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Abstract

We study convex Constrained Markov Decision Processes (CMDPs) in which the
objective is concave and the constraints are convex in the state-action visitation
distribution. We propose a policy-based primal-dual algorithm that updates the
primal variable via policy gradient ascent and updates the dual variable via projected
sub-gradient descent. Despite the loss of additivity structure and the nonconvex
nature, we establish the global convergence of the proposed algorithm by leveraging
a hidden convexity in the problem under the general soft-max parameterization,
and prove the O(T −1/3) convergence rate in terms of both optimality gap and
constraint violation. When the objective is strongly concave in the visitation
distribution, we prove an improved convergence rate of O(T −1/2). By introducing
a pessimistic term to the constraint, we further show that a zero constraint violation
can be achieved while preserving the same convergence rate for the optimality
gap. This work is the first one in the literature that establishes non-asymptotic
convergence guarantees for policy-based primal-dual methods for solving infinite-
horizon discounted convex CMDPs.

1 Introduction

Reinforcement Learning (RL) aims to learn how to map situations to actions so as to maximize the
expected cumulative reward. Mathematically, this objective can be rewritten as an inner product
between the state visitation distribution induced by the policy and a policy-independent reward for
each state-action pair. However, many decision-making problems of interests take a form beyond the
cumulative reward, such as apprenticeship learning [1], diverse skill discovery [2], pure exploration
[3], and state marginal matching [4], among others. Recently, [5, 6] abstract such problems as convex
Markov Decision Processes (MDPs), which focus on finding a policy to maximize a concave function
of the induced state-action visitation distribution.

However, in many safety-critical applications of convex MDP problems, e.g., in autonomous driving
[7], cyber-security [8], and financial management [9], the agent is also subject to safety constraints.
Nonetheless, the classical safe RL and CMDPs [10], which assume that the objective and constraints
are linear in the state-action visitation distribution, are not directly applicable to more general convex
CMDP problems where the objective and the constraints can respectively be concave and convex in
the state-action visitation distribution.
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In this paper, we focus on the optimization perspective of convex CMDP problems and aim to develop
a principled methodology and theory for the direct policy search method. When moving beyond linear
structures in the objective and the constraints, we quickly face several technical challenges. Firstly,
the convex CMDP problem has a nonconcave objective and the nonconvex constraints even under
the simplest direct policy parameterization. Thus, the existing tools from the convex constrained
optimization literature are not applicable. Secondly, as the gradient of the objective/constraint
with respect to the state-action visitation distribution becomes policy-dependent, evaluating the
single-step improvement of the algorithm becomes harder without knowing the visitation distribution.
Yet, evaluating the visitation distribution for a given policy can be inefficient [11]. Thirdly, the
performance difference lemma [12], which is key to the analysis of the policy-based primal-dual
method for the standard CMDP [13], is no longer helpful for general convex CMDPs.

In view of the aforementioned challenges, our main contributions to the policy search of convex
CMDP problems are summarized in Table 1 and are provided below:

• Despite being nonconvex with respect to the policy and nonlinear with respect to the state-
action visitation distribution, we prove that the strong duality still holds for convex CMDP
problems under some mild conditions.

• We propose a simple but effective algorithm – Primal-Dual Projected Gradient method
(PDPG) – for solving discounted infinite-horizon convex CMDPs. We employ policy
gradient ascent to update the primal variable and projected sub-gradient descent to update
the dual variable. Strong bounds on the optimality gap and the constraint violations are
established for both the convex objective and the the strongly concave objective cases.

• Inspired by the idea of “optimistic pessimism in the face of uncertainty”, we further propose
a modified method, named PDPG-0, which can achieve a zero constraint violation while
maintaining the same convergence rate as the PDPG method.

Algorithm Objective Constraint Optimality Gap Constraint Violation

PDPG Concave Convex O(T −1/3) O (T −1/3)

PDPG Strongly concave Convex O(T −1/2) O (T −1/2)

PDPG-0 Concave Convex O(T −1/3) 0

PDPG-0 Strongly concave Convex O(T −1/2) 0

Table 1: We summarize our results for the policy-based primal dual methods for general convex
CMDPs. Here T is the total number of iterations.

1.1 Related work

Convex MDP Motivated by emerging applications in RL whose objectives are beyond cumulative
rewards [14, 1, 15, 3, 16, 4], a series of recent works have focused on developing general approaches
for convex MDPs. In particular, [5] develops a new policy gradient approach called variational policy
gradient and establishes the global convergence of the gradient ascent method by exploiting the
hidden convexity of the problem. The REINFORCE-based policy gradient and its variance-reduced
version are studied in [17]. The paper [6] transforms the convex MDP problem to a saddle-point
problem using Fenchel duality and proposes a meta-algorithm to solve the problem with standard
RL techniques. The work [18] proves the equivalence between convex MDPs and mean-field games
(MFGs) and shows that algorithms for MFGs can be used to solve convex MDPs. However, the
above papers only consider the unconstrained RL problem, which may lead to undesired policies
in safety-critical applications. Therefore, additional effort is required to deal with the rising safety
constraints, and our work addresses this challenge.

CMDP Our work is also pertinent to policy-based CMDP algorithms [10, 19–23]. In particular,
[13] develops a natural policy gradient-based primal-dual algorithm and shows that it enjoys an
O(T −1/2) global convergence rate regarding both the optimality gap and the constraint violation
under the soft-max parameterization. The work [24] considers a primal-based approach and achieves
a similar global convergence rate. More recently, [25–27] introduce entropy regularization and obtain
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improved convergence rates with dual methods. Nonetheless, these works focus on cumulative
rewards/utilities and do not directly generalize to a boarder class of safe RL problems, such as safe
imitation learning [28] and safe exploration [3]. Beyond CMDPs with cumulative rewards/utilities,
the concurrent work [29] also studies the convex CMDP problem, and their algorithm is based on the
randomized linear programming method proposed by [30]. However, as their approach works directly
in the space of state-action visitation distributions, it is thus not applicable to more general problems
where the state-action spaces are large and a function approximation is needed. In comparison, our
work addresses this issue by focusing on the policy-based primal-dual method and adopting a general
soft-max policy parameterization.

1.2 Notations

For a finite set S, let ∆(S) denote the probability simplex over S, and let ∣S∣ denote its cardinality.
When the variable s follows the distribution ρ, we write it as s ∼ ρ. Let E[⋅] and E[⋅ ∣ ⋅], respectively,
denote the expectation and conditional expectation of a random variable. Let R denote the set of
real numbers. For a vector x, we use x⊺ to denote the transpose of x and use ⟨x, y⟩ to denote the
inner product x⊺y. We use the convention that ∥x∥1 = ∑i ∣xi∣, ∥x∥2 =

√
∑i x

2
i , and ∥x∥∞ =maxi ∣xi∣.

For a set X ⊂ Rp, let cl(X) denote the closure of X . Let PX denote the projection onto X ,
defined as PX(y) ∶= argminx∈X ∥x − y∥2. For a matrix A, let ∥A∥2 stand for the spectral norm,
i.e., ∥A∥2 =max∥x∥2≠0 {∥Ax∥2/∥x∥2}. For a function f(x), let argmin f(x) (resp. argmax f(x))
denote any global minimum (resp. global maximum) of f(x).

2 Problem Formulation
Standard CMDP Consider an infinite-horizon CMDP over a finite state space S and a finite action
space A with a discount factor γ ∈ [0,1). Let ρ be the initial distribution. The transition dynamics is
given by P ∶ S × A →∆(S), where P(s′∣s, a) is the probability of transition from state s to state s′
when action a is taken. A policy is a function π ∶ S → ∆(A) that represents the decision rule that
the agent uses, i.e., the agent takes action a with probability π(a∣s) in state s. We denote the set of
all stochastic policies as Π. The goal of the agent is to find a policy that maximizes some long-term
objective. In standard CMDPs, the agent aims at maximizing the expected (discounted) cumulative
reward for a given initial distribution ρ while satisfying constraints on the expected (discounted)
cumulative cost, i.e.,

max
π∈Π

V π(r) ∶= E [
∞

∑
t=0

γtr (st, at) ∣at ∼ π(⋅∣st), s0 ∼ ρ] ,

s.t. V π(c) ∶= E [
∞

∑
t=0

γtc (st, at) ∣at ∼ π(⋅∣st), s0 ∼ ρ] ≤ 0,

(1)

where the expectation is taken over all possible trajectories, and r(⋅, ⋅) and c(⋅, ⋅) denote the reward
and cost functions, respectively. For given reward function r(⋅, ⋅), we define the action-value function
(Q-function) under policy π as

Qπ(r; s, a) ∶= E [
∞

∑
t=0

γtr (st, at) ∣at ∼ π(⋅∣st), s0 = s, a0 = a] , (2)

which can be interpreted as the expected total reward with an initial state s0 = s and an initial action
a0 = a. For each policy π ∈ Π and state-action pair (s, a) ∈ S × A, the discounted state-action
visitation distribution is defined as

λπ(s, a) = (1 − γ)
∞

∑
t=0

γtP (st = s, at = a ∣ π, s0 ∼ ρ) . (3)

We use Λ to denote the set of all possible state-action visitation distributions, which is a convex poly-
tope (cf. (26)). By using λ as decision variables, the CMDP problem in (1) can be re-parameterized
as follows:

max
λ∈Λ

1

1 − γ
⟨r, λ⟩, s.t.

1

1 − γ
⟨c, λ⟩ ≤ 0. (4)

This is known as the linear programming formulation of the CMDP [10]. Once a solu-
tion λ⋆ is computed, the corresponding policy can be recovered using the relation π(a∣s) =
λπ(s, a)/∑a′∈A λ

π(s, a′).
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Convex CMDP In this work, we consider a more general problem where the agent’s goal is to find
a policy that maximizes a concave function of the state-action visitation distribution λ subject to a
single convex constraint on λ, namely

max
λ∈Λ

f(λ) s.t. g(λ) ≤ 0, (5)

where f is concave and g is convex. As (5) is a convex program in λ, we refer to the problem as
Convex CMDP. We emphasize that the method proposed in this paper directly generalizes to multiple
constraints and we present the single constraint setting only for brevity.

Example 2.1 (Safety-aware apprenticeship learning (AL)) In AL, instead of maximizing the long-
term reward, the agent learns to mimic an expert’s demonstrations. When there are critical safety
requirements, the learner will also strive to satisfy given constraints on the expected total cost [28].
This problem can be formulated as

max
λ∈Λ

f(λ) = −dist(λ,λe) s.t. g(λ) =
1

1 − γ
⟨c, λ⟩ ≤ 0, (6)

where λe corresponds to the expert demonstration, c denotes the cost function, and dist(⋅, ⋅) can be
any distance function on Λ, e.g., ℓ2-distance or Kullback-Liebler (KL) divergence.

Example 2.2 (Feasibility constrained MDPs) As an extension to standard CMDPs, the designer
may desire to control the MDP through more general constraints described by a convex feasibility
region C [31] (e.g., a single point representing a known safe policy) such that the learned policy is
not too far away from C. In this case, the problem can be cast as

max
λ∈Λ

f(λ) =
1

1 − γ
⟨r, λ⟩ s.t. g(λ) = dist(λ,C) − d0 ≤ 0, (7)

where d0 ≥ 0 denotes the threshold of the allowable deviation.

Policy Parameterization Since recovering a policy from its corresponding state-action visitation
distribution is toilless, a natural approach to solving the convex CMDP problem is to optimize (5)
directly (or equivalently (4) for standard CMDPs). However, since the decision variable λ has the
size ∣S∣∣A∣, such approaches lack scalability and converge extremely slowly for large state and action
spaces. In this work, we consider the direct policy search method, which can handle the curse of
dimensionality via the policy parameterization. We assume that policy π = πθ is parameterized by a
general soft-max function, meaning that

πθ(a∣s) =
exp{ψ(θ; s, a)}

∑a′∈A exp{ψ (θ; s, a′)}
, ∀ (s, a) ∈ S ×A, (8)

where ψ(⋅ ; s, a) is some smooth function, θ ∈ Θ is the parameter vector, and Θ is a convex feasible set.
We assume that θ over-parameterizes the set of all stochastic policies in the sense that cl (λ(Θ)) = Λ.
Further assumptions on the parameterization will be formally stated in Section 4. In practice, the
function ψ can be chosen to be a deep neural network, where θ is the parameter and the state-action
pair (s, a) is the input. Under parameterization (8), problem (5) can be re-written as

max
θ∈Θ

F (θ) ∶= f(λ(θ)) s.t. G(θ) ∶= g(λ(θ)) ≤ 0, (9)

where we use the shorthand notations λ(θ) ∶= λπθ and λ(θ; s, a) ∶= λπθ(s, a). It is worth mentioning
that (9) is a nonconvex problem due to its nonconcave objective function and nonconvex constraints
with respect to θ.

Lagrangian Duality Consider the Lagrangian function associated with (9), L(θ, µ) ∶= F (θ) −
µG(θ). For the ease of theoretical analysis, we define L(λ,µ) ∶= f(λ) − µg (λ), which is concave
in λ when µ ≥ 0. It is clear that L(θ, µ) = L(λ(θ), µ). The dual function is defined as D(µ) ∶=
maxθ∈ΘL(θ, µ). Let πθ⋆ be the optimal policy such that θ⋆ is the optimal solution to (9), and µ⋆ be
the optimal dual variable.

In constrained optimization, strict feasibility can induce many desirable properties. Assume that the
following Slater’s condition holds.
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Assumption 2.1 (Slater’s condition) There exist θ̃ ∈ Θ and ξ > 0 such that G(θ̃) = g(λ(θ̃)) ≤ −ξ.

The Slater’s condition is a standard assumption and it holds when the feasible region has an interior
point. In practice, such a point is often easy to find using prior knowledge of the problem. The
following result is a direct consequence of the Slater’s condition [10].

Lemma 2.2 (Strong duality and boundedness of µ⋆) Let Assumption 2.1 hold and suppose that
cl (λ(Θ)) = Λ. We have: (I) F (θ⋆) = D (µ⋆) = L(θ⋆, µ⋆), (II) 0 ≤ µ⋆ ≤ (F (θ⋆) − F (θ̃))/ξ.

For completeness, we provide a proof for Lemma 2.2 in Appendix A. The strong duality implies that
(9) is equivalent to the following saddle point problem:

max
θ∈Θ

min
µ≥0
L(θ, µ) =min

µ≥0
max
θ∈Θ
L(θ, µ). (10)

Motivated by this equivalence, we seek to develop a primal-dual algorithm to solve the problem.

3 Safe Policy Search Beyond Cumulative Rewards/Utilities
To solve (10), we propose the following Primal-Dual Projected Gradient Algorithm (PDPG):

θt+1 = PΘ (θ
t
+ η1∇θL(θ

t, µt)) , µt+1 = PU (µ
t
− η2∇µL(θ

t, µt)) , for t = 0,1,2, . . . , (11)

where η1 > 0, η2 > 0 are constant step-sizes, and the dual feasible region U ∶= [0,C0] is an interval
that contains µ⋆. By Lemma 2.2, choosing C0 ≥ (F (θ

⋆) − F (θ̃))/ξ satisfies the requirement. The
method (11) adopts an alternating update scheme: the primal step performs the projected gradient
ascent in the policy space, whereas dual step updates the multiplier with projected sub-gradient
descent such that µt+1 is obtained by adding a multiple of the constraint violation to µt. The values
of C0, η1, η2 will be specified later in the paper.

Unlike standard CMDPs (1) where the value function is defined as discounted cumulative re-
wards/utilities and admits an additive structure, performing and analyzing algorithm (11) are far more
challenging for convex CMDPs.

3.1 Gradient Evaluation of the Lagrangian Function

Computing the primal update in (11) involves evaluating the gradient of the Lagrangian with respect
to θ, i.e., ∇θL(θ, µ) = ∇θ [f(λ(θ)) − µg(λ(θ))]. When f(⋅) and g(⋅) are linear as in the standard
CMDP, i.e., f(λ) = ⟨r, λ⟩/(1−γ) and g(λ) = ⟨c, λ⟩/(1−γ), the Policy gradient theorem (cf. Lemma
G.1) can be applied, implying that

∇θL(θ, µ) = ∇θV
πθ (r − µc) =

1

1 − γ
Es∼dπθEa∼πθ(⋅∣s) [∇θ logπθ(a∣s) ⋅Q

πθ(r − µc; s, a)] , (12)

where dπ(s) ∶= ∑a∈A λ
π(s, a) is the discounted state visitation distribution. However, this favorable

result is not applicable when f(⋅) and g(⋅) are general concave/convex functions. Instead, we present
two alternative approaches.

Variational Policy Gradient By leveraging the Fenchel duality, [5] showed that the gradient
∇θL(θ, µ) can be computed by solving a stochastic saddle point problem, in particular

∇θL(θ, µ) = lim
δ→0+

argmax
x

inf
z
{(1 − γ) [V πθ(z) + δ ⟨∇θV

πθ(z), x⟩] −L∗(z, µ) −
δ

2
∥x∥2} , (13)

where L∗(z, µ) ∶= infλ {⟨z, λ⟩ −L(λ,µ)} is the concave conjugate of L(λ,µ) with respect to λ. As
L∗(z, µ) is concave in z and V πθ(z) = ⟨z, λ(θ)⟩ is linear in z, the max-min problem in (13) is a
concave-convex saddle point problem.

REINFORCE-based Policy Gradient By noticing the relation∇θV πθ(r) = [∇θλ(θ)]
⊺
⋅r/(1−γ),

one can view ∇θL(θ, µ) as the standard policy gradient for the value function with the reward
∇λL(λ(θ), µ) (assuming that f(λ), g(λ), and λ(θ) are all differentiable), i.e.,

∇θL(θ, µ) = [∇θλ(θ)]
⊺
⋅ ∇λL(λ(θ), µ) = (1 − γ)∇θV

πθ(∇λL(λ(θ), µ)), (14)
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where the first equality follows from the chain rule. Thus, the gradient ∇θL(θ, µ) can be estimated
with the REINFORCE algorithm [32] as long as we can choose an approximation of ∇λL(λ(θ), µ)
as the reward. We refer the reader to [17, Section 4] for more details.

Since ∇µL(θ, µ) = −G(θ) = −g(λ(θ)), performing the dual update (11) requires evaluating the
constraint function. In cases where an efficient oracle for computing g(λ(θ)) from θ is not available,
we can formulate it as another convex problem using the Fenchel duality to avoid directly estimating
the current state-action visitation distribution λ(θ):

∇µL(θ, µ) = −g(λ(θ)) = − sup
z
{⟨z, λ⟩ − g∗(z)} = − sup

z
{(1 − γ)V πθ(z) − g∗(z)} . (15)

where g∗(z) ∶= supλ {⟨z, λ⟩ − g(λ)} is the convex conjugate of g(⋅) and we use the fact that the
biconjugate of a convex function equals itself, i.e., g∗∗(λ) ∶= supz {⟨z, λ⟩ − g

∗(z)} = g(λ).

3.2 Exploiting the Hidden Convexity

By itself, (10) is a nonconvex-linear maximin problem. The existing results for the analysis of the
gradient ascent descent method (11) for such problems can only guarantee to find a ϵ-stationary point
in O(ϵ−6) iterations [33]. To obtain an improved convergence rate and achieve a global optimality, it
is necessary to exploit the “hidden convexity” of (9) with respect to λ.

However, standard analyses based on the performance difference lemma (cf. Lemma G.4) do not
apply to convex CMDPs [34, 13]. A key insight is that, due to the loss of linearity, the performance
difference lemma together with concavity can only provide an upper bound for the single-step
improvement with the gradient information at the current step (the derivation can be found in
Appendix A.1):

L(θt+1, µt) − L(θt, µt) ≤ Es∼dπθt ⟨πθt+1(⋅∣s) − πθt(⋅∣s),Q
πθt+1 (∇λL(λ(θ

t
), µt); s, ⋅)⟩ . (16)

Thus, this prompts us to introduce a new analysis to bound the average performance in terms of the
Lagrangian (cf. (18)).

Following [5], we leverage the fact that the primal update implies the formula

L(θt+1, µt) =max
θ∈Θ

{L(θt, µt) + (θ − θt)⊺∇θL(θ
t, µt) −

1

2η1
∥θ − θt∥22} . (17)

With a proper step-size η1, (17) guarantees a strict single-step improvement. The basis of our
analysis lies in designing a special point θ from θt and θ⋆ to lower-bound L(θt+1, µt) through (17).
The hidden convexity of (9) with respect to λ plays a central role in bounding the improvement
L(θt+1, µt) − L(θt, µt) and relating it to the sub-optimality gap L(θ⋆, µt) − L(θt, µt). The details
are deferred to Section 4.

4 Convergence Analysis
In this section, we establish the global convergence of the primal-dual projected gradient algorithm
(11) by exploiting the hidden convexity of (9) with respect to λ. We refer the reader to the supplement
in Appendix B for the proofs of this section.

First, we formally state our assumption about the parameterization (8). To avoid introducing an
additional bias, it is natural to assume that the parameterization has enough expressibility to represent
any policy, i.e., ∀π ∈ Π, ∃θ ∈ Θ such that π = πθ. However, assuming a one-to-one correspondence
between π ∈ Π and πθ, θ ∈ Θ is too restrictive. In practice, using a deep neural network to represent
the policy can often arrive at an over-parameterization. Therefore, following [17], we assume that
πθ is defined such that it can represent any policy and that λ(⋅) is locally continuously invertible. A
more detailed discussion can be found in Appendix D.

Assumption 4.1 (Parameterization) The policy parameterization π = πθ over-parameterizes the
set of all stochastic policies and satisfies: (I) For every θ ∈ Θ, there exists a neighborhood Uθ ∋ θ
such that the restriction of λ(⋅) to Uθ is a bijection between Uθ and Vλ(θ) ∶= λ(Uθ); (II) Let
λ−1Vλ(θ) ∶ Vλ(θ) → Uθ be the local inverse of λ(⋅), i.e., λ−1Vλ(θ)(λ(θ0)) = θ0, ∀θ0 ∈ Uθ. Then, there
exists a universal constant ℓΘ such that λ−1Vλ(θ) is ℓΘ-Lipschitz continuous for all θ ∈ Θ; (III) There
exists ε̄ > 0 such that (1 − ε)λ(θ) + ελ(θ⋆) ∈ Vλ(θ), ∀ε ≤ ε̄, ∀θ ∈ Θ.
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We also make the following assumption about the smoothness of the objective and constraint functions.

Assumption 4.2 (Smoothness) F (θ) is ℓF -smooth with respect to (w.r.t.) θ and G(θ) is ℓG-smooth
w.r.t. θ, i.e., ∥∇θF (θ1) − ∇θF (θ2)∥2 ≤ ℓF ∥θ1 − θ2∥2 and ∥∇θG(θ1) − ∇θG(θ2)∥2 ≤ ℓG∥θ1 − θ2∥2,
∀ θ1, θ2 ∈ Θ.

In optimization, smoothness is important when analyzing the convergence rate of an algorithm. In
Appendix E, we provide a discussion which shows that Assumption 4.2 is mild in the sense that
if f(λ) is smooth with respect to λ, then F (θ) = f(λ(θ)) is smooth with respect to θ under some
regularity conditions.

The following property about L(θ, µ) is the direct consequence of Assumption 4.2.

Lemma 4.3 The functions f(⋅) and g(⋅) are bounded on Λ. Define MF and MG such that ∣f(λ)∣ ≤
MF and ∣g(λ)∣ ≤ MG, for all λ ∈ Λ. Then, it holds that ∣L(θ, µ)∣ ≤ ML, ∀ θ ∈ Θ, µ ∈ U , where
ML ∶=MF +C0MG. Furthermore, under Assumption 4.2, L(⋅, µ) is ℓL-smooth on Θ, for all µ ∈ U ,
where ℓL ∶= ℓF +C0ℓG.

To quantify the quality of a given solution θ to (9), the measures we consider are the optimality
gap F (θ⋆) − F (θ) and the constrained violation [G(θ)]+, where [x]+ ∶= max{x,0}. Unlike the
unconstrained setting where the last-iterate convergence is of more interest, a primal-dual algorithm
for constrained optimization often cannot ensure an effective improvement in every iteration due to
the change of the multiplier. Therefore, we focus on the global convergence of algorithm (11) in the
time-average sense.

We first bound the average performance in terms of the Lagrangian below.

Proposition 4.4 Let Assumptions 4.1 and 4.2 hold and assume that ε ≤ ε̄. Then, for every T > 0, the
iterates {(θt, µt)}

T−1

t=0
produced by algorithm (11) with η1 = 1/ℓL satisfy

1

T

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)] ≤
L(θ⋆, µ0) − L(θ0, µ0)

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε
. (18)

We remark that by choosing ε = T −1/3 and η2 = T −2/3, the bound (18) given by Proposition 4.4 has
the order of O(T −1/3). The core idea in proving Proposition 4.4 is that one can relate the primal
update (17) to the sub-optimality gap L(θ⋆, µt) − L(θt, µt) by leveraging the hidden convexity of
(9) with respect to λ. Then, as ∣µt+1 − µt∣ = O(η2), we are able to draw a recursion between the
sub-optimality gaps for two consecutive periods (cf. (35)).

The average performance in terms of the Lagrangian can be decomposed into the summation of the
average optimality gap and the weighted average “constraint violation”, i.e.,

1

T

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)] =
1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] +
1

T

T−1

∑
t=0

µt [G(θt) −G(θ⋆)] . (19)

Since θ⋆ must be a feasible solution, the term [G(θt) −G(θ⋆)] can be interpreted as an approximate
of the constraint violation. To obtain separate bounds for the optimality gap and the true constraint
violation, we need to decouple the bound for the average performance.

Theorem 4.5 (General concavity) Let Assumptions 2.1, 4.1, and 4.2 hold. For every T ≥ (ε̄)−3,
we choose C0 = 1 + (MF − F (θ̃)) /ξ, µ0 = 0, η1 = 1/ℓL, and η2 = T −2/3. Then, the sequence

{(θt, µt)}
T−1

t=0
generated by algorithm (11) converges with the rate O(T −1/3), in particular

Optimality Gap:
1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2MF +M

2
G/2

T 2/3
+
2ℓLℓ

2
Θ + 2M

2
G

T 1/3
, (20a)

Constraint Violation:
1

T
[
T−1

∑
t=0

G(θt)]
+

≤
2MF +M

2
G/2

T 2/3
+
2ℓLℓ

2
Θ + 2M

2
G +C

2
0/2

T 1/3
. (20b)

Theorem 4.5 shows that algorithm (11) achieves a global convergence in the average sense such that
the optimality gap and the constraint violation decay to zero with the rate O(T −1/3). In other words,
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to obtain an O(ϵ)-accurate solution, the iteration complexity is O(ϵ−3). When f(⋅) and g(⋅) are
linear functions as in standard CMDPs (cf. (1)), Theorem 4.5 matches the rate of the natural policy
gradient primal-dual algorithm [13, Theorem 2]1.

In Theorem 4.5, the dual feasible region U = [0,C0] is set by taking C0 = 1 + (MF − F (θ̃)) /ξ. By
Lemma 2.2, µ⋆ ≤ (F (θ⋆) − F (θ̃))/ξ ≤ C0 − 1, which implies that µ̂ ∶= µ⋆ + 1 ∈ U . This “slackness”
plays an important role when bounding the constraint violation, as we can write [∑T−1t=0 G(θt)]

+
=

[(µ⋆ − µ̂)∑
T−1
t=0 ∇µL(θ

t, µt)]
+
, where the latter term can be related to the first-order expansion of

L(θ, ⋅) and bounded through the use of telescoping sums.

When the objective function f(λ(θ)) is strongly concave with respect to λ, we can further improve
the convergence rate of algorithm 11 by a similar line of analysis. Firstly, we establish the average
performance bound in terms of the Lagrangian.

Proposition 4.6 Let Assumptions 4.1 and 4.2 hold. Suppose that f(⋅) is σ-strongly concave w.r.t. λ
on Λ. Then, for every T > 0, the iterates {(θt, µt)}

T−1

t=0
produced by algorithm (11) with η1 = 1/ℓL

satisfy
1

T

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)] ≤
L(θT , µT−1) − L(θ0, µ0)

ε̃T
+
η2M

2
G

ε̃
, (21)

where ε̃ ∶=min{ε̄, σ/(σ + 2ℓ2ΘℓL)}.

Different from the general concave case (18), the bound (21) does not contain the constant error term
O(ε). Thus, by choosing η2 = T −1/2, the average performance has the order O(T −1/2). In a similar
manner as in Theorem 4.5, we can decouple the average performance to bound the optimality gap
and constraint violation.

Theorem 4.7 (Strong concavity) Let Assumptions 2.1, 4.1, and 4.2 hold. Suppose that f(⋅) is σ-
strongly concave w.r.t. λ on Λ. For every T > 0, we choose C0 = 1 + (MF − F (θ̃)) /ξ, µ0 = 0,

η1 = 1/ℓL, and η2 = T −1/2. Then, the sequence {(θt, µt)}
T−1

t=0
generated by algorithm (11) converges

with the rate O(T −1/2), in particular

Optimality Gap:
1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
ML +MF

ε̃T
+ (

M2
G

ε̃
+
M2
G

2
)

1
√
T
, (22a)

Constraint Violation:
1

T
[
T−1

∑
t=0

G(θt)]
+

≤
ML +MF

ε̃T
+ (

M2
G

ε̃
+
M2
G +C

2
0

2
)

1
√
T
, (22b)

where ε̃ ∶=min{ε̄, σ/(σ + 2ℓ2ΘℓL)}.

Theorem 4.7 shows that when f(⋅) is strongly concave, algorithm (11) admits an improved conver-
gence rate of O(T −1/2) by taking the dual step-size η2 = O (T −1/2). Equivalently, the iteration
complexity is O(ϵ−2) to compute an O(ϵ)-accurate solution.

Remark 4.8 (Direct parameterization) As a special case, the direct parameterization satisfies
Assumption 4.1 once there is a universal positive lower bound for the state visitation distribution
dπ. Under the direct parameterization, it can be shown that the primal update (17) also enjoys the
so-called variational gradient dominance property for standard MDPs (see, e.g., [34, Lemma 4.1]).
This evidence gives a clearer intuition of how the hidden convexity enables us to prove the global
convergence of algorithm (11). We refer the reader to Appendix F for a detailed discussion.

5 Zero Constraint Violation
In safety-critical systems where violating the constraint may induce an unexpected cost, having a
zero constraint violation is of great importance. Following the recent works [35, 26], we will show

1Although the convergence rate presented in [13, Theorem 2] is (O (T −1/2) ,O(T −1/4)), we note that it
can be converted to (O (T −1/3) ,O(T −1/3)) by choosing η1 = η2 = T

−1/3.
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that a zero constraint violation can be achieved while maintaining the same order of convergence rate
for the optimality gap. Consider the pessimistic counterpart of (9):

max
θ∈Θ

F (θ) = f(λ(θ)) s.t. G(θ) = g(λ(θ)) ≤ −δ, (23)

where δ > 0 is the pessimistic term to be determined. In the following theorem, we show that by
applying algorithm (11) to the pessimistic problem (23) with a carefully chosen δ, the constraint
violation will be zero for the original problem (9) when T is reasonably large. We refer to this variate
as the Primal-dual Policy Gradient-Zero Algorithm (PDPG-0). The informal version of the theorem
is stated below and we direct the reader to Appendix C for a detailed statement as well as the proof.

Theorem 5.1 Let Assumptions 2.1, 4.1, and 4.2 hold. (I) For every reasonably large T > 0, the
sequence {(θt, µt)}

T−1

t=0
generated by the PDPG-0 algorithm with δ = O(T −1/3) satisfies

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] = O(T −1/3),
1

T
[
T−1

∑
t=0

G(θt)]
+

= 0. (24)

(II) When f(⋅) is σ-strongly concave w.r.t. λ on Λ, the sequence {(θt, µt)}
T−1

t=0
generated by the

PDPG-0 algorithm with δ = O(T −1/2) satisfies

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] = O(T −1/2),
1

T
[
T−1

∑
t=0

G(θt)]
+

= 0. (25)

We briefly introduce the ideas behind Theorem 5.1 here. Adding the pessimistic term δ would
shift the optimal solution from θ⋆ to another point θ⋆δ . By leveraging the Slater’s condition, we can
upper-bound the sub-optimality gap ∣F (θ⋆) −F (θ⋆δ )∣ by O(δ). Since the orders of convergence rates
are the same for optimality gap and constraint violation (cf. Theorem 4.5 and 4.7), we can choose δ
to have the same order and then offset the constraint violation for the pessimistic problem (23). As
a result, the constraint violation becomes zero for the original problem (9) and the optimality gap
preserves its previous order.

6 Conclusion
In this work, we proposed a primal-dual projected gradient algorithm to solve convex CMDP problems.
Under the general soft-max parameterization with an over-parameterization assumption, it is proved
that the proposed method enjoys an O(T −1/3) global convergence rate in terms of the optimality
gap and constraint violation. When the objective is strongly concave in the state-action visitation
distribution, we showed an improved convergence rate of O(T −1/2). By considering a pessimistic
counterpart of the original problem, we also proved that a zero constraint violation can be achieved
while maintaining the same convergence rate for the optimality gap.

One important direction of future work lies in establishing a lower bound for convex CMDP problems
under a general soft-max parameterization to verify the optimality of our upper bounds. Also, an
extension to this work is studying the sample complexity of the PDPG method. Furthermore, it is
interesting to study whether geometric structures, such as entropy regularization [25–27] or policy
mirror descent [36], can be exploited to accelerate the convergence.
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Appendix A Supplementary Materials for Sections 2 and 3

Lemma A.1 (Restatement of Lemma 2.2) Let Assumption 2.1 hold and suppose that cl (λ(Θ)) =
Λ. We have: (I) F (θ⋆) = D (µ⋆) = L(θ⋆, µ⋆), (II) 0 ≤ µ⋆ ≤ (F (θ⋆) − F (θ̃))/ξ.

Proof. We note that Λ, the set of all possible state-action visitation distributions, is a convex polytope
having the expression

Λ =

⎧⎪⎪
⎨
⎪⎪⎩

λ ∈ R∣S∣∣A∣∣λ ≥ 0,∑
a

λ(s, a) = (1 − γ) ⋅ ρ(s) + γ ∑
s′,a′

P (s∣s′, a′) ⋅ λ (s′, a′) ,∀s ∈ S
⎫⎪⎪
⎬
⎪⎪⎭

. (26)

Then, since cl (λ(Θ)) = Λ, the nonconvex problem (9) is equivalent to the convex problem (5):
max
λ∈Λ

f(λ) s.t. g(λ) ≤ 0.

Therefore, the strong duality (I) naturally holds under Assumption 2.1 [37].

To prove (II), let C ∈ R. For every µ ≥ 0 such that D(µ) ≤ C, it holds that

C ≥ D(µ)
(i)
≥ F (θ̃) − µG(θ̃)

(ii)
≥ F (θ̃) + µξ, (27)

where (i) follows from the definition of D(µ) and (ii) is due to Assumption 2.1.

Since ξ > 0, (27) gives rise to the bound µ ≤ (C − F (θ̃)) /ξ. Now, by letting C = F (θ⋆), it results
from the strong duality that {µ ≥ 0 ∣ D(µ) ≤ C} becomes the set of optimal dual variables. This
completes the proof. ◻

A.1 Supplementary Materials for Section 3.2

We elaborate on the reason why the standard analysis based on the performance difference lemma
does not apply. When f(λ) = ⟨r, λ⟩/(1 − γ) and g(λ) = ⟨c, λ⟩/(1 − γ), the Lagrangian L(λ(θ), µ)
is linear in λ. Thus,

L(θt+1, µt) − L(θt, µt) = (1 − γ) [V πθt+1 (r − µtc) − V πθt (r − µtc)]

= ∑
s∈S

dπθt (s) ∑
a∈A

(πθt+1(a∣s) − πθt(a∣s)) ⋅Q
πθt+1 (r − µtc; s, a),

where the second step follows from the performance difference lemma (cf. Lemma G.4). This
provides a way to measure the improvement of the primal update. In particular, suppose that the
primal update adopts the natural policy gradient [38], meaning that

θt+1 = θt + η1 (F
θt
)

†
∇θL(θ

t, µt),

where (Fθ
t

)
†

denotes the Moore–Penrose inverse of the Fisher-information matrix with respect to
πθt . The corresponding policy update follows that

πθt+1(a∣s) ∝ πθt(a∣s)exp(
η1Q

πθt (r − µtc; s, a)

1 − γ
)/Zt(s),

where Zt(⋅) denotes the normalization term. Then, the single step improvement has the following
lower bound [13, Lemma 6]:

L(θt+1, µt) − L(θt, µt) ≥
(1 − γ)2

η1
Es∼ρ logZt(s) ≥ 0.

However, when L(λ(θ), µ) loses the linearity structure as in convex CMDPs, such argument no
longer holds true. The reason is that with concavity we can only obtain an upper bound for the
single-step improvement as follows (cf. (16)):

L(θt+1, µt) − L(θt, µt)

≤ ⟨∇λL(λ(θ
t
), µt), λ(θt+1) − λ(θt)⟩

= (1 − γ) [V πθt+1 (∇λL(λ(θ
t
), µt)) − V πθt (∇λL(λ(θ

t
), µt))]

= ∑
s∈S

dπθt (s) ∑
a∈A

(πθt+1(a∣s) − πθt(a∣s)) ⋅Q
πθt+1 (∇λL(λ(θ

t
), µt); s, a)

= Es∼dπθt ⟨πθt+1(⋅∣s) − πθt(⋅∣s),Q
πθt+1 (∇λL(λ(θ

t
), µt); s, ⋅)⟩ .
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Appendix B Supplementary Materials for Section 4

Lemma B.1 (Restatement of Lemma 4.3) The functions f(⋅) and g(⋅) are bounded on Λ. Define
MF and MG such that ∣f(λ)∣ ≤MF and ∣g(λ)∣ ≤MG, for all λ ∈ Λ. Then, it holds that ∣L(θ, µ)∣ ≤
ML, ∀ θ ∈ Θ, µ ∈ U , where ML ∶= MF + C0MG. Furthermore, under Assumption 4.2, L(⋅, µ) is
ℓL-smooth on Θ, for all µ ∈ U , where ℓL ∶= ℓF +C0ℓG.

Proof. Being a polytope means that Λ is closed and compact (cf. (26)). Since f is concave and g is
convex on Λ ⊂ R∣S∣∣A∣, they are also continuous. Thus, we have that f and g are bounded on Λ. As
U = [0,C0], it follows that

∣L(θ, µ)∣ = ∣F (θ) − µG(θ)∣ = ∣f(λ(θ)) − µg(λ(θ))∣ ≤ ∣f(λ(θ))∣ + µ∣g(λ(θ))∣ ≤MF +C0MG

for all µ ∈ U . Similarly, as F (θ) is ℓF -smooth and G(θ) is ℓG-smooth, we have that L(θ, µ) =
F (θ) − µG(θ) is (ℓF +C0ℓG)-smooth. ◻

B.1 Proof of Theorem 4.5

Proposition B.2 (Restatement of Proposition 4.4) Let Assumptions 4.1 and 4.2 hold and assume
that ε ≤ ε̄. Then, for every T > 0, the iterates {(θt, µt)}

T−1

t=0
produced by algorithm (11) with

η1 = 1/ℓL satisfy

1

T

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)] ≤
L(θ⋆, µ0) − L(θ0, µ0)

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε
.

Proof. We note that computing the primal update in algorithm (11) is equivalent to solving the
following sub-problem (cf. (17)):

θt+1 = PΘ (θ
t
+ η1∇θL(θ

t, µt))

= argmax
θ∈Θ

{L(θt, µt) + (θ − θt)⊺∇θL(θ
t, µt) −

1

2η1
∥θ − θt∥22}

= argmax
θ∈Θ

{L(θt, µt) + (θ − θt)⊺∇θL(θ
t, µt) −

ℓL
2
∥θ − θt∥22} .

(28)

Since L(θ, µ) is ℓL-smooth by Lemma 4.3, we obtain for every θ ∈ Θ that

∣L(θ, µt) − L(θt, µt) − (θ − θt)⊺∇θL(θ
t, µt)∣ ≤

ℓL
2
∥θ − θt∥22.

Thus, the following ascent property holds:

L(θ, µt) ≥ L(θt, µt) + (θ − θt)⊺∇θL(θ
t, µt) −

ℓL
2
∥θ − θt∥22 ≥ L(θ, µ

t
) − ℓL∥θ − θ

t
∥
2
2. (29)

On the basis of (28) and (29), it holds that

L(θt+1, µt) ≥ L(θt, µt) + (θt+1 − θt)⊺∇θL(θ
t, µt) −

ℓL
2
∥θt+1 − θt∥22

=max
θ∈Θ
{L(θt, µt) + (θ − θt)⊺∇θL(θ

t, µt) −
ℓL
2
∥θ − θt∥22}

≥max
θ∈Θ
{L(θ, µt) − ℓL∥θ − θ

t
∥
2
2} ,

(30)

Now, we leverage the local invertibility of λ(⋅) to lower-bound the right-hand side of (30). We define

θε ∶= λ
−1
Vλ(θt)

((1 − ε)λ(θt) + ελ(θ⋆)) . (31)

According to Assumption 4.1, since ε ≤ ε̄, we have (1 − ε)λ(θt) + ελ(θ⋆) ∈ Vλ(θt). Thus, θε is
well-defined and θε ∈ Uθt . By definition, the composition of λ ∶ Θ→ Λ and λ−1Vλ(θt)

∶ Vλ(θt) → Uθt is
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the identity map on Vλ(θt). Together with the facts that L(θ, µ) = L(λ(θ), µ) and L(⋅, µ) is concave,
we have that

L(θε, µ
t
) = L(λ(θε), µ

t
)

= L (λ ○ λ−1Vλ(θt)
((1 − ε)λ(θt) + ελ(θ⋆)) , µt)

= L ((1 − ε)λ(θt) + ελ(θ⋆), µt)

≥ (1 − ε)L(λ(θt), µt) + εL(λ(θ⋆), µt)

= (1 − ε)L(θt, µt) + εL(θ⋆, µt).

(32)

Additionally, the Lipschitz continuity of λ−1Vλ(θt)
implies that

∥θε − θ
t
∥
2
2 = ∥λ

−1
Vλ(θt)

((1 − ε)λ(θt) + ελ(θ⋆)) − λ−1Vλ(θt)
(λ(θt))∥

2

2

≤ ℓ2Θ ∥(1 − ε)λ(θ
t
) + ελ(θ⋆) − λ(θt)∥

2

2

≤ ε2ℓ2Θ ∥λ(θ
⋆
) − λ(θt)∥

2

2

≤ 2ε2ℓ2Θ,

(33)

where the last inequality uses the diameter of the probability simplex Λ, i.e., maxλ1,λ2∈Λ ∥λ1−λ2∥2 ≤√
2. By substituting θε into (30) and using inequalities (32) and (33), it holds that

L(θt+1, µt) ≥max
θ∈Θ
{L(θ, µt) − ℓL∥θ − θ

t
∥
2
2}

≥ L(θε, µ
t
) − ℓL∥θε − θ

t
∥
2
2

≥ (1 − ε)L(θt, µt) + εL(θ⋆, µt) − 2ε2ℓLℓ
2
Θ,

which implies that

L(θ⋆, µt) − L(θt+1, µt) ≤ (1 − ε) (L(θ⋆, µt) − L(θt, µt)) + 2ε2ℓLℓ
2
Θ. (34)

Consequently, one can obtain the recursion

L(θ⋆, µt+1) − L(θt+1, µt+1)

= [L(θ⋆, µt) − L(θt+1, µt)] + [L(θ⋆, µt+1) − L(θ⋆, µt)] + [L(θt+1, µt) − L(θt+1, µt+1)]

(i)
≤ (1 − ε) (L(θ⋆, µt) − L(θt, µt)) + 2ε2ℓLℓ

2
Θ

+ [L(θ⋆, µt+1) − L(θ⋆, µt)] + [L(θt+1, µt) − L(θt+1, µt+1)]

(ii)
≤ (1 − ε) (L(θ⋆, µt) − L(θt, µt)) + 2ε2ℓLℓ

2
Θ + 2η2M

2
G,

(35)

where we use (34) in (i) . Step (ii) is due to the bound

∣L(θ, µt) − L(θ, µt+1)∣ = ∣(µt − µt+1)G(θ)∣

= ∣[µt − PU (µ
t
− η2∇µL(θ

t, µt))]G(θ)∣

≤ ∣η2∇µL(θ
t, µt)G(θ)∣

= ∣η2G(θ
t
)G(θ)∣

≤ η2M
2
G, ∀ θ ∈ Θ,

(36)

where the two inequalities above result from the non-expansive property of the projection operator
and the boundedness of G(θ), i.e., ∣G(θ)∣ ≤MG, respectively. Utilizing the recursion (35), we derive
that

L(θ⋆, µt+1) − L(θt+1, µt+1)

≤ (1 − ε) (L(θ⋆, µt) − L(θt, µt)) + 2ε2ℓLℓ
2
Θ + 2η2M

2
G

≤ (1 − ε)2 (L(θ⋆, µt−1) − L(θt−1, µt−1)) + (1 + 1 − ε) (2ε2ℓLℓ
2
Θ + 2η2M

2
G)

≤ (1 − ε)t+1 (L(θ⋆, µ0
) − L(θ0, µ0

)) +
t

∑
i=0

(1 − ε)i (2ε2ℓLℓ
2
Θ + 2η2M

2
G)

= (1 − ε)t+1 (L(θ⋆, µ0
) − L(θ0, µ0

)) +
1 − (1 − ε)t+1

ε
(2ε2ℓLℓ

2
Θ + 2η2M

2
G) ,
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which is equivalent to

L(θ⋆, µt) − L(θt, µt)

≤ (1 − ε)t (L(θ⋆, µ0
) − L(θ0, µ0

)) + (1 − (1 − ε)t)(2εℓLℓ
2
Θ +

2η2M
2
G

ε
) , ∀ t ≥ 0.

Summing the above inequality over t = 0,1, . . . , T − 1 yields that

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)]

≤
T−1

∑
t=0

(1 − ε)t (L(θ⋆, µ0
) − L(θ0, µ0

)) + (1 − (1 − ε)t)(2εℓLℓ
2
Θ +

2η2M
2
G

ε
)

=
1 − (1 − ε)T

ε
(L(θ⋆, µ0

) − L(θ0, µ0
)) + (T −

1 − (1 − ε)T

ε
)(2εℓLℓ

2
Θ +

2η2M
2
G

ε
)

≤
1

ε
(L(θ⋆, µ0

) − L(θ0, µ0
)) + T (2εℓLℓ

2
Θ +

2η2M
2
G

ε
) .

The proof is completed by dividing T on both sides of the inequality. ◻

Theorem B.3 (Restatement of Theorem 4.5) Let Assumptions 2.1, 4.1, and 4.2 hold. For every
T ≥ (ε̄)−3, we choose C0 = 1 + (MF − F (θ̃)) /ξ, µ0 = 0, η1 = 1/ℓL, and η2 = T −2/3. Then, the

sequence {(θt, µt)}
T−1

t=0
generated by algorithm (11) converges with the rateO(T −1/3), in particular

Optimality Gap:
1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2MF +M

2
G/2

T 2/3
+
2ℓLℓ

2
Θ + 2M

2
G

T 1/3
,

Constraint Violation:
1

T
[
T−1

∑
t=0

G(θt)]
+

≤
2MF +M

2
G/2

T 2/3
+
2ℓLℓ

2
Θ + 2M

2
G +C

2
0/2

T 1/3
.

Proof of the optimality gap (20a). By the definition of the Lagrangian function L(θ, µ), we have

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] =
1

T

T−1

∑
t=0

[F (θ⋆) − L(θt, µt) − µtG(θt)]

=
1

T

T−1

∑
t=0

[F (θ⋆) − L(θt, µt)] −
1

T

T−1

∑
t=0

µtG(θt).

(37)

The first term in the right-hand side of (37) can be upper-bounded as

1

T

T−1

∑
t=0

[F (θ⋆) − L(θt, µt)] =
1

T

T−1

∑
t=0

[L(θ⋆, µ⋆) − L(θt, µt)]

(i)
≤
1

T

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)]

(ii)
≤
L(θ⋆, µ0) − L(θ0, µ0)

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε

=
F (θ⋆) − F (θ0)

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε

≤
2MF

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε
,

(38)

where the first equality holds due to strong duality (cf. Lemma 2.2), and step (i) is due to the fact
that µ⋆ = argminµ≥0L(θ

⋆, µ). By Proposition 4.4 and Assumption 4.1, step (ii) holds true for all
ε ≤ ε̄. Finally, we use the fact that µ0 = 0 in the second equality.
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Next, we upper-bound the second term in the right-hand side of (37). By the update rule of µt in
algorithm (11) and the non-expansive property of the projection operator, we obtain that

(µt+1 − µ)2 = [PU (µ
t
− η2∇µL(θ

t, µt)) − µ]
2

≤ [µt − η2∇µL(θ
t, µt) − µ]2

= (µt − µ)2 − 2η2(µ
t
− µ) ⋅ ∇µL(θ

t, µt) + [η2∇µL(θ
t, µt)]

2

≤ (µt − µ)2 + 2η2(µ
t
− µ) ⋅G(θt) + (η2MG)

2, ∀µ ∈ U,

(39)

where the last inequality results from ∇µL(θ, µ) = −G(θ) and the boundedness of G(θ). By setting
µ = 0 and rearranging terms, we conclude that

−µtG(θt) ≤
1

2η2
[(µt)2 − (µt+1)2 + (η2MG)

2] . (40)

We sum both sides of (40) from t = 0 to T − 1 and divide both sides by T to obtain that

1

T

T−1

∑
t=0

−µtG(θt) ≤
1

2η2T

T−1

∑
t=0

[(µt)2 − (µt+1)2 + (η2MG)
2]

≤
1

2η2T
[(µ0
)
2
− (µT )2 + T ⋅ (η2MG)

2]

≤
η2M

2
G

2
,

(41)

where the last inequality is resulted from dropping the non-positive term −(µT )2 and plugging in
µ0 = 0. By substituting (38) and (41) back into (37), it follows that

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2MF

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε
+
η2M

2
G

2
.

The proof is completed by taking η2 = T −2/3 and ε = T −1/3. We note that T ≥ (ε̄)−3 ensures ε ≤ ε̄. ◻

Proof of the constraint violation (20b). If [∑T−1t=0 G(θt)]
+
= 0, the bound is trivially satisfied. There-

fore, from now on, we assume [∑T−1t=0 G(θt)]
+
> 0, which implies ∑T−1t=0 G(θt) = [∑

T−1
t=0 G(θt)]

+
.

Define µ̂ ∶= µ⋆ + 1 ≥ 1 as µ⋆ ≥ 0. By the boundedness of µ⋆ (cf. Lemma 2.2), we have that

µ̂ = µ⋆ + 1 ≤
F (θ⋆) − F (θ̃)

ξ
+ 1 ≤

MF − F (θ̃)

ξ
+ 1 = C0,

which implies µ̂ ∈ U . Thus, it follows that

1

T
[
T−1

∑
t=0

G(θt)]
+

= (µ̂ − µ⋆) ⋅
1

T

T−1

∑
t=0

G(θt)

= (µ⋆ − µ̂) ⋅
1

T

T−1

∑
t=0

∇µL(θ
t, µt)

≤max
µ∈U
{(µ⋆ − µ) ⋅

1

T

T−1

∑
t=0

∇µL(θ
t, µt)} ,

(42)

where we used the fact that µ̂ − µ⋆ = 1 in the first step. To upper-bound the last line in (42), we note
that

(µ⋆ − µ) ⋅ ∇µL(θ
t, µt) = (µ⋆ − µt + µt − µ) ⋅ ∇µL(θ

t, µt)

= [(µ⋆ − µt) ⋅ ∇µL(θ
t, µt)] + [(µt − µ) ⋅ ∇µL(θ

t, µt)]

(i)
= [L(θt, µ⋆) − L(θt, µt)] − [(µt − µ) ⋅G(θt)]

≤ [L(θ⋆, µ⋆) − L(θt, µt)] − [(µt − µ) ⋅G(θt)]

(ii)
≤ [L(θ⋆, µ⋆) − L(θt, µt)] +

(µt − µ)2 − (µt+1 − µ)2

2η2
+
η2M

2
G

2
,

(43)
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where we use the linearity of L(θ, µ) with respect to µ in (i). The first inequality follows from the
fact that θ⋆ maximizes L(⋅, µ⋆) and inequality (ii) follows from rearranging the terms in (39).

Summing both sides of (43) over t = 0, . . . , T − 1, dividing them by T , and plugging into (42) yield
that

1

T
[
T−1

∑
t=0

G(θt)]
+

≤ max
µ∈U
{(µ⋆ − µ) ⋅

1

T

T−1

∑
t=0

∇µL(θ
t, µt)}

≤ max
µ∈U
{
1

T

T−1

∑
t=0

[L(θ⋆, µ⋆) − L(θt, µt)] +
1

T

T−1

∑
t=0

(µt − µ)2 − (µt+1 − µ)2

2η2
+
η2M

2
G

2
}

≤
1

T

T−1

∑
t=0

[L(θ⋆, µ⋆) − L(θt, µt)] +
η2M

2
G

2
+max
µ∈U
{
(µ0 − µ)2 − (µT − µ)2

2η2T
}

(i)
≤

2MF

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε
+
η2M

2
G

2
+max
µ∈U
{
(µ0 − µ)2

2η2T
}

(ii)
≤

2MF

εT
+ 2εℓLℓ

2
Θ +

2η2M
2
G

ε
+
η2M

2
G

2
+

C2
0

2η2T
,

(44)

where we upper-bound (1/T ) ⋅ ∑T−1t=0 [L(θ
⋆, µ⋆) − L(θt, µt)] with (38) in (i) and drop the non-

positive term −(µT −µ)2. Step (ii) holds due to µ0 = 0 and µ ≤ C0, ∀µ ∈ U . The proof is completed
by substituting η2 = T −2/3 and ε = T −1/3 into (44). ◻

B.2 Proof of Theorem 4.7

Proposition B.4 (Restatement of Proposition 4.6) Let Assumptions 4.1 and 4.2 hold. Suppose that
f(⋅) is σ-strongly concave w.r.t. λ on Λ. Then, for every T > 0, the iterates {(θt, µt)}

T−1

t=0
produced

by algorithm (11) with η1 = 1/ℓL satisfy

1

T

T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)] ≤
L(θT , µT−1) − L(θ0, µ0)

ε̃T
+
η2M

2
G

ε̃
,

where ε̃ ∶=min{ε̄, σ/(σ + 2ℓ2ΘℓL)}.

Proof. We begin with (30):

L(θt+1, µt) ≥max
θ∈Θ
{L(θ, µt) − ℓL∥θ − θ

t
∥
2
2} . (45)

For ε ≤ ε̄, we define θε ∶= λ−1Vλ(θt)
((1 − ε)λ(θt) + ελ(θ⋆)) similarly to (31). Combining the defini-

tion of L(θ, µ) = L(λ(θ), µ) with the fact that L(⋅, µ) is σ-strongly concave in λ, which is due to
the σ-strongly concavity of f(⋅) and the convexity of g(⋅), we have that

L(θε, µ
t
) = L(λ(θε), µ

t
)

= L (λ ○ λ−1Vλ(θt)
((1 − ε)λ(θt) + ελ(θ⋆)) , µt)

= L ((1 − ε)λ(θt) + ελ(θ⋆), µt)

≥ (1 − ε)L(λ(θt), µt) + εL(λ(θ⋆), µt) +
σ

2
ε(1 − ε) ∥λ(θ⋆) − λ(θt)∥

2

2

= (1 − ε)L(θt, µt) + εL(θ⋆, µt) +
σ

2
ε(1 − ε) ∥λ(θ⋆) − λ(θt)∥

2

2
.

(46)

By Assumption 4.1, the Lipschitz continuity of λ−1Vλ(θt)
implies that

∥θε − θ
t
∥
2
2 = ∥λ

−1
Vλ(θt)

((1 − ε)λ(θt) + ελ(θ⋆)) − λ−1Vλ(θt)
(λ(θt))∥

2

2

≤ ℓ2Θ ∥(1 − ε)λ(θ
t
) + ελ(θ⋆) − λ(θt)∥

2

2

≤ ε2ℓ2Θ ∥λ(θ
⋆
) − λ(θt)∥

2

2
.

(47)
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Substitute θε into the right-hand side of (45), we have that

L(θt+1, µt) ≥max
θ∈Θ
{L(θ, µt) − ℓL∥θ − θ

t
∥
2
2}

≥ max
0≤ε≤ε̄

{L(θε, µ
t
) − ℓL∥θε − θ

t
∥
2
2}

≥ max
0≤ε≤ε̄

{(1 − ε)L(θt, µt) + εL(θ⋆, µt) + (
σ

2
ε(1 − ε) − ε2ℓLℓ

2
Θ) ∥λ(θ

⋆
) − λ(θt)∥

2

2
} ,

where we use (46) and (47) in the last inequality. Consequently,

L(θ⋆, µt) − L(θt+1, µt) ≤ min
0≤ε≤ε̄

{(1 − ε) [L(θ⋆, µt) − L(θt, µt)]

− (
σε(1 − ε)

2
− ε2ℓLℓ

2
Θ) ∥λ(θ

⋆
) − λ(θt)∥

2

2
} .

(48)

We note that
σε(1 − ε)

2
− ε2ℓLℓ

2
Θ ≥ 0, if 0 ≤ ε ≤

σ

(σ + 2ℓ2ΘℓL)
. (49)

By letting ε̃ ∶=min{ε̄, σ/(σ + 2ℓ2ΘℓL)} ≤ ε̄, it follows from (48) that

L(θ⋆, µt) − L(θt+1, µt)

≤ (1 − ε̃) [L(θ⋆, µt) − L(θt, µt)] − (
σε̃(1 − ε̃)

2
− ε̃2ℓLℓ

2
Θ)∥λ(θ

⋆
) − λ(θt)∥

2

2

≤ (1 − ε̃) [L(θ⋆, µt) − L(θt, µt)] ,

(50)

where the second inequality results from (49). Now, we rearrange terms in (50) to obtain that

L(θ⋆, µt) − L(θt+1, µt) ≤
1 − ε̃

ε̃
[L(θt+1, µt) − L(θt, µt)] ,

which implies that

L(θ⋆, µt) − L(θt, µt) = [L(θ⋆, µt) − L(θt+1, µt)] + [L(θt+1, µt) − L(θt, µt)]

≤ (
1 − ε̃

ε̃
+ 1) [L(θt+1, µt) − L(θt, µt)]

=
1

ε̃
[L(θt+1, µt) − L(θt, µt)] .

Summing it over t = 0, . . . , T − 1, we have that
T−1

∑
t=0

[L(θ⋆, µt) − L(θt, µt)] ≤
1

ε̃

T−1

∑
t=0

[L(θt+1, µt) − L(θt, µt)]

=
1

ε̃
(L(θT , µT−1) − L(θ0, µ0

) +
T−2

∑
t=0

[L(θt+1, µt) − L(θt+1, µt+1)])

(i)
≤
1

ε̃
[L(θT , µT−1) − L(θ0, µ0

) + (T − 1)η2M
2
G] ,

where we use (36) to bound the difference L(θt+1, µt)−L(θt+1, µt+1) in (i). The proof is completed
by dividing T on both sides of the inequality. ◻

Theorem B.5 (Restatement of Theorem 4.7) Let Assumptions 2.1, 4.1, and 4.2 hold. Suppose that
f(⋅) is σ-strongly concave w.r.t. λ on Λ. For every T > 0, we choose C0 = 1 + (MF − F (θ̃)) /ξ,

µ0 = 0, η1 = 1/ℓL, and η2 = T −1/2. Then, the sequence {(θt, µt)}
T−1

t=0
generated by algorithm (11)

converges with the rate O(T −1/2), in particular

Optimality Gap:
1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
ML +MF

ε̃T
+ (

M2
G

ε̃
+
M2
G

2
)

1
√
T
,

Constraint Violation:
1

T
[
T−1

∑
t=0

G(θt)]
+

≤
ML +MF

ε̃T
+ (

M2
G

ε̃
+
M2
G +C

2
0

2
)

1
√
T
,

where ε̃ ∶=min{ε̄, σ/(σ + 2ℓ2ΘℓL)}.
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Proof of the optimality gap (22a). We follow the same proof as the concave case (cf. (20a) in Theorem
4.5), except for inequality (38). In step (ii) of (38), we use Proposition 4.6 instead of Proposition 4.4.
This gives rise to

1

T

T−1

∑
t=0

[F (θ⋆) − L(θt, µt)] ≤
L(θT , µT−1) − L(θ0, µ0)

ε̃T
+
η2M

2
G

ε̃

=
L(θT , µT−1) − F (θ0)

ε̃T
+
η2M

2
G

ε̃

≤
ML +MF

ε̃T
+
η2M

2
G

ε̃
,

(51)

where we use µ0 = 0 in the second step. Following (37) and (41), we conclude that

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] =
1

T

T−1

∑
t=0

[F (θ⋆) − L(θt, µt)] −
1

T

T−1

∑
t=0

µtG(θt)

≤
ML +MF

ε̃T
+
η2M

2
G

ε̃
+
η2M

2
G

2
.

The proof is completed by taking η2 = T −1/2. ◻

Proof of the constraint violation (22b). We follow the same lines as in the proof of (20b) for the
concave case. By substituting (51) into (44), it holds that

1

T
[
T−1

∑
t=0

G(θt)]
+

≤
1

T

T−1

∑
t=0

[L(θ⋆, µ⋆) − L(θt, µt)] +
η2M

2
G

2
+max
µ∈U
{
(µ0 − µ)2 − (µT − µ)2

2η2T
}

≤
ML +MF

ε̃T
+
η2M

2
G

ε̃
+
η2M

2
G

2
+max
µ∈U
{
(µ0 − µ)2

2η2T
}

≤
ML +MF

ε̃T
+
η2M

2
G

ε̃
+
η2M

2
G

2
+

C2
0

2η2T
,

which, together with η2 = T −1/2, completes the proof. ◻

Appendix C Supplementary Materials for Section 5

In this section, we formally state the Primal-dual Policy Gradient-Zero Algorithm (PDPG-0) and
Theorem 5.1. First, we note that the pessimistic problem (23) is equivalent to

max
θ∈Θ

F (θ) s.t. Gδ(θ) ≤ 0, (52)

where Gδ(θ) ∶= G(θ) + δ. Suppose that δ < ξ, i.e., the pessimistic term is smaller than the strict
feasibility of the Slater point. This implies that

∣Gδ(θ)∣ ≤MG + ξ, and Gδ(θ̃) ≤ −(ξ − δ) < 0. (53)

This gives the constraint upper bound and slackness for the pessimistic problem (52).

The PDPG-0 method is simply a variate of algorithm (11) applied to the new problem (52), i.e.,

θt+1 = PΘ (θ
t
+ η1∇θLδ(θ

t, µt)) , µt+1 = PU (µ
t
− η2∇µLδ(θ

t, µt)) , for t = 0,1,2, . . . , (54)

where Lδ(θ, µ) ∶= F (θ) − µGδ(θ) is the Lagrangian function for (52).

Theorem C.1 (Restatement of Theorem 5.1) Let Assumptions 2.1, 4.1, and 4.2 hold.

(I) For fixed T > 0, let δ = O(T −1/3) be the solution to the equation

2MF + (MG + ξ)
2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2 +C2
0/2

T 1/3
− δ = 0,
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where C0 = 1 + (MF − F (θ̃)) /(ξ − δ). For T > 0 such that δ < ξ, choose µ0 = 0, η1 = 1/ℓL, and

η2 = T
−2/3. Then, the sequence {(θt, µt)}

T−1

t=0
generated by algorithm (54) satisfies

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2δMF

ξ
+
2MF + (MG + ξ)

2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2

T 1/3
,

1

T
[
T−1

∑
t=0

G(θt)]
+

= 0.

(II) Assume that f(⋅) is σ-strongly concave w.r.t. λ on Λ. For fixed T > 0, let δ = O(T −1/2) be the
solution to the equation

ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2 +C2
0

2
)

1
√
T
− δ = 0,

where C0 = 1 + (MF − F (θ̃)) /(ξ − δ). For T > 0 such that δ < ξ, choose µ0 = 0, η1 = 1/ℓL, and

η2 = T
−1/2. Then, the sequence {(θt, µt)}

T−1

t=0
generated by algorithm (54) satisfies

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2δMF

ξ
+
ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2

2
)

1
√
T
,

1

T
[
T−1

∑
t=0

G(θt)]
+

= 0.

Proof. We begin with general arguments that apply to both cases (I) and (II). Let θ⋆δ be an optimal
solution to the pessimistic problem (52). Then,

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] =
1

T

T−1

∑
t=0

[F (θ⋆) − F (θ⋆δ )] +
1

T

T−1

∑
t=0

[F (θ⋆δ ) − F (θ
t
)]

= [F (θ⋆) − F (θ⋆δ )] +
1

T

T−1

∑
t=0

[F (θ⋆δ ) − F (θ
t
)] .

(55)

To upper-bound the first term in (55), we define a feasible point θδ to (52) through the state-action
visitation distribution such that

λ(θδ) =
ξ − δ

ξ
λ(θ⋆) +

δ

ξ
λ(θ̃), (56)

where we assume 0 < δ < ξ. We remark that the policy corresponds to λ(θδ) is unique and given by

πθδ(a∣s) =
λ(θδ; s, a)

∑a′∈A λ(θδ; s, a
′)
.

In contrast, due to the assumption of over-parameterization (cf. Assumption 4.1), θδ may not be
unique. It suffices to choose one such θδ that satisfies (56). The feasibility of θδ can be verified as
follows:

Gδ(θδ) = g (λ(θδ)) + δ

= g (
ξ − δ

ξ
λ(θ⋆) +

δ

ξ
λ(θ̃)) + δ

(i)
≤
ξ − δ

ξ
g (λ(θ⋆)) +

δ

ξ
g (λ(θ̃)) + δ

(ii)
≤ 0 +

δ

ξ
⋅ (−ξ) + δ

= 0,

where (i) follows from the concavity of g(⋅) and (ii) uses the feasibility of θ⋆ to (9) as well
as Assumption 2.1. This proves the feasiblity of θδ to (52), and thus implies F (θ⋆δ ) ≥ F (θδ).
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Consequently,

F (θ⋆) − F (θ⋆δ ) ≤ F (θ
⋆
) − F (θδ)

= f (λ(θ⋆)) − f (λ(θδ))

= f (λ(θ⋆)) − f (
ξ − δ

ξ
λ(θ⋆) +

δ

ξ
λ(θ̃))

≤ f (λ(θ⋆)) − (
ξ − δ

ξ
f (λ(θ⋆)) +

δ

ξ
f (λ(θ̃)))

=
δ

ξ
[f (λ(θ⋆)) − f (λ(θ̃))]

≤
2δMF

ξ
.

(57)

By (53), for every δ < ξ, choosing C0 = 1 + (MF − F (θ̃)) /(ξ − δ) ensures that the optimal dual
variable of problem (52) belongs to the dual feasible region U = [0,C0] (cf. Lemma 2.2).

(I) When f(⋅) is a general convex function, we apply Theorem 4.5 to obtain that

1

T

T−1

∑
t=0

[F (θ⋆δ ) − F (θ
t
)] ≤

2MF + (MG + ξ)
2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2

T 1/3
,

1

T
[
T−1

∑
t=0

Gδ(θ
t
)]

+

≤
2MF + (MG + ξ)

2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2 +C2
0/2

T 1/3
.

where the term MG + ξ results from the upper bound for ∣Gδ(⋅)∣ in (53). Therefore, together with
(55) and (57), we have the following optimality gap for (9):

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2δMF

ξ
+
2MF + (MG + ξ)

2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2

T 1/3

= O(δ) +O (T −1/3) .

(58)

For the constraint violation, we have that

1

T
[
T−1

∑
t=0

G(θt)]
+

=
1

T
[
T−1

∑
t=0

(G(θt) + δ) − δ]
+

= [
1

T
[
T−1

∑
t=0

(G(θt) + δ)]
+

− δ]
+

= [
1

T
[
T−1

∑
t=0

Gδ(θ
t
)]

+

− δ]
+

≤ [
2MF + (MG + ξ)

2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2 +C2
0/2

T 1/3
− δ]

+

.

(59)

By choosing δ such that

2MF + (MG + ξ)
2/2

T 2/3
+
2ℓLℓ

2
Θ + 2(MG + ξ)

2 +C2
0/2

T 1/3
− δ = 0, (60)

the constraint violation (59) becomes 0. As (60) implies δ = O(T −1/3), the convergence rate of the
optimality gap (58) is O(T −1/3). Finally, we remark that the requirement δ < ξ is naturally satisfied
when T is reasonably large.

(II) When f(⋅) is σ-strongly concave, we apply Theorem 4.7 to obtain that

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2

2
)

1
√
T
,

1

T
[
T−1

∑
t=0

G(θt)]
+

≤
ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2 +C2
0

2
)

1
√
T
,
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where the terms C0ξ and MG + ξ result from the upper bound for Gδ(⋅) in (53). Together with (55)
and (57), we derive the optimality gap such that

1

T

T−1

∑
t=0

[F (θ⋆) − F (θt)] ≤
2δMF

ξ
+
ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2

2
)

1
√
T

= O(δ) +O (T −1/2) .

(61)

For the constraint violation, similarly to (59), we have that

1

T
[
T−1

∑
t=0

G(θt)]
+

≤ [
ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2 +C2
0

2
)

1
√
T
− δ]

+

. (62)

We choose δ such that
ML +MF +C0ξ

ε̃T
+ (
(MG + ξ)

2

ε̃
+
(MG + ξ)

2 +C2
0

2
)

1
√
T
− δ = 0, (63)

which guarantees the zero constraint violation (62). As (63) implies δ = O(T −1/2), the convergence
rate of the optimality gap (61) is O(T −1/2). ◻

Appendix D Discussions About Assumption 4.1

To leverage the hidden convexity of problem (9) with respect to λ, it is natural to assume that there
exists some desirable correspondence between λ(θ) and θ. However, as briefly discussed in Section
4, requiring such correspondence to be one-to-one or invertible is too restrictive. Although we can
show that a one-to-one correspondence indeed exists under the direct parameterization and that the
inverse map is Lipschitz continuous as long as there is a universal positive lower bound for the state
visitation distribution dπ(⋅) (cf. Lemma D.1), this is not the case for many other parameterizations.
The soft-max policy, defined as

πθ(a∣s) =
exp(θsa)

∑a′∈A exp (θsa′)
, ∀ (s, a) ∈ S ×A, (64)

serves as a counterexample. For a fixed vector θ0 ∈ R∣S∣∣A∣, consider the set of parameters

{θ ∈ R∣S∣∣A∣ ∣ θsa = (θ0)sa + k, ∀ (s, a) ∈ S ×A, ∀ k ∈ R}.
Then, it is clear that all parameters in the set correspond to the same policy πθ0 . Thus, a one-to-
one correspondence does not exist. This motivates Assumption 4.1, which only requires the local
existence of a continuous inverse λ−1. Assumption 4.1 is able to accommodate the soft-max policy
defined in (64).

Lemma D.1 (Lipschitz continuity of λ−1 under direct parameterization)

Suppose that d0 ∶=mins∈S,π∈Π d
π(s) > 02. For every two discounted state-action visitation distribu-

tions λ1, λ2 ∈ Λ, it holds that

∥λ−1(λ1) − λ
−1
(λ2)∥2 ≤

√
2(1 + ∣A∣)

d0
∥λ1 − λ2∥2,

where λ−1(⋅) maps a discounted state-action visitation distribution to the corresponding policy,
defined as π(a∣s) = [λ−1(λπ)]

s,a
∶= λπ(s, a)/∑a′∈A λ

π(s, a′).

Proof. Let d1(s) = ∑a λ1(s, a) and d2(s) = ∑a λ2(s, a) be the corresponding state visitation
distributions. Then,

[λ−1(λ1)]s,a − [λ
−1
(λ2)]s,a =

λ1(s, a)

d1(s)
−
λ2(s, a)

d2(s)

=
1

d1(s)
(λ1(s, a) − λ2(s, a) +

d2(s) − d1(s)

d2(s)
⋅ λ2(s, a)) .

2Since dπ(s) ≥ (1 − γ)ρ(s), this assumption is satisfied when there is an exploratory initial distribution,
i.e., ρ0 ∶=mins∈S ρ(s) > 0.
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Therefore, one can compute

∥λ−1(λ1) − λ
−1
(λ2)∥

2

2

= ∑
s,a

([λ−1(λ1)]s,a − [λ
−1
(λ2)]s,a)

2

= ∑
s

1

[d1(s)]
2∑
a

(λ1(s, a) − λ2(s, a) + [d2(s) − d1(s)] ⋅
λ2(s, a)

d2(s)
)

2

≤ ∑
s

2

[d1(s)]
2

⎛

⎝
∑
a

[λ1(s, a) − λ2(s, a)]
2
+ ([d2(s) − d1(s)] ⋅

λ2(s, a)

d2(s)
)

2
⎞

⎠
,

(65)

where the last line follows from the inequality (x + y)2 ≤ 2x2 + 2y2. For the second term inside the
summation, we have that

∑
a

([d2(s) − d1(s)] ⋅
λ2(s, a)

d2(s)
)

2

= [d2(s) − d1(s)]
2
⋅ ∥
λ2(s, ⋅)

d2(s)
∥

2

2

i
≤ [d2(s) − d1(s)]

2
⋅ ∥
λ2(s, ⋅)

d2(s)
∥

2

1

= [d2(s) − d1(s)]
2

=[∑
a

λ2(s, a) −∑
a

λ1(s, a)]

2

≤∣A∣ ⋅∑
a

[λ2(s, a) − λ1(s, a)]
2
,

(66)

where (i) is due to ∥ ⋅ ∥2 ≤ ∥ ⋅ ∥1 and the last step follows from the Cauchy-Schwarz inequality.

By substituting (66) into (65) and noting that dπ(s) ≥ d0, ∀s ∈ S, π ∈ Π, it holds that

∥λ−1(λ1) − λ
−1
(λ2)∥

2

2
≤ ∑

s

2(1 + ∣A∣)

[d1(s)]
2
(∑
a

[λ1(s, a) − λ2(s, a)]
2
)

≤
2(1 + ∣A∣)

d20
∑
s,a

[λ1(s, a) − λ2(s, a)]
2

≤
2(1 + ∣A∣)

d20
∥λ1 − λ2∥

2
2 .

The proof is completed by taking square root of both sides of the inequality. ◻

Appendix E Discussions About Assumption 4.2

In this section, we validate Assumption 4.2 for both the general soft-max parameterization (8) and
the direct parameterization.

E.1 General Soft-max Parameterization

The following result is cited from [17]. In short, it states that, under mild conditions on the smoothness
of ψ(⋅; s, a), f(⋅), and g(⋅), Assumption 4.2 is satisfied. We remark that neither concavity nor
convexity of the objective function is required for Proposition E.1.

Proposition E.1 (Smoothness of f(λ(θ)) w.r.t. θ, [17]) Under the general soft-max parameteri-
zation (8), suppose that ψ(⋅; s, a) is twice differentiable for all (s, a) ∈ S × A and there exist
ℓψ,1, ℓψ,2 > 0 such that

max
(s,a)∈S×A

sup
θ
∥∇θψ(θ; s, a)∥ ≤ ℓψ,1 and max

(s,a)∈S×A
sup
θ
∥∇

2
θψ(θ; s, a)∥ ≤ ℓψ,2.
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Assume that f(λ) has a bounded and Lipschitz gradient in Λ, namely, there exist ℓf,1, ℓf,2 > 0 such
that

∥∇λf(λ)∥∞ ≤ ℓf,1, ∥∇λf(λ) − ∇λf(λ
′
)∥∞ ≤ ℓf,2∥λ − λ

′
∥2, ∀ λ,λ′ ∈ Λ.

The following statements hold:

(I) For every θ ∈ Θ and (s, a) ∈ S ×A, it holds that

{
∥∇θ logπθ(a ∣ s)∥2 ≤ 2ℓψ,1,

∥∇2
θ logπθ(a ∣ s)∥ ≤ 2 (ℓψ,2 + ℓ

2
ψ,1) ,

and ∥∇θf(λ(θ))∥ ≤
2ℓψ,1 ⋅ ℓf,1

(1 − γ)2
.

(II) For every θ1, θ2 ∈ Θ, it holds that

∥λ(θ1) − λ(θ2)∥1 ≤
2ℓψ,1

(1 − γ)2
⋅ ∥θ1 − θ2∥ .

(III) The function f(λ(θ)) is ℓF -smooth with respect to θ, where

ℓF =
4ℓf,2 ⋅ ℓ

2
ψ,1

(1 − γ)4
+
8ℓ2ψ,1 ⋅ ℓf,1

(1 − γ)3
+
2ℓf,1 ⋅ (ℓψ,2 + ℓ

2
ψ,1)

(1 − γ)2
.

E.2 Direct Parameterization

To give a clearer characterization, we further validate Assumption 4.2 for the direct parameterization.
Recall that the discounted state-action visitation distribution for a given policy π is denoted as λπ.
We begin by showing that the one-to-one correspondence π → λπ is Lipschitz continuous in Lemma
E.2. Then, by leveraging the Lipschitz continuity, we show that f(λπ) is smooth w.r.t. π once f(λ)
is smooth w.r.t. λ in Proposition E.3. Again, we do not need to assume the concavity/convexity of
f(⋅).

Lemma E.2 (Lipschitz continuity of λπ w.r.t. π) For every two policies π and π′, it holds that

∥λπ − λπ
′
∥1 ≤

∣A∣

1 − γ
⋅ ∥π − π′∥2.

Proof. Fix π′ and define h(π) = ∥λπ − λπ
′
∥1. Then, we have

∇πh(π) = ∑
s,a

sign(λπ(s, a) − λπ
′
(s, a)) ⋅ ∇πλ

π
(s, a),

where sign(x) = 1 if x ≥ 0, otherwise sign(x) = −1. Let 1s′,a′ ∶ S × A → {0,1} denote the indicator
vector of the state-action pair (s′, a′) such that 1s′,a′(s, a) = 1 if and only if (s, a) = (s′, a′). Then,
we can view λπ(s, a) as a scaled value function with the reward function 1s,a, i.e.,

λπ(s, a) = 1⊺s,aλ
π
= (1 − γ)V π(1s,a). (67)

We use 1∣S∣∣A∣ to denote the vector of ones with dimension ∣S∣∣A∣. Then, it holds that

∥∇πh(π)∥2 = ∥∑
s,a

sign(λπ(s, a) − λπ
′
(s, a)) ⋅ ∇πλ

π
(s, a)∥2

≤ ∑
s,a

∥∇πλ
π
(s, a)∥2

≤ ∑
s,a

∥∇πλ
π
(s, a)∥1

(i)
= ∑
s,a
∑
s′,a′

dπ(s′) ⋅Qπ(1s,a; s
′, a′)

= ∑
s′,a′

dπ(s′) ⋅Qπ(1∣S∣∣A∣; s
′, a′)

=
∣A∣

1 − γ
,
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where we use (67) and the policy gradient under direct parameterization (cf. Lemma G.2) in (i).
The last line follows from the fact that Qπ(1∣S∣∣A∣; s′, a′) = 1/(1 − γ) for all (s′, a′) ∈ S × A and
∑s d

π(s) = 1. Therefore, we conclude that

∥λπ − λπ
′
∥1 = h(π)

≤ h(π′) +max
π0

{∥∇πh(π0)∥2} ⋅ ∥π − π
′
∥2

≤ ∥λπ
′
− λπ

′
∥1 +

∣A∣

1 − γ
∥π − π′∥2

=
∣A∣

1 − γ
∥π − π′∥2,

which completes the proof. ◻

Proposition E.3 (Smoothness of f(λπ) w.r.t. π) Suppose that f(λ) has a bounded and Lipschitz
gradient in Λ, namely, there exist ℓf,1, ℓf,2 > 0 such that

∥∇λf(λ)∥∞ ≤ ℓf,1, ∥∇λf(λ) − ∇λf(λ
′
)∥∞ ≤ ℓf,2∥λ − λ

′
∥2, ∀ λ,λ′ ∈ Λ.

Then, f(λπ) is ℓF -smooth w.r.t. π, i.e.,

∥∇πf(λ
π1) − ∇πf(λ

π2)∥2 ≤ ℓF ∥π1 − π2∥2, ∀ π1, π2 ∈ Π,

where

ℓF =
4ℓf,1γ∣A∣ + ℓf,2∣A∣

3/2

(1 − γ)2
.

Proof. By using the chain rule, we can write ∇πf(λπ) = (∇πλπ)⊺∇λf(λπ). Thus,

∥∇πf(λ
π1) − ∇πf(λ

π2)∥2

= ∥(∇πλ
π1)
⊺
∇λf(λ

π1) − (∇πλ
π2)
⊺
∇λf(λ

π2)∥2

= ∥(∇πλ
π1)
⊺
∇λf(λ

π1) − (∇πλ
π1)
⊺
∇λf(λ

π2)

+ (∇πλ
π1)
⊺
∇λf(λ

π2) − (∇πλ
π2)
⊺
∇λf(λ

π2)∥2

= ∥(∇πλ
π1)
⊺
∇λf(λ

π1) − (∇πλ
π1)
⊺
∇λf(λ

π2)∥2

+ ∥(∇πλ
π1)
⊺
∇λf(λ

π2) − (∇πλ
π2)
⊺
∇λf(λ

π2)∥2

= ∥(∇πλ
π1)
⊺
[∇λf(λ

π1) − ∇λf(λ
π2)] ∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T1

+∥ [(∇πλ
π1) − (∇πλ

π2)]
⊺
∇λf(λ

π2)∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T2

.

To bound T1, we notice that, by the definition V π(r) = r⊺λπ/(1 − γ),

(∇πλ
π1)
⊺
[∇λf(λ

π1) − ∇λf(λ
π2)] = (1 − γ)∇πV

π
([∇λf(λ

π1) − ∇λf(λ
π2)])∣

π=π1
(68)

25



Therefore, by the policy gradient under direct parameterization (cf. Lemma G.2), it holds that

T1 = ∥(1 − γ)∇πV
π
([∇λf(λ

π1) − ∇λf(λ
π2)])∣

π=π1
∥
2

=

⎧⎪⎪
⎨
⎪⎪⎩

∑
s,a

[dπ1(s) ⋅Qπ1([∇λf(λ
π1) − ∇λf(λ

π2)] ; s, a)]
2
⎫⎪⎪
⎬
⎪⎪⎭

1
2

= {∑
s

(dπ1(s))
2
⋅ ∑
a

[Qπ1([∇λf(λ
π1) − ∇λf(λ

π2)] ; s, a)]
2
}

1
2

= {∑
s

(dπ1(s))
2
}

1
2

⋅max
s
{∑
a

[Qπ1([∇λf(λ
π1) − ∇λf(λ

π2)] ; s, a)]
2
}

1
2

(i)
≤ ∥dπ1∥1 ⋅

√
∣A∣ ⋅max

s,a
∣Qπ1([∇λf(λ

π1) − ∇λf(λ
π2)] ; s, a)∣

(ii)
≤
√
∣A∣ ⋅
∥∇λf(λ

π1) − ∇λf(λ
π2)∥∞

1 − γ

(iii)
≤
ℓf,2
√
∣A∣

1 − γ
∥λπ1 − λπ2∥2

≤
ℓf,2
√
∣A∣

1 − γ
∥λπ1 − λπ2∥1

≤
ℓf,2∣A∣

3/2

(1 − γ)2
∥π1 − π2∥2,

(69)

where (i) uses the inequality ∥⋅∥2 ≤ ∥⋅∥1 and (ii) is due to ∥dπ∥1 = 1 and ∣Qπ(r; s, a)∣ ≤ ∥r∥∞/(1−γ).
(iii) results from the smoothness assumption of f(λ). The last step follows from the Lipschitz
continuity of λπ w.r.t. π (cf. Lemma E.2).

Now, to bound T2, we use the relation as described in (68) again, namely

(∇πλ
π1 −∇πλ

π2)
⊺
[∇λf(λ

π2)]

=(1 − γ) [∇πV
π
(∇λf(λ

π2))∣
π=π1

−∇πV
π
(∇λf(λ

π2))∣
π=π2
]

Thus, by Lemma G.3, it holds that

T2 = ∥ [(∇πλ
π1) − (∇πλ

π2)]
⊺
∇λf(λ

π2)∥2

= (1 − γ) ∥∇πV
π
(∇λf(λ

π2))∣
π=π1

−∇πV
π
(∇λf(λ

π2))∣
π=π2
∥
2

≤ (1 − γ) ⋅
4γ∣A∣

(1 − γ)3
⋅ ∥∇λf(λ

π2)∥∞ ⋅ ∥π1 − π2∥2

≤
4ℓf,1γ∣A∣

(1 − γ)2
∥π1 − π2∥2 ,

(70)

where we use the assumption ∥∇λf(λ)∥∞ ≤ ℓf,1 in the last inequality. The proof is completed by
combining (69) and (70). ◻

Appendix F Further Discussions About Direct Parameterization

In this section, as we focus on the direct parameterization, we adopt the notation F (π) = f(λπ),
G(π) = g(λπ), and L(π,µ) = L(λπ, µ) = f(λπ) − µg(λπ). We denote the optimal policy by π⋆.
The algorithm (11) then becomes

πt+1 = PΠ (π
t
+ η1∇πL(π

t, µt)) , µt+1 = PU (µ
t
− η2∇µL(π

t, µt)) , for t = 0,1,2, . . . (71)

As a special case of (8), the direct parameterization satisfies a stronger version of Assumption 4.1.
Since there is a bijection between the policy π and the state-action visitation distribution λπ, the
inverse map λ−1(⋅) is well-defined globally on Λ. Furthermore, when the state visitation distribution
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dπ is universally bounded away from 0, the inverse λ−1(⋅) is Lipschitz continuous (see Lemma D.1
in Appendix D). We still assume that F (π) is ℓF -smooth and G(π) is ℓG-smooth as in Assumption
4.2. It is shown in Proposition E.3 that this assumption is satisfied when f(⋅) and g(⋅) are smooth
with respect to λ.

Below, in Lemma F.1, we show that the update (71) also enjoys the variational gradient dominance
property for standard MDPs (see, e.g., [34, Lemma 4.1]), i.e.,

L(π⋆, µt) − L(πt+1, µt) ≤ 2
√
2∣S∣ ⋅ ∥

dπ
⋆

dπt ∥
∞

⋅ ℓL ∥π
t
− πt+1∥

2
, for t = 0,1,2, . . . . (72)

Since the projected gradient update (71) has the following descent property [39, Theorem 1]:

L(πt+1, µt) − L(πt, µt) ≥
ℓL
2
∥πt − πt+1∥22,

together with (72), we have that

[max{0,L(π⋆, µt) − L(πt+1, µt)}]
2
≤ 16∣S∣ ⋅ ∥

dπ
⋆

dπt ∥

2

∞

⋅ ℓL [L(π
t+1, µt) − L(πt, µt)] . (73)

This is the counterpart to (34). Following this line of argument, we derive a similar bound for the
average performance in terms of the Lagrangian:

1

T

T−1

∑
t=0

[L(π⋆, µt) − L(πt, µt)]

≤
2
√
2∣S∣ ⋅ ∥dπ

⋆
∥∞

d0
⋅

√

2ℓL (
2ML

T
+ η2M2

G) + (
2ML

T
+ η2M

2
G) .

(74)

By taking η2 = T −2/3 in (74), this yields a similar result as Proposition 4.4. We summarize this result
in Proposition F.2 below.

Lemma F.1 (Variational gradient dominance) Let Assumption 4.2 hold and choose η1 = 1/ℓL.
The sequence {(πt, µt)}

t
generated by algorithm (11) satisfies

L(π⋆, µt) − L(πt+1, µt) ≤ 2
√
2∣S∣ ⋅ ∥

dπ
⋆

dπt ∥
∞

⋅ ℓL ∥π
t
− πt+1∥

2
, for t = 0,1,2, . . . .

Proof. By the concavity of L(⋅, µt), when t ≥ 0, it yields that

L(π⋆, µt) − L(πt, µt) = L(λπ
⋆
, µt) −L(λπ

t

, µt)

≤ (λπ
⋆
− λπ

t

)
⊺
∇λL(λ

πt

, µt)

= (1 − γ) (V π
⋆
(∇λL(λ

πt

, µt)) − V π
t

(∇λL(λ
πt

, µt)))

(i)
= ∑
s,a

dπ
⋆
(s) ⋅ π⋆(a∣s) ⋅Aπ

t

(∇λL(λ
πt

, µt); s, a)

≤ ∑
s

dπ
⋆
(s) ⋅max

a
{Aπ

t

(∇λL(λ
πt

, µt); s, a)}

= ∑
s

dπ
⋆
(s)

dπt
(s)
⋅ dπ

t

(s) ⋅max
a
{Aπ

t

(∇λL(λ
πt

, µt); s, a)}

(ii)
≤ ∥

dπ
⋆

dπt ∥
∞

⋅ ∑
s

dπ
t

(s) ⋅max
a
{Aπ

t

(∇λL(λ
πt

, µt); s, a)} ,

(75)

where we use the performance difference lemma (cf. Lemma G.4) in (i). Recall that Aπ (r; s, a)
denotes the advantage function with reward r(⋅, ⋅) under policy π (cf. (87)). The inequality (ii) holds
since maxa {A

πt

(∇λL(λ
πt

, µt); s, a)} ≥ 0. The summation term in the last line can be analyzed as
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∑
s

dπ
t

(s) ⋅max
a
{Aπ

t

(∇λL(λ
πt

, µt); s, a)}

(i)
= max
π′∈Π

⎧⎪⎪
⎨
⎪⎪⎩

∑
s,a

dπ
t

(s) ⋅ π′(a∣s) ⋅Aπ
t

(∇λL(λ
πt

, µt); s, a)

⎫⎪⎪
⎬
⎪⎪⎭

(ii)
= max

π′∈Π

⎧⎪⎪
⎨
⎪⎪⎩

∑
s,a

dπ
t

(s) ⋅ [π′(a∣s) − πt(a∣s)] ⋅Aπ
t

(∇λL(λ
πt

, µt); s, a)

⎫⎪⎪
⎬
⎪⎪⎭

(iii)
= max

π′∈Π

⎧⎪⎪
⎨
⎪⎪⎩

∑
s,a

dπ
t

(s) ⋅ [π′(a∣s) − πt(a∣s)] ⋅Qπ
t

(∇λL(λ
πt

, µt); s, a)

⎫⎪⎪
⎬
⎪⎪⎭

(iv)
= (1 − γ)max

π′∈Π
{(π′ − πt)⊺∇π [V

π
(∇λL(λ

πt

, µt))] ∣
π=πt

} ,

(76)

where (i) holds as the maximum policy is attained at the action that maximizes
Aπ

t

(∇λL(λ
πt

, µt); s, ⋅). Step (ii) follows since ∑a π
t(a∣s) ⋅Aπ

t

(∇λL(λ
πt

, µt); s, a) = 0. Then

∑a[π
′(a∣s) − πt(a∣s)] ⋅ V π

t

= 0 makes (iii) holds. The last step (iv) uses the policy gradient under
direct parameterization (cf. Lemma G.2), which can be further written as

∇π [V
π
(∇λL(λ

πt

, µt))] ∣
π=πt

(i)
=

1

1 − γ
∇π [(∇λL(λ

πt

, µt))
⊺

λπ] ∣
π=πt

=
1

1 − γ
(∇λL(λ

πt

, µt))
⊺

∇πλ
πt

(ii)
=

1

1 − γ
∇πL(λ

πt

, µt)

=
1

1 − γ
∇πL(π

t, µt),

(77)

where (i) follows from the definition of V π (∇λL(λπ
t

, µt)), and step (ii) is obtained by the chain
rule. Thus, it follows from (75)-(77) that

L(π⋆, µt) − L(πt, µt) ≤ ∥
dπ

⋆

dπt ∥
∞

⋅max
π′∈Π
{(π′ − πt)

⊺
∇πL(π

t, µt)} , for t = 0,1,2, . . . . (78)

Let {(πt, µt)}
t

be the sequence generated by the algorithm (71) with the primal step-size η1 = 1/ℓL.
Following [39, Theorem 1], the update (71) satisfies that

(π′ − πt+1)
⊺
∇πL(π

t+1, µt) ≤ 2ℓL∥π
t
− πt+1∥2 ⋅ ∥π

′
− πt+1∥2, for t = 0,1,2, . . . . (79)

Maximizing both sides of (79) in terms of π′ yields that

max
π′∈Π
{(π′ − πt+1)

⊺
∇πL(π

t+1, µt)} ≤max
π′∈Π
{∥π′ − πt+1∥2} ⋅ 2ℓL∥π

t
− πt+1∥2

≤
√
2∣S∣ ⋅ 2ℓL∥π

t
− πt+1∥2,

(80)

where we use maxπ1,π2∈Π {∥π1 − π2∥2} ≤
√
2∣S∣ in the last inequality. Combining (78) and (80)

leads to the desired result. ◻

Proposition F.2 Let Assumption 4.2 hold and suppose that d0 ∶= mins∈S,π∈Π d
π(s) > 0. Then, for

every T > 0, the iterates {(πt, µt)}
T−1

t=0
produced by algorithm (71) with η1 = 1/ℓL satisfy

1

T

T−1

∑
t=0

[L(π⋆, µt) − L(πt, µt)]

≤
2
√
2∣S∣ ⋅ ∥dπ

⋆
∥∞

d0
⋅

√

2ℓL (
2ML

T
+ η2M2

G) + (
2ML

T
+ η2M

2
G) .

28



Proof. By applying the descent property [39, Theorem 1] of the projected gradient algorithm to the
primal update (71), it holds that

L(πt+1, µt) − L(πt, µt) ≥
ℓL
2
∥πt − πt+1∥22, (81)

By Lemma F.1, we have that

L(π⋆, µt) − L(πt+1, µt) ≤ 2
√
2∣S∣ ⋅ ∥

dπ
⋆

dπt ∥
∞

⋅ ℓL ∥π
t
− πt+1∥

2

≤
2
√
2∣S∣ ⋅ ∥dπ

⋆
∥∞ ⋅ ℓL

d0
∥πt − πt+1∥

2
,

which implies that

∥πt − πt+1∥22 ≥
⎛

⎝

d0

2
√
2∣S∣ ⋅ ∥dπ⋆∥∞ ⋅ ℓL

⎞

⎠

2

⋅ [max{0,L(π⋆, µt) − L(πt+1, µt)}]
2
. (82)

Combining inequalities (81) and (82) yields that

L(πt+1, µt) − L(πt, µt) ≥
1

2C2
1ℓL
⋅ [max{0,L(π⋆, µt) − L(πt+1, µt)}]

2
,

where we denote C1 ∶= 2
√
2∣S∣ ⋅ ∥dπ

⋆
∥∞/d0. Summing over t = 0, . . . , T − 1, we obtain that

T−1

∑
t=0

[L(πt+1, µt) − L(πt, µt)] ≥
1

2C2
1ℓL
⋅
T−1

∑
t=0

[max{0,L(π⋆, µt) − L(πt+1, µt)}]
2

≥
1

2C2
1ℓL
⋅
1

T
[
T−1

∑
t=0

max{0,L(π⋆, µt) − L(πt+1, µt)}]

2

,

(83)

where the last line in (83) results from the Cauchy-Schwarz inequality.

We then provide an upper bound on the left-hand side of (83). By the definition of Lagrangian
L(π,µ),

T−1

∑
t=0

[L(πt+1, µt) − L(πt, µt)]

=
T−1

∑
t=0

[F (πt+1) − µtG(πt+1) − F (πt) + µtG(πt)]

(i)
= F (πT ) − F (π0

) + µ0G(π0
) − µT−1G(πT ) +

T−1

∑
t=1

(µt − µt−1)G(πt)

≤ 2MF + 2C0MG +
T−1

∑
t=1

(µt − µt−1)G(πt)

= 2ML +
T−1

∑
t=1

(µt − µt−1)G(πt),

(84)

where we take telescoping sums and change the index of summation in (i). The summation term in
the last line of (84) has the order O(T ), in particular

T−1

∑
t=1

(µt − µt−1)G(πt) ≤
T−1

∑
t=1

∣µt − µt−1∣ ⋅ ∣G(πt)∣

≤MG

T−1

∑
t=1

∣PU (µ
t−1
− η2∇µL(π

t−1, µt−1)) − µt−1∣

≤MG

T−1

∑
t=1

∣µt−1 − η2∇µL(π
t−1, µt−1) − µt−1∣

= η2MG

T−1

∑
t=1

∣G(πt−1)∣

≤ η2M
2
GT.
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Thus, we obtain an upper bound such that

T−1

∑
t=0

[L(πt+1, µt) − L(πt, µt)] ≤ 2ML + η2M
2
GT, (85)

which further implies, by (83), that

1

2C2
1ℓL
⋅
1

T
[
T−1

∑
t=0

max{0,L(π⋆, µt) − L(πt+1, µt)}]

2

≤ 2ML + η2M
2
GT. (86)

Therefore, we can bound the average performance as

1

T

T−1

∑
t=0

[L(π⋆, µt) − L(πt, µt)]

=
1

T

T−1

∑
t=0

[L(π⋆, µt) − L(πt+1, µt)] +
1

T

T−1

∑
t=0

[L(πt+1, µt) − L(πt, µt)]

≤
1

T

T−1

∑
t=0

max{0,L(π⋆, µt) − L(πt+1, µt)} +
1

T

T−1

∑
t=0

[L(πt+1, µt) − L(πt, µt)]

(i)
≤C1

√

2ℓL (
2ML

T
+ η2M2

G) +
1

T

T−1

∑
t=0

[L(πt+1, µt) − L(πt, µt)]

(ii)
≤ C1

√

2ℓL (
2ML

T
+ η2M2

G) + (
2ML

T
+ η2M

2
G)

=
2
√
2∣S∣ ⋅ ∥dπ

⋆
∥∞

d0
⋅

√

2ℓL (
2ML

T
+ η2M2

G) + (
2ML

T
+ η2M

2
G) ,

where we use (86) in (i) and (85) in (ii). This completes the proof. ◻

Appendix G Auxiliary Lemmas

In this section, we present a few auxiliary lemmas that we needed for the proofs of main results in
this paper. These lemmas are standard results on Markov decision processes. We refer the reader to
Section 2 for necessary definitions and [34] for the proofs of these results.

Lemma G.1 (Policy gradient under general parameterization) Let V πθ(r) be the value function
under policy πθ with an arbitrary reward function r ∶ S × A → R. The gradient of V πθ(r) with
respect to θ is given by

∇θV
πθ (r) =

1

1 − γ
Es∼dπθEa∼πθ(⋅∣s) [∇θ logπθ(a∣s) ⋅Q

πθ(r; s, a)] .

Lemma G.2 (Policy gradient under direct parameterization) Let V π(r) be the value function
under policy π with an arbitrary reward function r ∶ S × A → R. The gradient of V π(r) with respect
to π is given by

∂V π(r)

∂π(a∣s)
=

1

1 − γ
dπ(s) ⋅Qπ(r; s, a), ∀ (s, a) ∈ S ×A.

Lemma G.3 (Smoothness of V π(r) w.r.t. π) Let V π(r) be the value function under policy π with
an arbitrary reward function r ∶ S × A → R. For every two policies π and π′, it holds that

∥∇πV
π
(r) − ∇πV

π′
(r)∥

2
≤

4γ∣A∣

(1 − γ)3
⋅ ∥r∥∞ ⋅ ∥π − π

′
∥2 .
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Lemma G.4 (Performance difference) Let V π(r) be the value function under policy π with an
arbitrary reward function r ∶ S × A → R. For every two policies π and π′, it holds that

V π
′
(r) − V π(r) =

1

1 − γ
⟨r, λπ

′
− λπ⟩

=
1

1 − γ
∑
s∈S

dπ(s) ∑
a∈A

(π′(a∣s) − π(a∣s)) ⋅Qπ
′
(r; s, a)

=
1

1 − γ
∑
s∈S

dπ
′
(s) ∑

a∈A

π′(a∣s) ⋅Aπ(r; s, a)

where Aπ (r; s, a) denotes the advantage function with reward r(⋅, ⋅) under policy π, defined as

Aπ (r; s, a) ∶= Qπ (r; s, a) −E [
∞

∑
t=0

γtr (st, at) ∣at ∼ π(⋅∣st), s0 = s] , ∀(s, a) ∈ S ×A. (87)
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