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Absence of Spurious Local Trajectories in
Time-Varying Optimization: A Control-Theoretic

Perspective
Salar Fattahi, Cedric Josz, Reza Mohammadi, Javad Lavaei, and Somayeh Sojoudi

Abstract—In this paper, we study the landscape of an optimiza-
tion problem whose input data vary over time. This time-varying
problem consists of infinitely-many individual optimization prob-
lems, whose solution is a trajectory over time rather than a
single point. To understand when it is possible to find a global
solution of a time-varying non-convex optimization problem, we
introduce the notion of spurious (i.e., non-global) local trajectory
as a generalization to the notion of spurious local solution in
nonconvex (time-invariant) optimization. We develop an ordinary
differential equation (ODE) which, at limit, characterizes the
spurious local solutions of the time-varying optimization problem.
By building upon this connection, we prove that the absence
of spurious local trajectory is closely related to the transient
behavior of the proposed ODE. In particular, we show that: (1)
if the problem is time-invariant, the spurious local trajectories
are ubiquitous since any strict local minimum is a locally stable
equilibrium point of the ODE, and (2) if the ODE is time-varying,
the data variation may force all ODE trajectories initialized at
arbitrary local minima at the initial time to gradually converge to
the global solution trajectory. This implies that the natural data
variation in the problem may automatically trigger escaping local
minima over time.

I. INTRODUCTION

Sequential decision making with time-varying data is at the
core of most of today’s problems. For example, the optimal
power flow (OPF) problem in the electrical grid should be
solved every 5 minutes in order to match the supply of elec-
tricity with a demand profile that changes over time. [1]. Other
examples include the training of dynamic neural networks [2],
dynamic matrix recovery [3], [4], and time-varying multi-
armed bandit problem [5]. Indeed, most of these problems are
large-scale and should be solved in real-time, which strongly
motivates the need for fast algorithms in such optimization
frameworks.

A recent line of work has shown that a surprisingly large
class of data-driven and nonconvex optimization problems—
including matrix completion/sensing, phase retrieval, and dic-
tionary learning, robust principal component analysis—has a
benign landscape, i.e., every local solution is also global [6]–
[9]. A local solution that is not globally optimal is called
spurious. At the crux of the results on the absence of spurious
local minima is the assumption on the static and time-invariant
nature of the optimization. Yet, in practice, many real-world
and data-driven problems are time-varying and require online
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optimization. This observation naturally gives rise to the
following question:

Would fast local-search algorithms escape spurious local
minima in online nonconvex optimization, similar to their time-
invariant counterparts?

In this paper, we attempt to address this question by
developing a control-theoretic framework for analyzing the
landscape of online and time-varying optimization. In partic-
ular, we demonstrate that even if a time-varying optimization
may have undesired point-wise local minima at almost all
times, the variation of its landscape over time would enable
simple local-search algorithms to escape these spurious local
minima. Inspired by this observation, this paper provides a new
machinery to analyze the global landscape of online decision-
making problems by drawing tools from optimization and
control theory.

We consider a class of nonconvex and online optimization
problems where the input data varies over time. First, we intro-
duce the notion of spurious local trajectory as a generalization
to the point-wise spurious local solutions. We show that a time-
varying optimization can have point-wise spurious local min-
ima at every time step, and yet, it can be free of spurious local
trajectory. By building upon this notion, we consider a general
class of nonconvex optimization problems and model their
local trajectories via an ordinary differential equation (ODE)
representing a time-varying nonlinear dynamical system. We
show that the absence of the spurious local trajectories in
this time-varying optimization is equivalent to the convergence
of all solutions in its corresponding ODE. Based on this
equivalence, we analyze a class of time-varying univariate
optimization problems and present sufficient conditions under
which, despite having point-wise spurious local minima at
all times, the time-varying problem is free of spurious local
trajectory. Finally, by studying the stability of the proposed
ODE on feasible manifolds, we prove that every strict local
minimum of the time-invariant optimization problem is locally
stable on its feasible region. This implies that the time-varying
nature of the problem is essential for the absence of spurious
local trajectories.

A. Related Works

Nonconvexity is inherent to many problems in machine
learning; from the classical compressive sensing and matrix
completion/sensing [10]–[12] to the more recent problems
on the training of deep neural networks [13], they often
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possess nonconvex landscapes. Reminiscent from the classical
complexity theory, this nonconvexity is perceived to be the
main contributor to the intractability of these problems. In
many (albeit not all) cases, this intractability implies that in
the worst-case instances of the problem, spurious local minima
exist and there is no efficient algorithm capable of escaping
them. However, a lingering question remains unanswered: are
these worst-case instances common in practice or do they
correspond to some pathological or rare cases?

Answering this question has been the subject of many
recent studies. In particular, it has been shown that nearly-
isotropic classes of problems in matrix completion/sensing [6],
[7], [14], robust principle component analysis [9], [15], and
dictionary recovery [16] have benign landscape, implying that
they are free of spurious local minima. It has also been proven
recently in [17] that under some conditions, the stochastic
gradient descent may escape the sharp local minima in the
landscape. At the core of the aforementioned results is the
assumption on the static and time-invariant nature of the
landscape. In contrast, many real-world problems should be
solved sequentially over time with time-varying input data. For
instance, in the optimal power flow problem, the electricity
consumption of the consumers changes hourly [18], [19].
Therefore, it is natural to study the landscape of such time-
varying nonconvex optimization problems, taking into account
their dynamic nature.

A common framework in machine learning for analyzing
sequential decision-making problems is online (convex or non-
convex) optimization (see [20] and [21] for a comprehensive
survey). In general, the main goal in such problems is to
propose a sequential algorithm and measure its performance
through the notion of global regret, which is defined as the
incurred sub-optimality error of the proposed algorithm com-
pared to the optimal fixed algorithm in the hindsight [20], [22].
It is well known that in the nonconvex settings, such notion
of global regret is intractable to minimize. Therefore, different
works have resorted to the minimization of a surrogate notion
of regret, which is called local regret [19], [23], [24]. The
local regret measures the sub-optimality compared to a local
solution. Similar notions are widely used in learning and signal
processing problems. Evidently, most of the existing results on
nonconvex online optimization are algorithm-dependent and
cannot be used to make general statements on the global
landscape of the problem. In particular, they often measure
the performance of a specific algorithm in tracking a nearby
local solution.

Recently, there has been a growing interest in analyzing
the performance of numerical algorithms from a control the-
oretical perspective [25]–[30]. Roughly speaking, the general
idea behind these approaches is to analyze the convergence of
a specific algorithm by first modeling its limiting behavior
as an autonomous (time-invariant) ODE that describes the
evolution of a dynamical system, and then studying its stability
properties. As a natural extension, one would generalize this
approach to online optimization by modeling its limiting
behavior as a non-autonomous ODE corresponding to a time-
varying dynamical system. However, the stability analysis of
time-varying dynamical systems is highly convoluted, even in

the linear case.

II. MOTIVATION: CASE STUDY ON POWER SYSTEMS

In this section, we present an empirical study on the
dynamic landscape of the optimal power flow problem to
illustrate the notion of spurious trajectory and the role of data
variation in online optimization. The objective of this problem
is to match the supply of electricity with a time-varying
demand profile, while satisfying the network, physical, and
technological constraints. In practice, the problem is solved
sequentially over time with the constraint that at every time-
step, the solution cannot be significantly different from the
one obtained in the previous time-step due to the so-called
ramping constraints of the generators.

We consider the IEEE 9-bus system [31] and initialize the
system from the global minimum, as well as three different
spurious local minima at time t = 0. We then change the load
over time based on the California average load profile for the
month of January 2019 (Figure 1a). The optimal power flow
problem is then solved sequentially using local search every 15
minutes for the period of 24 hours, while taking into account
the temporal couplings between solutions via the ramping
constraints. The trajectories of the solutions for the optimal
power flow problem with different initial points appear in
Figure 1b. In this figure, the solid blue line represents the cost
obtained by the semidefinite programming (SDP) relaxation
of the optimal power flow [32]. This curve is a lower bound
to the globally optimal cost and serves as a certificate of the
global optimality whenever it touches other trajectories.

The gray circles in these plots are some of the local solutions
that were obtained at different times via a Monte Carlo
simulation. Based on Figure 1b, indeed there exist multiple
local solutions at almost all time-step (some of them emerge
over time). However, surprisingly, the trajectories of the local
solutions that are initialized at different points all converge
towards the global solution. This implies that there is no
spurious local trajectory, and therefore local search methods
are able to find global minima of the optimal power flow
problem at future times even when they start from poor local
minima at the initial time.

III. NOTION OF SPURIOUS LOCAL TRAJECTORY

Inspired by the above case study, we consider the effect
of the variation in the input data on the landscape of a time-
varying optimization problem. We focus on the following time-
varying nonconvex optimization:

inf
x∈Rn

f(x, t) s.t. hi(x) = di(t) , i = 1, . . . ,m (1)

where the objective function f(x, t) and the right-hand side
of the equality constraints vary over time t ∈ [0, T ]. We
assume that f : Rn × [0, T ] −→ R, hi : Rn −→ R,
di : [0, T ] −→ R for i = 1, . . . ,m are twice continuously
differentiable functions, and that T > 0 is a finite time horizon.
Moreover, we assume that f is uniformly bounded from below
(i.e., f(x, t) ≥M for some constant M ) and that the problem
is feasible for all t ∈ [0, T ].
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(a) California average load profile for January 2019.
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(b) The solution trajectories of the time-varying optimal power flow.

Fig. 1: Case study in power systems (data collected from http://www.caiso.com).

Remark 1. Inequality constraints can also be included in (1)
through a reformulation technique. In particular, suppose
that (1) includes a set of inequality constraints gj(x) ≤ vj(t)
for j = 1, . . . , l. Then, one can reformulate them as equality
constraints through the following procedure:

1. Rewrite the inequality constraints by introducing a slack
variable s ∈ Rl, as in

gj(x) + sj = vj(t), j = 1, . . . , l

2. Augment the objective function with a penalty p(s) =∑l
j=1 pj(sj).

Here, pj(sj) are nonsmooth loss functions for an exact re-
formulation. Furthermore, they can be relaxed to continu-
ously differentiable loss functions at the expense of incurring
some (controllable) approximation errors; see [33], [34]. This
implies that the previously-introduced optimal power flow
problem can be reformulated as (1).

In practice, one can only hope to sequentially solve the
optimization problem (1) at discrete times 0 = t0 < t1 <
t2 < . . . < tN = T . However, notice that (1) is un-
regularized. In particular, depending on the properties of the
objective function, an arbitrary solution to (1) at time tk can
be arbitrarily far from that of (1) at time tk−1. However—
as elucidated in our case study on the optimal power flow
problem— it is neither practical nor realistic to have solutions
that change abruptly over time in many real-world problems.
One way to circumvent this issue is to regularize the problem
at time tk+1 by penalizing the deviation of its solution from
the one obtained at time tk. Precisely, we employ a quadratic
proximal regularization as is done in online learning [35].

Definition 1. Given evenly spaced-out time steps 0 = t0 <
t1 < t2 < . . . < tN = T for some integer N , a sequence
x0, x1, x2, . . . , xN is said to be a discrete local trajectory of
the time-varying optimization (1) if the following holds:

1) x0 is a local solution to the time-varying optimization
(1) at time t0 = 0;

2) for k = 0, 1, 2, . . . , N − 1, xk+1 is local solution to the
regularized problem

infx∈Rn f(x, tk+1) + α ‖x−xk‖2
2(tk+1−tk)

s.t. hi(x) = di(tk+1) , i = 1, . . . ,m.
(2)

Above, α > 0 is a fixed regularization parameter and ‖ · ‖
denotes the Euclidian norm.

Note that in the above definition, the term local solution
refers to any feasible point that satisfies the Karush-Kuhn-
Tucker (KKT) conditions for (2). A natural approach to
characterizing the global landscape of (1) is to analyze discrete
local trajectories of the regularized problem (2). However,
notice that the non-convexity of (2) may lead to bifurcations in
discrete local trajectories. In particular, given a local solution
xk, the regularized problem (2) may possess two local solu-
tions x(1)k+1 and x(2)k+1, each resulting in a different discrete local
trajectory.1 In what follows, we show that such bifurcations
disappear in the ideal scenario, where the regularized problem
can be solved arbitrarily fast, or equivalently, as we increase
N to infinity. In particular, given a fixed initial local solution
x0, we show that any discrete local trajectory starting from
x0 converges uniformly to the unique solution to a well-
defined ODE that is initialized at x0. By building upon this
result, we introduce the notion of spurious local trajectory as
a generalization to the notion of spurious local minima.

Given an initial local solution x0, consider the following
initial value problem:

ẋ = − 1

α
η(x, t) + θ(x)ḋ (3a)

x(0) = x0 (3b)

1For example, there exist two discrete trajectories starting at x0 = 0 and
at time t0 = 0 for the time-varying objective function f(x, t) := x2(T/2−t).
Indeed, the discrete trajectory stays at xk = 0 for tk ≤ T/2 and then, due
to the regularization, it bifurcates into two separate discrete trajectories.

http://www.caiso.com
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where

η(x, t) :=
[
I − Jh(x)>(Jh(x)Jh(x)>)−1Jh(x)

]
×∇xf(x, t), (4a)

θ(x) := Jh(x)>(Jh(x)Jh(x)>)−1. (4b)

Above, Jh(x) denotes the Jacobian of the left-hand side
of the constraints h(x) = [h1(x), . . . , hm(x)]> and d(t)
denotes the right-hand side of the constraints, that is to say
d(t) = [d1(t), . . . , dm(t)]>. The term θ(x)ḋ captures the effect
of data variation in the dynamics, and the function η(x, t)
can be interpreted as the orthogonal projection of the gradient
∇xf(x, t) on the Kernel of Jh(x)>.

Later, we will show that the solution to (3) exists, it is
unique, and can be used to fully characterize the limiting
behavior of every discrete local trajectory of the time-varying
problem (1).

Assumption 1 (Uniform Boundedness). There exist constants
R1 > 0 and R2 > 0 such that, for any discrete local trajectory
x0, x1, x2, . . ., the parameter ‖xk‖ and the objective function
of (2) at xk are upper bounded by R1 and R2, respectively,
for every k ∈ {0, 1, 2, . . . , N}.

Assumption 2 (Non-singularity). There exists a constant c >
0 such that, for any discrete local trajectory x0, x1, x2, . . ., it
holds that σmin(J (xk)) > c for all k ∈ {0, 1, 2, . . .}, where
σmin denotes the minimal singular value.

Note that Assumption 2 implies that linear independence
constraint qualification holds at every point of a discrete local
trajectory.

Theorem 1 (Existence and Uniqueness). If x0 is a local solu-
tion to the time-varying optimization (1) at t = 0, then (3) has
a unique continuously differentiable solution x : [0, T ]→ Rn.

Theorem 2 (Uniform Convergence). If x0 is a local solution
to the time-varying optimization (1) at t = 0, then any discrete
local trajectory initialized at x0 converges towards the solution
x : [0, T ]→ Rn with x(0) = x0, in the sense that

lim
N→+∞

sup
0≤k≤N

‖xk − x(tk)‖ = 0, (5)

where N is the number of points in the discrete local trajec-
tories that are evenly spaced-out in time.

Sketch of the proofs. The proofs of Theorems 1 and 2 are
quite involved and hence, they are deferred to the technical
report [36]. In what follows, we provide the high-level ideas
of our developed proof techniques. Note that most of the
classical results on ordinary differential equations, namely
the Picard-Lindelöf Theorem [37, Theorem 3.1], the Cauchy-
Peano Theorem [37, Theorem 1.2], and the Carathéodory
Theorem [37, Theorem 1.1], can only guarantee the existence
of a solution in a local region, i.e., a neighborhood [0, τ ]
where τ < T is potentially very small. On the other hand, the
global version of Picard-Lindelöf Theorem only holds under
a restrictive Lipschitz condition, which is not satisfied for (3).
Instead, we take a different approach to prove existence and
uniqueness of the solution to (3) (Theorem 1). The proof
consists of three general steps:

1) By building upon the Arzelà-Ascoli Theorem, we show
that, among all the discrete local trajectories that are
initialized at x0, there exists at least one that is uniformly
convergent to a continuously differentiable function y :
[0, T ]→ Rn.

2) By fully characterizing the KKT points of (2), we prove
that y is a solution to (3) when N → +∞.

3) The uniqueness of the solution is then proved by show-
ing the existence of an open and connected set D such
that the proposed ODE is locally Lipschitz continuous
on D and (y(t), t) ∈ D for every t ∈ [0, T ]. This,
together with [37, Theorem 2.2], completes the proof
of Theorem 1.

Given the existence and uniqueness of the solution to (3),
we show the correctness of Theorem 2 by making an extensive
use of the so-called backward Euler method [38]. In particular,
we show that all discrete local trajectories converge to a
discretized version of the solution to (3) that is obtained by the
backward Euler method. This, together with the existing con-
vergence results on the backward Euler iterations, completes
the proof of Theorem 2. The details are available in [36]. �

Now that we have established the connection between
the discrete local trajectories and their continuous limit, we
naturally propose the following definition.

Definition 2. A continuously differentiable function x :
[0, T ] −→ Rn is said to be a continuous local trajectory
of the time-varying optimization (1) if the following holds:

1) x(0) is a local solution to the time-varying optimization
(1) at time t = 0;

2) x is a solution to (3).

We next introduce the central notion in this paper.

Definition 3. A continuous local trajectory x : [0, T ] −→
Rn is said to be a spurious local trajectory if its final state
x(T ) does not belong to the region of attraction of a global
solution to the time-varying optimization (1) at time t = T . In
other words, the trajectory is non-spurious if the initial value
problem {

˙̄x = − 1
αη(x̄, T ),

x̄(0) = x(T ).
(6)

admits a continuously differentiable solution x̄ : R+ −→ Rn
such that x̄(t) converges towards a global solution as t −→
+∞.

One may speculate that the following alternative definition
of spurious local trajectory is more natural to the time-varying
problem at hand: a continuous local trajectory is non-spurious
if the final state is a global solution, or near a global solution
upon a small perturbation of the initial condition. However,
note that both discrete and continuous local trajectories are
defined with respect to the regularized problem (2), as opposed
to (1). Indeed, the regularization term acts as an inertia in
the continuous local trajectory, forcing it to “lag behind” the
global solution when it changes rapidly over time. Therefore,
under this alternative definition, all trajectories would be
considered spurious. This would be true even for the trajectory
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(a) Graph of a time-varying optimization infx∈R f(x, t) showing
that the final state of the trajectory belongs to the region of attraction
of the global minimum.

(b) Graph of the same time-varying optimization infx∈R f(x, t) from
above showing that the trajectory can never stay in a neighborhood of
the global minimum of arbitrarily small size.

Fig. 2: Example of a time-varying optimization.

initialized at the global minimum. See Figures 2a and 2b for
an illustration of this phenomenon.

It is worthwhile to note that our definition of spurious
local trajectory reveals a novel interplay between time-varying
optimization and the theory of switched systems [39]–[41].
Indeed, the question of whether a continuous local trajectory
is spurious can be formulated using the following switched
system:

ẋ = − 1

α
η(x, σ(t)) + θ(x) ḋ σ′(t) (7a)

σ(t) :=

{
t if 0 6 t 6 T
T if t > T

(7b)

where σ is referred to as switching signal in the literature.
The fact that its derivative is not defined at t = T poses
no problem. Indeed, we are interested in finding continuous
solutions in the extended sense

x(t) =x(0)

+

∫ t

0

[
−1/α η(x(τ), σ(τ)) + θ(x(τ) ḋ σ′(τ)

]
dτ.

(8)

Therefore, by building upon the contraction analysis of
nonlinear systems [42]–[44], the time-varying problem (1) is
devoid of spurious local trajectories if all of its local solutions
at t = 0 belong to a contraction region of (7a) that includes
a trajectory x̄ : R+ −→ Rn converging towards the global
minimum of (1) at time t = T . Empirical identification of
this region for (7a) is considered as an enticing challenge for
future work.

Remark 2. Combined with the rich literature on the online
algorithms such as online gradient and mirror descent [45]–
[47], our results imply that if the problem is free of spurious
local trajectories, then any KKT-seeking algorithm for the
regularized problem (2) converges to the basin of attraction of

the globally optimal solution at the termination time t = T ,
provided that N is sufficiently large. This is due to the fact
that, according to Theorem 2 and Definition 3, the KKT
trajectories of (2) are well-approximated with the unique
solution to the proposed ODE which corresponds to a non-
spurious trajectory.

IV. STABILITY ANALYSIS OF LOCAL TRAJECTORIES

In this section, we show that the time-varying nature of (1) is
crucial for the absence spurious local trajectories. In particular,
we illustrate an intriguing connection between the landscape
of the time-varying optimization and the stability of the (3).
We show that by starting from an initial spurious local solution
to (1) at time t = 0, the solution to (3) may be able to escape
the basin of attraction of this local minimum over time and
converge to the global one. This indeed highlights the premise
of our work: an online optimization problem can be devoid
of spurious local trajectories, despite possessing point-wise
spurious local minimum at all times. In what follows, we
formalize this observation by showing that the time-varying
natures of (1) and its regularized surrogate (2) are essential
for the instability of (3) around the spurious local minima.

We begin by assuming that the time-varying optimization
does not change over the time interval [0, T ]. Then, we may
simplify the notations and omit t from (1), as in:

inf
x∈Rn

f(x) s.t. h(x) = d (9)

where h(x) = [h1(x), . . . , hm(x)]T and d = [d1, . . . , dm]T .
Likewise, we may drop t from the dynamics:

ẋ = − 1

α

[
I − Jh(x)>(Jh(x)Jh(x)>)−1Jh(x)

]
∇f(x).

(10)

In this case, we show that all continuous local trajectories
initialized at strict local minima of (9) are spurious trajectories.
This is a direct implication of the following proposition.
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(a) Inequalities in function of α, β guaranteeing absence of spurious
trajectories.

(b) Sufficient condition in blue in function of α, β for absence of
spurious trajectories.

(c) Non-spurious trajectory for α = 0.4 and β = 10. (d) Spurious trajectory for α = 0.2 and β = 5.

Fig. 3: Illustration of Proposition 2.

Proposition 1 (Local stability). The set {x : h(x) = d} is an
invariant manifold for the system (10). Moreover, any strict
local minimum x∗ of the time-invariant optimization (9) is
locally stable for (10) on this manifold in the sense that

∀ε > 0, ∃δ > 0 : (‖x(0)− x∗‖ 6 δ and h(x(0)) = d)

=⇒ ∀t ∈ [0, T ], ‖x(t)− x∗‖ 6 ε (11)

where x : [0, T ] −→ Rn satisfies the ordinary differential
equation (10).

Proof. The proof is provided in [36].

Proposition 1 provides a negative result on the impossibility
of escaping spurious local minima in the time-invariant case.
However, this proposition does not hold in the time-varying
case. As a preliminary step for further study, we show that
the strict local minima of (1) may neither be equilibrium nor
stable if it is time-varying. In particular, we focus on a class of
uni-dimensional time-varying problems in the following form:

inf
x∈R

f(x, t) := g(x− β sin(t)) (12)

where g : R −→ R is continuously twice differentiable and
β > 0 models the variation of the data over time. Only the
right-hand side varies over time, and therefore, this problem
fits well in our introduced framework. We assume that g(·)
admits only three stationary points g′(y1) = g′(y2) = g′(y3)
with y1 < y2 < y3. We assume also that y1 and y3 are local
minima such that g(y1) > g(y3), while y2 is a local maximum.
Finally, we assume that g is coercive (its limit at ±∞ is +∞).
Thus, its global infimum is reached in y3.

The motivation behind studying this class of functions f(·)
is as follows. Since g(y) has a global minimum as well as a
spurious solution, when it is minimized by a gradient descent
algorithm initialized at the spurious solution, it will become
stuck there. This means that using gradient descent for such
function is inefficient. However, one can oscillate the function
to arrive at the time-varying function f(x, t) and then study
it in the context of online optimization. The following result
identifies sufficient conditions for the absence of spurious
local trajectories, which implies that if α and β are selected
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appropriately, gradient descent will always find the global
solution.

Proposition 2. If α, β > 0 are such that
1) αβ > C := maxy16y6y3 g

′(y),
2) ∃m1,m2 ∈ R : m1 < y1 < m2 and g′(m1) =

g′(m2) = −αβ,
3) −C/α(t2− t1)−β(sin(t2)−sin(t1))+m1 > m2 where

0 < t1 6 t2 satisfy cos(t1) = cos(t2) = −C/(αβ),
then the time-varying problem (12) has no spurious local
trajectories.

Proof. A continuous local trajectory x : [0, 2π] −→ R satisfies

x(0) 6 y3, ẋ = − 1

α
∇xf(x, t), (13)

which, after the change of variable y := x− β sin(t), reads

y(0) 6 y3, ẏ = − 1

α
g′(y)− β cos(t). (14)

We first show by contradiction that there exists t ∈ [0, 2π] such
that y(t) > m2. Assume that y(t) < m2 for all t ∈ [0, 2π].
Then, for all t ∈ [0, 2π], it holds that

ẏ = − 1

α
g′(y)− β cos(t) > −C

α
− β cos(t). (15)

Thus, we have

y(t2) > −C
α

(t2 − t1)− β(sin(t2)− sin(t1)) + y(t1). (16)

We next show by contradiction that y(t1) > m1. Assume that
y(t1) < m1. Thus y(t1) < m1 < y1 6 y(0). Let t3 denote the
maximal element of the compact set [0, t1] ∩ y−1(m1) where
y−1(b) := {a ∈ R | y(a) = b}. Thus y(t) 6 y(t3) for all
t ∈ [t3, t1]. As a result, y′(t3) 6 0. Together with y′(t3) =
−1/αg′(m1) − β cos(t3) = β(1 − cos(t3)), this implies that
t3 = 0 or t3 = 2π. This is in contradiction with 0 < t3 <
t1 < π.

Now that we have proven that y(t1) > m1, equation (16)
implies that y(t2) > m2. This is a contradiction. Therefore
there exists t ∈ [0, 2π] such that y(t) > m2. Using the same
argument as in the previous paragraph, we obtain y(2π) > m2.
As a result, x(2π) = y(2π)− β sin(2π) > m2 as well.

Notice that f(x, T ) = g(x). We thus consider the initial
value problem

˙̄x =− 1

α
g′(x̄) (17a)

x̄(0) = x(2π) (17b)

Since g′ is continuously differentiable, it is Lipschitz on any
interval [a, b] of R. The existence of a local continuously
differential solution is then guaranteed by the Picard-Lindelöf
Theorem [37, Theorem 3.1]. Consider a maximal solution, that
is to say x̄ : [0, t̄) −→ R where t̄ ∈ R or t̄ = +∞. We next
show by contradiction that the latter holds. Without loss of
generality, assume that x(2π) < y3. We know that g′(x) < 0
for all x(2π) 6 x < y3. As a result, x̄ is an increasing
function on [0, t̄). It is also upper bounded by y3. Indeed,
it is upper bounded by any y3 + ε for ε > 0 small enough, so
that g′(y3 + ε) > 0 (and then using the same argument from

one of the above paragraphs for the third time). As a result,
x̄ has limit x̄(t̄) as t converges towards t̄ from below. Since
g′ is continuous, x̄ : [0, t̄] −→ R is a solution to initial value
problem, which is a contradiction. As a result, t̄ = +∞.

We next show that x̄(t̄) = y3. Since x̄′(t) = −1/αg′(x̄(t))
for all t > 0, the derivative x̄′ has limit equal to x̄′(t̄) =
−1/αg′(x̄(t̄)). Since x̄′(t) > 0 for all t > 0, it holds
that x̄′(t̄) > 0. Assume that x̄′(t̄) > 0. Then there exists
T0 > 0 such that, for all t > T0, we have x̄′(t) > x̄′(t̄)/2.
Then x̄(t) > x̄(T0) + x̄′(t̄)(t − T0)/2 diverges, which is a
contradiction. Thus x̄′(t̄) = −1/αg′(x̄(t̄)) = 0, which implies
that x̄(t̄) is equal to y1, y2 or y3. Since x̄(t̄) > x̄(0) =
x(2π) > m2 > y2 > y1, we conclude that x̄(t̄) = y3.

We highlight the implications of the above proposition
through a numerical example. Consider the objective function
f(x, t) := g(x− β sin(t)), where

g(y) := 1/4y4 + 1/8y3 − 2y2 − 3/2y + 8. (18)

The time-varying objective f(x, t) has the following stationary
points: it admits a spurious local minimum at −2+β sin(t), a
local maximum at −3/8 + β sin(t), and a global minimum at
2 + β sin(t). The three sufficient conditions of Proposition 2
can be brought to bear on this example. They yield three
inequalities, as shown in Figure 3a, whose feasible region
is represented in Figure 3b. Taking a point in that feasible
region, we confirm numerically in Figure 3c that a trajectory
initialized at a local minimum of f(·, 0) winds up in the region
of attraction of the global solution to f(·, T ) at the final time
T = 2π. In contrast, taking a point outside the feasible region,
we observe in Figure 3d that a trajectory initialized at a local
minimum of f(·, 0) does not end up in the region of attraction
of the global solution to f(·, T ).2

We make a few remarks regarding Figure 3a. Note that k1
and k2 are integers in {0, 1, 2} such that k1 minimizes the
line it appears in, and k2 minimizes the line it appears in
while not being equal to k1. These numbers come from Viète’s
solution to a cubic equation [48]. Furthermore, the second
inequality corresponds to minus the discriminant of a fourth-
order polynomial.

V. CONCLUSION

In this work, we study the landscape of time-varying
nonconvex optimization problems. We introduce the notion
of spurious local trajectory as a counterpart to the notion of
spurious local minima in the time-invariant optimization. The
key insight to this new notion is the fact that a regularized
version of the time-varying optimization problem is naturally
endowed with an ordinary differential equation (ODE) at its
limit. This close interplay enables us to study the solutions
of this ODE to certify the absence of the spurious local
trajectories in the problem. Through a case study on power

2In order to increase visibility, a maximal threshold is used on the
objective function f(x, t) in Figure 3c and Figure 3d (hence the flat parts).
For the same reason, a non-linear scaling is used. Precisely, (x, t) −→
f(x+ (β − 1) sin(t), t) and t −→ x(t)− (β − 1) sin(t) are represented in
the figures. This explains why x(t) appears to decrease for small 0 6 t 6 2π
in Figure 3c.
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systems and theoretical results, we show that a time-varying
optimization can have multiple spurious local minima, and
yet its landscape can be free of spurious local trajectories. We
further show that the variation of the landscape over time is the
main reason behind the absence of spurious local trajectories.
In particular, we prove that any spurious strict local minimum
in time-invariant optimization problem is a locally stable
equilibrium of its corresponding ODE, thereby giving rise to a
spurious local trajectory. However, such undesirable property
may disappear for time-varying optimization due to the role
of the data variation in the behavior of the underlying ODE.
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