
1

ADMM for Sparse Semidefinite Programming with Applications to

Optimal Power Flow Problem

Ramtin Madani, Abdulrahman Kalbat and Javad Lavaei

Department of Electrical Engineering, Columbia University

Abstract—This paper designs a distributed algorithm for
solving sparse semidefinite programming (SDP) problems, based
on the alternating direction method of multipliers (ADMM). It is
known that exploiting the sparsity of a large-scale SDP problem
leads to a decomposed formulation with a lower computational
cost. The algorithm proposed in this work solves the decomposed
formulation of the SDP problem using an ADMM scheme whose
iterations consist of two subproblems. Both subproblems are
highly parallelizable and enjoy closed-form solutions, which
make the iterations computationally very cheap. The developed
numerical algorithm is also applied to the SDP relaxation of
the optimal power flow (OPF) problem, and tested on the IEEE
benchmark systems.

I. INTRODUCTION

While small- to medium-sized semidefinite programs (SDP)

are efficiently solvable by second-order-based interior point

methods in polynomial time up to any arbitrary precision [1],

these methods are impractical for solving large-scale SDPs

due to computation time and memory issues. A promising ap-

proach for solving large-scale SDP problems is the alternating

direction method of multipliers (ADMM), which is a first-

order optimization algorithm proposed in the mid-1970s by [2]

and [3]. While second-order methods are capable of achieving

high accuracy via expensive iterations, a modest accuracy can

be achieved through tens of ADMM’s low-complex iterations.

In order to reach high accuracy in reasonable number of

iterations, great effort has been devoted to accelerating ADMM

through Nesterov’s scheme [4], [5]. Because of the sensitivity

of the gradient methods to the condition number of the

problem’s data, diagonal rescaling is proposed in [6] for a

class of problems to improve the performance of ADMM. The

O(1
n
) worst-case convergence rate of ADMM is proven in [7],

[8] under certain assumptions.

In light of the scalability of ADMM, the main objective

of this work is to design an ADMM-based parallel algorithm

for solving sparse large-scale SDPs, with a guaranteed con-

vergence under very mild assumptions. We start by defining a

representative graph for the large-scale SDP problem, from

which a decomposed SDP formulation is obtained using

a tree/chordal/clique decomposition technique. This decom-

position replaces the large-scale SDP matrix variable with

certain submatrices of this matrix. In order to solve the

decomposed SDP problem iteratively, a distributed ADMM-

based algorithm is derived, whose iterations comprise entry-

wise matrix multiplication/division and eigendecomposition on

Email: madani@ee.columbia.edu, ak3369@columbia.edu and

lavaei@ee.columbia.edu.
This work was supported by the ONR YIP Award, NSF CAREER Award

1351279, and NSF EECS Award 1406865.

certain submatrices of the SDP matrix. By finding the optimal

solution for the distributed SDP, one could recover the solution

to the original large-scale SDP formulation using an explicit

formula.

This work is related to and improves upon some recent

papers in this area. [9] applies ADMM to the dual SDP

formulation, leading to a centralized algorithm that is not

parallelizable and is computationally expensive for large-scale

SDPs. [10] decomposes a sparse SDP into smaller-sized SDPs

through a tree decomposition, which are then solved by interior

point methods. However, this approach is limited by the large

number of consistency constraints. Using a first-order splitting

method, [11] solves the decomposed SDP problem created

by [10], but the algorithm needs to solve an optimization

subproblem at every iteration. In contrast with the above

papers, the algorithm proposed in this work is composed of

low-complex and parallelizable iterations, which run fast if

the treewidth of the representative graph of the SDP problem

is small. Since this treewidth is low for real-world power

networks, our algorithm is well suited for the SDP relaxation

of power optimization problems, and indeed this is the main

motivation behind this work. This will be explained below.

A. Optimal Power Flow Problem

The optimal power flow (OPF) problem finds an optimal

operating point of a power system by minimizing a certain

objective function (e.g., transmission loss or generation cost)

subject to power flow equations and operational constraints

[12], [13]. Motivated by the importance of this fundamental

problem for operation and planning as well as the potential

monetary savings involved [14], many optimization techniques

have been explored for the OPF problem. Due to the non-

convexity and NP-hardness of OPF, the existing algorithms are

not robust, lack performance guarantees and may not find a

global optimum. With the goal of designing a polynomial-time

algorithm that finds a global solution for OPF, [15] derives an

SDP relaxation for OPF, which results in a globally optimal

solution if the duality gap is zero. The proposed relaxation can

find near-global solutions with global optimality guarantees

of at least 99% for IEEE and Polish systems [16], and is

theoretically proven to be exact under various assumptions

[17], [18], [19], [20], [21], [22]. However, this relaxation

is a high-dimensional SDP problem, which imposes some

limitations on its practicality for real-world networks.

The emerging smart grid paradigm and the integration of

intermittent and distributed power generation calls for the

development of efficient, scalable, and parallel algorithms for

solving large-scale OPF problems to enable real-time network

2

management and improve the system’s reliability. In response

to this need, we aim to design an algorithm that is able

to solve large-scale SDP relaxations. Early efforts to solve

OPF in a distributed way (without considering non-convexity)

can be traced back to [23], [24]. In [25], a fully decen-

tralized ADMM-based algorithm is developed for a convex

approximation of dynamic OPF. The papers [26] and [27]

exploit primal-dual decomposition and ADMM methods for

the SDP relaxation of OPF, but they need to solve an expensive

SDP sub-problem at every iteration. The work [28] designs

a distributed algorithm for a second-order cone relaxation of

OPF over radial (acyclic) networks. In contrast to the existing

methods, the algorithm to be proposed here applies to both

distribution and transmission networks, and does not require

solving any optimization sub-problem at any iteration.

This paper is organized as follows. Some preliminaries and

definitions are provided in Section II. An arbitrary sparse

SDP is converted into a decomposed SDP in Section III,

for which a numerical algorithm is developed in Section IV.

The application of this algorithm for OPF is investigated

in Section V. Numerical examples are given in Section VI,

followed by concluding remarks in Section VII.

Notations: R, C, and Hn denote the sets of real numbers,

complex numbers, and n×n Hermitian matrices, respectively.

The notation X1 ◦ X2 refers to the Hadamard (entrywise)

multiplication of matrices X1 and X2. The symbols 〈·, ·〉 and

‖·‖F denote the Frobinous inner product and norm of matrices,

respectively. The notation ‖v‖2 denotes the `2-norm of a

vector v. The m× n rectangular identity matrix, whose (i, j)
entry is equal to the Kronecker delta δij , is denoted by Im×n.

The notations Re{W}, Im{W}, rank{W}, and diag{W}
denote the real part, imaginary part, rank, and diagonal of

a Hermitian matrix W, respectively. Given a vector v, the

notation diag{v} denotes a diagonal square matrix whose

entries are given by v. The notation W � 0 means that

W is Hermitian and positive semidefinite. The notation “i”

is reserved for the imaginary unit. The superscripts (·)∗ and

(·)T represent the conjugate transpose and transpose operators,

respectively. Given a matrix W, its (l, m) entry is denoted

as Wlm. The subscript (·)opt is used to show the optimal

value of an optimization variable. Given a matrix W, its

Moore-Penrose pseudoinverse is denoted as pinv{W}. Given

a simple graph H, its vertex and edge sets are denoted by VH

and EH, respectively. Given two sets S1 and S2, the notation

S1\S2 denotes the set of all elements of S1 that do not exist

in S2. Given a Hermitian matrix W and two sets of positive

integer numbers S1 and S2, define W{S1,S2} as a submatrix

of W obtained through two operations: (i) removing all rows

of W whose indices do not belong to S1, and (ii) removing

all columns of W whose indices do not belong to S2. For

instance, W {{1, 2}, {2, 3}} is a 2×2 matrix with the entries

W12, W13, W22, W23.

II. PRELIMINARIES

Consider the semidefinite program

minimize
X∈Hn

〈X, M0〉 (1a)

subject to ls ≤ 〈X, Ms〉 ≤ us, s = 1, . . . , p, (1b)

X � 0. (1c)

where M0, M1, . . . ,Mp ∈ Hn, and

(ls, us) ∈ ({−∞} ∪ R) × (R ∪ {+∞})

for every s = 1, . . . , p. Notice that the constraint (1b) reduces

to an equality constraint if ls = us.

Problem (1) is computationally expensive for a large n
due to the presence of the positive semidefinite constraint

(1c). However, if M0, M1, . . . ,Mp are sparse, this expensive

constraint can be decomposed and expressed in terms of some

principal submatrices of X with smaller dimensions. This will

be explained next.

A. Representative Graph and Tree Decomposition

In order to leverage any possible sparsity of problem (1),

a simple graph shall be defined to capture the zero-nonzero

patterns of M0, M1, . . . ,Mp.

Definition 1. Define G = (VG , EG) as the representative graph

of the SDP problem (1), which is a simple graph with n
vertices whose edges are specified by the nonzero off-diagonal

entries of M0, M1, . . . ,Mp. In other words, two arbitrary

vertices i and j are connected if the (i, j) entry of at least

one of the matrices M0, M1, . . . ,Mp is nonzero.

Using a tree decomposition algorithm (also known as

chordal or clique decomposition), we can obtain a decomposed

formulation for problem (1), in which the positive semidefinite

requirement is imposed on certain principal submatrices of X

as opposed to X itself.

Definition 2 (Tree decomposition). A tree graph T is called a

tree decomposition of G if it satisfies the following properties:

1) Every node of T corresponds to and is identified by a

subset of VG .

2) Every vertex of G is a member of at least one node of

T .

3) Tk is a connected graph for every k ∈ VG , where Tk

denotes the subgraph of T induced by all nodes of T
containing the vertex k of G.

4) The subgraphs Ti and Tj have a node in common for

every (i, j) ∈ EG .

Each node of T is a bag (collection) of vertices of G and

hence it is referred to as a bag.

Let T = (VT , ET) be an arbitrary tree decomposition of G,

with the set of bags VT = {C1, C2, . . . , Cq}. As discussed in

the next section, it is possible to cast problem (1) in terms of

those entries of X that appear in at least one of the submatrices

X{C1, C1}, X{C2, C2}, . . . ,X{Cq, Cq},

These entries of X are referred to as important entries. Once

the optimal values of the important entries of X are found

3

using an arbitrary algorithm, the remaining entries can be

obtained from an explicit (recursive) formula to be stated later.

Among the factors that may contribute to the computational

complexity of the decomposed problem are: the size of the

largest bag, the number of bags, and the total number of

important entries. Finding a tree decomposition that leads to

the minimum number of important entries (minimum fill-in

problem) or possesses the minimum size for its largest bag

(treewidth problem) is known to be NP-hard. Nevertheless,

there are many efficient algorithms in the literature that

find near-optimal tree decompositions (specially for power

networks due to their near planarity) [29], [30].

B. Sparsity Pattern of Matrices

Let Fn denote the set of symmetric n × n matrices with

entries belonging to the set {0, 1}. The distributed optimization

scheme to be proposed in this work uses a group of sparse

slack matrices. We identify the locations of nonzero entries of

such matrix variables using descriptive matrices in Fn.

Definition 3. Given an arbitrary matrix X ∈ Hn, define its

sparsity pattern as a matrix N ∈ Fn such that Nij = 1 if and

only if Xij 6= 0 for every i, j ∈ {1, ..., n}. Let |N| denote the

number of nonzero entries of N. Also, define S(N) as

S(N) , {X ∈ H
n | X ◦ N = X}.

Due to the Hermitian property of X, if d denotes the number

of nonzero diagonal entries of N, then every X ∈ S(N) can be

specified by (|N|+ d)/2 real-valued scalars corresponding to

Re{X} and (|N|−d)/2 real scalars corresponding to Im{X}.

Therefore, S(N) is |N|-dimensional over R.

Definition 4. Suppose that T = (VT , ET) is a tree decomposi-

tion of the representative graph G with the bags C1, C2, . . . , Cq.

• For r = 1, . . . , q, define Cr ∈ Fn as a sparsity pattern

whose (i, j) entry is equal to 1 if {i, j} ⊆ Cr and is 0

otherwise for every i, j ∈ {1, ..., n}.

• Define C ∈ Fn as an aggregate sparsity pattern whose

(i, j) entry is equal to 1 if and only if {i, j} ⊆ Cr for at

least one index r ∈ {1, . . . , p}.

• For s = 0, 1, . . . , p, define Ns ∈ Fn as the sparsity

pattern of Ms.

The sparsity pattern C, which can also be interpreted as the

adjacency matrix of a chordal extension of G induced by T ,

captures the locations of the important entries of X. The matrix

C will later be used to describe the domain of definition for

the variable of decomposed SDP problem.

C. Indicator Functions

To streamline the formulation, we will replace any positivity

or positive semidefiniteness constraints in the decomposed

SDP problem by the indicator functions introduced below.

Definition 5. For every l ∈ {−∞} ∪ R and u ∈ R ∪ {+∞},

define the convex indicator function Il,u : R → {0, +∞} as

Il,u(x) ,

{
0 if l ≤ x ≤ u

+∞ otherwise

Definition 6. For every r ∈ {1, 2, . . . , q}, define the convex

indicator function Jr : Hn → {0, +∞} as

Jr(X) ,

{
0 if X{Cr , Cr} � 0

+∞ otherwise

III. DECOMPOSED SDP

Consider the problem

minimize
X∈S(C)

〈X, M0〉 (2a)

subject to ls ≤ 〈X, Ms〉 ≤ us, s = 1, . . . , p, (2b)

X{Cr, Cr} � 0, r = 1, . . . , q (2c)

which is referred to as decomposed SDP throughout this paper.

Due to the chordal theorem [31], problems (1) and (2) lead

to the same optimal objective value. Furthermore, if Xref ∈
S(C) denotes an arbitrary solution of the decomposed SDP

problem (2), then there exists a solution Xopt to the SDP

problem (1) such that Xopt ◦ C = Xref .

To understand how Xopt can be constructed from Xref ,

observe that those entries of X corresponding to the zeros of

C are 0 due to the relation Xref ∈ S(C). These entries of

the matrix variable X that are needed for SDP but have not

been found by decomposed SDP are referred to as missing

entries. Several completion approaches can be adopted in order

to recover these missing entries. An algorithm is proposed in

[10], [32] that obtains a completion for Xref within the set

{X ∈ H
n |X ◦ C = Xref , X � 0}

whose determinant is maximum. However such a solution

may not be favorable for applications that require a low-rank

solution such as an SDP relaxation. It is also known that there

exists a polynomial-time algorithm to fill a partially-known

real-valued matrix in such a way that the rank of the resulting

matrix becomes equal to the highest rank among all bags [33],

[34]. In [35], we extended this result to the complex domain by

proposing a recursive algorithm that transforms Xref ∈ S(C)
into a solution Xopt for the original SDP problem (1) whose

rank is upper bounded by the maximum rank among the

matrices Xref{C1, C1}, Xref{C2, C2}, . . . ,Xref{Cq, Cq}. This

algorithm is stated below for completeness.

Matrix completion algorithm:

1) Set T ′ := T and X := Xref .

2) If T ′ has a single node, then consider Xopt as X and

terminate; otherwise continue to the next step.

3) Choose a pair of bags Cx, Cy of T ′ such that Cx is a leaf

of T ′ and Cy is its unique neighbor.

4) Define

K , pinv{X{Cx ∩ Cy, Cx ∩ Cy}} (3a)

Gx , X{Cx \ Cy, Cx ∩ Cy} (3b)

Gy , X{Cy \ Cx, Cx ∩ Cy} (3c)

Ex , X{Cx \ Cy, Cx \ Cy} ∈ C
dx×dx (3d)

Ey , X{Cy \ Cx, Cy \ Cx} ∈ C
dy×dy (3e)

Sx , Ex −GxKG∗
x = QxDxQ

∗
x (3f)

Sy , Ey −GyKG∗
y = QyDyQ

∗
y (3g)

4

where QxDxQ
∗
x and QyDyQ

∗
y denote the eigenvalue

decompositions of Sx and Sy with the diagonals of Dx

and Dy arranged in descending order. Then, update a

part of X as follows:

X{Cy \ Cx, Cx \ Cy} := GyKG∗
x

+ Qy

√
Dy Idy×dx

√
Dx Q∗

x

and update X{Cx \ Cy, Cy \ Cx} accordingly to preserve

the Hermitian property of X.

5) Update T ′ by merging Cx into Cy , i.e., replace Cy with

Cx ∪ Cy and then remove Cx from T ′.

6) Go back to step 2.

Theorem 1. Consider an arbitrary solution Xref of the

decomposed SDP problem (2). The output of the matrix

completion algorithm, denoted as Xopt, is a solution of the

original SDP problem (1). Moreover, the rank of Xopt is

smaller than or equal to:

max

{
rank {Xref{Cr, Cr}}

∣∣∣∣ r = 1, . . . , q

}
.

Proof. See [35], [36] for the proof.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Consider the optimization problem

minimize
x∈R

nx

y∈R
ny

f(x) + g(y) (4a)

subject to Ax + By = c. (4b)

where c ∈ Rnc , A ∈ Rnc×nx and B ∈ Rnc×ny are given

matrices. Also f : R
nx → R ∪ {+∞} and g : R

ny → R ∪
{+∞} are given convex functions. Notice that the variables

x and y are coupled through the linear constraint (4b) while

the objective function is separable.

The augmented Lagrangian function for problem (4) is

equal to

Lµ(x, y, λ) =f(x) + g(y)+ (5a)

+ λT(Ax + By − c) (5b)

+ (µ/2)‖Ax + By − c‖2
2, (5c)

where λ ∈ Rnc is the Lagrange multiplier associated with

the constraint (4b), and µ ∈ R is a fixed parameter. ADMM

is one approach for solving problem (4), which performs the

following procedure at each iteration [37]:

xk+1 = arg min
x∈Rnx

Lµ(x, yk, λk), (6a)

yk+1 = arg min
y∈R

ny

Lµ(xk+1, y, λk), (6b)

λk+1 = λk + µ(Axk+1 + Byk+1 − c). (6c)

where k = 0, 1, 2, ..., for an arbitrary initialization

(x0, y0, λ0). In these equations, “argmin” means an arbitrary

minimizer of a convex function and does not need any unique-

ness assumption. Notice that each of the updates (6a) and (6b)

is an optimization sub-problem with respect to either x and y,

by freezing the other variable at its latest value. We employ

the energy sequence {εk}∞k=1 proposed in [4] as measure for

convergence:

εk+1 = (1/µ)‖λk+1 − λk‖2
2 + µ‖B(yk+1 − yk)‖2

2 (7)

ADMM is particularly interesting for the cases where (6a)

and (6b) can be performed efficiently through an explicit

formula. Under such circumstances, it would be possible to

execute a large number of iterations in a short amount of time.

In this section, we first cast the decomposed SDP problem (2)

in the form of (4) and then regroup the variables into two

blocks P1 and P2 playing the roles of x and y in the ADMM

algorithm.

A. Projection Into Positive Semidefinite Cone

The algorithm to be proposed in this work requires the

projection of q matrices belonging to H|C1|, H|C2|, . . . , H|Cq|

onto the positive semidefinite cone. This is probably the most

computationally expensive part of each iteration.

Definition 7. For a given Hermitian matrix Ẑ, define the

unique solution to the optimization problem

minimize
Z∈Hm

‖Z− Ẑ‖2
F (8a)

subject to Z � 0 (8b)

as the projection of Ẑ onto the cone of positive semidefinite

matrices, and denote it as Ẑ+.

The next Lemma reveals the interesting fact that problem

(8) can be solved through an eigenvalue decomposition of Ẑ.

Lemma 1. Let

Ẑ = Q× diag{(ν1 . . . , νm)} × Q∗

denote the eigenvalue decomposition of Ẑ. The solution of the

projection problem (8) is given by

Ẑ+ = Q× diag{(max{ν1, 0}, . . . , max{νm, 0})} ×Q∗

Proof. See [38] for the proof.

B. ADMM for Decomposed SDP

We apply ADMM to the following reformulation of the

decomposed SDP problem (2):

minimize
X∈S(C)

{XN;s∈S(Ns)}p
s=0

{XC;r∈S(Cr)}q
r=1

{zs∈R}p
s=0

z0 +

p∑

s=1

Ils,us
(zs) +

q∑

r=1

Jr(XC;r)

subject to X ◦ Cr = XC;r , r = 1, 2, . . . , q, (9a)

X ◦ Ns = XN;s, s = 0, 1, . . . , p, (9b)

zs = 〈Ms, XN;s〉, s = 0, 1, . . . , p. (9c)

If X is a feasible solution of (9) with a finite objective value,

then

Jr(X) = Jr(X ◦ Cr)
(9a)
= Jr(XC;r) = 0

5

which concludes that X{Cr, Cr} � 0. Also,

Ils,us
(〈X, Ms〉) = Ils,us

(〈X ◦ Ns, Ms〉)
(9b)
= Ils,us

(〈XN;s, Ms〉)
(9c)
= Ils,us

(zs) = 0

which yields that ls ≤ 〈X, Ms〉 ≤ us. Therefore, X is a

feasible point for problem (2) as well, with the same objective

value. Define

1) ΛC;r ∈ S(Cr) as the Lagrange multiplier associated

with the constraint (9a) for r = 1, 2, . . . , q,

2) ΛN;s ∈ S(Ns) as the Lagrange multiplier associated

with the constraint (9b) for s = 0, 1, . . . , p,

3) λz;s ∈ R as the Lagrange multiplier associated with the

constraint (9c) for s = 0, 1, . . . , p.

We regroup the primal and dual variables as

(Block 1) P1 = (X, {zs}
p
s=0)

(Block 2) P2 = ({XC;r}
q
r=1, {XN;s}

p
s=0)

(Dual) D = ({ΛC;r}
q
r=1 , {ΛN;s}

p
s=0, {λs}

p
s=0) .

Note that “block 1”, “block 2” and “D” play the roles of x,

y and λ in the standard formulation of ADMM, respectively.

The augmented Lagrangian can be calculated as

(2/µ)Lµ(P1,P2,D) = LD(D)/µ2 (11a)

+ ‖z0 − 〈M0, XN;0〉 + (1 + λz;0)/µ‖2
F (11b)

+

p∑

s=1

‖zs − 〈Ms, XN;s〉 + λz;s/µ‖2
F + Ils,us

(zs) (11c)

+

q∑

r=1

‖X ◦ Cr −XC;r + (1/µ)ΛC;r‖
2
F + Jr(XC;k) (11d)

+

p∑

s=1

‖X ◦ Ns − XN;s + (1/µ)ΛN;s‖
2
F (11e)

where

LD(D) = − (1 + λz;0)
2

−

p∑

s=1

λ2
z;s −

q∑

r=1

‖ΛC;r‖
2
F −

p∑

s=1

‖ΛN;s‖
2
F (12)

Using the blocks P1 and P2, the ADMM iterations for

problem (9) can be expressed as follows:

1) The subproblem (6a) in terms of P1 consists of two

parallel steps:

(a) Minimization in terms of X: This step consists of

|C| scalar quadratic and unconstrained programs.

It possesses an explicit formula that involves |C|
parallel multiplication operations.

(b) Minimization in terms of {zs}
p
s=0: This step con-

sists of p+1 scalar quadratic programs each with a

box constraint. It possesses an explicit formula that

involves p + 1 parallel multiplication operations.

2) The subproblem (6b) in terms of P2 also consists of two

parallel steps:

(a) Minimization in terms of {XC;r}
q
r=1: This step

consists of q projection problems of the form (8).

According to Lemma 1, this reduces to q parallel

eigenvalue decomposition operations on matrices

of sizes |Cr| × |Cr| for r = 1, . . . , q.

(b) Minimization in terms of {XN;s}
p
s=0: This step

consists of p unconstrained quadratic programs

of sizes |Ns| for s = 0, 1, . . . , p. The quadratic

programs are parallel and each of them possesses

an explicit formula that involves 2|Ns| multiplica-

tions.

3) Computation of the dual variables at each iteration, in

equation (6c), consists of three parallel steps:

(a) Updating {ΛC;r}
q
r=1: Computational costs for this

step involves no multiplications and is negligible.

(b) Updating {ΛN;s}
p
s=0: Computational costs for this

step involves no multiplications and is negligible.

(c) Updating {λz;s}
p
s=0: This step is composed of p+1

parallel inner product computations, each involving

|Ns| multiplications for s = 0, 1, . . . , p.

The fact that every step of the above algorithm has an explicit

easy-to-compute formula makes the algorithm very appealing

for large-scale SDPs.

Notation 1. For every D, E ∈ H
n, the notation D �C E

refers to the entrywise division of those entries of D and E

that correspond to the ones of C i.e.,

(D �C E)ij ,

{
Dij/Eij if Cij = 1

0 if Cij = 0.

Theorem 2. Assume that Slater’s conditions hold for the

decomposable SDP problem (2) and consider the iterative

algorithm given in (19). The limit of Xk at k = +∞ is an

optimal solution for (2).

Proof. The convergence of both primal and dual variables is

guaranteed for a standard ADMM problem if the matrix B

in (4b) has full column rank [39]. After realizing that (19)

is obtained from a two-block ADMM procedure, the theorem

can be concluded form the fact that the equivalent of B for

the algorithm (19) is a mapping from the variables {XC;r}
q
r=1

and {XN;s}
p
s=0 to

{XC;r}
q
r=1, {XN;s}

p
s=0 and {〈Ms, XN;s〉}

p
s=0

which is not singular, i.e., it has full column rank. The details

are omitted for brevity.

In what follows, we elaborate on every step of the ADMM

iterations:

Block 1: The first step of the algorithm that corresponds to

(6a) consists of the operation

Pk+1
1 := arg min Lµ(P1,P

k
2 ,Dk).

Notice that the minimization of Lµ(P1,Pk
2 ,Dk) with respect

to P1 is decomposable in terms of the real scalars

Re{Xij} for i = 1, . . . , n; j = i, . . . , n (14a)

Im{Xij} for i = 1, . . . , n; j = i + 1, . . . , n (14b)

zs for s = 1, . . . , p (14c)

which leads to the explicit formulas (19a), (19b) and (19c).

6

Block 2: The second step of the algorithm that corresponds

to (6b) consists of the operation

Pk+1
2 = arg min Lµ(Pk+1

1 ,P2,D
k)

Notice that the minimization of Lµ(P1,Pk
2 ,Dk) with respect

to P1 is decomposable in terms of the matrix variables

XC;r for r = 1, 2, . . . , q (16a)

XN;s for s = 0, 1, . . . , p. (16b)

Hence, the update of XC;r reduces to the problem (8) for Ẑ =
XC;r{Cr, Cr}. As shown in Lemma 1, this can be performed

via the eigenvalue decomposition of a |Cr| × |Cr| matrix. In

addition, the updated value of XN;s is a minimizer of the

function

LN;s(Z) =‖zs − 〈Ms, Z〉 + λz;s/µ‖2
F +

‖X ◦ Ns − Z + (1/µ)ΛN;s‖
2
F (17)

By taking the derivatives of this function, it is possible to find

an explicit formula for Zopt. Define L′
N;s(Z) ∈ S(Ns) as the

gradient of LN;s(Z) with the following structure:

L′
N;s(Z) ,

[
∂LN;s

∂Re{Zij}
+ i

∂LN;s

∂Im{Zij}

]

i,j=1,...,n

Then, we have

L′
N;s(Z)/2 = Z− X ◦ Ns − (1/µ)ΛN,s

+ (−zs + 〈Ms, Z〉 − λz;s/µ)Ms.

Therefore,

Zopt =X ◦ Ns + (1/µ)ΛN,s + ysMs, (18)

where ys , zs −〈Ms, Z
opt〉+λz;s/µ. Hence, it only remains

to derive the scalar ys, which can be done by inner multiplying

Ms to the both sides of the equation (18). This leads to the

equations (19e) and (19f).

V. OPTIMAL POWER FLOW

Consider an n-bus electrical power network with the topol-

ogy described by a simple graph H = (VH, EH), meaning

that each vertex belonging to VH = {1, . . . , n} represents a

node of the network and each edge belonging to EG represents

a transmission line. Let Y ∈ C
n×n denote the admittance

matrix of the network. Define V ∈ Cn as the voltage phasor

vector, i.e., Vk is the voltage phasor for node k ∈ VH. Let

P + Q i represent the nodal complex power vector, where

P ∈ Rn and Q ∈ Rn are the vectors of active and reactive

powers injected at all buses. P + Q i can be interpreted as

the complex-power supply minus the complex-power demand

at node k of the network. The classical OPF problem can be

described as follows:

minimize
V∈C

n

Q∈R
n

P∈R
n

∑

k ∈VG

fk(Pk) (20a)

subject to V min
k ≤ |Vk| ≤ V max

k , k ∈ N (20b)

Qmin
k ≤ Qk ≤ Qmax

k , k ∈ N (20c)

P min
k ≤ Pk ≤ P max

k k ∈ N (20d)

P + iQ = diag{VV∗Y∗} (20e)

where V min
k , V max

k , P min
k , P max

k , Qmin
k and Qmax

k are given

network limitations, and fk(Pk) is a convex function account-

ing for the power generation cost at node k. This problem may

include additional constraints (such as thermal limits over the

lines) that are ignored here only for the sake of simplicity

in the presentation. For the same reason, assume that the

objective function is the total active power loss
∑

k ∈VG
Pk.

More details on a general formulation may be found in [15].

OPF is a highly non-convex problem, which is known to

be difficult to solve in general. However, the constraints of

problem (20) can all be expressed as linear functions of the

entries of the quadratic matrix VV∗. This implies that the

constraints of OPF are linear in terms of a matrix variable

W , VV∗. One can reformulate OPF by replacing each ViV
∗

j

by Wij and represent the constraints in the form of problem (1)

with a representative graph that is isomorphic to the network

topology graph H. In order to preserve the equivalence of the

two formulations, two additional constraints must be added

to the problem: (i) W � 0, (ii) rank{W} = 1. If we drop

the rank condition as the only non-convex constraint of the

reformulated OPF problem, we attain the SDP relaxation of

OPF that is convex:

minimize
W∈Hn

〈W, (Y + Y∗)/2〉 (21a)

subject to (V min
k)2 ≤ 〈W, eke∗k〉 ≤ (V max

k)2, k ∈ VH (21b)

Qmin
k ≤ 〈W, YQ;k〉 ≤ Qmax

k , k ∈ VH (21c)

P min
k ≤ 〈W, YP ;k〉 ≤ P max

k , k ∈ VH (21d)

W � 0 (21e)

where e1, . . . , en denote the standard basis vectors in Rn and

YQ;k ,
1

2i
(Y∗

keke∗k − eke∗kY)

YP ;k ,
1

2
(Y∗eke∗k + eke∗kY)

for every k ∈ VH.

As stated in the introduction, several papers in the literature

have shown great promises for finding global or near-global

solutions of OPF using the above relaxation. The major draw-

back of relaxing the OPF problem to an SDP is the requirement

of defining a matrix variable, which makes the number of

scalar variables of the problem quadratic with respect to the

number of network buses. However, we have shown in [36]

that real-world grids would have a low treewidth, e.g., at most

26 for the Polish test system with over 3000 buses. This

makes our proposed numerical algorithm scalable and highly

parallelizable for the above SDP relaxation. As an example,

the SDP relaxation of OPF for the Polish Grid amounts to

simple operations over matrices of size 27 by 27 or smaller.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

algorithm for solving the SDP relaxation of OPF over IEEE

test cases. All simulations are run in MATLAB using a

laptop with an Intel Core i7 quad-core 2.5 GHz CPU and

12 GB RAM. As shown in Figure 1, the energy function

εk (as defined in (7)) is monotonically decreasing for all

7

ADMM for Decomposed SDP:

Block 1 :

X
k+1 :=

"

q
X

r=1

Cr ◦ (Xk
C;r − Λ

k
C;r/µ) +

p
X

s=1

Ns ◦ (Xk
N ;s − Λ

k
N ;s/µ)

#

�C

"

q
X

r=1

Cr +

p
X

s=1

Ns

#

(19a)

zk+1
0 := 〈M0,Xk

N ;0〉 − (λk
z;0 + 1)/µ (19b)

zk+1
s := max{min{〈Ms,Xk

N ;s〉 − λk
z;s/µ,us}, ls} for s = 1,2, . . . , p (19c)

Block 2 :

X
k+1
C;r := (Xk+1 ◦Cr + Λ

k
C;r/µ)+ for r = 1, 2, . . . , q (19d)

yk+1
s :=

zk+1
s + λk

z;s/µ − 〈Ms, Ns ◦ X
k+1 + Λ

k
N ;s/µ〉

1 + ‖Ms‖2
F

for s = 0,1, . . . , p (19e)

X
k+1
N ;s := Ns ◦ X

k+1 + Λ
k
N,s/µ + yk+1

s Ms for s = 0,1, . . . , p (19f)

Dual :

Λ
k+1
C;r := Λ

k
C;r + µ(Xk+1 ◦ Cr − X

k+1
C;r) for r = 1, 2, . . . , q (19g)

Λ
k+1
N ;s := Λ

k
N ;s + µ(Xk+1 ◦Ns − X

k+1
N ;s) for s = 0,1, . . . , p (19h)

λk+1
z;s := λk

z;s + µ(zk+1
s − 〈Ms, Xk+1

N ;s 〉) for s = 0,1, . . . , p (19i)

Test cases p q Maximum Running time of

size of bags 1000 iterations (sec)

Chow’s 9 bus 27 7 3 6.18

IEEE 14 bus 42 12 3 9.96

IEEE 30 bus 90 18 4 14.66

IEEE 57 bus 171 26 6 21.25

IEEE 118 bus 354 66 5 53.13

IEEE 300 bus 900 111 7 98.95

TABLE I: Running time of the proposed algorithm for solving

the SDP relaxation of OPF problem on IEEE test cases.

simulated cases. In addition, the utmost accuracy of 10−25

is ultimately achievable for all these systems. The time per

1000 iteration is between 6.18 and 100 seconds in a MATLAB

implementation, which can be reduced significantly in C++

and parallel computing. We have verified that these numbers

diminish by at least a factor of 3 if certain small-sized bags are

combined to obtain a modest number of bags. This shows a

trade-off between the chosen granularity for the algorithm and

its computation time for a serial implementation (as opposed

to a parallel implementation). To elaborate on the algorithm,

note that every iteration amounts to a basic matrix operation or

an eigendecomposition over matrices of size at most 7×7 for

the IEEE 300-bus system. Efficient preconditioning methods

could dramatically reduce the number of iterations (as OPF is

often very ill-conditioned due to high inductance-to-resistance

ratios), and this is left for future work.

VII. CONCLUSIONS

Motivated by the application of sparse semidefinite pro-

gramming (SDP) to power networks, the objective of this work

is to design a fast and parallelizable algorithm for solving

sparse SDPs. To this end, the underling sparsity structure of

a given SDP problem is captured using a tree decomposition

technique, leading to a decomposed SDP problem. A highly

distributed/parallelizable numerical algorithm is developed for

solving the decomposed SDP, based on the alternating direc-

tion method of multipliers (ADMM). Each iteration of the

designed algorithm has a closed-form solution, which involves

multiplications and eigenvalue decompositions over certain

submatrices induced by the tree decomposition of the sparsity

graph. The proposed algorithm is applied to the classical

optimal power flow problem, and also evaluated on IEEE

benchmark systems.
REFERENCES

[1] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,
vol. 38, no. 1, pp. 49–95, 1996.

[2] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Comput. Math.
Appl., vol. 2, no. 1, pp. 17 – 40, 1976.

[3] i. R. Glowinsk and A. Marroco, “Sur l’approximation, par lments
finis d’ordre un, et la rsolution, par pnalisation-dualit d’une classe de

problmes de dirichlet non linaires,” ESAIM-Math. Model. Num., vol. 9,
no. R2, pp. 41–76, 1975.

[4] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alter-

nating direction optimization methods,” SIAM J. Imaging Sci., vol. 7,
no. 3, pp. 1588–1623, 2014.

[5] Y. Nesterov, “A method of solving a convex programming problem with

convergence rate O(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[6] P. Giselsson and S. Boyd, “Diagonal scaling in douglas-rachford splitting

and admm,” in 53rd Annual Conference on Decision and Control
(CDC),, Dec 2014, pp. 5033–5039.

[7] B. He and X. Yuan, “On the O(1/n) convergence rate of the Douglas–
Rachford alternating direction method,” SIAM J. Numer. Anal., vol. 50,
no. 2, pp. 700–709, 2012.

[8] R. D. C. Monteiro and B. F. Svaiter, “Iteration-complexity of block-
decomposition algorithms and the alternating direction method of mul-
tipliers,” SIAM J. Optimiz., vol. 23, no. 1, pp. 475–507, 2013.

[9] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
lagrangian methods for semidefinite programming,” Math. Program.,
vol. 2, no. 3-4, pp. 203–230, 2010.

[10] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity
in semidefinite programming via matrix completion I: General frame-
work,” SIAM J. Optimiz., vol. 11, no. 3, pp. 647–674, 2001.

[11] Y. Sun, M. S. Andersen, and L. Vandenberghe, “Decomposition in
conic optimization with partially separable structure,” SIAM J. Optimiz.,

vol. 24, no. 2, pp. 873–897, 2014.

8

0 1000 2000 3000 4000 5000
10

−25

10
−15

10
−5

10
5

Iteration Number

ε
k

(a)

0 1000 2000 3000 4000 5000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration Number

ε
k

(b)

0 1000 2000 3000 4000 5000
10

−7

10
−3

10
1

10
5

10
9

Iteration Number

ε
k

(c)

0 1000 2000 3000 4000 5000
10

−5

10
−2

10
1

10
4

10
7

Iteration Number

ε
k

(d)

0 1000 2000 3000 4000 5000
10

−6

10
−2

10
2

10
6

Iteration Number

ε
k

(e)

0 1000 2000 3000 4000 5000
10

−4

10
0

10
4

10
8

Iteration Number

ε
k

(f)

Fig. 1: These plots show the convergence behavior of the energy function εk for IEEE test cases. (a): Chow’s 9 bus, (b): IEEE

14 bus, (c): IEEE 30 bus, (d): IEEE 57 bus, (e): IEEE 118 bus, (f): IEEE 300 bus.

[12] J. Momoh, R. Adapa, and M. El-Hawary, “A review of selected optimal
power flow literature to 1993. I. nonlinear and quadratic programming
approaches,” IEEE Trans. Power Syst.,, vol. 14, no. 1, pp. 96–104, Feb

1999.

[13] J. Carpentier, “Contribution a l etude du dispatching economique,”

Bulletin Society Francaise Electricians, vol. 3, no. 8, pp. 431–447, 1962.

[14] M. B. Cain, R. P. O’Neill, and A. Castillo, “History of optimal power

flow and formulations,” Federal Energy Regulatory Commission FERC,
Tech. Rep., December 2012.

[15] J. Lavaei and S. Low, “Zero duality gap in optimal power flow problem,”

IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb. 2012.

[16] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation

for contingency-constrained optimal power flow problem,” in 52nd An-
nual Allerton Conference on Communication, Control, and Computing

(Allerton),, Sept 2014, pp. 1064–1071.

[17] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard
optimization problems easy to solve,” in IEEE Power and Energy Society

General Meeting, 2012.

[18] S. H. Low, “Convex relaxation of optimal power flow (part I, II),” IEEE

Trans. Control of Network Systems, vol. 1, no. Part I: 1; Part II: 2, pp.
Part–I, 2014.

[19] J. Lavaei, D. Tse, and B. Zhang, “Geometry of power flows and
optimization in distribution networks,” IEEE Trans. Power Syst., vol. 29,
no. 2, pp. 572–583, 2014.

[20] S. Sojoudi and J. Lavaei, “Exactness of semidefinite relaxations for
nonlinear optimization problems with underlying graph structure,” SIAM

J. Optimiz., vol. 24, no. 4, pp. 1746–1778, 2014.

[21] L. Gan, N. Li, U. Topcu, and S. H. Low, “Optimal power flow in

distribution networks,” Proc. 52nd IEEE Conference on Decision and
Control, 2013.

[22] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal
power flow problem: Mesh networks,” IEEE Trans. Power Syst., vol. 30,
no. 1, pp. 199–211, 2015.

[23] B. Kim and R. Baldick, “Coarse-grained distributed optimal power flow,”
IEEE Trans. Power Syst.,, vol. 12, no. 2, pp. 932–939, May 1997.

[24] R. Baldick, B. Kim, C. Chase, and Y. Luo, “A fast distributed imple-
mentation of optimal power flow,” IEEE T. Power Syst.,, vol. 14, no. 3,

pp. 858–864, Aug 1999.

[25] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy

management via proximal message passing,” Foundations and Trends in
Optimization, vol. 1, no. 2, pp. 73–126, 2014.

[26] A. Lam, B. Zhang, and D. Tse, “Distributed algorithms for optimal

power flow problem,” in 51st Annual Conference on Decision and
Control (CDC), Dec 2012, pp. 430–437.

[27] E. Dall’Anese, H. Zhu, and G. Giannakis, “Distributed optimal power

flow for smart microgrids,” IEEE Trans. Smart Grid,, vol. 4, no. 3, pp.
1464–1475, Sept 2013.

[28] Q. Peng and S. Low, “Distributed algorithm for optimal power flow on

a radial network,” in 53rd Annual Conference on Decision and Control
(CDC), Dec 2014, pp. 167–172.

[29] H. L. Bodlaender and A. M. Koster, “Treewidth computations I. upper

bounds,” Inform. Comput., vol. 208, no. 3, pp. 259–275, 2010.
[30] H. L. Bodlaender and A. M. Koster, “Treewidth computations II. lower

bounds,” Inform. Comput., vol. 209, no. 7, pp. 1103–1119, 2011.

[31] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive
definite completions of partial Hermitian matrices,” Linear Algebra

Appl., vol. 58, pp. 109–124, 1984.
[32] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota,

“Exploiting sparsity in semidefinite programming via matrix completion

II: Implementation and numerical results,” Math. Program., vol. 95,
no. 2, pp. 303–327, 2003.

[33] M. Laurent, “Polynomial instances of the positive semidefinite and

Euclidean distance matrix completion problems,” SIAM J. Matrix Aanl.
A., vol. 22, no. 3, pp. 874–894, 2001.

[34] M. Laurent and A. Varvitsiotis, “A new graph parameter related to

bounded rank positive semidefinite matrix completions,” Math. Pro-
gram., vol. 145, no. 1-2, pp. 291–325, 2014.

[35] R. Madani, G. Fazelnia, S. Sojoudi, and J. Lavaei, “Low-rank solutions
of matrix inequalities with applications to polynomial optimization and
matrix completion problems,” in 53rd Annual Conference on Decision

and Control (CDC), Dec 2014, pp. 4328–4335.
[36] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation

for contingency-constrained optimal power flow problem,” to appear

in IEEE T. Power Syst., 2015, http://www.ee.columbia.edu/∼lavaei/
SCOPF 2014.pdf.

[37] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[38] N. J. Higham, “Computing a nearest symmetric positive semidefinite
matrix,” Linear Algebra Appl., vol. 103, pp. 103–118, May. 1988.

[39] B. He and X. Yuan, “On non-ergodic convergence rate
of douglasrachford alternating direction method of multipli-
ers,” Numer. Math., pp. 1–11, 2014. [Online]. Available:

http://dx.doi.org/10.1007/s00211-014-0673-6

