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Abstract—This paper is concerned with a fundamental re-
source allocation problem for electrical power networks. This
problem, named optimal power flow (OPF), is nonconvex due
to the nonlinearities imposed by the laws of physics, and has
been studied since 1962. We have recently shown that a convex
relaxation based on semidefinite programming (SDP) is able to
find a global solution of OPF for IEEE benchmark systems,
and moreover this technique is guaranteed to work over acyclic
(distribution) networks. The present work studies the potential of
the SDP relaxation for OPF over cyclic (transmission) networks.
Given an arbitrary weakly-cyclic network with cycles of size 3,
it is shown that the injection region is convex in the lossless case
and that the Pareto front of the injection region is convex in
the lossy case. It is also proved that the SDP relaxation of OPF
is exact for this type of network. Moreover, it is shown that if
the SDP relaxation is not exact for a general mesh network, it
would still have a low-rank solution whose rank depends on the
structure of the network. Finally, a heuristic method is proposed
to recover a rank-1 solution for the SDP relaxation whenever the
relaxation is not exact.

I. INTRODUCTION

The optimal power flow (OPF) problem is concerned with

finding an optimal operating point of a power system, which

minimizes a certain objective function (e.g., power loss or

generation cost) subject to network and physical constraints

[1], [2]. Due to the nonlinear interrelation among active power,

reactive power and voltage magnitude, OPF is described by

nonlinear equations and may have a nonconvex/disconnected

feasibility region [3]. Since 1962, the nonlinearity of the OPF

problem has been studied, and various heuristic and local-

search algorithms have been proposed [4], [5], [6].

The paper [7] proposes two methods for solving OPF: (i) to

use a convex relaxation based on semidefinite programming

(SDP), (ii) to solve the SDP-type Lagrangian dual of OPF.

That work shows that the SDP relaxation is exact if and

only if the duality gap is zero. More importantly, [7] makes

the observation that OPF has a zero duality gap for IEEE

benchmark systems with 14, 30, 57, 118 and 300 buses, in

addition to several randomly generated power networks. This

technique is the first method proposed since the introduction

of the OPF problem, which is able to find a provably global

solution for practical OPF problems. The SDP relaxation

for OPF has attracted much attention due to its ability to

find a global solution in polynomial time, and it has been

applied to various applications in power systems including:

voltage regulation in distribution systems [8], state estimation

[9], calculation of voltage stability margin [10], economic
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dispatch in unbalanced distribution networks [11], and power

management under time-varying conditions [12].

The paper [13] shows that the SDP relaxation is exact in

two cases: (i) for acyclic networks, (ii) for cyclic networks

after relaxing the angle constraints (similar result was derived

in [14] and [15] for acyclic networks). This exactness was

related to the passivity of transmission lines and transformers.

A question arises as to whether the SDP relaxation remains

exact for mesh (cyclic) networks (without any angle relax-

ations). To address this problem, the paper [16] shows that

the relaxation may not be exact even for a three-bus cyclic

network. Motivated by this negative result, we aim to explore

the limitations of the SDP relaxation for mesh networks.

In this work, we first consider the three-bus system studied

in [16] and prove that the SDP relaxation is exact if the OPF

problem is modeled properly. More precisely, we show that

there are four (almost) equivalent ways to model the capacity

of a power line but only one of these models gives rise

to the exactness of the SDP relaxation. We also prove that

the relaxation remains exact for weakly-cyclic networks with

cycles of size 3. Furthermore, we substantiate that this type of

network has a convex injection region in the lossless case and

a non-convex injection region with a convex Pareto front in

the lossy case. The importance of this result is that the SDP

relaxation works on certain cyclic networks, for example the

ones generated from three-bus subgraphs (this type of network

is related to three-phase systems).

In the case when the SDP relaxation does not work, an

upper bound is provided on the rank of the minimum-rank

solution of the SDP relaxation. This bound is related only to

the structure of the power network and this number is expected

to be very small for real-world power networks. Finally, a

heuristic method is proposed to enforce the SDP relaxation to

produce a rank-1 solution for general networks (by somehow

killing the undesirable eigenvalues of the low-rank solution).

Notations: R, R+, S
n
+ and H

n
+ denote the sets of real

numbers, positive real numbers, n × n positive semidefinite

symmetric matrices, and n × n positive semidefinite Hermi-

tian matrices, respectively. Re{M}, Im{M}, rank{M} and

trace{M} denote the real part, imaginary part, rank and trace

of a given scalar/matrix M , respectively. The notation M � 0
means that M is Hermitian and positive semidefinite. The

notation ∡x denotes the angle of a complex number x. The

notation “i” is reserved for the imaginary unit. The symbol

“*” represents the conjugate transpose operator. Given a matrix

W, its (l,m) entry is denoted as Wlm. The superscript (·)opt is

used to show the optimal value of an optimization parameter.



II. OPTIMAL POWER FLOW

Consider a power network with the set of buses N :=
{1, 2, ..., n}, the set of generator buses G ⊆ N and the set

of flow lines L ⊆ N ×N , where:

• A known constant-power load with the complex value

PDk
+QDk

i is connected to each bus k ∈ N .

• A generator with an unknown complex output PGk
+

QGk
i is connected to each bus k ∈ G.

• Each line (l,m) ∈ L of the network is modeled as an

admittance ylm (shunt elements are ignored with no loss

of generality).

The goal is to design the unknown outputs of all generators in

such a way that the load constraints are satisfied. This resource

allocation problem is called optimal power flow (OPF). To

formulate this problem, define:

• Vk: Unknown complex voltage at bus k ∈ N .

• Plm: Unknown active power transferred from bus l ∈ N
to the rest of the network through the line (l,m) ∈ L.

• Slm: Unknown complex power transferred from bus l ∈
N to the rest of the network through the line (l,m) ∈ L.

• fk(PGk
): Known convex function representing the gen-

eration cost for generator k ∈ G.

Define V, PG, QG, PD and QD as the vectors {Vk}k∈N ,

{PGk
}k∈G , {QGk

}k∈G , {PDk
}k∈N and {QDk

}k∈N , respec-

tively. Given the known vectors PD and QD, OPF minimizes

the total generation cost
∑

k∈G fk(PGk
) over the unknown

parameters V, PG and QG subject to the power balance

equations at all buses and some network constraints. To

simplify the formulation of OPF, with no loss of generality

assume that G = N . The mathematical formulation of OPF is

given in (1), where:

• (1a) and (1b) are the power balance equations accounting

for the conservation of energy at bus k.

• (1c), (1d) and (1e) restrict the active power, reactive

power and voltage magnitude at bus k, for the given limits

Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k .

• Each line of the network is subject to a capacity constraint

to be introduced later.

• N (k) denotes the set of all neighboring nodes of bus

k ∈ N .

A. Convex relaxation for optimal power flow

Regardless of the unspecified capacity constraint, the above

formulation of the OPF problem is non-convex due to the

nonlinear terms |Vk|’s and VkV
∗
l ’s. Since this problem is NP-

hard in the worst case, the paper [7] suggests solving a convex

relaxation of OPF. To this end, notice that the constraints of

OPF can all be expressed as linear functions of the entries

of the quadratic matrix VV∗. This implies that if the matrix

VV∗ is replaced by a new matrix variable W ∈ H
n, then

the constraints of OPF become convex in W. Since W

plays the role of VV∗, two constraints must be added to the

reformulated OPF problem in order to preserve the equivalence

of the two formulations: (i) W � 0, (ii) rank{W} = 1.

Observe that Constraint (ii) is the only non-convex constraint

of the reformulated OPF problem. Motivated by this fact,

the SDP relaxation of OPF is defined as the OPF problem

reformulated in terms of W under the additional constraint

W � 0, which is given in (2). If the SDP relaxation gives rise

to a rank-1 solution Wopt, then it is said that the relaxation

is exact. The exactness of the SDP relaxation is a desirable

property being sought, because it implies the equivalence of

the convex SDP relaxation and the non-convex OPF problem.

B. Four types of capacity constraints

In this part, the capacity constraint in the formulation of the

OPF problem given in (1) will be specified. Line flows are

restricted by thermal limits, stability limits and possibly more

constraints. Hence, each line (l,m) ∈ L must be associated

with a capacity constraint. This constraint can be defined in

terms of various quantities, including: (i) active flow Plm, (ii)

apparent power Slm, (iii) angle difference ∡Vl − ∡Vm, (iv)

voltage difference Vl − Vm, (v) line current. Notice that (iv)

and (v) are equivalent in the context of this work, because each

line has been modeled as a simple admittance and therefore

Vl − Vm is proportional to the line current. Hence, there are

at least four meaningful ways (i)-(iv) to impose a capacity

constraint on each line (l,m). These four types of constraints

are provided in equation (3) for given upper bounds θmax
lm =

θmax
ml , Pmax

lm = Pmax
ml , Smax

lm = Smax
ml and ∆V max

lm = ∆V max
ml ,

where θlm denotes the angle difference ∡Vl−∡Vm. Note that

θmax
lm is considered to be less than 90◦ in this work due to the

current practice in power networks.

The capacity constraints given in (3) can all be cast as con-

vex inequalities in W, leading to the reformulated constraints

in (4). Therefore, the SDP relaxation of OPF remains convex

after adding each of these capacity constraints. Since there are

at least four types of capacity constraints, a question arises as

to which one should be deployed in practice. To address this

problem, observe that:

• If |Vk| is equal to the nominal value 1 per unit for every

k ∈ N , then the capacity constraints (3a)-(3d) are all

equivalent. In other words, for any given θmax
lm , the three

other limits Pmax
lm , Smax

lm and ∆V max
lm can be chosen

in such a way that all four capacity constraints yield

the same feasible set for the pair (Vl, Vm) (this will be

demonstrated in the next subsection).

• For physically meaningful bounds V min
k and V max

k (close

to 1), the four capacity constraints in (3) are “approxi-

mately” equivalent. In particular, if one of the bounds

θmax
lm , Pmax

lm , Smax
lm and ∆V max

lm is given, the remaining

three bounds can be conservatively chosen in such a

way that three of the capacity constraints imply the last

constraint.

The above discussion sheds light on the fact that although

there are at least four ways to limit a line flow, these methods

are more or less equivalent. Nevertheless, the corresponding

constraints in (4) are not necessarily the same in the SDP

relaxation of OPF. In fact, this paper aims to show that these

capacity constraints behave very differently in the SDP relax-



OPF Problem SDP Relaxation of OPF

Minimize
∑

k∈G

fk(PGk
) over PG, QG, V Minimize

∑

k∈G

fk(PGk
) over PG, QG, W ∈ H

n
+

Subject to:

1- A capacity constraint for each line (l,m) ∈ L

2- The following constraints for each bus k ∈ N :

Subject to:

1- A convexified capacity constraint for each line

2- The following constraints for each bus k ∈ N :

PGk
− PDk

=
∑

l∈N (k)

Re {Vk(V
∗
k − V ∗

l )y
∗
kl} (1a)

QGk
−QDk

=
∑

l∈N (k)

Im {Vk(V
∗
k − V ∗

l )y
∗
kl} (1b)

Pmin
k ≤ PGk

≤ Pmax
k (1c)

Qmin
k ≤ QGk

≤ Qmax
k (1d)

V min
k ≤ |Vk| ≤ V max

k (1e)

PGk
− PDk

=
∑

l∈N (k)

Re {(Wkk −Wkl)y
∗
kl} (2a)

QGk
−QDk

=
∑

l∈N (k)

Im {(Wkk −Wkl)y
∗
kl} (2b)

Pmin
k ≤ PGk

≤ Pmax
k (2c)

Qmin
k ≤ QGk

≤ Qmax
k (2d)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (2e)

Capacity constraint for line (l,m) ∈ L Convexified capacity constraint for line (l,m) ∈ L

|θlm| = |∡Vl − ∡Vm| ≤ θmax
lm (3a)

|Plm| = |Re {Vl(V
∗
l − V ∗

m)y∗lm}| ≤ Pmax
lm (3b)

|Slm| = |Vl(V
∗
l − V ∗

m)y∗lm| ≤ Smax
lm (3c)

|Vl − Vm| ≤ ∆V max
lm (3d)

Im{Wlm} ≤ Re{Wlm} tan(θmax
lm ) (4a)

Re{(Wll −Wlm)y∗lm} ≤ Pmax
lm (4b)

|(Wll −Wlm)y∗lm|2 ≤ (Smax
lm )

2
(4c)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )

2
(4d)

ation (i.e., after removing the rank constraint rank{W} = 1).

This surprising result will be elaborated in the next subsection.

C. SDP relaxation for a three-bus network

It has been shown in [16] that the SDP relaxation is not

exact for a specific three-bus power network with a triangular

topology, provided one line has a very limited capacity. The

capacity constraint in [16] has been formulated with respect

to apparent power. It is imperative to study the interesting

observation made in [16] because if the SDP relaxation cannot

handle very simple cyclic networks, its application to mesh

networks would be questionable. The result of [16] implies

that the SDP relaxation is not necessarily exact for cyclic

networks if the capacity constraint (3c) is employed. The

high-level objective of this part is to make the surprising

observation that the SDP relaxation becomes exact if the

capacity constraint (3d) is used instead (this result will be

proved later in the paper). To this end, we explore a scenario

for which all four types of capacity constraints provided in

(3) are equivalent but their convexified counterparts behave

very differently. The goal is to show that the SDP relaxation

is always exact only for one of these capacity constraints.

Consider the three-bus system depicted in Figure 1(a),

which has been adopted from [16]. The parameters of this

cyclic network are provided in Table I. Assume that lines (1, 2)
and (2, 3) have very high capacities, i.e.,

θmax
12 = Pmax

12 = Smax
12 = ∆V max

12 = ∞, (5a)

θmax
23 = Pmax

23 = Smax
23 = ∆V max

23 = ∞, (5b)

while line (1, 3) has a very limited capacity. Since there are

four ways to limit the flow over this line, we study four

problems, each using only one of the capacity constraints given

in (3). To this end, given an angle α belonging to the interval

[0, 90◦], consider the following limits for these four problems:

Problem A : θmax
13 = α (6a)

Problem B : Pmax
13 = Re{(1− eαi)y∗13} (6b)

Problem C : Smax
13 = |(1 − eαi)y∗13| (6c)

Problem D : ∆V max
13 =

√

2 (1− cos(α)) (6d)

It is straightforward to verify that Problems A-D are equivalent

due to the fact that they all lead to the same feasible set for

the pair (V1, V3). After removing the rank constraint from the

OPF problem, these four problems become very distinct. To

illustrate this property, we solve four relaxed SDP problems
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Fig. 1: (a) Three-bus system studied in Section II-C ; (b) Optimal objective value of the SDP relaxation for Problems A-D.

for the network depicted in Figure 1(a), corresponding to

the equivalent Problems A-D. Figure 1(b) plots the optimal

objective value of each of the four SDP relaxations as a

function of α over the period α ∈ [0, 30◦]. Let f∗(α)
denote the solution of the original OPF problem. Each of the

curves in Figure 1(b) is theoretically a lower bound on the

function f∗(α) in light of removing the non-convex constraint

rank{W} = 1. A few observations can be made here:

• The SDP relaxation for Problem D yields a rank-1

solution for all values of α. Hence, the curve drawn

in Figure 1(b) associated with Problem D represents the

function f∗(α), leading to the true solution of OPF.

• The curves for the SDP relaxations of Problems A-C do

not overlap with f∗(α) if α ∈ (0, 7◦). Moreover, the gap

between these curves and the function f∗(α) is significant

for certain values of α.

In summary, three types of capacity constraints make the SDP

relaxation inexact in general, while the last type of capacity

constraint makes the SDP relaxation always exact. It should

be mentioned that the current practice in power systems is to

use either Problem B or Problem C, but this example signifies

that Problem D is the only one making the SDP relaxation a

successful technique.

Based on the methodology developed in [7] and [13], the

above result can be interpreted in terms of the duality gap

for OPF: there are four equivalent non-convex formulations of

the OPF problem with the property that three of them have a

nonzero duality gap in general while the last one always has

a zero duality gap.

The conclusion is that the capacity constraint for mesh net-

works should be formulated in terms of voltage difference as

opposed to active power, apparent power or angle difference.

III. INJECTION REGION FOR WEAKLY-CYCLIC NETWORKS

A power network under operation has a pair of flows

(Plm, Pml) over each line (l,m) ∈ L and a net injection Pk at

each bus k ∈ N , where Pk is indeed equal to PGk
−PDk

. This

means that two vectors can be attributed to the network: (i)

injection vector P = [ P1 P2 · · · Pn ], (ii) flow vector F =
[Plm| (l,m) ∈ L]. Due to the relation Pk =

∑

l∈N (k) Pkl,

there exists a matrix M such that P =M × F.

f1(PG1
) , 0.11P 2

G1
+ 5.0PG1

f2(PG2
) , 0.085P 2

G2
+ 1.2PG2

f3(PG3
) , 0

Z23 = 0.025 + 0.750i, SD1
= 110 MW

Z31 = 0.065 + 0.620i, SD2
= 110 MW

Z12 = 0.042 + 0.900i, SD3
= 95 MW

V min

k
= V max

k
= 1 for k = 1, 2, 3

(Qmin

k
, Qmax

k
) = (−∞,∞) for k = 1, 2, 3

(Pmin

k
, Pmax

k
) = (−∞,∞) for k = 1, 2

Pmin

3 = Pmax

3 = 0

TABLE I: Parameters of the three-bus system drawn in Fig-

ure 1(a) with the base value 100 MVA.

In order to understand the computational complexity of

OPF, it is beneficial to explore the feasible set for the injection

vector. To this end, two notions of flow region and injection

region will be defined in line with [17].
Definition 1: Define the flow region F as the set of all flow

vectors F = [Plm | (l,m) ∈ L] for which there exists a voltage

phasors vector [ V1 V2 · · · Vn ] such that

Plm = Re {Vl(V
∗
l − V ∗

m)y∗lm} , (l,m) ∈ L (7a)

|Vl − Vm| ≤ ∆V max
lm , (l,m) ∈ L (7b)

V min
k ≤ |Vk| ≤ V max

k , k ∈ N (7c)

Define also the injection region P as M · F .
The above definition of the flow and injection regions

captures the laws of physics, capacity constraints and voltage

constraints. One can make this definition more comprehensive

by incorporating reactive-power constraints.
Definition 2: Define the convexified flow region Fc as the

set of all flow vectors F = [Plm | (l,m) ∈ L] for which there

exists a matrix W ∈ H
n
+ such that

Plm = Re {(Wll −Wlm)y∗lm} (8a)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )

2
(8b)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (8c)

for every (l,m) ∈ L and k ∈ N . Define also the convexified

injection region Pc as M · Fc.
It is straightforward to verify that P ⊆ Pc and F ⊆ Fc.



(a) (b)

Fig. 2: (a) The reduced flow region Fr for a three-bus mesh

network; (b) The injection region P for a three-bus mesh

network.

A. Lossless cycles

A lossless network has the property that Plm+Pml = 0 for

every (l,m) ∈ L, or alternatively Re{ylm} = 0. Since real-

world transmission networks are very close to being lossless,

we study lossless mesh networks here. The flow region F has

been defined in terms of two flows Plm and Pml for each

line (l,m) ∈ L. Due to the relation Pml = −Plm for lossless

networks, one can define a reduced flow region Fr based on

one flow Plm for each line (l,m).

The reduced flow region Fr has been plotted in Figure 2(a)

for a cyclic three-bus network, where V min
k = V max

k for

k = 1, 2, 3 and the capacity limits are chosen arbitrarily. This

feasible set is a non-convex 2-dimensional curvy surface in

R
3. The corresponding injection region P can be obtained by

applying an appropriate linear transformation to Fr. Surpris-

ingly, this set becomes convex, as depicted in Figure 2(b).

More precisely, it can be shown that P = Pc in this case. The

goal of this part is to investigate the convexity of P for a single

cycle. The results will be generalized in the next subsection.

Assume for now that the power network is composed of a

single cycle with the links (1, 2), . . . , (n− 1, n), (n, 1).

Theorem 1: Consider a lossless n-bus cycle with n ≥ 3.

The reduced flow region Fr is non-convex in the special case

V min
k = V max

k , k = 1, 2, ..., n.

Proof: The reduced flow region Fr consists of all vectors

of the form (α1 sin(θ12), α2 sin(θ23), . . . αn sin(θn1)), where

θ12+θ23+ · · ·+θn1 = 0 and αk = |Vk||Vk+1|Im{y∗k,k+1} for

k ∈ N . Therefore, Fr can be characterized in terms of n− 1
independent angle differences θ12, ..., θ(n−1),n. This implies

that Fr is an (n − 1)-dimensional surface embedded in R
n.

On the other hand, this region cannot be embedded in R
n−1

due to its non-zero curvature. Thus, Fr cannot be a convex

subset of Rn. �

Since V min
k ≃ V max

k in practice, it follows from Theorem 1

that the reduced flow region is expected to be non-convex

under a normal operation.

Theorem 2: Consider a lossless n-bus cycle. The following

statements hold:

a) For n = 2 and n = 3, the injection region P is convex

and in particular P = Pc.

b) For n ≥ 5, the injection region P is non-convex in the

special case

V min
k = V max

k = V max, k ∈ N

∆V max
lm = ∆V max, (l,m) ∈ L

(9)

for arbitrary numbers V max and ∆V max.

Proof of Part (a): The proof is trivial for n = 2, hence only

the case n = 3 will be studied here. Consider an arbitrary

injection vector (P̄1, P̄2, P̄3) belonging to the convexified

injection region Pc. In order to prove Part (a), it suffices to

show that (P̄1, P̄2, P̄3) is contained in P . Alternatively, it is

enough to prove that the feasibility problem

P̄k =
∑

l∈N (k)

Re {(Wkk −Wkl)y
∗
kl} , k ∈ N (10a)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )2 , (l,m) ∈ L

(10b)

(V min
k )2 ≤Wkk ≤ (V max

k )2, k ∈ N (10c)

W � 0 (10d)

has a rank-1 solution W. To this end, we convert the above

feasibility problem to an optimization by adding the objective

function

min
W∈Hn

−
∑

(l,m)∈L

Re{Wlm} (11)

to this problem. Let νk ∈ R, ψlm ∈ R+, µ
k
∈ R+, µk ∈ R+,

and A ∈ H
3
+ denote the Lagrange multipliers corresponding to

the constraints (10a), (10b), lower bound (10c), upper bound

(10c), and (10d), respectively. It can be shown that

Alm = −1− ψlm − ψml −
νly

∗
lm + νmylm

2
(12)

for every (l,m) ∈ L. Moreover, the complementary slackness

condition yields that trace{WoptAopt} = 0 at optimality. To

prove that Wopt has rank 1, it suffices to show that Aopt has

rank 2. To prove the later statement by contradiction, assume

that Aopt has rank 1. Therefore, the following relation must

hold:

∡A12 + ∡A23 + ∡A31 = 0 (13)

On the other hand, it can be concluded from (12) that

Re{A12},Re{A23},Re{A31} < 0 (14a)

Im{A12}

|y∗12|
+

Im{A23}

|y∗23|
+

Im{A31}

|y∗31|
= 0 (14b)

If A12, A23 and A31 are regarded as three vectors in R
3, it is

easy to verity that since these vectors need to satisfy (14), the

angle relation (13) does no hold. This contradiction completes

the proof for Part (a).

Sketch of Proof for Part (b): Define

θmax = cos−1

(

1−
(∆V max)2

2

)

(15)

As pointed out in the proof of Theorem 1, the re-

duced flow region Fr contains all vectors of the form

(α1 sin(θ12), α2 sin(θ23), . . . αn sin(θn1)), where θ12 + θ23 +



. . . + θn1 = 0 and |θ12|, ..., |θn1| ≤ θmax. Four observations

can be made here:

i) The mapping from Fr to P is linear.

ii) The kernel of the map from Fr to P has dimension 1.

iii) Due to (i) and (ii), it can be proved that the restriction

of Fr to the angle θ12 = θmax and θn1 = −θmax is a

convex set whenever P is convex.

iv) The restriction of Fr to the angles θ12 = θmax and θn1 =
−θmax amounts to the reduced flow region for a single

cycle of size n − 2. In light of Theorem 1, this set is

nonconvex if n− 2 ≥ 3.

The proof of Part (b) follows from the above facts. �

B. Weakly-cyclic networks

In this part, the objective is to study the convexity of the

injection region for a class of mesh networks.

Definition 3: A graph (network) is called weakly cyclic if

every edge of the graph belongs to at most one cycle in the

graph.

Theorem 3: For a lossless weakly-cyclic network with cycles

of size 3, the injection region P is convex and in addition

P = Pc.

Proof: The proof has been omitted due to space restrictions. �

The injection region P is not necessarily convex for lossy

networks. For example, the set P corresponding to a three-

bus mesh network with nonzero loss is a curvy 2-dimensional

surface in R
3. The objective of this part is to show that the

front of this non-convex feasible set is convex in some sense.

To derive this result, we assume that the resistance of each line

of the network is nonnegative. This passivity assumption is

trivially met for overhead transmission lines and underground

cables.

Definition 4: Given a set A ⊆ R
n, define its Pareto front as

the set of all points (a1, ..., an) ∈ A for which there does not

exist a different point (b1, ..., bn) in A such that bi ≤ ai for

i = 1, ..., n.

Pareto front is an important subset of A because the

solution of an arbitrary optimization over A with an increasing

objective function must lie on the Pareto front of A.

Theorem 4: For a lossy weakly-cyclic network with cycles

of size 3, the injection region P and the convexified injection

region Pc share the same Pareto front.

Proof: Assume for now that the network is composed of a

single cycle. Along with the proof of Part (b) of Theorem 2,

it suffices to prove that Aopt has rank 2 as opposed to rank 1.

This property is guaranteed to hold if

∡A12 + ∡A23 + ∡A31 6= 0 (16)

where

Alm =−

(

1 + ψlm + ψml +Re{y∗lm}

(

νl + νm

2

))

− Im{y∗lm}

(

νl − νm

2

)

i, (l,m) ∈ L

In the case when ν1, ν2, ν3 ≥ 0, the relations given in (14)

hold, which make the equation (16) be satisfied. Hence, as long

as ν1, ν2, ν3 ≥ 0, the matrix A has rank 2 at optimality and

therefore Wopt becomes rank 1. It is straightforward to verify

that restricting ν1, ν2 and ν3 to be nonnegative corresponds

to focusing on the Pareto front of P as opposed to the entire

injection region. The above argument can be generalized to a

weakly-cyclic network with multiple cycles. �

IV. SDP RELAXATION FOR OPF

Consider the OPF problem (1) with the capacity con-

straint (3d). In this section, the SDP relaxation of this OPF

problem will be studied.

A. Exactness of SDP relaxation for weakly-cyclic networks

In this part, the exactness of the SDP relaxation will be

examined for weakly-cyclic networks.

Theorem 5: Consider the OPF problem (1) with the capacity

constraint (3d) for a weakly-cyclic network with cycles of size

3. The following statements hold:

a) The SDP relaxation is exact in the lossless case, provided

Qmin
k = −∞ for every k ∈ N .

b) The SDP relaxation is exact in the lossy case, provided

Pmin
k = Qmin

k = −∞ and Qmax
k = +∞ for every k ∈

N . �

Sketch of Proof: The proof consists of two steps:

• First, assume that the network is composed of a single

cycle. It is needed to prove that the rank of the Lagrangian

multiplier A associated with the constraint W � 0 has

rank 2. This can be carried out in line with the proof

of Part (a) of Theorem 2, which shows that the SDP

relaxation has a rank-1 solution Wopt.

• Second, consider a general weakly-cyclic network with

cycles of size 3. The proof of Theorem 3 can be deployed

to show that the SDP relaxation has a rank-1 solution

Wopt. �

B. Low-rank solution for SDP relaxation

The SDP relaxation is not always exact for general mesh

networks. A question arises as to whether the SDP relaxation

possesses a low-rank solution whenever it does not have a

rank-1 solution. This question will be addressed below.

Define η as the minimum number of vertices whose removal

from the power network eliminates all cycles of the graph. To

illustrate the definition of η, this number will be calculated for

a few types of graphs:

• η = 0 if the power network is acyclic.

• η = 1 if all cycles of the power network share a common

node (see Figure 3).

Theorem 6: Consider the OPF problem subject to the

capacity constraints (3a), (3b) and (3d) under the assumption

Pmin
k = Qmin

k = −∞ for every k ∈ N . If this problem

is feasible, then the relaxed OPF problem has a solution

(Wopt,P
opt
G ,Q

opt
G ) such that rank{Wopt} ≤ η + 1.

Proof: The proof is based on the minimum rank of a

graph [18] and the perturbation of the objective function of

OPF by ε ×
∑

(l,m)∈N×N Re{Wlm}. The details have been

omitted due to space restrictions. �



Fig. 3: The number η is equal to 1 for the above graph because

the removal of the single node 1 kills all loops of the graph.

The parameters η is typically a very small number, es-

pecially for planar graphs. Hence, it can be inferred from

Theorem 6 that the SDP relaxation has a low-rank solution

in practice, whose rank is mostly related to the structure of

the graph (e.g., being acyclic or weakly-cyclic) rather than the

number of its vertices. The importance of this result will later

be spelled out.

C. Approximate solution for OPF

As discussed in the preceding subsection, the SDP relax-

ation is expected to have a low-rank solution. This solution

may be used to find an approximate rank-1 solution. Another

technique is to enforce the SDP relaxation to kill the undesir-

able eigenvalues of the low-rank solution. To this end, notice

that the proofs of the important results of this paper were partly

based on the penalty term
∑

(l,m)∈L Re{Wlm}. Motivated by

this fact, we modify the SDP relaxation below.

Perturbed SDP relaxation: This optimization is obtained

from the SDP relaxation of the OPF problem by replacing its

objective function with

∑

k∈G

fk(PGk
)− ε

∑

(l,m)∈L

Re{Wlm} (17)

for a given positive number ε.

The perturbed SDP relaxation aims to increase the real part

of some entries of W with the hope of making this matrix

rank-1 at optimality. The efficacy of this idea will be demon-

strated in simulation results. Note that the recent literature of

compressed sensing might suggest adding a penalty term based

on the nuclear norm of W. However, this idea fails to work

for OPF because all feasible solutions of the SDP relaxation

have almost equal nuclear norms (recall that V min
k and V max

k

are close to each other for k = 1, ..., n).

V. SIMULATIONS

Example 1: Consider a ring network with 10 nodes and 10
links (1, 2), (2, 3), ..., (9, 10), (10, 1). Suppose that the nodes

4, 5, 6, 9 and 10 are generator buses while the remaining nodes

are load buses. Let the cost function fk(PGk
) be chosen as

ckPGk
, where

c4 = c5 = c10 = 1, c6 = c9 = 2

Consider also the line admittance values as

ylm = −i, ∀(l,m) ∈ {(1, 2), (3, 4), (4, 5), (10, 1)}

ylm = −2i, ∀(l,m) ∈ {(2, 3), (6, 7), (9, 10)}

y56 = −3i, y78 = −0.5i, y89 = −0.7i

Assume that the load values are equal to

PD1
= −16, PD2

= −14, PD3
= −18, PD7

= PD8
= −20

The goal is to solve an OPF problem minimizing the total

generation cost subject to the above load constraints and the

following network requirements:

• Voltage constraints: V min
k = 0.95 (per unit) and V max

k =
1.05 for every k ∈ N , where the base value is 100 MVA.

• Flow constraints: Θmax
lm = 14◦ for every (l,m) ∈ L.

• Generator constraints: PG9
must be less than or equal to

20 MW.

Solving the SDP relaxation for this network yields the optimal

cost $88, corresponding to the optimal outputs

PG4
= 17.8, PG5

= 32, PG6
= PG9

= 0, PG10
= 38.2

The obtained matrix Wopt has the following eigenvalues:

0.0132, 0.0146, 0.0381, 0.0694, 0.0896,

0.2134, 0.3167, 0.5424, 1.4405, 7.3939

Although the motivation behind using the SDP relaxation was

to hopefully obtain a rank-1 solution, the obtained matrix Wopt

is full rank with no zero eigenvalues. One may speculate

that the relaxation is inexact in this case. To explore this

issue, consider the perturbed SDP relaxation for a small

nonzero ǫ (say ǫ = 10−5). Solving this optimization leads

to the optimal cost $88, where its solution Wopt
ǫ has only

one nonzero eigenvalue (with value 10.5). The corresponding

optimal productions are as follows:

PG4
= 24.03, PG5

= 26.28, PG6
= PG9

= 0, PG10
= 37.69

Three conclusions can be made here:

• The SDP relaxation has a hidden rank-1 solution in the

sense that a numerical algorithm might produce another

solution of this optimization whose rank is high (rank 10

in this case).

• To find the hidden rank-1 solution of the SDP relaxation,

the perturbed SDP relaxation can be used.

• The SDP relaxation is exact, but this property may not be

easily detected from an optimal primal solution Wopt or

a dual matrix Aopt, unless a small perturbation is applied

to the objective function.

Example 2: Consider again the ring network studied in

Example 1, but with the following cost coefficients:

c4 = 10, c5 = 5, c6 = 6, c9 = 9, c10 = −3

In this case, the generator at Bus 10 is assumed to have a

decreasing cost function. There are various motivations for

considering a non-increasing cost function (other than techno-

logical constraints) such as the tendency to penetrate as much
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Fig. 4: The optimal cost for the perturbed SDP relaxation as

a function of ǫ for the network studied in Example 2.

renewable energy as possible. Solving the SDP relaxation for

this network yields the optimal cost $110.99, corresponding

to a rank-8 matrix Wopt with the nonzero eigenvalues:

0.0003, 0.0007, 0.0026, 0.0035,

0.0075, 0.0104, 0.4722, 9.5029

The associated optimal outputs of the generators at buses

4, 5, 6, 9 and 10 are:

PG4
= PG6

= PG9
= 0, PG5

= 46.87, PG10
= 41.13

Since it is not obvious whether or not the SDP relaxation

has a hidden rank-1 solution, we solve the perturbed SDP

relaxation for different values of ε. Define the optimal cost

f
opt
ε as the value of

∑

k∈G fk(PGk
) (and not

∑

k∈G fk(PGk
)−

ε
∑

(l,m)∈L Re{Wlm}) at optimality. Figure 4 depicts the op-

timal cost f
opt
ε for ε from 0 to 15. The following observations

can be made:

• The obtained numerical solution Wopt
ε has rank 2 for

every ε in the range [0, 5.03).
• The obtained numerical solution Wopt

ε has rank 1 for

every ε in the range [5.03, 15].
• The optimal cost f

opt
ε is fixed at the value $153.97 over

the relatively wide range [5.03, 11.59].
• The optimal cost f

opt
ε has the same value as the optimal

cost obtained for the original OPF problem by MAT-

POWER for every ε in the range [5.03, 11.59].

This means that whenever the SDP relaxation is inexact,

its non-trivial perturbation (for a relatively large value of ε)

may find a local solution (if not global) of the original OPF

problem.

VI. CONCLUSIONS

The optimal power flow (OPF) problem is a fundamental

optimization for power networks, which aims to optimize

the steady-state operating point of a power system. We have

recently shown that the semidefinite programming (SDP) can

be used to find a global solution of the OPF problem for IEEE

benchmark power systems. Although the exactness of the SDP

relaxation has been successfully proved for acyclic networks,

a recent work has witnessed the failure of this technique for

a three-bus cyclic network. Inspired by this observation, the

present paper is concerned with understanding the limitations

of the SDP relaxation for cyclic power networks. First, it is

shown that the injection region of a weakly-cyclic network

with cycles of size 3 is convex in the lossless case and has

a convex Pareto front in the lossy case. It is then proved that

the SDP relaxation works for this type of network. This result

implies that the failure of the SDP relaxation for a three-bus

network recently reported in the literature can be fixed using a

good modeling of the line capacity. As a more general result, it

is then shown that whenever the SDP relaxation does not work,

it would still have a low-rank solution in practice. Finally, a

heuristic technique is proposed to make the SDP relaxation

produce a rank-1 solution for general cyclic networks.
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