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Abstract—This work is concerned with solving non-convex
power optimization problems by introducing the concept of
“nonlinear optimization over graph”. To this end, the structure
of a given nonlinear real/complex optimization with quadratic
arguments is mapped into a generalized weighted graph, where
each edge is associated with a weight set constructed from the
known parameters of the optimization (e.g., the coefficients).
This generalized weighted graph captures both the sparsity of
the optimization and possible patterns in the coefficients. The
notion of “sign definite sets” is introduced for both real and
complex weight sets, and it is then shown that the polynomial-
time solvability of the optimization may be inferred from the
topology of its associated graph together with the sign definiteness
of its weight sets. As an application of this result, it is finally
proved that a broad class of optimization problems over power
networks are polynomial-time solvable via two convex relaxations
due to the passivity of transmission lines.

I. INTRODUCTION

Several classes of optimization problems, including poly-

nomial optimization and quadratically-constrained quadratic

program (QCQP) as a special case, are nonlinear/non-convex

and NP-hard in the worst case. Due to the complexity of

such problems, various convex relaxations based on semidefi-

nite programming (SDP) and second-order cone programming

(SOCP) have gained popularity [1]. These techniques enlarge

the possibly non-convex feasible set into a convex set charac-

terizable via convex functions, and then provide the exact or

a lower bound on the optimal objective value.

This paper is motivated by the fact that real-world optimiza-

tion problems are highly structured in many ways and their

structures could in principle help reduce the computational

complexity. For example, transmission lines and transformers

used in power networks are passive devices, and as a result

optimizations defined over electrical power networks have

certain structures which distinguish them from abstract op-

timizations with random coefficients. The high-level objective

is to understand how the computational complexity of a given

nonlinear optimization is related to its (hidden) structure. This

work is concerned with a broad class of nonlinear real/complex

optimization problems, including QCQP. The main feature of

this class is that the argument of each objective and constraint

function is quadratic (as opposed to linear) in the optimization

variable, and the goal is to use two conic relaxations (SDP and

SOCP) to convexify the argument of the optimization.

In this work, the structure of a given nonlinear real/complex

optimization is mapped into a generalized weighted graph,

where each edge is associated with a weight set constructed

from the known parameters of the optimization (e.g., the
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coefficients). This generalized weighted graph captures both

the sparsity of the optimization and possible patterns in the co-

efficients. Several conditions are derived, each of which guar-

antees the solvability of the real/complex-valued optimization

via either an SDP or an SOCP relaxation. These conditions

are in terms of some weak properties of the underlying graph

of the optimization, e.g., its topology and weight sets. The

notion of “sign-definite real/complex weight sets” introduced

in this work is central to the analysis of the weighted graph.

As an application, it is shown that power optimization prob-

lems naturally fit into the framework of nonlinear optimization

over graph and indeed the power network serves as the graph

of these optimizations. It is then proved that a broad class of

energy optimizations can be convexified due to the physics of

power networks. The results of this paper extend the recent

work on energy optimization [2], [3], [4], [5], [6], [7] and

general quadratic optimization [8], [9].

The plan of the paper is as follows. The concept of “non-

linear optimization over graph” is developed in Section II, and

is applied to power optimization problems in Section III. The

notations used throughout this paper will be provided below.

Notations: R, C, S
n, and H

n denote the sets of real

numbers, complex numbers, n × n symmetric matrices, and

n×n Hermitian matrices, respectively. Re{M}, Im{M}, MH ,

and Rank{M} denote the real part, imaginary part, conjugate

transpose, and rank of a given scalar/matrix M , respectively.

The notation M � 0 means that M is symmetric/Hermitian

and positive semidefinite. ](x) represents the phase of a

complex number x. The imaginary unit is denoted as “i”,

while “i” is used for indexing. Given an undirected graph G,

the notation i ∈ G means that i is a vertex of G. Moreover,

the notation (i, j) ∈ G means that (i, j) is an edge of G
and besides i < j. Given a number (vector) x, |x| denotes

its absolute value (2-norm).

II. NONLINEAR OPTIMIZATION OVER GRAPH

Consider an undirected graph G with n vertices (nodes),

where each edge (i, j) ∈ G has been assigned a nonzero edge

weight set {c
(1)
ij , c

(2)
ij , ..., c

(k)
ij } with k real/complex numbers

(note that the superscripts in the weights are not exponents).

This graph is called a generalized weighted graph as every

edge is associated with a set of weights as opposed to a single

weight. Consider an unknown vector x =
[

x1 · · ·xn

]

belonging to Dn, where D is either R or C. For every i ∈ G,

xi is a variable associated with node i of the graph G. Define:

y =
{

|xi|
2

∣

∣ ∀i ∈ G
}

,

z =
{

Re
{

c
(t)
ij xix

H
j

}
∣

∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}



The sets y and z can be regarded as two vectors, where

• y collects the quadratic terms |xi|
2’s (one term for each

vertex).

• z collects the cross terms Re{c
(t)
ij xix

H
j }’s (k terms for

each edge).

Although the above formulation deals with Re
{

c
(t)
ij xix

H
j

}

whenever (i, j) ∈ G, it can handle terms of the form

Re{αxjx
H
i } and Im{αxix

H
j } for a complex weight α. This

can be carried out using the transformations:

Re{αxjx
H
i } = Re{(αH)xix

H
j },

Im{αxix
H
j } = Re{(−αi)xix

H
j }

This section is concerned with the nonlinear optimization

min
x∈Dn

f0(y, z)

subject to fj(y, z) ≤ 0, j = 1, 2, ...,m
(1)

for given functions f0, ..., fm. Assume that fj(y, z) is an

increasing function with respect to all entries of z, for j =
0, ..., m. The computational complexity of the above optimiza-

tion depends in part on the structure of the functions fj ’s.

Regardless of these functions, Optimization (1) is intrinsically

hard to solve (NP-hard in the worst case) because y and z are

both nonlinear functions of x. The objective is to convexify the

second-order nonlinearity embedded in y and z. To this end,

notice that there exist two linear functions l1 : Cn×n → Rn

and l2 : Cn×n → Rkτ such that y = l1
(

xx
H

)

and

z = l2
(

xx
H

)

, where τ denotes the number of edges in

G. Motivated by the above observation, if xx
H is replaced

by a new matrix variable X, then y and z both become

linear in X. This implies that the non-convexity induced by

the quadratic terms Re{c
(t)
ij xixj}’s and |xi|’s all disappear if

Optimization (1) is reformulated in terms of X. However,

the optimal solution X may not be decomposable as xx
H

unless some additional constraints are imposed on X. It is

straightforward to verify that Optimization (1) is equivalent to

min
X

f0(l1(X), l2(X)) (2a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (2b)

X � 0, (2c)

Rank{X} = 1 (2d)

where there is an implicit constraint that X ∈ Sn if D = R and

X ∈ Hn if D = C. To reduce the computational complexity of

the above problem, two actions can be taken: (i) removing the

non-convex constraint (2d), and (ii) relaxing the convex, but

computationally-expensive, constraint (2c) to a set of simpler

constraints on certain low-order submatrices of X. Based

on this methodology, two relaxations will be proposed for

Optimization (1) next.

SDP relaxation: This optimization is defined as

min
X

f0(l1(X), l2(X)) (3a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (3b)

X � 0 (3c)
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Fig. 1. In Figure (a), there exists a line separating x’s (elements of T ) from
o’s (elements of −T ) so the set T is sign definite. In Figure (b), this is not

the case.

SOCP relaxation: This optimization is defined as

min
X

f0(l1(X), l2(X)) (4a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (4b)

X{(i, j)} � 0, ∀(i, j) ∈ G (4c)

where X{(i, j)} denotes a 2 × 2 submatrix of X in the

intersection of rows i, j and columns i, j of X.

The above SDP and SOCP relaxations are targeted at the

non-convexity caused by the nonlinear relationship between

x and (y, z). Note that these optimizations are convex re-

laxations only when the functions f0, ..., fm are convex. If

any of these functions is non-convex, additional relaxations

may be needed to convexify the SDP and SOCP optimiza-

tions. Define f∗, f∗
SDP, and f∗

SOCP as the optimal solutions of

Optimizations (2), (3), and (4), respectively. By comparing the

feasible sets of these optimizations, it can be concluded that

f∗
SOCP ≤ f∗

SDP ≤ f∗ (5)

Given a particular optimization of the form (1), if any of the

above inequalities for f∗ turns into an equality, the associated

relaxation would be able to find the solution of the original

optimization. In this case, it is said that the relaxation is “tight”

or “exact”. The objective is to relate the exactness of the

proposed relaxations to the topology of the graph G and some

properties of its weights sets {c
(1)
ij , c

(2)
ij , ..., c

(k)
ij }’s. This will

be carried out next via the nation of sign-definite sets.

Definition 1: A finite set T ⊂ R is said to be sign definite

with respect to R if its elements are either all negative or all

nonnegative. T is called negative if its elements are negative

and is called positive if its elements are nonnegative. A finite

set T ⊂ C is said to be sign definite with respect to C if

when the sets T and −T are mapped into two collections of

points in R2, then there exists a line separating the two sets

(the elements of the sets are allowed to lie on the line).

To illustrate Definition 1, consider a complex set T with

four elements, whose corresponding points are labeled as 1,

2, 3, and 4 in Figure 1(a). The points corresponding to −T are

labeled as 1’, 2’, 3’, and 4’ in the same picture. Since there

exists a line separating x’s (elements of T ) from o’s (elements

of −T ), the set T is sign definite. In contrast, if the elements

of T are distributed according to Figure 1(b), the set will no

longer be sign definite. Note that the definition of sign-definite

complex sets is inspired by the fact that a real set T is sign



definite with respect to R if T and −T are separable via a

point (on the horizontal axis).

Based on the notion of sign-definite weight sets, the exact-

ness of the SDP and SOCP relaxations will be studied in both

real and complex cases (see [10] for the proofs).

Real-valued case (D = R): Choose a set of cycles

O1, ....,Op of the graph G such that they form a cycle

basis, implying that every arbitrary cycle of the graph can be

obtained by a combination of these p basic cycles. The SOCP

and SDP relaxations are both tight, provided each weight set

{c
(1)
ij , ..., c

(k)
ij } is sign definite with respect to R and

∏

(i,j)∈Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p}

where σij shows the sign of the weight set associated with the

edge (i, j) ∈ G. This condition is naturally satisfied in three

special cases:

• G is acyclic with arbitrary sign definite edge sets.

• G is bipartite with positive weight sets.

• G is arbitrary with negative weight sets.

Complex-valued case (D = C): Assume that each edge

set {c
(1)
ij , ..., c

(k)
ij } is sign definite with respect to C. This

assumption is trivially met if k ≤ 2 or the weight set consists

of only real (or imaginary) numbers. The following statements

hold:

1) The SOCP and SDP relaxations are tight if G is acyclic.

3) The SDP relaxation is exact if G is bipartite and weakly

cyclic with positive or negative real weight sets (a graph

is called weakly cyclic if every edge of the graph belongs

to at most one cycle of the graph).

4) The SDP relaxation is exact if G is a weakly cyclic graph

with imaginary homogeneous weight sets.

In addition, if the graph G can be decomposed as a union

of edge-disjoint subgraphs in an acyclic way such that each

subgraph has one of the above three structural properties 1-3,

then the SDP relaxation is exact.

The aforementioned results still hold after two generaliza-

tions: (i) allowance of weight sets with different cardinalities,

and (ii) inclusion of linear terms (besides quadratic terms) into

the arguments of the functions f0, ..., fm.

III. APPLICATION IN POWER SYSTEMS

A majority of real-world optimizations are naturally ‘opti-

mization over graph”, meaning that the optimization is defined

over the graph characterizing a physical system. For example,

optimizations in circuits, antenna systems, and communication

networks can easily be regarded as “optimization over graph”.

Then, the question of interest is: how does the computational

complexity of an optimization relate to the structure of the sys-

tem over which the optimization is performed? This question

will be explored here in the context of AC electrical power

grids (DC power systems can be treated similarly). Assume

that the graph G corresponds to an AC power network, where:

• The power network has n nodes.
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Fig. 2. An example of a power system studied in Section III.

• For every (i, j) ∈ G, nodes i and j are connected to each

other in the power network via a transmission line with

the impedance gij + biji (shunt elements are ignored to

streamline the presentation).

• Each node i ∈ G of the network is connected to an

external device, which exchanges electrical power with

the power network.

Figure 2 exemplifies a sample power network in which two

external devices generate power while the remaining ones

consume power. Each line (i, j) ∈ G is associated with four

power flows:

• pij: Active power entering the line from node i

• pji: Active power entering the line from node j

• qij: Reactive power entering the line from node i

• qji: Reactive power entering the line from node j

Note that pij+pji and qij+qji represent the active and reactive

losses incurred in the line. Let xi denote the complex voltage

(phasor) for node i ∈ G. One can write:

pij(x) = Re

{

xi(xi − xj)
H 1

gij − biji

}

,

pji(x) = Re

{

xj(xj − xi)
H 1

gij − biji

}

,

qij(x) = Im

{

xi(xi − xj)
H 1

gij − biji

}

,

qji(x) = Im

{

xj(xj − xi)
H 1

gij − biji

}

Note that since the flows all depend on x, the argument x

has been added to the above equations (e.g., pij(x) instead

of pij). The flows pij(x), pji(x), qij(x), and qji(x) can all

be expressed in terms of |xi|
2, |xj|

2, and Re
{

c
(t)
ij xix

H
j

}

for

t = 1, 2, 3, 4, where

c
(1)
ij =

−1

gij − biji
, c

(2)
ij =

−1

gij + biji
,

c
(3)
ij =

i

gij − biji
, c

(4)
ij =

−i

gij + biji

Define

p(x) =
{

pij(x), pji(x)
∣

∣ ∀(i, j) ∈ G
}

,

q(x) =
{

qij(x), qji(x)
∣

∣ ∀(i, j) ∈ G
}

Consider the optimization

min
x∈Cn

h0(p(x), q(x), y(x))

s.t. hj(p(x), q(x), y(x)) ≤ 0, j = 1, 2, ..., m
(6)



for given functions h0, ..., hm, where y(x) is the vector of

|xi|
2’s. This optimization aims to optimize the flows in a

power network. The constraints of this optimization are meant

to limit line flows, voltage magnitudes, power delivered to

each load, and power supplied by each generator. Observe

that p(x) and q(x) are both quadratic in x. Assume that

hj(·, ·, ·) is increasing (or decreasing) in its first and second

vector arguments. Since the above optimization can be cast

as (1), the SDP and SOCP relaxations introduced before can

be used to eliminate the effect of quadratic terms. To study

under what conditions the relaxations are exact, note that each

edge (i, j) of G has the weight set {c
(1)
ij , c

(2)
ij , c

(3)
ij , c

(4)
ij }. Due to

the physics of a transmission line, gij and bij are nonnegative

real numbers in practice. As a result of this property, the

set {c
(1)
ij , c

(2)
ij , c

(3)
ij , c

(4)
ij } turns out to be sign definite (see

Definition 1). The following theorem follows from the results

outlined in Section II and [4].

Theorem 1: The SDP and SOCP relaxations are both exact

for the general power optimization (6) as long as G is acyclic

or has a sufficient number of phase shifters in its cycles (one

phase shifter for each basic cycle).

Optimizing power flows is a fundamental problem, which

is solved every 5 to 15 minutes in practice for power grids.

This problem, named Optimal Power Flow (OPF), has sev-

eral variants, which are used for different purposes (real-

time operation, electricity market, security assessment, etc.).

Nevertheless, a more realistic form of this optimization often

has two more constraints, which cannot be described in terms

of p(x), q(x), y(x):

• Line flow constraint: For every (i, j) ∈ G, the line current

magnitude

∣

∣

∣

xi−xj

gij+bij i

∣

∣

∣
cannot exceed a maximum number

Imax. This constraint can be written as:

|xi|
2 + |xj|

2 − 2Re{xix
H
j } ≤ |gij + biji|2I2

max (7)

• Angle constraint: For every (i, j) ∈ G. the absolute angle

difference |]xi − ]xj| should not exceed a maximum

angle θmax
ij ∈ [0, 90◦] (due to stability and thermal limits).

This constraint can be written as

Im{xix
H
j } ≤ | tan θmax

ij | × Re{xix
H
j }

or equivalently

− tan θmax
ij × Re{xix

H
j } + Re{(+i) xix

H
j } ≤ 0

− tan θmax
ij × Re{xix

H
j } + Re{(−i) xix

H
j } ≤ 0

(8)

Since (7) and (8) are quadratic in x, they can easily be

incorporated into Optimization (6) and its relaxations. How-

ever, the edge set {c
(1)
ij , c

(2)
ij , c

(3)
ij , c

(4)
ij } should be extended

to {c
(1)
ij , c

(2)
ij , c

(3)
ij , c

(4)
ij ,−1, i,−i} for every (i, j) ∈ G. It is

interesting to note that this set is still sign definite and therefore

the results of Theorem 1 are valid under this generalization.

Another interesting case is the optimization of active power

flows for lossless networks. In this case, gij is equal to zero

for every (i, j) ∈ G. Hence, pji(x) can be simply replaced

by −pij(x). Motivated by this observation, define the reduced

vector of active powers as pr(x) =
{

pij(x)
∣

∣ ∀(i, j) ∈ G
}

,

and consider the optimization

min
x∈Cn

h̄0(pr(x), y(x))

s.t. h̄j(pr(x), y(x)) ≤ 0, j = 1, 2, ..., m
(9)

for some functions h̄0(·, ·), ..., h̄m(·, ·), which are assumed to

be increasing in their first vector argument. Now, each edge

(i, j) of the graph G is accompanied by the singleton weight

set
{

−i
bij

}

, which is sign definite. The following theorem

follows from the results outlined in Section II.

Theorem 2: The SDP relaxation is exact for Optimiza-

tion (9) if G is weakly cyclic.

Note that the result of Theorem 2 does not necessarily hold

for the SOCP relaxation.

IV. CONCLUSIONS

This work develops the notion of “optimization over graph”

and applies it to nonlinear power optimization problems.

First, a broad class of nonlinear real/complex optimization

problems is considered, where the argument of each objective

and constraint function is quadratic (as opposed to linear)

in the optimization variable. To explore the polynomial-time

solvability of each optimization problem via two convex

relaxations, the structure of the optimization is mapped into a

generalized weighted graph with a weight set assigned to each

edge. It is shown that the exactness of the proposed convex

relaxations may be deduced from the topology of the graph

and the sign definiteness of its weight sets. As an application,

it is shown that a nonlinear power optimization problem can

be naturally considered as optimization over graph, where the

weight sets of the graph are all sign definite due to the passivity

of transmission lines. This property makes a broad class of

energy optimization problems easy to solve.
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