2) ∈ L. (7)

which can be equivalently replaced by the following linear and a rotated second-order cone constraints:

Wk1k1 ,Wk2k2≥ 0, ∀(k1, k2) ∈ L,

Wk1k1Wk2k2≥
∣∣∣Wk1k2

∣∣∣2, ∀(k1, k2) ∈ L.
(8)

Therefore, the SOCP relaxation of the power flow problem is obtained by optimizing problem (2a) – (2i)
over the cone

CSOCP ,
{
H ∈ H|N |

∣∣H{(k1, k2)} � 0, ∀(k1, k2) ∈ L
}
. (9)

It is evident that the SOCP relaxation is dominated by the SDP relaxation, since constraint W � 0 en-
sures that every sub-matrix of W , including the 2 × 2 principle sub-matrices, is positive semidefinite
[171]. The SOCP relaxation is exact if and only if it possesses a solution (pOPT, qOPT,W OPT) such that:
(i) rank{W OPT{(k1, k2)}} = 1 for all (k1, k2) ∈ L, (ii) for every directed cycle of the network, the sum
of the phase of W OPT

lm over all directed edges (l,m) of the cycle must be zero. It is theoretically proven
that the SOCP relaxation is exact under certain technical assumptions on the physics of a power gird
[181, 182, 111, 213]. The papers [23, 181] prove that the SOCP relaxation is exact for radial networks
if load over-satisfaction is allowed, i.e.

diag{WY ∗} ≤ C>(p+ iq)− d. (10)
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The papers [116, 61, 62, 126] guarantee the exactness of the SOCP relaxation for radial networks when
there are no upper bounds on the voltage magnitudes of the buses of the network. Note that it has proven
in [126, 187] that if the SOCP relaxation is exact for radial networks, then the SDP and reduced-SDP
relaxations are also exact. Therefore, in the case of acyclic power network, SOCP relaxation is more
appealing due to its tightness and computational tractability. Regardless of the above-mentioned restricted
assumptions, the SOCP relaxation is often inexact, and its optimal solutions are not necessarily feasible for
problem (1a) – (1h). To strengthen the SOCP relaxation various techniques have been suggested including
valid inequalities [95], cutting planes [76, 129, 97], and convex envelope [41]. The paper [76] proposed to
tighten the SOCP relaxation by imposing the conic constraints on the 3×3 principle sub-matrices of matrix
variableW as:

W {(k1, k2, k3)}=

Wk1k1 Wk1k2 Wk1k3

Wk2k1 Wk2k2 Wk2k3

Wk3k1 Wk3k2 Wk3k3

 � 0, ∀(k1, k2, k3) ∈
B⋃
k=1

Bk × Bk × Bk. (11)

where B1,B2, . . . ,BB ⊆ N are the overlapping subsets associated with an arbitrary tree decomposition
of the network for which |Bk| ≥ 3, ∀k = 1, . . . , B. The intuition behind imposing constraint (11) is that
a nonzero, Hermitian matrix W ∈ H|N | is positive semidefinite if and only if all the principal minors
of W are non-negative. Based on this fact, constraint (11) is equivalent to constraint (7) together with a
new constraint det{W {(k1, k2, k3)}} ≥ 0. The new constraints can be seen as cuts for strengthening the
SOCP relaxation. The paper [97] proposed to strengthen SOCP relaxation by imposing constraints on both
principal and non-principal 2 × 2 minors of the W . These constraints are imposed based on the following
characterization of rank-one positive semidefinite matrices.

Proposition 1. A nonzero, Hermitian matrixW ∈ H|N | satisfies constraintsW � 0 and rank{W } = 1 if
and only if all the 2× 2 minors ofW are equal to zero andW kk ≥ 0 for k = {1, . . . , |N |}.

It has been shown that constraints on non-principal 2× 2 minors ofW have physical interpretations of
voltage angle differences summing to zero over cycles of three- and four-nodes in the power network.

2.5. Quadratic convex relaxation
The paper [41] proposed a Quadratic Convex (QC) relaxation that imposes quadratic constraints in

terms of the variables |vk|2, |vk1 ||vk1 | cos(]vk1 − ]vk2), and |vk1 ||vk1 | sin(]vk1 − ]vk2) to enforce the
relation between W and v implicitly. Under the assumption that phase angle differences between the
neighboring buses in a power network are usually small, this paper computes convex envelopes of the polar
representation of consistency constraintW = vv∗ as:

Wk,k = 〈|vk|2〉T , ∀k ∈ N

real{Wk1k2} = 〈〈|vk1 | |vk2 |〉M 〈cos(]vk1 − ]vk2)〉C〉M ∀(k1, k2) ∈ L

imag{Wk1k2} = 〈〈|vk1 | |vk2 |〉M 〈sin(]vk1 − ]vk2)〉C〉M ∀(k1, k2) ∈ L

(12)

where 〈f(.)〉T, 〈f(.)〉M, 〈f(.)〉S , and 〈f(.)〉C are the convex envelopes defined as:

〈x2〉T ,

{
x̌ ≥ x2,
x̌ ≤ (xmax + xmin)x− xmaxxmin,

〈xy〉M ,


x̌y ≥ xminy + yminx− xminymin,

x̌y ≥ xmaxy + ymaxx− xmaxymax,

x̌y ≤ xminy + ymaxx− xminymax,

x̌y ≤ xmaxy + yminx− xmaxymin,

(13)
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〈sin(x)〉S ,

{
šx ≤ cos(x

max

2 )(x− xu

2 ) + sin(x
max

2 ),

šx ≥ cos(x
max

2 )(x+ xu

2 )− sin(x
max

2 ),
〈cos(x)〉C ,

{
čx ≤ 1− 1−cos(xmax)

(xmax)2
x2,

čx ≥ cos(xmax),
(14)

where x ∈ [xmin, xmax] and y ∈ [ymin, ymax]. These convex envelopes are further strengthened via second-
order cone constraints (8). The paper [222] proposed a computationally efficient method, named the
parabolic relaxation, which transforms non-convex problem (1a) – (1h) into a convex QCQP. Since parabolic
relaxation avoids conic constraints, it requires far less computational effort and can serve as an alternative
to the common practice SDP and SOCP relaxations for solving large-scale OPF problems.

2.6. Linear programming relaxation

The paper [18] develops a linear relaxation of the rectangular formulation of the OPF problem in which
the non-linearity and non-convexity comes from the bi-linear equations in terms the real and imaginary
parts of the complex voltages. Let us define each vk at bus k as vk = ek + ifk where ek and fk are bounded
variables corresponding to the real and imaginary parts of the vk. It has been shown that all the bi-linearity
of the rectangular formulation can be removed by performing a binary expansion for suitably translated and
scaled ek and fk. To gain more intuition, consider variables u, v ∈ [0, 1]. The variable u can be expressed
as:

u =
T∑
j=1

2−jyj + δ, (15)

where yj ∈ {0, 1}, T ≥ 1, and 0 ≤ δ ≤ 2−T . Given (15), the bi-linear term uv can be relaxed as

T∑
j=1

2−jwj ≤ uv ≤
T∑
j=1

2−jwj + 2−T v, (16)

where wj accounts for yjv. To remedy the absence of non-convex equation wj = yjv the relaxation is
strengthened via the following valid inequalities:

wj ≤ min{v, yj},
wj ≥ max{v + yj − 1, 0}.

(17)

It has been shown that the binary expansion of the bi-linear terms results in a computationally more efficient
relaxation of the OPF problem compared to the SDP and SOCP relaxations.

2.7. Heuristics and recovery of feasible points

Despite the effectiveness of the relaxation techniques in solving the OPF problem, their solutions may
not lead to a physically meaningful solution for problem (1a) – (1h). One promising strategy to ameliorate
this issue and implicitly enforce the rank constraint is to augment the relaxation with penalization terms
[155, 134, 128, 146, 217, 222, 151, 146]. The paper [134] proposed to penalize the total reactive power
generation of the network by replacing objective function (2a) with:

h(p) + εb
∑
g∈G

qg, (18)
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where εb > 0 is the penalty coefficient. The paper [128] proposed to penalize the apparent power loss over
the series impedance of the lines of the network using the following objective function:

h(p) + εb
∑
g∈G

qg + εl
∑

(l,m)∈L

∣∣∣Wll +Wmm −Wlm −Wml

∣∣∣|y∗lm|, (19)

where εb, εl > 0 are penalty coefficients and y∗lm is the series impedance of line (l,m). It has been shown
that employing the above-mentioned penalty terms elevates the off-diagonal entries of matrix W , which
indeed promotes low-rank solutions. GivenW OPT of the penalized SDP relaxation, an approximate feasible
solution v of problem (1a) – (1g) is obtained by setting magnitude vk equal to the square root of W OPT

kk , for
all k ∈ {1, . . . , |N |} and finding the phases of the entries of v by minimizing the following optimization
problem:

minimize
]v ∈C|N|

∑
(l,m)∈L

|]W OPT

lm − ]vl − ]vm| (20a)

subject to |]vk| ≤ π, ∀k ∈ N , (20b)

]v1 = 0. (20c)

Note that if matrix W OPT has a dominant nonzero eigenvalue, problem (20a) – (20c) seeks to find vector
v such that its line angle differences are as close as possible to those suggested by W OPT. The paper
[222, 221] proposed to incorporate linear penalty terms into the objective function (2a) where each penalty
term is based on an arbitrary initial point of the relaxation. It has been proven in [92] that if the initial point
is sufciently close to the feasible set of the non-convex OPF problem (1a) – (1h) and satifies a generalized
linear independence constraint qualification (LICQ) condition, the penalized relaxations produce feasible
solutions for the OPF problem.

3. Sum-of-squares for polynomial optimization

The motivation for using sum-of-squares for solving the optimal power flow problem is that the semidef-
inite programming Shor relaxation (or rank relaxation) is not strong enough to solve all problems of interest
to global optimality. As was observed in [114], in the LMBM3 3-bus system (named after its authors Lesieu-
tre, Molzahn, Borden, and Demarco) of Figure 2, the rank constraint is not always satisfied at optimality in
the Shor relaxation of the optimal power flow as proposed in [110]. For instance, when the upper limit on
the power flow on line 2-3 is equal to 48 MVA, the Shor relaxation provides a lower bound equal to 5819.02
$/h. Using sum-of-squares of degree 2, one can construct a stronger convex relaxation whose optimal value
is 5882.67 $/h. The rank in the relaxation is equal to one, proving that this value is globally optimal. This is
also the value found by the optimal power flow nonlinear solver runopf in MATPOWER. The nonlinear
solver can potentially become stuck in a saddle point or local minimum, and thus returns an upper bound.
Since this upper bound is equal to the lower bound found using sum-of-squares, this is another means of
confirming that we have found the global value.
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Figure 2: LMBM3 3-bus system

This example is important from a power systems perspective because it has a cycle, which is character-
istic of transmission grids. In contrast, distribution grids which operate at a lower voltage level can exhibit
a tree structure devoid of cycles.

3.1. Polynomial optimization

The optimal power flow problem can be seen as a special case of polynomial optimization once it is
converted into real numbers. This class of problems admits a general procedure for solving them to global
optimality. We next provide some of its main features and an example.

Consider a polynomial optimization problem

minimize
x∈Rn

f(x) ,
∑
α

fαx
α (21a)

subject to gi(x) ,
∑
α

gi,αx
α > 0, i = 1, . . . ,m, (21b)

where we use the multi-index notation xα := xα1
1 · · ·xαn

n for x ∈ Rn, α ∈ Nn, and where the data are
polynomials f, g1, . . . , gm ∈ R[x] so that in the above sums only a finite number of coefficients fα and gi,α
are nonzero. We will use the notation |α| :=

∑n
k=1 αk.

In 2001, the Lasserre hierarchy [105, 106] (see also [166, 167]) was proposed to find global solutions to
polynomial optimization problems. It is also known as moment/sum-of-squares hierarchy in reference to the
primal moment hierarchy and the dual sum-of-squares hierarchy. Its global convergence is guaranteed by
Putinar’s Positivstellensatz [172] proven in 1993. Typically, if one of the constraints is a ball x21+. . .+x2n 6
1, then the sequence of lower bounds provided by the hierarchy converges to the global infimum of the
polynomial optimization problem. In addition, there is zero duality at all relaxation orders [85]. This is a
crucial property when using path-following primal-dual interior point methods, which are some of the most
efficient approaches for solving semidefinite programs.
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The moment problem of order d is defined as2

minimize

y ∈R

(
n + 2d

2d

) Ly(f) (23a)

subject to y0 = 1 (23b)

Md(y) < 0 (23c)

Md−ki(giy) < 0, i = 1, . . . ,m (23d)

where the Riesz functional, the moment matrix, and the localizing matrices are respectively defined by

Ly(f) ,
∑
α

fαyα (24a)

Md(y) := (yα+β)|α|,|β|6d (24b)

Md−ki(giy) , (
∑
γ

gi,γyα+β+γ)|α|,|β|6d−ki (24c)

ki , max{d|α|/2e s.t. gi,α 6= 0}. (24d)

Above, d.e denotes the ceiling of a real number. The sum-of-squares problem of order d is defined as

maximize
λ,σ

λ (25a)

subject to f − λ = σ0 +

m∑
k=1

σkgk (25b)

λ ∈ R, σ0 ∈ Σd[x], (25c)

σi ∈ Σd−ki [x], i = 1, . . . ,m. (25d)

A polynomial σ(x) =
∑
|α|62d σαx

α is a sum-of-squares, i.e. it belongs to Σd[x], if it is of the form

σ(x) =
∑
k

∑
|α|6d

pk,αx
α

2

where pk,α ∈ R. (26)

This is equivalent to the existence of (ϕα,β)|α|,|β|6d < 0 such that
∑
|α|62d σαx

α =
∑
|α|,|β|6d ϕα,βx

α+β .
We now focus on the result that justifies the global convergence of the Lasserre hierarchy, namely Puti-

nar’s Positivstellensatz [172]. This result provided a crucial refinement of Schmüdgen’s Positivstellensatz
[175] proven a few years earlier. It was crucial because it enabled numerical computations, leading to what
is known today as the Lasserre hierarchy. Schmüdgen’s Positivstellensatz essentially says that a polynomial
that is positive on a set defined by polynomial inequalities can be decomposed as a sum of products of the
polynomials multiplied by sums of squares; Putinar’s removes the product from the decomposition. This

2We use the notation (
n
k

)
,

n(n− 1) . . . (n− k + 1)

k!
(22)

for integers n > k > 1 and where k! stands for factorial.
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can be seen in the theorem below.

Theorem 2 (Putinar’s Positivstellensatz [172]). Assume that there existR > 0 and sums-of-squares p0, . . . , pm
such that

R2 − x21 − · · · − x2n = p0 +
m∑
i=1

pigi (27)

If f > 0 on {x ∈ Rn | g1(x) > 0 , . . . , gm(x) > 0}, then there exists sum-of-squares σ0, . . . , σm such
that

f = σ0 +
m∑
i=1

σigi. (28)

Based on this theorem, it is simple to see that whenever λ is a strict lower bound of f on the feasible
set {x ∈ Rn | g1(x) > 0 , . . . , gm(x) > 0}, the objective function minus the lower bound can be written
using sums-of-squares. Thus, one may make the lower bound as closely as desired to the global infimum.
In fact, in many cases, it is reached, as can be seen in the following example.

Example 1. Consider the following polynomial optimization problem taken from [83]:

inf
x1,x2∈R

x21 + x22 + 2x1x2 − 4x1 − 4x2 s.t. x21 + x22 = 1

Its optimal value is 2− 4
√

2, which can be found using sums-of-squares since:

x21 + x22 + 2x1x2 − 4x1 − 4x2 − (2− 4
√

2) =

(
√

2− 1)(x1 − x2)2 +
√

2(−
√

2 + x1 + x2)
2

+ 2(
√

2− 1)(1− x21 − x22)

It can be seen from the above equation that when (x1, x2) is feasible, the first line must be nonnegative,
proving that 2 − 4

√
2 is a lower bound. This corresponds to the first-order Lasserre hierarchy since the

polynomials inside the squares are of degree one at most.

In general, and not only in this example, the Lasserre hierarchy has finite convergence generically. This
means that for a given abritary polynomial optimization problem, finite convergence will almost surely
hold. It was Nie [162] who proved this result, which had been observed in practice ever since the Lasserre
hierarchy was introduced. He relied on theorems of Marshall [139, 140] which attempted to answer the
question: when can a nonnegative polynomial have a sum-of-squares decomposition? In Putinar’s Posi-
tivstellensatz above, the assumption of positivity is made, which only guarantees asymptotic convergence.
Parallel to Lasserre’s contribution, Parrilo [166] pioneered the use of sum-of-squares for obtaining strong
bounds on the optimal solution of nonconvex problem. He also showed how they can be used for many im-
portant problems in systems and control. In contrast to Lasserre, Parrilo’s work [167] panders to Stengle’s
Positivstellensatz [183], which is used for proving infeasibility of systems of polynomial equations.

To sum up, the Lasserre hierarchy provides a sequence of semidefinite programs whose optimal values
converge (monotonically) towards the global value of a polynomial optimization problem. This is true
provided that the feasible set is compact, and that a bound R on the radius of the set is known, so that one
can include a redundant ball constraint x21+ · · ·+x2n 6 R2. In the case of the optimal power flow, this is not
necessary because the upper bounds on voltage suffice to guarantee convergence of the Lasserre hierarchy.
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3.2. Exploiting sparsity

In full generality, sum-of-squares are only applicable to problems of modest size. But with sparsity, the
picture is different. Thankfully, power systems are sparse and the physical equations make them amenable
to sum-of-squares.

Waki et al. [201] proposed to use chordal sparsity in the Lasserre hierarchy. They draw on the cor-
relative sparsity graph whose vertices are the variables and whose edges signify that two variables appear
simultaneously either in a constraint or in a monomial of the objective. The idea of Waki et al. is to restrain
the variables appearing in the sum-of-squares (a priori all variables) to subsets of variables. The approach
of Waki et al. reduces the computational burden of the Lasserre hierarchy for sparse problems. Concerning
the optimal power flow problem, it allows one to solve some hard instances to global optimality with up to
80 variables [66] (instead of 20 without exploiting sparsity [144]). However, by using the correlative spar-
sity graph discussed above, a lot of the sparsity is lost. The authors of [87] thus propose a finer notion of
sparsity that takes advantage of the fact that the constraints are polynomials. To that effect, they define the
monomial sparsity graph whose vertices are the variables and whose edges signify that two variables appear
simultaneously in a monomial of either the objective or a constraint. Consider the formula for complex
electric power which was exposed in one of the previous sections:

vkik = vk
∑
l

ikl = vk
∑
l

ykl(vk − vl) =

(∑
l

ykl

)
|vk|2 −

∑
l

yklvkvl (29)

The above computations rely on Ohm’s law and Kirchhoff’s laws. They lead to the main equation that
appears in the optimal power flow and many of its variants. This equation leads to constraints like

2v1v1 − (1 + i)v1v2 − (2− i)v1v3 − (4 + 3i)v1v4 = 1− 3i (30)

where the constant terms are chosen arbitrarily. Notice that the sparsity pattern associated to this constraint

monomial sparsity

<
1

2 3

4

correlat ive sparsity

1

2 3

4

Figure 3: Two different notions of sparsity

is exactly that the one described in Figure 3. The reason why the monomial sparsity and correlative sparsity
differ is due in part to the Kirchhoff. One variable ends up multiplying itself and several other variables, but
those variables do not get multiplied among themselves. Accordingly, the finer notion of sparsity (monomial
sparsity) leads to semidefinite constraints that are smaller. This enables an improved tractability. In addition,
monomial sparsity allows one to apply different relaxation orders at each constraint.
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3.3. Exploiting symmetry
Consider the problem of finding global solutions to a complex polynomial optimization problem

minimize
z ∈Cn

f(z, z̄) ,
∑
α,β

fα,βz
αz̄β (31a)

subject to gi(z, z̄) ,
∑
α,β

gi,α,βz
αz̄β > 0, i = 1, . . . ,m. (31b)

We again use the multi-index notation zα := zα1
1 · · · zαn

n for z ∈ Cn, α ∈ Nn. The functions f, g1, . . . , gm
are real-valued polynomials so that in the above sums only a finite number of coefficients fα,β and gi,α,β
are nonzero and they satisfy fα,β = fβ,α and gi,α,β = gi,β,α. The feasible set is defined as K := {z ∈
Cn : gi(z, z̄) > 0, i = 1, . . . ,m}. Complex numbers are used in the optimal power flow problem due
to alternating current. In fact, the optimal power flow problem is an instance of a complex polynomial
optimization problem.

Example 2. In [27, WB2, V max
2 = 1.022 p.u.], an instance of the optimal power flow is proposed. It yields

the following complex polynomial optimization problem

minimize
z1,z2∈C

8|z1 − z2|2 (32a)

subject to 0.9025 6 |z1|2 6 1.1025 (32b)

0.9025 6 |z2|2 6 1.0568 (32c)

(2 + 10i)z1z̄2 + (2− 10i)z2z̄1 − 4|z2|2 = 350 (32d)

(−10 + 2i)z1z̄2 + (−10− 2i)z2z̄1 + 20|z2|2 = −350 (32e)

Notice that if (z1, z2) is a feasible point, then so is (eiθz1, e
iθz2) for all θ ∈ R (this is the result of alternating

current). When converted to real numbers z1 , x1 + x3i and z2 , x2 + x4i, it yields

minimize
x1,x2,x3,x4∈R

8(x1 − x2)2 + 8(x3 − x4)2 (33a)

subject to 0.9025 6 x21 + x23 6 1.1025 (33b)

0.9025 6 x22 + x24 6 1.0568 (33c)

4x1x2 + 4x3x4 + 20x1x4 − 20x3x2 − 4x22 + 4x24 = 350 (33d)

−20x1x2 − 20x3x4 + 4x1x4 − 4x3x2 + 20x22 + 20x24 = −350 (33e)

Notice that if (x1, x2, x3, x4) is a feasible point, then so is (−x1,−x2,−x3,−x4).
The above symmetries allow one to cancel many terms in the Lasserre hierarchy at no loss of bound

quality. A complex version of the Lasserre hierarchy can be constructed by using D’Angelo and Putinar’s
Positivstellensatz [48], similar to Putinar’s Positivstellensatz, but for Hermitian sum-of-squares rather than
regular real sum-of-squares. On the examples above, the real and complex hierarchies yield the same
bounds at the first, second, and third orders (888.1, 894.3, and 905.7 MW respectively), but the complex
hierarchy is cheaper to compute due to the reduced size of the semidefinite constraints. The rank of the real
and complex moment matrices guarantee that global convergence is reached at the third order.

We conclude this section by noting that for general polynomial optimization problems (not necessarily
complex), one may exploit symmetry using the techniques developed in [173].
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3.4. Inner approximations of the sum-of-squares cone

We next discuss some restrictions one can impose on the set of sum-of-squares polynomial in order to
transform it from a semidefinite cone into a second order cone. Following [135, 1], a polynomial σ(x) =∑
|α|62d σαx

α is a scaled diagonally-dominant sum-of-squares (SDSOS) if it is of the form

σ(x) =
∑
k

(
pkx

α(k) + qkx
β(k)
)2

where
α(k), β(k) ∈ Nn,
pk, qk ∈ R. (34)

This is equivalent to the existence of (ϕα,β)|α|,|β|6d such that
∑
|α|62d σαx

α =
∑
|α|,|β|6d ϕα,βx

α+β where
ϕ is of the form ∑

|α|, |β| 6 d
α 6= β

φα,β (35)

where each matrix φα,β has zeros everywhere expect for four entries φα,β(α, α), φα,β(α, β), φα,β(β, α),
φα,β(β, β) ∈ R such that (

φα,β(α, α) φα,β(α, β)
φα,β(β, α) φα,β(β, β)

)
< 0. (36)

These can be viewed as second-order conic constraints. In the sum-of-squares problem of order d, if we
restrain the sum-of-squares variables σ0, . . . , σm to be SDSOS, then in the moment problem of order d, we
are relaxing each semidefinite constraint as follows(

Md(y)(α, α) Md(y)(α, β)
Md(y)(β, α) Md(y)(β, β)

)
< 0 , ∀|α|, |β| 6 d, α 6= β, (37)

(
Md−ki(giy)(α, α) Md−ki(giy)(α, β)
Md−ki(giy)(β, α) Md−ki(giy)(β, β)

)
< 0 , ∀|α|, |β| 6 d− ki, α 6= β. (38)

Naturally, these can also be viewed as second-order conic constraints. For their application to polynomial
optimization, see [101, (QM-DSOSr),(QM-SDSOSr)] and [102]. In particular, they have been applied to
the optimal power flow problem, enabling one to compute lower bound to medium-sized test cases (several
hundreds of variables). In a similar flavor, in [145], the moment constraint is maintained as a positive
semidefinite constraint, but the localizing matrices are relaxed to multiple second-order conic constraints.
This guarantees that the relaxation is stronger than the first-order Lasserre relaxation. In some instances,
there is a computational gain, but in others, the approach is unable to find a minimizer whereas the Lasserre
hierarchy does.

4. Numerical algorithms for semidefinite programming

In the previous two sections, we have discussed general methodologies for solving nonconvex optimiza-
tion problems to global optimality. These rely on solving a conic optimization efficiently on a large scale.
We focus below on numerical algorithms for solving semidefinite programming, of which second-order
conic programming and linear programming are subclasses. Three general approaches are presented. We
begin with first-order methods which have a small cost per iteration and include for example the alternation
direction method of multipliers (ADMM). Next, we explain the reasoning behind interior-point methods
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which were originally designed for linear programming. Last, we discuss nonconvex methods that refor-
mulate the semidefinite programming into a nonconvex problem by taking advantage of the fact that we are
interested in low-rank solutions.

4.1. Semidefinite programming

To streamline the presentation, we focus on the standard SDP formulation:

minimize
X ∈ Sn

C •X (39a)

subject to A(X) = b (39b)

X � 0, (39c)

where C ∈ Sn, b ∈ Rm, and A(X) =
[
A1 •X · · · Am •X

]> is the linear matrix operator. The dual
problem is given by:

maximize
y∈Rm,S ∈ Sn

b>y (40a)

subject to A∗(y) + S = C (40b)

S � 0, (40c)

whereA∗(y) =
∑m

i=1 yiAi is the adjoint operator ofA. We state some nondegeneracy assumptions, which
are standard for complexity bound analysis and satisfied for a wide range of problems [3].

Assumption 1 (Nondegeneracy condition). Given the primal and dual problems, assume that:

1. (Linear independence) The matrix A =
[
vec{A1} · · · vec{Am}

]
has full column-rank (i.e.,

A>A is nonsingular);

2. (Slater’s condition) There exist y and X,S � 0 such that A(X) = b and A∗(y) + S = C are
satisfied.

The linear independence condition requires that the number of constraintsm does not exceed the degrees
of freedom 1

2n(n+ 1). By embedding the problem within a slightly larger problem using the homogeneous
self-dual embedding technique [210], Slater’s condition can be also satisfied. While we focus on the stan-
dard formulations as in (39) and (40), there is no loss of generality. For instance, to incorporate an inequality

Ai •X ≥ bi, we can introduce X̄ =

[
X 0
0> x

]
that extends the dimension of X by 1, and introduce an

extra equality equation that constrains the element x = Ai •X − bi. In addition, all of the complexity
bounds discussed below can be generalized to conic programs posed on the Cartesian product of multiple
semidefinite cones K = Sn1

+ × S
n2
+ × · · · × S

n`
+ .

4.2. First-order methods

One of the most promising first-order methods for solving large-scale SDP problems is the alternating
direction method of multipliers (ADMM), which is closely related to the augmented Lagrangian method
proposed in the mid-1970s [60] and [67]. The ADMM algorithm experienced a revival in the past decade,
in a large part due to the publication of a popular and influential survey by Boyd et al. [26] for applications
in distributed optimization and statistical learning. Two popular variations of ADMM for solving large-scale
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SDPs are proposed by Wen, Goldfarb and Yin [207] and O’Donoghue et. al [163]. Following the treatment
of [207], we start by defining the augmented Lagrangian function for the dual problem:

Lµ(X,y,S) = −b>y +X • (A∗(y) + S −C) +
1

2µ
‖A∗(y) + S −C‖2F , (41)

where X ∈ Sn and µ > 0 is the penalty coefficient. By adding the quadratic term to the Lagrangian
function, the augmented Lagrangian Lµ(X,y,S) is strongly convex in y and X and has a Lipschitz-
continuous gradient. This essentially smoothes the primal problem and allows a gradient-based optimization
to be effectively employed. Starting from the initial primal variableX0, the augmented Lagrangian method
solves in each iteration

minimize
y∈Rm,S ∈ Sn

Lµ(Xk,y,S) subject to S � 0, (42)

for yk+1 and Sk+1, and then updates the primal variableXk+1 by

Xk+1 := Xk +
A∗(yk+1) + Sk+1 −C

µ
. (43)

Instead of jointly minimizing Lµ(Xk,y,S) with respect to y and S, which can be very time consuming
for large-scale problems, ADMM minimizes the augmented Lagrangian function with respect to y and S
separately, and hence no longer solving problem (42) exactly [207]:

yk+1 := arg min
y∈Rm

Lµ(Xk,y,Sk) (44a)

Sk+1 := arg min
S∈Sn

Lµ(Xk,yk+1,S) s.t. S � 0. (44b)

The above order of (43), (44a) and (44b) is not important, and the iterates converge towards the solutions
of (39) and (40) for all fixed µ > 0 [207, Thm 2]. Here, the y-update has a closed-form solution based on
first-order optimality of the unconstrained problem

yk+1 := −(A>A)−1
(
µ(A(Xk)− b) +A

(
Sk −C

))
, (45)

where A>A is invertible by Assumption (1), and the S-update is given by the projection of a symetric
matrix onto the positive semidefinite cone:

Sk+1 = [V ]+, where V = C −A∗(yk+1)− µXk, (46)

which also has a closed-form solution based on the spectral decomposition

V =
n∑
i=1

σiviv
>
i , [V ]+ =

n∑
i=1

max(σi, 0)viv
>
i . (47)

The above iteration is closely related to the regularization method [136] and the boundary point method
[170], whereXk is fixed until 1

µ(Sk+1−V k+1) is nearly feasible. Although the sequence is convergent, in
practice, a heuristic based on balancing the primal and dual residuals to adjust the value of µ seems to help
the numerical performance (see [207, Sec. 3.2] and [26, Sec. 3.4] for implementation details).

Since the OPF power problem has sparsity patterns that arise from the network topology, the capa-
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bility of solving large-scale SDPs can be enhanced by exploiting the sparsity pattern and parallelization
[59, 188, 131]. By defining a representative graph for the large-scale SDP problem, we can reduce the
SDP formulation using a tree/chordal/clique decomposition technique introduced above (Theorem 1). This
decomposition replaces the large-scale SDP matrix variable X with the submatrices X{Bk} using a tree
decomposition of the power network, where Bk is a bag of vertices of N . Similar to (43), (44a) and (44b),
a distributed ADMM-based algorithm can be derived to solve the reduced SDP problem iteratively. The
main speedup is achieved in the S-update, where instead of performing spectral decomposition on a large
n×nmatrix (performing this step using dense linear algebra requires Θ(n3) time and Θ(n2) memory), this
expensive operation is needed for only multiple submatrices of orders bounded by the treewidth. By finding
the optimal solution for the distributed SDP, one could recover the solution to the original SDP formulation
using an explicit formula (see [131, Sec. IV-B] for the implementation). The idea of tree decomposition of a
sparse SDP into smaller sized SDPs is first proposed in [59], which then solves the subproblems by interior
point methods. Using a first-order splitting method, [188] solves the decomposed SDP problem created by
[59], but the algorithm needs to solve an optimization subproblem at every iteration. The employment of
ADMM to solve the reduced problem is proposed in [130, 131]. It also studies the application to OPF in
real-world grids (for instance, the SDP relaxation of OPF for a European grid with 9241 buses [84] amounts
to simple operations over 857 matrices of size 31 by 31 and 14035 matrices of size 2 by 2).

As for the convergence rate of ADMM, it has been shown in [72] that the sequence converges with
sublinear objective error O(1/k) in an ergodic sense, and the method converges to L accurate digits in
O(exp(L)) iterations in the worst case. In practice, it has been shown that ADMM often performs much
better, converging to L accurate digits in just O(L) iterations for a wide range of SDP test problems [207,
219]. The sparse structure that arises from OPF can be further exploited in the ADMM updates. The
y-update is dominated by the solution of (A>A)y = r, which has the worst-case complexity of O(n6)
time and O(n4) memory using standard Cholesky factorization for fully dense matrix A. However, for
large and sparse A, efficiency can be substantially improved by using an incomplete factorization as the
preconditioner within an iterative solution algorithm like conjugate gradients [174], and by reordering the
columns ofA using a fill-minimizing ordering like minimum degree and nested dissection [65]. In addition
to SDP reduction via tree decomposition, the S-update can be further improved when the optimal solution
X∗ is known to be low-rank, where it may be possible to use low-rank linear algebra and an iterative
spectral decomposition such as Lanczos iterations to reduce the complexity to as low as O(n) per iteration.

In addition to ADMM, other first-order methods include smooth gradient methods [157], augmented
Lagrangian methods [98], conjugate gradients [192, 218], which are applied either to (39) directly, or to the
Hessian equation associated with an interior-point solution. Because all of these algorithms have inexpen-
sive per-iteration costs but a sublinear worst-case convergence rate, they can compute an ε-accurate solution
in O(1/ε) time. As a result, they are most commonly used to solve very large-scale SDPs with moderate
accuracy requirements.

4.3. Interior-point methods

The modern study of interior-point methods was initiated by Karmarkar [90] and their extension to SDPs
was due to Nesterov and Nemirovsky [158] and Alizadeh [2]. The development of primal-dual interior-point
methods began with Kojima et al. [100, 99] and was further developed in early papers such as [196] and [75].
It was eventually extended to SDP and SOCP in a unified way by Nesterov and Todd [159, 160]. To solve
SDPs, modern solvers, such as SDPT3 [194], SeDuMi [185, 186], and MOSEK [5], rely predominantly on
interior-point methods. The interior-point method can be applied to SDP by introducing the logarithmic
barrier function for positive semi-definite (PSD) cones, which is equivalent to the log-determinant penalty
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for determinant maximization [197], since

−
n∑
j=1

log λj(X) = − log

n∏
j=1

λj(X) = − log detX,

where the eigenvalues λj(X) are nonnegative for all j ∈ [n]. By replacing the PSD constraints in the
primal and dual formulations (39) and (40), one can obtain a sequence of problems with only linear equality
constraints:

minimize
X ∈ Sn

C •X − µ log detX (48a)

subject to A(X) = b, (48b)

and

maximize
y∈Rm,S ∈ Sn

b>y + µ log detS (49a)

subject to A∗(y) + S = C, (49b)

whose solutions are denoted as Xµ and (yµ,Sµ), respectively. It is straightforward to show that (48) and
(49) form primal-dual pairs up to a constant offset. Typically, directly solving either the primal-scaled
or the dual-scaled problem can suffer from accuracy and robustness issues. One popular method, called
primal-dual interior method, aims at solving (48) and (49) simultaneously by resolving their joint Karush-
Kuhn-Tucker (KKT) optimality condition:

Primal feasibility: A(Xµ) = b (50a)

Dual feasibility: A∗(yµ) + S = C (50b)

Complementarity slackness: XµSµ = µI (50c)

where the barrier parameter µ > 0 is connected to the duality gap of the original SDP formulation (39) and
(40) in the following way:

nµ = Xµ • Sµ = C •Xµ − b>yµ,

and

C •X∗ ≤ C •Xµ ≤ C •X∗ + nµ

b>y∗ − nµ ≤ b>yµ ≤ b>y∗,

where X∗ and (y∗,S∗) are the optimal solution of (39) and (40), respectively. By gradually decreasing
µ towards 0, the solutions {Xµ,yµ,Sµ} form a sequence of convergent iterates, known as central path,
that eventually approaches the optimal solution. To ensure theoretical guarantees of convergence, primal-
dual interior-point methods for SDP often use Newton’s method to solve the KKT conditions in (50), while
keeping each update within a wide neighborhood of the central path

N∞(γ) :=
{
{X,y,S} ∈ F : λmin(XS) ≥ γ

n
X • S

}
,

21



where F is the feasible region for the primal and dual programs in (39) and (40). The extent of the neigh-
borhood is characterized by γ ∈ (0, 1), which is typically chosen with a value like 10−3. The algorithm
is guaranteed to converge to an approximate solution accurate to L digits after at most O(nL) Newton
iterations. The convergence can be often achieved within 30 to 50 iterations in practice.

Many of the real problems like ACOPF have inherent structures such as sparsity and low rank, but
standard off–the–shelf interior–point solvers cannot fully exploit these structures to improve convergence
speed. To capture sparsity, several modifications or reformulations have been proposed [59, 154, 93, 6, 195,
134, 128, 215].

The first category of modifications focus on the solution of the Hessian equation, which dominates the
per-iteration cost:

Hy = r,

where H =
[
A>(W ⊗W )A

]
, A =

[
vec{A1} · · · vec{Am}

]
, and W is the positive definite scaling

matrix. Despite that the data matrix A are sparse, the Hessian matrix H is often fully-dense because
W is fully-dense. As a result, to solve for the Hessian equation, standard approach of dense Cholesky
factorization needs to be employed for both sparse & low-rank problem and dense & high-rank problem,
which result in approximately the same amount of time and memory use.

To deal with this issue, one can employ the preconditioined conjugate gradient (PCG) algorithm, which
requires a single matrix–vector product with the governing matrix H and a single matrix–vector product
with the inverse of the preconditioner H̃ in each iteration [14]. The key to numerical performance is
a preconditioner that has desirable characteristics, such as being similar to H in a spectral sense while
much cheaper to invert. For instance, a preconditioner of a low–rank perturbation of the sparse matrix was
proposed in [214], where

H̃ = τ2A>A+KK>, (51)

whereK is a matrix with rank at most n rank(X∗), which is constructed to improve the conditioning of the
preconditioner. In particular, it has been proved that the joint condition number κ = λmax(H̃−1H)/λmin(H̃−1H)
is an absolute constant O(1). This can be combined with the standard PCG convergence result to yield that
PCG with the described H̃ can solve the Hessian equation toL digits of accruacy in at mostO(L) iterations.

Another approach exploits the sparsity structure of the problem through convex reformulations. A
common approach is to use clique tree conversion which reformulates a size-n semidefinite cone into a
series of smaller cones. The idea was first proposed in [59, 154], and was later refined in [93].

minimize
W ∈ Sn

B∑
k=1

Ck •W {Bk} (52a)

subject to
B∑
k=1

Ai,k •W {Bk} = bi, i ∈ {1, ...,m} (52b)

W {Bk} � 0, k ∈ {1, 2, ..., B} (52c)

Since the OPF problem has inherent sparsity structures, this reformulation is able to reduce the computation
time from tens of hours to tens of minutes for some large-scale benchmark systems [80, 150, 134, 128].
While empirical results indicate that many instances of the reformulated problem can be solved in near-
linear time using an interior-point method, there are problem instances that could attain the worst-case cubic
complexity [59, 154, 93, 134, 128]. The key issue is due to the large number of overlapping constraints
imposed during the reformulation, which can significantly increase the complexity to solve the normal
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equations in each interior-point iteration. Specifically, these overlapping constraints may contribute up to
O(ω4n2) nonzero elements to the normal matrix, thereby pushing the per-iteration cost of an interior-point
method to cubic O(n3) time and quadratic O(n2) memory. Further speed-ups were obtained by dropping
some of the overlapping constraints, though the reformulation may no longer be exact [6]. Nevertheless, it
has been shown in [215] that one can apply the dualization technique of Löfberg to (52) before solving the
problem using a general-purpose interior-point solver. In this way, the overlapping constraints contribute
exactly Θ(ω4n) nonzero elements to the normal matrix of the dualized problem, which makes it possible
to guarantee sparsity in the normal equations. A class of SDPs which includes ACOPF as a special case,
called decoupled SDPs, have been defined in [215].

Definition 1 (Decoupled SDP). Given index sets B = {B1, · · · ,BB}, we say that the linear constraints
Ai •W = bi is decoupled if there exists Bk ∈ B and some choice ofAi,k ∈ S|Bk| such that

Ai •W = Ai,j •W {Bk} ∀W ∈ Sn.

We say that an instance of (39) is decoupled if all linear constraints are decoupled.

In the particular case of a decoupled SDP, it has been shown that there exists an algorithm that: 1)
converts (39) into an instance of (52); 2) solves the dualized version of (52) to L accurate digits; and 3)
recovers a corresponding solution of (39) in O(ω6.5 · n1.5 ·L) time and O(ω4 · n) memory space (see [215,
Theorem 1] for details, which also gives a constructive proof of this result). It is worthwhile to mention that
the original, non-dualized version of (52) is not guaranteed to achieve near-linear time complexity due to the
existence of some explicit examples of decoupled SDPs that force the problem to attain its worst-case cubic
time complexity [215]. This work thus provides a theoretical guarantee for efficiency as observed in existing
empirical studies on ACOPF. It has been shown that the algorithms achieved near-linear time performance
for an array of benchmark OPF systems with over 10000 buses, solving each problem instances to 7 digits
of accuracy within 6 minutes.

4.4. Nonconvex methods

In addition to the first-order and interior point methods, there exist some nonconvex reformulations of
the original convex SDP problem 39 to exploit the low-rank and sparsity structure. One important method,
also known as the Burer–Monteiro method, is based on the outer product factorizationX> = RR>, where
R ∈ Rn×r is a rank–r matrix [29, 89]. This reformulation is mainly motivated by the following theoretical
result for low-rank SDP, which was proved concurrently in [15] and [168].

Theorem 3 ([15, 168]). Consider (39) with m equality constraints. Then, there exists an optimal solution
X∗ of (39) with rank r̄ satisfying r̄(r̄ + 1)/2 ≤ m.

This result indicates that as long as r (i.e., the number of columns of the reformulated matrix variable
R) is large enough, such a reformulation will have an optimal solution set that includes some or all optimal
solutions to (39). This also leads to the following nonlinear program:

minimize
R∈Rn×r

C • (RR>) (53a)

subject to A(RR>) = b, (53b)

which replaces the positive semidefinite constraint in (39) with the quaddratic equality constraint X =
RR>. An immediate advantage is the reduction of the number of variables from n2 to n × r, which
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can be substantial when R is limited to be low-rank. However, the problem is no longer convex due to
the nonlinear equality constraint; therefore, it requires some effective numerical algorithms to solve. In
particular, a limited BFGS augmented Lagrangian algorithm was developed in [29], which optimizes over
the augmented Lagrangian function:

L(R,y, σ) = C • (RR>)−
m∑
i=1

yi(Ai • (RR>)− bi) +
σ

2

m∑
i=1

(Ai • (RR>)− bi)2, (54)

where the variables R ∈ Rn×r and y ∈ Rm are unrestricted, and the penalty parameter σ is positive. The
basic idea behind this function is the penalization of infeasible points to deal with the equality constraints.
Specifically, the last term measures the violation of equality constraints scaled by the penalty coefficient σ.
Under some reasonable assumptions, an iterative scheme can be used to obtain an estimate of (yk, σk) given
the current primal iterate Rk, which can be shown to be a convergent sequence. The method demonstrated
favorable empirical results compared to other standard techniques such as interior point method on some
standard SDP benchmark examples. Despite the empirical success, the original paper [29] only provides
guarantees of local convergence due the nonconvexity nature. Recently, the theory gap started to close with
a series of papers [25, 11, 165, 17]. For instance, the paper [25] provides strong performance guarantees
for the Burer–Monteiro approach in the particular cases of synchronization and community detection. In
particular, it established strong correlation of the ground truth with second-order critical points. The paper
[17] extended the result from exact second-order stationary points to approximate second-order stationary
points, which often arise in practice, and showed that with high probability, the Burer–Monteiro approach
can find the global optimal in the aforementioned scenarios. However, the proof is limited in the sense
that the analysis relies on the manifold structure of the rank-restricted search space, which is not a mild
condition in practice.

The application of Burer–Monteiro method to the OPF problem has been investigated in [137], which
employs the well-established Augmented Lagrangian approach [44] and a parallel coordinate descent with a
closed-form step. The method compares favorably with SDP based methods [128] on small-scale instances,
but experienced numerical difficulties on large instances, such as the Polish network with more than 2,000
nodes. This motivates the combination of first- and second-order methods [122] and the need to exploit the
parallelization feature of first-order methods.

5. Conclusion

Convex relaxations have come a long way in addressing the optimal power flow problem. Only a
decade ago, finding globally optimal power flows on real-world benchmarks was considered an intractable
problem. Today, it is possible to make accurate computations on networks with thousands of buses and
tens of thousands of constraints with global guarantees. Several challenges remain however. First, when
minimizing generation costs instead of total power production, no approach is yet able to systematically
find a global minimizer on large-scale networks. It is promising that very good bounds can be found
on the global objective function and that near-global solutions can be extracted. New convex relaxations
could be designed to better handle non-convex objectives, as opposed to non-convex constraints. Second,
a finer modeling of the power system should be considered. It would account for discrete aspects such
as transformer ratios and the turning on or off of generating units. Third, dynamical aspects could be
considered, as in transient stability analysis. Recent work [88] has shown that conic optimization is also
promising in that regard.
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