
Noname manuscript No.
(will be inserted by the editor)

A Fast Distributed Algorithm for Sparse
Semidefinite Programs

Abdulrahman Kalbat · Javad Lavaei

Abstract This paper aims to develop a fast, parallelizable algorithm for an
arbitrary decomposable semidefinite program (SDP). To formulate a decom-
posable SDP, we consider a multi-agent canonical form represented by a graph,
where each agent (node) is in charge of computing its corresponding posi-
tive semidefinite matrix subject to local equality and inequality constraints as
well as coupling and overlapping (consistency) constraints with regards to the
agent’s neighbors. Every arbitrary SDP problem can be cast as a decomposable
SDP, where the number of nodes and the connectivity of the underlying graph
both depend on the sparsity of the original SDP problem. Based on the alter-
nating direction method of multipliers, we design a numerical algorithm, which
has a guaranteed convergence under very mild assumptions. Each iteration of
this algorithm has a simple closed-form solution, consisting of matrix multipli-
cations and eigenvalue decompositions performed by individual agents as well
as information exchanges between neighboring agents. The cheap iterations
of the proposed algorithm enable solving large-scale sparse conic optimization
problems. The proposed algorithm is applied to several randomly generated
SDP problems with over 10 million variables, which are solved in less than 20
minutes.

Keywords Semidefinite programming · Alternating direction method of
multipliers · Decomposition

Mathematics Subject Classification (2000) 90C06 · 90C222 · 68W15

Abdulrahman Kalbat
Electrical Engineering Department, United Arab Emirates University
Al-Ain, United Arab Emirates
E-mail: akalbat@uaeu.ac.ae

Javad Lavaei (�)
Department of Industrial Engineering and Operations Research, University of California,
Berkeley
Berkeley, CA 94720
E-mail: lavaei@berkeley.edu

2 Abdulrahman Kalbat, Javad Lavaei

1 Introduction

Alternating direction method of multipliers (ADMM) is a first-order optimiza-
tion algorithm proposed in the mid-1970s [7,9]. Recently, this method has
attracted significant amount of attention since it can be used for large-scale
optimization problems and be implemented in parallel and distributed com-
putational environments [5,3]. Compared to second-order methods that are
able to achieve a high accuracy via expensive iterations, ADMM relies on low-
complexity iterations and can achieve a modest accuracy in tens of iterations.
Inspired by Nesterov’s scheme for accelerating gradient methods [22], great
effort has been devoted to accelerating ADMM and attaining a high accuracy
in a reasonable number of iterations [11]. Since the performance of the ADMM
algorithm is affected by the condition number of the problem’s data, diagonal
rescaling is proposed in [8] for a class of problems to improve the performance
and achieve a linear rate of convergence. The O(1

n) worst-case convergence
rate of ADMM is proven in [13,20] under the assumptions of closed convex
sets and convex functions. In [27], the O(1

n) convergence rate is obtained for
an asynchronous ADMM algorithm. The recent paper [23] represents ADMM
in the context of dynamical systems and then reduces the problem of prov-
ing the linear convergence of ADMM to verifying the stability of a dynamical
system [23].

Semidefinite programs (SDPs) are attractive due in part to three reasons.
First, positive semidefinite constraints appear in many applications [16]. Sec-
ond, SDPs can be used to study and approximate hard combinatorial optimiza-
tion problems [10]. Third, this class of convex optimization problems includes
linear, quadratic, quadratically-constrained quadratic, and second-order cone
programs. It is known that small- to medium-sized SDP problems can be solved
efficiently by interior point methods in polynomial time up to any arbitrary
precision [26]. However, these methods are less practical for large-scale SDPs
due to computation time and memory issues. However, it is possible to re-
duce the complexity by exploiting possible structures in the problem such as
sparsity.

The pressing need for solving real-world large-scale optimization problems
calls for the development of efficient, scalable, and parallel algorithms. Be-
cause of the scalability of ADMM, the main objective of this work is to design
a distributed ADMM-based parallel algorithm for solving an arbitrary sparse
large-scale SDP, with a guaranteed convergence under mild assumptions. We
consider a canonical form of decomposable SDPs, which is characterized by a
graph of agents (nodes) and edges. Each agent needs to find the optimal value
of its associated positive semidefintie matrix subject to local equality and in-
equality constraints as well as coupling and overlapping constraints with its
neighbors (more precisely, the matrices of two neighboring agents may be sub-
ject to consistency constraints). The objective function of the overall SDP is
the summation of individual objectives of all agents. From the computational
perspective, each agent is treated as a processing unit and each edge of the
graph specifies what agents can communicate with one another. We propose

A Fast Distributed Algorithm for Sparse Semidefinite Programs 3

a distributed algorithm, whose iterations comprise local matrix multiplica-
tions and eigenvalue decompositions performed by individual agents as well as
information exchanges between neighboring agents.

This paper is organized as follows. An overview of ADMM is provided
in Section 2. The distributed multi-agent SDP problem is formalized in Sec-
tion 3. An ADMM-based parallel algorithm is developed in Section 4, by first
studying the 2-agent case and then investigating the general multi-agent case.
Simulation results on randomly-generated large-scale SDPs with a few million
variables are provided in Section 5. A method for distributing the computa-
tional load is proposed in Section 6. Finally, a summary is given in Section 7.

Notations: Rn and Sn denote the sets of n×1 real vectors and n×n symmetric
matrices, respectively. Bold lower case letters (e.g., x) represent vectors, and
bold upper case letters (e.g., W) represent matrices. A vector x ∈ Rn is
defined as x = [x1, . . . , xn]T . Given a matrix W, its (l,m) entry is denoted
as W (l,m). The symbol tr{W} denotes the trace of a matrix W, and the
notation W � 0 means that W is symmetric and positive semidefinite. The
symbols (·)T , ‖ · ‖2 and ‖ · ‖F denote the transpose, `2-norm and Frobenius
norm operators, respectively. The ordering operator (a, b)� returns (a, b) if
a < b and returns (b, a) if a > b. The notation |X | represents the cardinality
(or size) of the set X . The finite sequence of variables x1, . . . , xn is denoted by
{xi}ni=1. For an m×n matrix W, the notation W(X ,Y) denotes the submatrix
of W whose rows and columns are chosen from X and Y, respectively, for given
index sets X ⊆ {1, . . . ,m} and Y ⊆ {1, . . . , n}. The notation G = (V, E) defines
a graph G with the vertex (or node) set V and the edge set E . The open set
of neighbors of vertex i ∈ V is denoted as N(i). The closed set of neighbors
of vertex i ∈ V is denoted as N [i], which is simply the neighbors of node i
including node i itself (N [i] = N(i)∪ {i}). To orient the edges of G, we define
a new edge set E+ = {(i, j) | (i, j) ∈ E and i < j}.

2 Alternating Direction Method of Multipliers

Consider the optimization problem

min
x∈Rn, y∈Rm

f(x) + g(y) (1a)

subject to Ax + By = c (1b)

where f(x) and g(y) are convex functions, A and B are two known matri-
ces, and c is a given vector of appropriate dimension. The above optimization
problem has a separable objective function and linear constraints. Before pro-
ceeding with the paper, three numerical methods for solving this problem will
be reviewed.

4 Abdulrahman Kalbat, Javad Lavaei

The first method is dual decomposition, which uses the Lagrangian function

L(x,y,λ) = f(x) + g(y) + λT (Ax + By − c)

= f(x) + λTAx︸ ︷︷ ︸
h1(x,λ)

+ g(y) + λTBy︸ ︷︷ ︸
h2(y,λ)

−λT c (2)

where λ is the Lagrange multiplier corresponding to the constraint (1b). The
above Lagrangian function can be separated into two functions h1(x,λ) and
h2(y,λ). Inspired by this separation, the dual decomposition method is based
on updating x, y and λ separately. This leads to the iterations

xt+1 := argmin
x

h1(x,λt) (3a)

yt+1 := argmin
y

h2(y,λt) (3b)

λt+1 := λt + αt(Axt+1 + Byt+1 − c) (3c)

for t = 0, 1, 2, ..., with an arbitrary initialization (x0,y0,λ0), where αt is a step
size. Note that “argmin” denotes any minimizer of the corresponding function.

Despite its decomposability, the dual decomposition method has robustness
and convergence issues. The method of multipliers could be used to remedy
these difficulties, which is based on the augmented lagrangian function

Lµ(x,y,λ) = f(x) + g(y) + λT (Ax + By − c) +
µ

2
‖Ax + By − c‖22 (4)

where µ is a nonnegative constant. Notice that (4) is obtained by augmenting
the Lagrangian function in (2) with a quadratic term in order to increase the
smallest eigenvalue of the Hessian of the Lagrangian with respect to (x,y).
However, this augmentation creates a coupling between x and y. The iterations
corresponding to the method of multipliers are

(xt+1,yt+1) := argmin
(x,y)

Lµ(x,y,λt) (5a)

λt+1 := λt + µ(Axt+1 + Byt+1 − c) (5b)

where t = 0, 1, 2,
In order to avoid solving a joint optimization with respect to x and y at

every iteration, the alternating direction method of multipliers (ADMM) can
be used. The main idea is to first update x by freezing y at its latest value,
and then update y based on the most recent value of x. This leads to the
2-block ADMM problem with the iterations [3]:

Block 1: xt+1 := argmin
x
Lµ(x,yt,λt) (6a)

Block 2: yt+1 := argmin
y
Lµ(xt+1,y,λt) (6b)

Dual: λt+1 := λt + µ(Axt+1 + Byt+1 − c) (6c)

A Fast Distributed Algorithm for Sparse Semidefinite Programs 5

· · · · · ·1 i j n
Iij Iji

W1 Wi Wj Wn

Fig. 1: An example of a graph representation of the distributed multi-agent SDP.

ADMM offers a distributed computation property, a high degree of ro-
bustness, and a guaranteed convergence under very mild assumptions. In the
reminder of this paper, we will use this first-order method to solve large-scale
decomposable SDP problems.

3 Problem Formulation

Consider an arbitrary simple, connected, and undirected graph G = (V, E)
with the node set V := {1, . . . , n} and the edge set E ⊆ V × V, as illustrated
in Figure 1. In a physical context, each node could represent an agent (or
a machine or a processor or a thread) and each edge represents a communi-
cation link between the agents. In the context of this work, each agent is in
charge of computing a positive semidefinite matrix variable Wi, and each edge
(i, j) ∈ E specifies a possible overlap between the matrix variables Wi and Wj

of agents i and j. More precisely, each edge (i, j) is accompanied by two ar-
bitrary integer-valued index sets Ii,j and Ij,i to capture the overlap between
Wi and Wj through the equation Wi(Ii,j , Ii,j) = Wj(Ij,i, Ij,i). Figure 2 illus-
trates this specification through an example with three overlapping matrices,
where every two neighboring submatrices with an identical color must take the
same value at optimality. Another way of thinking about this setting is that
Figure 1 represents the sparsity graph of an arbitrary sparse large-scale SDP
with a single global matrix variable W, which is then reformulated in terms
of certain submatrices of W, named W1, ...,Wn, using the Chordal extension
and matrix completion theorems [18]. The objective of this paper is to solve
the decomposable SDP problem (interchangeably referred to as distributed
multi-agent SDP) given below.

6 Abdulrahman Kalbat, Javad Lavaei

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

W1 (8× 8)

1 2 3 4 5
1
2
3
4
5

W2 (5× 5)

1 2 3 4 5
1
2
3
4
5

W3 (5× 5)

I1,2 = (1, 3, 4, 5)

I2,1 = (1, 2, 3, 4)

I1,3 = (6, 7, 8)

I3,1 = (1, 2, 3)

I2,3 = (3, 5) I3,2 = (2, 4)

Fig. 2: An illustration of the definitions of Ii,j and Ij,i for three overlapping
submatrices W1, W2 and W3

Decomposable SDP:

minimize
∑

i∈V
tr(AiWi) (7a)

subject to : tr(Bi
jWi) = bij ∀ j = 1, . . . , pi and i ∈ V (7b)

tr(Ci
jWi) ≤ cij ∀ j = 1, . . . , qi and i ∈ V (7c)

Wi � 0 ∀ i ∈ V (7d)
∑

j∈N [i]

tr(Di,j
k Wj) = d

(i)
k ∀ k = 1, . . . , ri and i ∈ V (7e)

∑

j∈N [i]

tr(Ei,j
k Wj) ≤ e(i)k ∀ k = 1, . . . , si and i ∈ V (7f)

Wi(Ii,j , Ii,j)=Wj(Ij,i, Ij,i) ∀ (i, j) ∈ E+ (7g)

with the variables Wi ∈ Sni for i = 1, ..., n, where

– the superscript in (·)i is not an exponent and it implies that the expression
is local to agent i ∈ V;

– the superscript in (·)(i) means that the expression is local to agent i ∈ V
and yet involved in a coupling constraint with other agents;

– ni denotes the size of the submatrix Wi, and pi, qi, ri and si show the
numbers of local equality, local inequality, coupling equality and coupling
inequality constraints for agent i, respectively;

A Fast Distributed Algorithm for Sparse Semidefinite Programs 7

– bij , c
i
j , d

(i)
k and e

(i)
k denote the jth elements of the vectors bi ∈ Rpi and

ci ∈ Rqi and the kth elements of the vectors d(i) ∈ Rri and e(i) ∈ Rsi for
agent i, as defined below:

bi , [bi1, . . . , b
i
pi]
T , ci , [ci1, . . . , c

i
qi]
T

d(i) , [d
(i)
1 , . . . , d

(i)
ri]T , e(i) , [e

(i)
1 , . . . , e

(i)
si]T

– the matrices Ai, Bi
j , and Ci

j are locally known to agent i ∈ V and the

matrices Di,j
k and Ei,j

k are involved in coupling constraints with agent i ∈ V
and are locally known to agent j ∈ N [i].

The formulation in (7) has four main ingredients:

– Local objective function: each agent i ∈ V has its own local objective
function tr(AiWi) with respect to the local matrix variable Wi. The sum-
mation of all local objective functions denotes the global objective function
in (7a).

– Local constraints: each agent i ∈ V has local equality and inequality
constraints (7b) and (7c), respectively, as well as a local positive semidefi-
niteness constraint (7d).

– Coupling constraints: each agent i ∈ V is allowed to have coupling
equality and inequality constraints (7e) and (7f), respectively, with any
other agent j ∈ N(i).

– Overlapping constraints: constraint (7g) states that certain entries of
Wi and Wj are identical.

The objective is to design a distributed algorithm for solving (7), by allow-
ing each agent i ∈ V to collaborate with its neighbors N(i) to find an optimal
value for its positive semidefinite submatrix Wi while meeting its own con-
straints as well as all coupling and overlapping constraints with the other
agents. This is accomplished by local computations performed by individual
agents and local communication between neighboring agents for information
exchange.

There are two scenarios in which (7) could be used. In the first scenario, it
is assumed that the SDP problem of interest is associated with a multi-agent
system and matches the formulation in (7) exactly. In the second scenario, we
consider an arbitrary sparse SDP problem in the centralized standard form,
i.e., an SDP with a single positive semidefinite matrix W, and then convert it
into a distributed SDP with multiple but smaller positive semidefinite matrices
Wi to match the formulation in (7) (note that a dense SDP problem can be
put in the form of (7) with n = 1). The conversion from a standard SDP
to a distributed SDP is possible using the idea of chordal decomposition of
positive semidefinite cones in [6], which exploits the fact that a matrix W has
a positive semidefinite completion if and only if certain submatrices of W,
denoted as W1, ...,Wn, are positive semidefinite [12].

In this paper, we propose an iterative algorithm for solving the decompos-
able SDP problem (7) using the first-order ADMM method. We show that

8 Abdulrahman Kalbat, Javad Lavaei

W1

W2∗

∗
W1(I12, I12)

=
W2(I21, I21)

Fig. 3: Positive semidefinite matrix W (two blocks)

each iteration of this algorithm has a simple closed-form solution, which con-
sists of matrix multiplication and eigenvalue decomposition over matrices of
size ni for agent i ∈ V. Our work improves upon some recent papers in this
area. The paper [29] is a special case of our work with n = 1, which does not
offer any parallelizable algorithm for sparse SDPs and may not be applicable
to large-scale sparse SDP problems. The work [6] uses the clique-tree conver-
sion method to decompose sparse SDPs with a chordal sparsity pattern into
smaller sized SDPs, which can then be solved by interior point methods but
this approach is limited by the large number of consistency constraints for the
overlapping parts. Recently, the paper [25] proposes to solve the decomposed
SDP created by [6] using a first-order splitting method, but it requires solving
a quadratic program at every iteration, which again imposes some limitations
on the scalability of the proposed algorithm. In contrast, the algorithm to
be proposed here is parallelizable with low computations at every iteration,
without requiring any initial feasible point (unlike interior point methods).

4 Distributed Algorithm for Decomposable Semidefinite Programs

In this section, we design an ADMM-based algorithm to solve (7). For the
convenience of the reader, we first consider the case where there are only two
overlapping matrices W1 and W2. Later on, we will derive the iterations for
the general case with an arbitrary graph G.

4.1 Two-Agent Case

Assume that there are two overlapping matrices W1 and W2 embedded in a
global SDP matrix variable W as shown in Figure 3, where ”*” submatrices of
W are redundant (meaning that there is no explicit constraint on the entries
of these parts). The SDP problem for this case can be put in the canonical

A Fast Distributed Algorithm for Sparse Semidefinite Programs 9

form (7), by setting V = {1, 2}, E+ = {(1, 2)} and |V| = 2:

min
W1∈Sn1

W2∈Sn2

tr(A1W1) + tr(A2W2) (8a)

subject to tr(B1
jW1) = b1j ∀ j = 1, . . . , p1 (8b)

tr(B2
jW2) = b2j ∀ j = 1, . . . , p2 (8c)

tr(C1
jW1) ≤ c1j ∀ j = 1, . . . , q1 (8d)

tr(C2
jW2) ≤ c2j ∀ j = 1, . . . , q2 (8e)

tr(D1,1
k W1) + tr(D1,2

k W2) = d
(1)
k ∀ k = 1, . . . , r1 (8f)

tr(D2,1
k W1) + tr(D2,2

k W2) = d
(2)
k ∀ k = 1, . . . , r2 (8g)

tr(E1,1
k W1) + tr(E1,2

k W2) ≤ e(1)k ∀ k = 1, . . . , s1 (8h)

tr(E2,1
k W1) + tr(E2,2

k W2) ≤ e(2)k ∀ k = 1, . . . , s2 (8i)

W1,W2 � 0 (8j)

W1(I1,2, I1,2) = W2(I2,1, I2,1) (8k)

where the data matrices A1, B1
j , C1

j , D1,1
k , D2,1

k , E1,1
k , E2,1

k ∈ Sn1 , the matrix
variable W1 ∈ Sn1 and the vectors b1 ∈ Rp1 , c1 ∈ Rq1 , d(1) ∈ Rr1 and
e(1) ∈ Rs1 correspond to agent 1, whereas the data matrices A2, B2

j , C2
j ,

D2,2
k , D1,2

k , E2,2
k , E1,2

k ∈ Sn2 , the matrix variable W2 ∈ Sn2 and the vectors
b2 ∈ Rp2 , c2 ∈ Rq2 , d(2) ∈ Rr2 and e(2) ∈ Rs2 correspond to agent 2. The
local constraints of agent 1 and agent 2 are represented by (8b)-(8e) and (8j)
and the coupling constraints between the two agents is represented by (8f)-
(8i). Constraint (8k) states that the (I1,2, I1,2) submatrix of W1 overlaps with
the (I2,1, I2,1) submatrix of W2. With no loss of generality, assume that the
overlapping part occurs at the lower right corner of W1 and the upper left
corner of W2, as illustrated in Figure 3. The dual of the 2-agent SDP problem

10 Abdulrahman Kalbat, Javad Lavaei

in (8) can be expressed as

min

2∑

i=1

(
bTi ui + cTi vi + dT(i)x(i) + eT(i)y(i)

)
(9a)

subject to

−
p1∑

j=1

u1jB
1
j−

q1∑

j=1

v1jC
1
j−

r1∑

j=1

x
(1)
j D1,1

j −
r2∑

j=1

x
(2)
j D2,1

j −
s1∑

j=1

y
(1)
j E1,1

j −
s2∑

j=1

y
(2)
j E2,1

j

+ R1 −
[
0 0
0 H(1,2)

]
= A1 (9b)

−
p2∑

j=1

u2jB
2
j−

q2∑

j=1

v2jC
2
j−

r2∑

j=1

x
(2)
j D2,2

j −
r1∑

j=1

x
(1)
j D1,2

j −
s2∑

j=1

y
(2)
j E2,2

j −
s1∑

j=1

y
(1)
j E1,2

j

+ R2 −
[
H(1,2) 0

0 0

]
= A2 (9c)

v1,v2 ≥ 0 (9d)

y(1),y(2) ≥ 0 (9e)

R1,R2 � 0 (9f)

with the variables u1, u2, v1,v2,x(1),x(2),y(1),y(2),R1,R2, H(1,2), where u1 ∈
Rp1 , u2 ∈ Rp2 , v1 ∈ Rq1 , v2 ∈ Rq2 , x(1) ∈ Rr1 , x(2) ∈ Rr2 , y(1) ∈ Rs1 and
y(2) ∈ Rs2 are the Lagrange multipliers corresponding to the constraints in
(8b)-(8i), respectively, and the dual matrix variables R1 ∈ Sn1 and R2 ∈ Sn2

are the Lagrange multiplier corresponding to the constraint (8j). The dual
matrix variable H(1,2) is the Lagrange multiplier corresponding to the con-
straint (8k). More specifically, it is the Lagrange multiplier corresponding to
the submatrix W1(I1,2, I1,2) of W1 and at the same time the Lagrange mul-
tiplier corresponding to the submatrix W2(I2,1, I2,1) of W2 while preserving
the overlap locations, as shown in (9b) and (9c), respectively.

If we apply ADMM to (9), it becomes impossible to split the variables
into two blocks of variables associated with agents 1 and 2. The reason is
that the augmented Lagrangian function of (9) creates a coupling between
the constraints (9b) and (9c) through the variables x(1),x(2),y(1),y(2), H(1,2),
which then requires updating these variables jointly by agent 1 and agent
2 and this destroys the parallel nature of the algorithm. This issue can be
resolved by introducing a local copy of each coupling variable for each agent.
For example, agent 1 introduces x1,1 as a local copy of x(1) in the constraint
(9b) and adds the constraint x1,1 = x(1). Similarly, agent 2 introduces x2,1 as
a local copy of x(1) in the constraint (9c) and adds the constraint x2,1 = x(1).
Following the same technique for x(2),y(1),y(2),H(1,2), the constraints (9b) and
(9c) become completely decoupled. Moreover, to make the update of v1 and
v2 easier, we do not impose positivity constraints directly on v1 and v2 as in
(9d). Instead, we impose the positivity on two new vectors z1, z2 ≥ 0 and then
add the additional constraints v1 = z1 and v2 = z2. By applying the previous

A Fast Distributed Algorithm for Sparse Semidefinite Programs 11

modifications, (9) could be rewritten in a decomposable form as

min

2∑

i=1

(
bTi ui+cTi vi+dT(i)x(i)+eT(i)y(i)+I+(zi)+I+(Ri)+I+(y(i))

)
(10a)

subject to

−
p1∑

j=1

u1jB
1
j−

q1∑

j=1

v1jC
1
j−

r1∑

j=1

x1,1j D1,1
j −

r2∑

j=1

x1,2j D2,1
j −

s1∑

j=1

y1,1j E1,1
j −

s2∑

j=1

y1,2j E2,1
j

+ R1 −
[
0 0
0 H1,2

]
= A1 (10b)

−
p2∑

j=1

u2jB
2
j−

q2∑

j=1

v2jC
2
j −

r2∑

j=1

x2,2j D2,2
j −

r1∑

j=1

x2,1j D1,2
j −

s2∑

j=1

y2,2j E2,2
j −

s1∑

j=1

y2,1j E1,2
j

+ R2 −
[
H2,1 0

0 0

]
= A2 (10c)

H1,2 = H(1,2), H2,1 = H(1,2) (10d)

x1,1 = x(1), x2,1 = x(1) (10e)

x2,2 = x(2), x1,2 = x(2) (10f)

y1,1 = y(1), y2,1 = y(1) (10g)

y2,2 = y(2), y1,2 = y(2) (10h)

v1 = z1 (10i)

v2 = z2 (10j)

with the variables u1, u2, v1, v2, z1, z2, x1,1, x1,2, x2,1, x2,2, y1,1, y1,2, y2,1,
y2,2, x(1), x(2), y(1), y(2), R1, R2, H1,2, H2,1, H(1,2), where I+(Ri) is equal
to 0 if Ri � 0 and is +∞ otherwise, and I+(zi) and I+(y(i)) are equal to 0 if
zi,y(i) ≥ 0 and are +∞ otherwise.

To streamline the presentation, define

Bsum
i =

∑pi
j=1 u

i
jB

i
j , Csum

i =
∑qi
j=1 v

i
jC

i
j , i = 1, 2

Dsum
i =

∑2
k=1

∑rk
j=1 x

i,k
j Dk,i

j , Esum
i =

∑2
k=1

∑sk
j=1 y

i,k
j Ek,i

j , i = 1, 2

and

Hfull
1,2 =

[
0 0
0 H1,2

]
, Hfull

2,1 =

[
−H2,1 0

0 0

]

Note that Bsum
i , Csum

i , Dsum
i , Esum

i , Hfull
1,2 and Hfull

2,1 are functions of the vari-
ables ui, vi, xi,k, yi,k, H1,2 and H2,1, respectively, but the arguments are
dropped for notational simplicity. The augmented Lagrangian function for

12 Abdulrahman Kalbat, Javad Lavaei

(10) can be obtained as

2

µ
Lµ (F ,M) =

2

µ

2∑

i=1

(
bTi ui + cTi vi + dT(i)x(i) + eT(i)y(i) + I+(zi) + I+(Ri) + I+(y(i))

)

+

∥∥∥∥−Bsum
1 −Csum

1 −Dsum
1 −Esum

1 + R1 −Hfull
1,2 −A1 +

G1

µ

∥∥∥∥
2

F

+

∥∥∥∥−Bsum
2 −Csum

2 −Dsum
2 −Esum

2 + R2 −Hfull
2,1 −A2 +

G2

µ

∥∥∥∥
2

F

+

∥∥∥∥H1,2 −H(1,2) +
G1,2

µ

∥∥∥∥
2

F

+

∥∥∥∥H2,1 −H(1,2) +
G2,1

µ

∥∥∥∥
2

F

+

∥∥∥∥x1,1 − x(1) +
f1,1
µ

∥∥∥∥
2

2

+

∥∥∥∥x2,1 − x(1) +
f2,1
µ

∥∥∥∥
2

2

+

∥∥∥∥x2,2 − x(2) +
f2,2
µ

∥∥∥∥
2

2

+

∥∥∥∥x1,2 − x(2) +
f1,2
µ

∥∥∥∥
2

2

+

∥∥∥∥y1,1 − y(1) +
g1,1

µ

∥∥∥∥
2

2

+

∥∥∥∥y2,1 − y(1) +
g2,1

µ

∥∥∥∥
2

2

+

∥∥∥∥y2,2 − y(2) +
g2,2

µ

∥∥∥∥
2

2

+

∥∥∥∥y1,2 − y(2) +
g1,2

µ

∥∥∥∥
2

2

+

∥∥∥∥v1 − z1 +
λ1

µ

∥∥∥∥
2

2

+

∥∥∥∥v2 − z2 +
λ2

µ

∥∥∥∥
2

2
(11)

where F = (u1, u2,v1, v2, z1, z2,x(1), x(2), y(1), y(2), R1, R2, x1,1, x1,2,

x2,1, x2,2, y1,1, y1,2, y2,1, y2,2, H1,2, H2,1, H(1,2)

)
is the set of optimization

variables and M = (G1, G2, G1,2, G2,1, f1,1, f2,1, f2,2, f1,2, g1,1, g2,1, g2,2,
g1,2, λ1, λ2) is the set of Lagrange multipliers whose elements correspond to
constraints (10b) - (10j), respectively. Note that the augmented Lagrangian in
(11) is obtained using the identity

tr
[
XT (A−B)

]
+
µ

2
‖A−B‖2F =

µ

2

∥∥∥∥A−B +
X

µ

∥∥∥∥
2

F

+ constant (12)

In order to proceed, we need to split the set of optimization variables F into
two blocks of variables. To this end, define X = (z1 , z2, x(1), x(2), y(1), y(2),

R1, R2, H(1,2)

)
and Y = (u1, u2, v1, v2, x1,1, x1,2, x2,1, x2,2, y1,1, y1,2,

y2,1, y2,2, H1,2, H2,1). Using the method delineated in Section 2, the two-

A Fast Distributed Algorithm for Sparse Semidefinite Programs 13

block ADMM iterations can be obtained as

(Block 1) X t+1 = argmin
X

Lµ
(
X ,Yt,Mt

)
(13a)

(Block 2) Yt+1 = argmin
Y

Lµ
(
X t+1,Y,Mt

)
(13b)

Gt+1
1 = Gt

1 + µ

(
−B

t+1
sum
1 −C

t+1
sum
1 −D

t+1
sum
1 −E

t+1
sum
1 + Rt+1

1 −H
t+1
full
1,2 −A1

)
(13c)

Gt+1
2 = Gt

2 + µ

(
−B

t+1
sum
2 −C

t+1
sum
2 −D

t+1
sum
2 −E

t+1
sum
2 + Rt+1

2 −H
t+1
full
2,1 −A2

)
(13d)

Gt+1
1,2 = Gt

1,2 + µ
(
Ht+1

1,2 −Ht+1
(1,2)

)
(13e)

Gt+1
2,1 = Gt

2,1 + µ
(
Ht+1

2,1 −Ht+1
(1,2)

)
(13f)

f t+1
1,1 = f t1,1 + µ

(
xt+1
1,1 − xt+1

(1)

)
f t+1
2,1 = f t2,1 + µ

(
xt+1
2,1 − xt+1

(1)

)
(13g)

f t+1
2,2 = f t2,2 + µ

(
xt+1
2,2 − xt+1

(2)

)
f t+1
1,2 = f t1,2 + µ

(
xt+1
1,2 − xt+1

(2)

)
(13h)

gt+1
1,1 = gt1,1 + µ

(
yt+1
1,1 − yt+1

(1)

)
gt+1
2,1 = gt2,1 + µ

(
yt+1
2,1 − yt+1

(1)

)
(13i)

gt+1
2,2 = gt2,2 + µ

(
yt+1
2,2 − yt+1

(2)

)
gt+1
1,2 = gt1,2 + µ

(
yt+1
1,2 − yt+1

(2)

)
(13j)

λt+1
1 = λt1 + µ

(
vt+1
1 − zt+1

1

)
(13k)

λt+1
2 = λt2 + µ

(
vt+1
2 − zt+1

2

)
(13l)

for t = 0, 1, 2,
The above updates are derived based on the fact that ADMM aims to find

a saddle point of the augmented lagrangian function by alternatively perform-
ing one pass of Gauss Seidel over X and Y and then updating the Lagrange
multipliersM through Gradient ascent. It is straightforward to show that the
optimization over X in Block 1 is fully decomposable and amounts to 9 sepa-
rate optimization subproblems with respect to the individual variables z1, z2,
x(1), x(2), y(1), y(2), R1, R2, H(1,2). In addition, the optimization over Y in
Block 2 is equivalent to 2 separate optimization subproblems with the vari-
ables (u1 , v1, x1,1, x1,2, y1,1, y1,2, H1,2) and (u2, v2, x2,2, x2,1, y2,2, y2,1,
H2,1), respectively. Interestingly, all these subproblems have closed-form so-
lutions. The corresponding iterations that need to be taken by agents 1 and 2
are provided in (14) and (15) (given in the next page). Note that these agents
need to perform local computation in every iteration according to (14) and
(15) and then exchange the updated values of the pairs

(
x(1) , y(1), x1,2, f1,2,

y1,2, g1,2, H1,2, G1,2) and
(
x(2) ,y(2), x2,1, f2,1, y2,1, g2,1, H2,1, G2,1) with

one another.
To elaborate on (14) and (15), the positive semidefinite matrices R1 and

R2 are updated through the operator (·)+, where X+ is defined as the projec-
tion of an arbitrary symmetric matrix X onto the set of positive semidefinite
matrices by replacing its negative eigenvalues with 0 in the eigenvalue de-
composition[29]. The positive vectors z1, z2, y(1) and y(2) are also updated

14 Abdulrahman Kalbat, Javad Lavaei

Iterations for Agent 1

Rt+1
1 =

(
B

t
sum
1 + C

t
sum
1 + D

t
sum
1 + E

t
sum
1 + H

t
full
1,2 + A1 −

Gt
1

µ

)
+

(14a)

zt+1
1 =

(
vt
1 +

λt
1

µ

)
+

(14b)

xt+1
(1)

=
1

2

(
xt
1,1 + xt

2,1 +
f t1,1 + f t2,1

µ
−

d(1)

µ

)
(14c)

yt+1
(1)

=
1

2

(
yt
1,1 + yt

2,1 +
gt
1,1 + gt

2,1

µ
−

e(1)

µ

)
+

(14d)

Ht+1
(1,2)

=
1

2

(
Ht

1,2 + Ht
2,1 +

Gt
1,2 + Gt

2,1

µ

)
(14e)

(u1,v1,x1,1,x1,2,y1,1,y1,2,H1,2)t+1=Lin
((
R1, z1,x(1),y(1),H(1,2)

)t+1

(
x(2),y(2),G1,λ1, f1,1, f1,2,g1,1,g1,2,G1,2

)t)
(14f)

Gt+1
1 = Gt

1 + µ

(
−B

t+1
sum
1 −C

t+1
sum
1 −D

t+1
sum
1 −E

t+1
sum
1 + Rt+1

1 −H
t+1
full
1,2 −A1

)
(14g)

f t+1
1,1 = f t1,1 + µ

(
xt+1
1,1 − xt+1

(1)

)
f t+1
1,2 = f t1,2 + µ

(
xt+1
1,2 − xt

(2)

)
(14h)

gt+1
1,1 = gt

1,1 + µ
(
yt+1
1,1 − yt+1

(1)

)
gt+1
1,2 = gt

1,2 + µ
(
yt+1
1,2 − yt

(2)

)
(14i)

Gt+1
1,2 = Gt

1,2 + µ
(
Ht+1

1,2 −Ht+1
(1,2)

)
(14j)

λt+1
1 = λt

1 + µ
(
vt+1
1 − zt+1

1

)
(14k)

through the operator (x)+, which replaces any negative entry in an arbitrary
vector x with 0 while keeping the nonnegative entries. Using the first-order
optimality conditions ∇x(1)

Lµ(·) = 0 and ∇x(2)
Lµ(·) = 0, one could easily

find the closed-form solutions for x(1) and x(2) as shown in (14c) and (15c).
Similarly, using the optimality condition ∇H(1,2)

Lµ(·) = 0, the closed-form

solution for H(1,2) could be found as shown in (14e) and (15e). By combining
the conditions ∇u1

Lµ(·) = 0, ∇v1
Lµ(·) = 0, ∇x1,1

Lµ(·) = 0, ∇x1,2
Lµ(·) = 0,

∇y1,1
Lµ(·) = 0, ∇y1,2

Lµ(·) = 0 and ∇H1,2
Lµ(·) = 0, the updates of (u1 , v1,

x1,1, x1,2, y1,1, y1,2,H1,2) and (u2 , v2, x2,2, x2,1, y2,2, y2,1,H2,1) reduce to a
(not necessarily unique) linear mapping, denoted as Lin(·) in (14f) and (15f)
(due to non-uniqueness, we may have multiple solutions, and any of them can
be used in the updates). The Lagrange multipliers inM are updated through
Gradient ascent, as specified in (14g)-(14k) for agent 1 and in (15g)-(15k) for
agent 2.

4.2 Multi-Agent Case

In this part, we will study the general distributed multi-agent SDP (7). The
dual of this problem, after considering all modifications used to convert (9) to

A Fast Distributed Algorithm for Sparse Semidefinite Programs 15

Iterations for Agent 2

Rt+1
2 =

(
B

t
sum
2 + C

t
sum
2 + D

t
sum
2 + E

t
sum
2 + H

t
full
2,1 + A2 −

Gt
2

µ

)
+

(15a)

zt+1
2 =

(
vt
2 +

λt
2

µ

)
+

(15b)

xt+1
(2)

=
1

2

(
xt
2,2 + xt

1,2 +
f t2,2 + f t1,2

µ
−

d(2)

µ

)
(15c)

yt+1
(2)

=
1

2

(
yt
2,2 + yt

1,2 +
gt
2,2 + gt

1,2

µ
−

e(2)

µ

)
+

(15d)

Ht+1
(1,2)

=
1

2

(
Ht

1,2 + Ht
2,1 +

Gt
1,2 + Gt

2,1

µ

)
(15e)

(u2,v2,x2,2,x2,1,y2,2,y2,1,H2,1)t+1=Lin
((
R2, z2,x(2),y(2),H(1,2)

)t+1

(
x(1),y(1),G2,λ2, f2,2, f2,1,g2,2,g2,1,G2,1

)t)
(15f)

Gt+1
2 = Gt

2 + µ

(
−B

t+1
sum
2 −C

t+1
sum
2 −D

t+1
sum
2 −E

t+1
sum
2 + Rt+1

2 −H
t+1
full
2,1 −A2

)
(15g)

f t+1
2,2 = f t2,2 + µ

(
xt+1
2,2 − xt+1

(2)

)
f t+1
2,1 = f t2,1 + µ

(
xt+1
2,1 − xt

(1)

)
(15h)

gt+1
2,2 = gt

2,2 + µ
(
yt+1
2,2 − yt+1

(2)

)
gt+1
2,1 = gt

2,1 + µ
(
yt+1
2,1 − yt

(1)

)
(15i)

Gt+1
2,1 = Gt

2,1 + µ
(
Ht+1

2,1 −Ht+1
(1,2)

)
(15j)

λt+1
2 = λt

2 + µ
(
vt+1
2 − zt+1

2

)
(15k)

(10), can be expressed in the decomposable form:

min
∑

i∈V

(
bTi ui+cTi vi+dT(i)x(i)+eT(i)y(i)+I+(zi)+I+(Ri)+I+(y(i))

)
(16a)

subject to

−Bsum
i −Csum

i −Dsum
i −Esum

i + Ri −Hsum
i = Ai ∀ i ∈ V (16b)

xi,k = x(k) ∀ k ∈ N [i] and i ∈ V (16c)

yi,k = y(k) ∀ k ∈ N [i] and i ∈ V (16d)

Hi,k = H(i,k)� ∀ k ∈ N(i) and i ∈ V (16e)

vi = zi ∀ i ∈ V (16f)

with the variables
(
ui,vi,zi,x(i),y(i),Ri,{xi,k,yi,k}k∈N [i],

{
Hi,k,H(i,k)�

}
k∈N(i)

)

for every i ∈ V, where Bsum
i =

∑pi
j=1 u

i
jB

i
j , Csum

i =
∑qi
j=1 v

i
jC

i
j , Dsum

i =∑
k∈N [i]

∑rk
j=1 x

i,k
j Dk,i

j , Esum
i =

∑
k∈N [i]

∑sk
j=1 y

i,k
j Ek,i

j and Hsum
i =

∑
k∈N(i)H

full
i,k .

Note that ui ∈ Rpi , vi ∈ Rqi , x(i) ∈ Rri and y(i) ∈ Rsi are the Lagrange mul-
tipliers corresponding to the constraints (7b), (7c), (7e) and (7f) respectively,
and that Ri ∈ Sni is the Lagrange multiplier corresponding to the constraint
(7d). Each element hfulli,k (a, b) of Hfull

i,k is either zero or equal to the Lagrange

16 Abdulrahman Kalbat, Javad Lavaei

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Hsum
1 = Hfull

1,2 + Hfull
1,3

1 2 3
1
2
3

H1,2

1 2 3
1
2
3

H1,3

I1,2 (blue) = (1, 3, 5)
I1,3 (orange) = (5, 7, 8)

Fig. 4: An illustration of the difference between Hfull
i,j , Hi,j and Hsum

i . Agent
1 is overlapping with agents 2 and agent 3 at the entries specified by I1,2 and
I1,3. The white squares in the left matrix Hfull

1,2 + Hfull
1,3 represent those entries

with value 0, and the color squares carry Lagrange multipliers.

multiplier corresponding to an overlapping element Wi(a, b) between Wi and
Wk. For a better understanding of the difference between Hfull

i,j , Hi,j and
Hsum
i , an example is given in Figure 4 for the case where agent 1 is overlap-

ping with agents 2 and 3. The ADMM iterations for the general case can be
derived similarly to the 2-agent case, which yields the local computation (17)
for each agent i ∈ V.

Consider the parameters defined in (19) for every i ∈ V and time t ∈
{1, 2, 3,}. Define V t as

V t =
∑

i∈V

((
∆t
p1

)
i
+
(
∆t
p5

)
i
+
(
∆t
d1

)
i
+
(
∆t
d2

)
i
+
(
∆t
d3

)
i
+
(
∆t
d4

)
i

)

+
∑

i∈V

(∑

k∈N [i]

((
∆t
p2

)
i,k

+
(
∆t
p3

)
i,k

)
+
∑

k∈N(i)

((
∆t
p4

)
i,k

+
(
∆t
d5

)
i,k

)) (18)

Note that (∆p1,∆p2,∆p3,∆p4,∆p5), (∆d1,∆d2,∆d3,∆d4,∆d5), and V are
the primal residues, dual residues and aggregate residue for the decomposed
problem (16). It should be noticed that the dual residues are only considered

for the variables in the block X =
(
zi,x(i),y(i),Ri,

{
H(i,k)�

}
k∈N(i)

)
i∈V

. Since

x(i) and y(i) appear |N [i]| times in (16), the norm in the residues ∆d2 and
∆d3, respectively, are multiplied by |N [i]|. If the residue ∆d5 is considered
for all i ∈ V, then the expression in (19j) is equivalent to (∆t

d5)i,j = 2 ×
∥∥∥Ht

(i,j) −Ht−1
(i,j)

∥∥∥
2

F
for all (i, j) ∈ E+ since H(i,j) appears twice in (16). The

main result of this paper will be stated below.

Theorem 1 Assume that Slater’s conditions hold for the decomposable SDP
problem (7). Consider the iterative algorithm given in (17). The following
statements hold:

– The aggregate residue V t attenuates to 0 in a non-increasing way as t goes
to +∞.

A Fast Distributed Algorithm for Sparse Semidefinite Programs 17

Iterations for Agent i ∈ V

Rt+1
i =

(
B

t
sum
i + C

t
sum
i + D

t
sum
i + E

t
sum
i + H

t
sum
i + Ai −

Gt
i

µ

)
+

(17a)

zt+1
i =

(
vt
i +

λt
i

µ

)
+

(17b)

xt+1
(i)

=
1

|N [i]|

 ∑
j∈N [i]

(
xt
j,i +

f tj,i

µ

)
−

d(i)

µ

 (17c)

yt+1
(i)

=
1

|N [i]|

 ∑
j∈N [i]

(
yt
j,i +

gt
j,i

µ

)
−

e(i)

µ

+

(17d)

Ht+1
(i,k)�

=
1

2

(
Ht

i,k + Ht
k,i +

Gt
i,k + Gt

k,i

µ

)
∀k ∈ N(i) (17e)

(
ui,vi,

{
xi,k,yi,k

}
k∈N [i]

,
{
Hi,k

}
k∈N(i)

)t+1
=Lin

((
Ri, zi,x(i),y(i),

{
Hi,k

}
k∈N(i)

)t+1
,(

Gi,λi,
{
fi,k,gi,k

}
k∈N [i]

,
{
x(k),y(k),Gi,k

}
k∈N(i)

)t)
(17f)

Gt+1
i = Gt

i + µ

(
−B

t+1
sum
i −C

t+1
sum
i −D

t+1
sum
i −E

t+1
sum
i + Rt+1

i −H
t+1
sum
i −Ai

)
(17g)

f t+1
i,k = f ti,k + µ

(
xt+1
i,k − xt̂

(k)

)
∀k ∈ N [i]

(
where t̂ = t+ 1 if i = k, else t̂ = t

)
(17h)

gt+1
i,k = gt

i,k + µ
(
yt+1
i,k − yt̂

(k)

)
∀k ∈ N [i]

(
where t̂ = t+ 1 if i = k, else t̂ = t

)
(17i)

Gt+1
i,k = Gt

i,k+µ
(
Ht+1

i,k −H
t+1
(i,k)�

)
∀k ∈ N(i) (17j)

λt+1
i = λt

i + µ
(
vt+1
i − zt+1

i

)
(17k)

Aggregate residue parameters

(
∆t

p1

)
i

=

∥∥∥∥B t
sum
i + C

t
sum
i + D

t
sum
i + E

t
sum
i + H

t
sum
i + Ai −Rt

i

∥∥∥∥2
F

(19a)

(
∆t

p2

)
i,k

=
∥∥∥xt

i,k − xt
(k)

∥∥∥2
2

∀k ∈ N [i] (19b)(
∆t

p3

)
i,k

=
∥∥∥yt

i,k − yt
(k)

∥∥∥2
2

∀k ∈ N [i] (19c)(
∆t

p4

)
i,k

=
∥∥∥Ht

i,k −Ht
(i,k)�

∥∥∥2
F

∀k ∈ N(i) (19d)(
∆t

p5

)
i

=
∥∥vt

i − zti
∥∥2
2

(19e)(
∆t

d1

)
i

=
∥∥∥zti − zt−1

i

∥∥∥2
2

(19f)(
∆t

d2

)
i

= |N [i]| ×
∥∥∥xt

(i) − xt−1
(i)

∥∥∥2
2

(19g)(
∆t

d3

)
i

= |N [i]| ×
∥∥∥yt

(i) − yt−1
(i)

∥∥∥2
2

(19h)(
∆t

d4

)
i

=
∥∥∥Rt

i −Rt−1
i

∥∥∥2
F

(19i)(
∆t

d5

)
i,k

=
∥∥∥Ht

(i,k)�
−Ht−1

(i,k)�

∥∥∥2
F

∀k ∈ N(i) (19j)

18 Abdulrahman Kalbat, Javad Lavaei

!"!"!!"!"!

Agent |V|
Agent i

Agent 1

!"!"!!"!"!

Agent |V|
Agent i

Agent 1

F =
(
ui,vi, zi,x(i),y(i),Ri, {xi,k,yi,k}k∈N [i] ,

{
Hi,k,H(i,k)!

}
k∈N(i)

)
i∈V

X =
(
zi,x(i),y(i),Ri,

{
H(i,k)!

}
k∈N(i)

)
i∈V

Y =
(
ui,vi, {xi,k,yi,k}k∈N [i] , {Hi,k}k∈N(i)

)
i∈V

Xi =
(
zi,x(i),y(i),Ri,

{
H(i,k)!

}
k∈N(i)

)
Yi =

(
ui,vi, {xi,k,yi,k}k∈N [i] , {Hi,k}k∈N(i)

)

zi x(i) y(i) Ri

{
H(i,k)!

}
k∈N(i)

Block 1 Block 2

Fig. 5: This diagram shows the subproblems resulted from the two-block
ADMM procedure. The optimization variables set F is split into two blocks
of variables X and Y such that the optimization over X is fully decom-
posable into separate subproblems with respect to the individual variables
zi,x(i),y(i),Ri,

{
H(i,k)�

}
k∈N(i)

for all i ∈ V while the optimization over Y is

equivalent to |V| separate optimization subproblems.

– For every i ∈ V, the limit of (Gt
1,G

t
2, ...,G

t
n) at t = +∞ is an optimal

solution for (W1,W2, ...,Wn).

Proof After realizing that (17) is obtained from a two-block ADMM procedure,
as shown in Figure 5, the theorem follows from [14] that studies the conver-
gence of a standard ADMM problem. The details are omitted for brevity.

Since the proposed algorithm is iterative with an asymptotic convergence,
we need a finite-time stopping rule. Based on [19], we terminate the algorithm
as soon as max {P1,P2,P3,D1,D2,D3,D4,D5,Gap} becomes smaller than a

A Fast Distributed Algorithm for Sparse Semidefinite Programs 19

pre-specified tolerance, where

(P1)i =

∥∥∥BT

i Wi − bi

∥∥∥
2

+
∥∥∥max

(
C
T

i Wi − ci,0
)∥∥∥

2

1 + ‖ci‖2
(20a)

(P2)i=

∥∥∥
∑
j∈N [i] D

T

i,jWj−d(i)

∥∥∥
2
+
∥∥∥max

(∑
j∈N [i] E

T

i,jWj− e(i),0
)∥∥∥

2

1 +
∥∥d(i)

∥∥
2

(20b)

(P3)i,j =
‖Wi(Ii,j , Ii,j)−Wj(Ij,i, Ij,i)‖F

1 + ‖Wi(Ii,j , Ii,j)‖F + ‖Wj(Ij,i, Ij,i)‖F
(20c)

(D1)i =
‖−Bsum

i −Csum
i −Dsum

i −Esum
i + Ri −Hsum

i −Ai‖F
1 + ‖Ai‖1

(20d)

(D2)i,k =

∥∥xi,k − x(k)

∥∥
2

1 + ‖xi,k‖2 +
∥∥x(k)

∥∥
2

∀k ∈ N [i] (20e)

(D3)i,k =

∥∥yi,k − y(k)

∥∥
2

1 + ‖yi,k‖2 +
∥∥y(k)

∥∥
2

∀k ∈ N [i] (20f)

(D4)i,k =

∥∥Hi,k −H(i,k)�

∥∥
F

1 + ‖Hi,k‖F +
∥∥H(i,k)�

∥∥
F

∀k ∈ N(i) (20g)

(D5)i =
‖vi − zi‖2

1 + ‖vi‖2 + ‖zi‖2
(20h)

Gap=

∣∣∣
∑
i∈V

(
bTi ui+cTi vi+dT(i)x(i)+eT(i)y(i)− tr (AiWi)

)∣∣∣

1+
∣∣∣
∑
i∈V

(
bTi ui+cTi vi+dT(i)x(i)+eT(i)y(i)

)∣∣∣+
∣∣∑

i∈V tr (AiWi)
∣∣

(20i)

for every i ∈ V and (i, j) ∈ E+, where

– the letters P and D refer to the primal and dual infeasibilities, respectively.
– Wi is the vectorized version of Wi obtained by stacking the columns of

Wi one under another to create a column vector.
– Bi and Ci are matrices whose columns are the vectorized versions of Bi

j

and Ci
j for j = 1, . . . , pi and j = 1, . . . , qi, respectively.

– Di,j and Ei,j are matrices whose columns are the vectorized versions of

Di,j
k and Ei,j

k for k = 1, . . . , ri and k = 1, . . . , si, respectively.

The stopping criteria in (20) are based on the primal and dual infeasibilities
as well as the duality gap.

5 Simulations Results

The objective of this section is to elucidate the results developed earlier on
randomly generated large-scale structured SDP problems. The algorithm was
implemented in a C++ code. Unless otherwise stated, the simulations were

20 Abdulrahman Kalbat, Javad Lavaei

1

2 · · · n3

1 2 · · · n1 2 · · · n

1 2 · · · n

(a) Block Diagonal (b) Overlapping Cliques

(c) Ring (d) Star

Fig. 6: The structures that are used for the simulations

run on a laptop with an Intel Core i7 quad-core 2.5 GHz CPU and 16 GB
RAM.

For every i ∈ V, we generate a random instance of the problem as follows:

– Each matrix Ai is chosen as Ω + ΩT + niI, where the entries of Ω are
uniformly chosen from the integer set {1, 2, 3, 4, 5}.

– Each matrix Bj(or Cj) is chosen as Ω+ΩT , where Ω is generated as before.
In all simulations, the coupling constraints were ignored, ri = si = 0, and
so the matrices Di,j and Ei,j were not created.

– Each matrix variable Wi is assumed to be 40 by 40.
– For every two overlapping matrices Wi and Wj , only 25% of their entries

overlap, leading to a 10× 10 submatrix.

In order to show how general the algorithm is in handling different struc-
tures, the simulations were run over the following four overlapping structures
shown in Figure 6:

– Block Diagonal: this is represented by the edgeless graph V = {1, · · · , n}
and |E| = φ, as shown in Figure 6(a). This is equivalent to solving for n
independent centralized SDPs for the matrices W1, ...,Wn without any
overlap among them.

– Overlapping Cliques: this is represented by the path graph V = {1, · · · , n}
and E = {(1, 2), (2, 3), · · · , (n − 1, n)}, as shown in Figure 6(b). This is
equivalent to Wi’s that are submatrices of a full-scale matrix variable W
in the form of Figure 3 but with n overlapping blocks.

– Ring: this is similar to the overlapping cliques structure only with the
addition of an overlap between W1 and Wn that creates a loop, as shown
in Figure 6(c).

– Star: this is represented by a graph in which a central node is connected
to all other nodes, as shown in Figure 6(d).

In order to demonstrate the proposed algorithm on large-scale SDPs, three
different values will be considered for the total number of blocks (or agents):

A Fast Distributed Algorithm for Sparse Semidefinite Programs 21

1000, 2000 and 4000 in case of the block diagonal, overlapping cliques and ring
structures and 1000, 2000 and 2500 agents in case of the star structure. To
give the reader a sense of how large the simulated SDPs are, the total number
of entries of Wi’s in the decomposed SDP problem (NDecomp) and the total
number of entries of W in the corresponding full-SDP problem (NFull) are
listed below:

– 1000 agents: NFull = 0.9 billion, NDecomp = 1.6 million
– 2000 agents: NFull = 3.6 billion, NDecomp = 3.2 million
– 2500 agents: NFull = 5.6 billion, NDecomp = 4 million
– 4000 agents: NFull = 14.4 billion, NDecomp = 6.4 million

The simulation results for each of the structures in Figure 6 are provided in
Table 1, Table 2, Table 3 and Table 4, respectively, with the following entries:
Pobj and Dobj are the primal and dual objective values, “iter” denotes the
number of iterations needed to achieve a desired tolerance, tCPU and titer are
the total CPU time (in minutes) and the time per iteration (in seconds per
iteration), and “Optimality” (in percentage) is calculated as:

Optimality Degree (%) = 100− Pobj −Dobj

Pobj
× 100

As shown in the tables, the simulations were run for three cases (except
for the star case that was not run for the case of pi = 5 and qi = 5):

– pi = 5 and qi = 0: each agent has 5 local equality constraints and no local
inequality constraints.

– pi = 0 and qi = 5: each agent has no local equality constraints and 5 local
inequality constraints.

– pi = 5 and qi = 5: each agent has 5 local equality constraints and 5 local
inequality constraints.

All solutions reported in the tables are based on the tolerance of 10−3

and an optimality degree of at least 99%. Note that the time per iteration is
between 0.117 and 1.398 in a C++ implementation. Efficient and computa-
tionally cheap preconditioning methods could dramatically reduce the number
of iterations, but this is outside the scope of this work.

In Table 5, a problem with 8000 overlapping cliques is simulated using an
Amazon EC2 instance with 36 cores and 60 GB RAM. This problem corre-
sponds to NFull = 57.6 billion and NDecomp = 12.8 million. For the case pi = 5
and qi = 5, the final result was found in 19.539 minutes with an optimality
degree of 99.9997%.

The aggregative residue V t for all of the previous simulations are plotted in
Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11. The aggregative residue
is a monotonically decreasing function for all of the cases.

In order to evaluate the speedup gained from increasing the number of
cores, the same instance of the random SDP with 4000 overlapping cliques
and pi = 5 and qi = 5 (shown in Table 2) was run on Amazon EC2. While the
result was found in 31.404 minutes on a laptop with 4 cores, it was found in

22 Abdulrahman Kalbat, Javad Lavaei

Cases 1000 2000 4000

Pobj 4.456450e+05 8.865502e+05 1.772719e+06
Dobj 4.456330e+05 8.865390e+05 1.772702e+06

pi = 5 iter 365 435 512
qi = 0 tCPU (min) 0.714 1.741 3.980

titer (sec per iter) 0.117 0.240 0.466
Optimality 99.997% 99.998% 99.99904%

Pobj 6.755040e+05 1.341025e+06 2.697884e+06
Dobj 6.755032e+05 1.341018e+06 2.697884e+06

pi = 0 iter 2365 3426 5640
qi = 5 tCPU (min) 4.720 14.008 48.204

titer (sec per iter) 0.119 0.245 0.513
Optimality 99.9998% 99.9994% 99.99999%

Pobj 1.002835e+06 1.990340e+06 3.985788e+06
Dobj 1.002835e+06 1.990339e+06 3.985784e+06

pi = 5 iter 2614 2476 2457
qi = 5 tCPU (min) 5.662 668.84 22.136

titer (sec per iter) 0.130 0.270 0.541
Optimality 99.99999% 99.99994% 99.9998%

Table 1: Simulation results for the block diagonal structure for three cases
with 1000, 2000 and 4000 agents.

Cases 1000 2000 4000

Pobj 4.931567e+05 9.826826e+05 1.965131e+06
Dobj 4.930689e+05 9.825347e+05 1.964877e+06

pi = 5 iter 250 276 295
qi = 0 tCPU (min) 0.752 1.705 3.693

titer (sec per iter) 0.180 0.371 0.751
Optimality 99.98% 99.98% 99.98%

Pobj 8.149802e+05 1.610153e+06 3.247932e+06
Dobj 8.149710e+05 1.610142e+06 3.247909e+06

pi = 0 iter 1013 1070 1289
qi = 5 tCPU (min) 3.177 7.047 18.397

titer (sec per iter) 0.188 0.395 0.856
Optimality 99.998% 99.9993% 99.9992%

Pobj 1.193110e+06 2.366842e+06 4.744581e+06
Dobj 1.193106e+06 2.366835e+06 4.744566e+06

pi = 5 iter 2202 2364 2353
qi = 5 tCPU (min) 7.702 15.738 31.404

titer (sec per iter) 0.210 0.399 0.801
Optimality 99.9996% 99.9997% 99.9996%

Table 2: Simulation results for the overlapping cliques structure for three cases
with 1000, 2000 and 4000 agents.

8.09 minutes using Amazon EC2 instance with 36 cores, accounting for a 3.88
folds speedup.

6 Distribution of Computational Load

The main objective of this section is to study some challenges that are expected
in the presence of agents that are overlapping with many other agents (i.e.,
high-degree nodes). The following are the challenges, which are also true for
the case of the star structure simulated in Section 5:

A Fast Distributed Algorithm for Sparse Semidefinite Programs 23

Cases 1000 2000 4000

Pobj 4.932126e+05 9.827618e+05 1.965181e+06
Dobj 4.931227e+05 9.826132e+05 1.964928e+06

pi = 5 iter 250 276 295
qi = 0 tCPU (min) 0.778 1.732 3.759

titer (sec per iter) 0.187 0.376 0.765
Optimality 99.98% 99.98% 99.98%

Pobj 8.151984e+05 1.610285e+06 3.247959e+06
Dobj 8.151880e+05 1.610273e+06 3.247935e+06

pi = 0 iter 1013 1070 1289
qi = 5 tCPU (min) 3.192 6.963 20.197

titer (sec per iter) 0.189 0.390 0.940
Optimality 99.998% 99.9992% 99.9992%

Pobj 1.193391e+06 2.367079e+06 4.744821e+06
Dobj 1.193387e+06 2.367072e+06 4.744806e+06

pi = 5 iter 2202 2364 2353
qi = 5 tCPU (min) 7.551 18.378 37.093

titer (sec per iter) 0.206 0.466 0.946
Optimality 99.9996% 99.9997% 99.9996%

Table 3: Simulation results for the ring structure for three cases with 1000,
2000 and 4000 agents.

Cases 1000 2000 2500

Pobj 4.991551e+05 9.948218e+05 1.240980e+06
Dobj 4.981595e+05 9.928398e+05 1.239480e+06

pi = 5 iter 760 726 810
qi = 0 tCPU (min) 4.645 11.961 18.872

titer (sec per iter) 0.367 0.988 1.398
Optimality 99.8% 99.8% 99.8%

Pobj 8.333963e+05 1.653198e+06 2.070485e+06
Dobj 8.333382e+05 1.653117e+06 2.070437e+06

pi = 0 iter 1570 2063 2405
qi = 5 tCPU (min) 9.475 33.817 55.919

titer (sec per iter) 0.362 0.984 1.395
Optimality 99.993% 99.995% 99.997%

Table 4: Simulation results for the star structure for three cases with 1000,
2000 and 2500 agents.

pi = 5, qi = 0 pi = 0, qi = 5 pi = 5, qi = 5

Pobj 3.939822e+06 6.475070e+06 9.458764e+06
Dobj 3.939368e+06 6.475035e+06 9.458743e+06
iter 325 1264 2810

tCPU (min) 2.218 7.973 19.539
titer (sec per iter) 0.410 0.378 0.417

Optimality 99.98% 99.9994% 99.9997%

Table 5: Simulation results for the overlapping cliques structure for the case
with 8000 agents simulated using an Amazon EC2 instance with 36 cores and
60 GB RAM.

24 Abdulrahman Kalbat, Javad Lavaei

0 1000 2000 3000 4000 5000
Iterations

10
0

10
5

A
g

g
re

g
a

te
 R

e
s
id

u
e

n = 1000, p = 5, q = 0
n = 2000, p = 5, q = 0
n = 4000, p = 5, q = 0
n = 1000, p = 0, q = 5
n = 2000, p = 0, q = 5
n = 4000, p = 0, q = 5
n = 1000, p = 5, q = 5
n = 2000, p = 5, q = 5
n = 4000, p = 5, q = 5

Fig. 7: Aggregate residue for all cases of the block diagonal structure simulated
in Table 1

0 500 1000 1500 2000
Iterations

10
-2

10
0

10
2

10
4

10
6

10
8

A
g

g
re

g
a

te
 R

e
s
id

u
e

n = 1000, p = 5, q = 0
n = 2000, p = 5, q = 0
n = 4000, p = 5, q = 0
n = 1000, p = 0, q = 5
n = 2000, p = 0, q = 5
n = 4000, p = 0, q = 5
n = 1000, p = 5, q = 5
n = 2000, p = 5, q = 5
n = 4000, p = 5, q = 5

Fig. 8: Aggregate residue for all cases of the overlapping cliques structure
simulated in Table 2

– The computational load performed by high-degree nodes is higher than
what is performed by low-degree nodes, after considering comparable prob-
lem sizes at all nodes. This could be easily noticed from (17) since the more
neighbors a node has, the longer the time needed to perform the subprob-
lems involving the neighborhood sets N [i] and N(i).

– High-degree nodes need to solve large systems of linear equations, shown
in (17f), which could impose memory limitations.

A Fast Distributed Algorithm for Sparse Semidefinite Programs 25

0 500 1000 1500 2000
Iterations

10
-2

10
0

10
2

10
4

10
6

10
8

A
g

g
re

g
a

te
 R

e
s
id

u
e

n = 1000, p = 5, q = 0
n = 2000, p = 5, q = 0
n = 4000, p = 5, q = 0
n = 1000, p = 0, q = 5
n = 2000, p = 0, q = 5
n = 4000, p = 0, q = 5
n = 1000, p = 5, q = 5
n = 2000, p = 5, q = 5
n = 4000, p = 5, q = 5

Fig. 9: Aggregate residue for all cases of the ring structure simulated in Table 3

0 500 1000 1500 2000
Iterations

10
0

10
2

10
4

10
6

10
8

A
g

g
re

g
a

te
 R

e
s
id

u
e

n = 1000, p = 5, q = 0
n = 2000, p = 5, q = 0
n = 2500, p = 5, q = 0
n = 1000, p = 0, q = 5
n = 2000, p = 0, q = 5
n = 2500, p = 0, q = 5

Fig. 10: Aggregate residue for all cases of the star structure simulated in Table 4

– At each iteration of the algorithm, the time needed for the high-degree
nodes to complete their local computations is much higher than the time
needed by the other nodes. Since our algorithm is synchronous, this will
result in high idle times for the low-degree nodes.

For a better understanding of iteration, idle and busy times in a syn-
chronous algorithm, an example is given in Figure 12 for the case of n agents.
Below is a brief definition of each time after ignoring the time needed for
massage passing :

– Tbusy i(t): the time spent by agent i ∈ V at iteration t to complete the local
computation.

26 Abdulrahman Kalbat, Javad Lavaei

0 500 1000 1500 2000 2500
Iterations

10
0

10
2

10
4

10
6

10
8

A
g

g
re

g
a

te
 R

e
s
id

u
e

p = 5, q=5
p=5, q=0
p=0, q=5

Fig. 11: Aggregate residue for the case of 8000 overlapping cliques simulated
using Amazon EC2 for all cases shown in Table 5

!"
!"
!

!"
!"
!

!"!"! !"!"!

Fig. 12: An illustration of the difference between Tbusy i(t), Titer(t) and
Tidle i(t) for all i ∈ V and t = 1, 2, 3,

– Titer(t): the time spent by the slowest agent at iteration t to complete the
local computation (i.e. Titer(t) = max{Tbusy i(t) : i ∈ V}).

– Tidle i(t): the time spent by each agent i ∈ V at iteration t between com-
pleting its local computation and then waiting for the completion of the
computation at the slowest agent (i.e. Tidle i(t) = Titer(t)− Tbusy i(t)).

In what follows, we propose a method to distribute the computational
load to alleviate the previous issues. The main idea behind the method is
reducing the number of agents that are overlapping with the high-degree node.
The method starts by introducing new copies of the high-degree node. This
is equivalent to adding new nodes that are completely overlapping with the
high-degree node. Overlapping with the new copies of the high-degree node
is equivalent to directly overlapping with the high-degree node. Based on this

A Fast Distributed Algorithm for Sparse Semidefinite Programs 27

1

2 · · ·3

D1

D2 D3

I3,1I2,1

I1,2 , I1,3 , . . . I1,8

8

D8

I8,1

(a) Original graph G = (V, E)

1

2 3 4 5 6 7

· · ·

D1

D2 D3 D4 D5 D6 D7

I3,1I2,1 I4,1

I1,2 , . . . , I1,4

8

9 10

D8

I1,9 = {1, . . . , n1} I9,1 = I9,10 = I1,9

I5,9 = I5,1 I7,9 = I7,1 I8,10 = I8,1

I10,9 = I1,9

I10,8 = I1,8{I9,k = I1,k}k∈(5,6,7)

D10 = φD9 = φ

(b) Load-distributed graph Gd = (Vd, Ed)

Fig. 13: An example of an 8-node star structure is used to demonstrate the
distribution of the computational load of a node with a high degree. A thresh-
old of degree three is chosen in this example, where Figure (a) shows the
original Graph G = (V, E) and Figure (b) shows the load-distributed graph
Gd = (Vd, Ed).

equivalence, some of the nodes that are overlapping with the high-degree node
could be distributed to overlap with the new nodes.

For the convenience of the reader, we illustrate the method using the 8-
node star structure shown in Figure 13(a). With no loss of generality, the
coupling constraints (7e) and (7f) are ignored in this part. Define the set of
the data matrices, after ignoring the coupling constraints, at each agent as
Di = Ai,

{
Bi
j

}pi
j=1

,
{
Ci
j

}qi
j=1

and the overlapping indices as {Ii,k}k∈N(i). As

shown in Figure 13(b), the method starts by introducing new nodes 9 and 10
that are fully overlapping with node 1 whose computational load should be
distributed. The number of these additional agents is calculated by a threshold
that specifies the maximum number of agents that could be connected to the
high-degree node 1 and the new nodes 9 and 10. A threshold of three was
chosen in this example. While nodes 2, 3 and 4 could overlap with node 1,
the remaining nodes 5, 6, 7 and 8 could overlap with the new nodes 9 and 10

28 Abdulrahman Kalbat, Javad Lavaei

instead of overlapping with node 1. The overlapping indices I1,5, I1,6, I1,7 and
I1,8 should be transferred from node 1 to nodes 9 and 10. It should be noticed
that the data sets for the new agents 9 and 10 are empty sets (D9 = φ and
D10 = φ), which means that positive semidefiniteness constraint (7d) and the
consistency constraints (7g) are the only constraints available at these new
nodes.

After these modifications, the algorithm in (17) could be used without any
modifications to solve the newly defined problem and is equivalent to solving
the original problem (they both give the same final answer). By using this
method, the problem to be solved by the high-degree node is smaller and so
the memory limitation is overcome and a lower Normalized Average Idle Time
Tavg idle i(t) could be achieved for each agent, which is calculated as follows:

Tavg idle i(t) =

|iter|∑

t=1

(
Titer(t)− Tbusy i(t)

Titer(t)

)
× 1

|iter| ∀ i ∈ Vd

where |iter| is the number of iterations needed to achieve a desired tolerance
and Vd is the set of nodes in the new load-distributed graph. This represents
the average fraction per iteration in which the agent was idle. The lower this
value is, the better the time per iteration is.

We applied the above method to a 100-node star structure with node 1 in
the center. The average idle time per agent for different values of the threshold
is shown in Figure 14. The average idle time per agent is lower for most
threshold values, except in case of 90, than the case of not splitting the load.
Finding an optimal threshold choice for each agent would ensure a larger
decrease in the average idle time but this is outside the scope of this work. The
aggregative residue for different values of the threshold are plotted in Figure 15,
which is a monotonically decreasing function for all of the cases. The time
needed for the algorithm to terminate if implemented in a multi-machine and
single-machine setting at different threshold levels are plotted in Figures 16(a)
and 16(b), respectively. Mutli-machine time is calculated as an estimation
of the time needed for the algorithm to find a solution if implemented in a
multi-machine setting. It is simply equal to the summation of the time of the
slowest agent at each iteration (ignoring any communication time needed for
the message passing). Serial time is the time needed for the algorithm to find a
solution if run on a single machine. Both plots show that distributing the load
does not have a big effect on the total algorithm time for both implementations,
which is a promising result to solve the memory limitation issue.

7 Conclusion

In this paper, a fast and parallelizable algorithm is developed for an arbitrary
decomposable semidefinite program (SDP). To formulate a decomposable SDP,
we consider a multi-agent canonical form represented by a graph, where each
agent (node) is in charge of computing its corresponding positive semidefinite

A Fast Distributed Algorithm for Sparse Semidefinite Programs 29

0 50 100 150 200
Agents

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
liz

e
d
 A

v
e
ra

g
e
 I
d
le

 T
im

e
90
No splitting
80
70
60
40
50
30
1
20
10
2
3
5
4

Fig. 14: This graph shows the average idle time per agent for the case of the
star structure with 100 nodes and node 1 at the center. The computation time
is calculated for the case where there is no splitting as well as for different
values of the threshold level.

0 1000 2000 3000 4000 5000 6000
Iterations

10
0

10
2

10
4

10
6

A
g

g
re

g
a

te
 R

e
s
id

u
e

No splitting
90
80
70
60
50
40
30
20
10
5
4
3
2
1

Fig. 15: Aggregate residue for different values of the threshold for the case of
the star structure with 100 nodes and node 1 at the center

matrix. The main goal of each agent is to ensure that its matrix is optimal with
respect to some measure and satisfies local and coupling equality and inequal-
ity constraints. In addition, the matrices of two neighboring agents may be
subject to overlapping constraints. The objective function of the optimization
is the sum of all objectives of individual agents. The motivation behind this

30 Abdulrahman Kalbat, Javad Lavaei

0 20 40 60 80 100
Threshold

5

10

15

20

25

30

35

40

M
u
lt
i-
m

a
c
h
in

e
 T

im
e
 (

s
e

c
o

n
d
s
)

(a) Multi-machine Time at different thresh-
old levels

0 20 40 60 80 100
Threshold

0

500

1000

1500

2000

2500

3000

S
e

ri
a

l
T

im
e
 (

s
e

c
o

n
d

s
)

(b) Serial Time at different threshold levels

Fig. 16: The multi-machine and serial time for the case of a 100-agent star
structure with pi = 5 and qi = 0 at different threshold levels using a single
core: (a) multi-machine time at different threshold levels, (b) serial time at
different threshold levels.

formulation is that an arbitrary sparse SDP problem can be converted to a
decomposable SDP by means of the Chordal extension and matrix completion
theorems. Using the alternating direction method of multipliers, we develop
a distributed algorithm to solve the underlying SDP problem. At every iter-
ation, each agent performs simple computations (matrix multiplication and
eigenvalue decomposition) without having to solve any optimization subprob-
lem, and then communicates some information to its neighbors. By deriving
a Lyapunov-type non-increasing function, it is shown that the proposed al-
gorithm converges as long as Slater’s conditions hold. Simulations results on
large-scale SDP problems with a few million variables are offered to elucidate
the efficacy of the proposed technique. Finally, a method for distributing the
computational load for high-degree nodes was proposed.

Acknowledgements This work was supported by DARPA YFA, ONR YIP Award, AFOSR
YIP Award, NSF CAREER Award and NSF EECS Award 1406865.

References

1. Andersen, M.S., Vandenberghe, L., Dahl, J.: Linear matrix inequalities with chordal spar-
sity patterns and applications to robust quadratic optimization. In: Computer-Aided Con-
trol System Design (CACSD), 2010 IEEE International Symposium on. pp. 7-12. (2010)

2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Meth-
ods. Athena Scientific, (1997)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends R©in Machine Learning 3(1), 1-122 (2011).

4. Dall’Anese, E., Zhu, H., Giannakis, G.B.: Distributed optimal power flow for smart mi-
crogrids. Smart Grid, IEEE Transactions on 4(3), 1464-1475 (2013).

5. Eckstein, J., Yao, W.: Augmented Lagrangian and alternating direction methods for
convex optimization: A tutorial and some illustrative computational results. RUTCOR
Research Reports 32 (2012).

A Fast Distributed Algorithm for Sparse Semidefinite Programs 31

6. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting Sparsity in Semidefinite
Programming via Matrix Completion I: General Framework. SIAM Journal on Optimiza-
tion 11(3), 647-674 (2001).

7. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational prob-
lems via finite element approximation Computers and Mathematics with Applications
2(1), 17 - 40 (1976).

8. Giselsson, P., Boyd, S.: Diagonal scaling in Douglas-Rachford splitting and ADMM. 53rd
IEEE Conference on Decision and Control (2014).

9. Glowinski, R., Marroco, A.: Sur l’approximation, par lments finis d’ordre un, et la rso-
lution, par pnalisation-dualit d’une classe de problmes de Dirichlet non linaires. ESAIM:
Mathematical Modelling and Numerical Analysis - Modlisation Mathmatique et Analyse
Numrique 9(R2), 41-76 (1975).

10. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM) 42(6), 1115-1145 (1995).

11. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction op-
timization methods. SIAM Journal on Imaging Sciences 7(3), 1588-1623 (2014).

12. Grone, R., Johnson, C.R., S, E.M., Wolkowicz, H.: Positive definite completions of
partial Hermitian matrices. Linear algebra and its applications 58, 109-124 (1984).

13. He, B., Yuan, X.: On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating
Direction Method. SIAM Journal on Numerical Analysis 50(2), 700-709 (2012).

14. He, B., Yuan, X.: On non-ergodic convergence rate of Douglas-Rachford alternating
direction method of multipliers. Numerische Mathematik, 1-11 (2012).

15. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and
nonlinear matrix inequalities via positive semidefinite matrix completion. Mathematical
Programming 129(1), 33-68 (2011).

16. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Transac-
tions on Power Systems 27(1), 92-107 (2012).

17. Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via
integral quadratic constraints. arXiv preprint arXiv:1408.3595 (2014).

18. Madani, R., Fazelnia, G., Sojoudi, S., Lavaei, J.: Low-rank solutions of matrix inequali-
ties with applications to polynomial optimization and matrix completion problems. IEEE
Conference on Decision and Control (2014).

19. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Mathe-
matical Programming 95(2), 407-430 (2003).

20. Monteiro, R.D.C., Svaiter, B.F.: Iteration-Complexity of Block-Decomposition Algo-
rithms and the Alternating Direction Method of Multipliers. SIAM Journal on Optimiza-
tion 23(1), 475-507 (2013).

21. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in
semidefinite programming via matrix completion II: implementation and numerical results.
Mathematical Programming 95(2), 303-327 (2003).

22. Nesterov, Y.: A method of solving a convex programming problem with convergence
rate O(1/k2). Soviet Mathematics Doklady 27(2), 372-376 (1983).

23. Nishihara, R., Lessard, L., Recht, B., Packard, A., Jordan, M.I.: A general analysis of
the convergence of ADMM. arXiv preprint arXiv:1502.02009 (2015).

24. Sturm, J.F.: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software 11(1-4), 625-653 (1999).

25. Sun, Y., Andersen, M.S., Vandenberghe, L.: Decomposition in conic optimization with
partially separable structure. SIAM Journal on Optimization 24(2), 873-897 (2014).

26. Vandenberghe, L., Boyd, S.: Semidefinite Programming. SIAM Review 38, 49-95 (1994).
27. Wei, E., Ozdaglar, A.: On the O(1/k) Convergence of Asynchronous Distributed Alter-

nating Direction Method of Multipliers. ArXiv e-prints (2013).
28. Wen, Z.: First Order Methods for Semidefinite Programming. Graduate School of Arts

and Sciences, Columbia University (2009)
29. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods

for semidefinite programming. Mathematical Programming Computation 2(3-4), 203-230
(2010).

30. Zhu, H., Giannakis, G.: Power System Nonlinear State Estimation using Distributed
Semidefinite Programming. In: Selected Topics in Signal Processing, IEEE Journal of,
vol. PP. vol. 99, pp. 1-12. (2014)

