
Analysis of Spurious Local Solutions of Optimal Control Problems:
One-Shot Optimization Versus Dynamic Programming

Yuhao Ding, Yingjie Bi and Javad Lavaei

Abstract— Dynamic programming (DP) has a rich theoretical
foundation and a broad range of applications, especially in
the classic area of optimal control and the recent area of
reinforcement learning (RL). Many optimal control problems
can be solved as a single optimization problem, named one-shot
optimization, or via a sequence of optimization problems using
DP. However, the computation of their global optima often faces
the NP-hardness issue due to the non-linearity of the dynamics
and non-convexity of the cost, and thus only local optimal
solutions may be obtained at best. Furthermore, in many cases
arising in machine learning and model-free approaches, DP is
the only viable choice, and therefore it is essential to understand
when DP combined with a local search solver works. In this
work, we introduce the notions of spurious local minimizers for
the one-shot optimization and spurious local minimum policies
for DP, and show that there is a deep connection between them.
In particular, we prove that under mild conditions the DP
method using local search can successfully solve the optimal
control problem to global optimality if and only if the one-shot
optimization is free of spurious solutions. This result paves the
way to understand the performance of local search methods in
optimal control and RL.

I. INTRODUCTION

Dynamic programming (DP) is a simple mathematical
technique that has been widely used in a variety of fields.
Following Bellman’s influential work [1] on demonstrating
the broad scope of DP and laying the foundation of its theory,
many mathemetical and algorithmic aspects of DP have been
investigated [2]. One main application of DP is to solve
optimal control problems, with applications in communica-
tion systems [3], inventory control [4], powertrain control
[5], and many more. Furthermore, many recent successes
in artificial intelligence, especially in reinforcement learning
(RL) [6], [7], are also deeply rooted in DP. For example,
in the challenging domain of classic Atari 2600 games, the
work [8] has demonstrated that the deep Q-learning method
based on the generalized policy iteration together with a deep
neural network as the function approximator for the Q-values
surpasses the performance of all previous algorithms and
achieves a level comparable to that of a professional human
games tester.

Although DP has a rich theoretical foundation and a
broad range of applications, the exact solutions of large-
scale optimal control problems are often impossible to obtain
using DP in practice [6]. Apart from suffering the “curse
of dimensionality” when the state space is large, solving
DP accurately could also be highly complex. The reason
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is that DP requires solving optimization sub-problems to
global optimality, which is NP-hard in general. Therefore,
even though the theory of DP relies on global optimization
solvers, practitioners use local optimization solvers based on
first- and second-order numerical algorithms. As a result,
the theoretical guarantee of DP could break down as soon
as a non-global local solution is found in any of the sub-
problems. Understanding the performance of local search
methods for non-convex problems has been a focal area in
machine learning in recent years. This is performed under the
notion of spurious solution, which refers to a local minimum
that is not a global solution. The specific application areas are
neural networks, dictionary learning, deep learning, mixed
linear regression, phase retrieval and online optimization
[9], [10], [11], [12], [13], [14], [15], [16]. Recently, there
has been an increasing interest in understanding the global
convergence of the approximate DP algorithms for problems
with special structures [17], [18], [19], but the literature lacks
a rigorous analysis of spurious solutions in DP.

In this paper, we analyze the spurious solutions of the
DP method. To streamline the presentation, we focus on the
deterministic finite-horizon optimal control problem whose
goal is to find an optimal input sequence such that the total
cost is minimized while the dynamics and input constraints
are satisfied. One approach to solving the problem is by for-
mulating it as a one-shot optimization problem, and another
approach is using the DP to formulate it as a sequential
decision-making problem and solve it backwardly. Although
it is well-known that for the deterministic optimal control
problem, the one-shot method and the DP method return the
same globally optimal control sequence, it is not yet known
what would occur if the global optimizer needed for solving
each sub-optimization problem in DP is replaced by a local
optimizer. To address this question, we first introduce the
notion of locally minimum control policy of DP and prove
that under some mild conditions, each local minimizer of
the one-shot optimization corresponds to the control input
induced by a locally minimum control policy of DP, and
vice versa. This result precisely uncovers the connection
between the optimization landscapes of the one-shot and DP
optimization problems.

Since DP is an integral part of model-free optimal control
and RL, the results of this paper explain that the success
of DP solely depends on the optimization landscape of a
single optimization problem. Although we focus on the deter-
ministic finite-horizon optimal control problem in this work,
its generalization to the infinite-horizon stationary optimal
control problem is straightforward. The technique developed



in the paper can also be used to study the stochastic optimal
control problem, but it is not included here due to space
restrictions.

Notations: Let R denote the set of real numbers. We use
B(c, r) to denote the open ball centered at c with radius r
and use B̄(c, r) to denote the closure of B(c, r). The notation
x ∈ A − B means that x is in the set A but not in the
set B. Let ‖·‖ denote the Euclidean norm and ∇xf(x, y)
denote the gradient of f(x, y) with respect to x. The notation
∇2
xf(x) � 0 means that the Hessian of f(x) is positive

definite.

II. PROBLEM FORMULATION

Consider a general discrete-time finite-horizon optimal
control problem with n time steps:

min
x1,...,xn,
u0,...,un−1

n−1∑
i=0

ci(xi, ui) + cn(xn)

s. t. xi+1 = fi(xi, ui), i = 0, . . . , n− 1,

ui ∈ A, i = 0, . . . , n− 1,

x0 is given,

(P1)

where xi ∈ RN is the state at time i and ui is the control
input at time i that is constrained to be in an action space
A ⊆ RM . The state transition is governed by the dynamics
fi : RN ×RM → RN . Each time instance i is associated
with a stage cost ci : RN ×RM → R or the terminal cost
cn : RN → R. Given an initial state x0, the goal of the
optimal control problem is to find an optimal control input
(u0, . . . , un−1) minimizing the sum of the stage costs and
the terminal cost. In this paper, the dynamics fi and the cost
functions ci are assumed to be at least twice continuously
differentiable over RN ×RM , and the action space A is
assumed to be compact.

The optimal control problem can be solved by two ap-
proaches. The first approach is to directly solve (P1) as an
one-shot optimization problem that simultaneously solves
for all variables. To simplify the following analysis, we
eliminate the equality constraints in (P1) via the notation
C(xk;uk, . . . , un−1) defined as the cost-to-go started at
the time step k with the initial state x and control inputs
uk, . . . , un−1. In other words,

C(x) = cn(x),

C(x;uk, . . . , un−1) = ck(x, uk)

+ C(fk(x, uk);uk+1, . . . , un),

for k = 0, . . . , n − 1. The one-shot optimization problem
(P1) can be equivalently written as

min C(x0;u0, . . . , un−1)

s. t. ui ∈ A, i = 0, . . . , n− 1.
(P2)

The second approach to solving the optimal control prob-
lem is based on DP. Let Jk(xk) denote the optimal cost-to-go
at the time step k with the initial state xk, i.e.,

Jk(xk) = min C(xk;uk, . . . , un−1)

s. t. ui ∈ A, i = k, . . . , n− 1,

Then, Jk can be computed in a backward fashion from the
time step n− 1 to time 0 through the following recursion:

Jn(x) = cn(x),

Jk(x) = min
u∈A
{ck(x, u) + Jk+1(fk(x, u))}, (P3)

for k = 0, . . . , n − 1. The optimal cost J0(x0) equals the
optimal objective value of (P1).

However, due to the non-convexity of the look-ahead
objective functions, it is generally NP-hard to obtain the
globally optimal solution of (P3) for all states and at all
times. Specifically, when using the DP to solve the optimal
control problem (P1), the first step is to compute

min
u∈A
{cn−1(xn−1, u) + cn(fn−1(xn−1, u))}

for every xn−1 ∈ RN , which requires solving nonconvex
optimization problems if the cost function is nonconvex or
the dynamics is nonlinear. Since these intermediate problems
are normally solved via local search methods, the best
expectation is to obtain a local minimizer for un−1 as a
function of x ∈ RN , denoted by the policy πn−1(x). As
a result, instead of working with truly optimal cost-to-go
functions, one may arrive at an inexact cost-to-go at time
n− 1 as follows:

Jπn−1(xn−1) =cn−1(xn−1, πn−1(xn−1))

+ cn(fn−1(xn−1, πn−1(xn−1))

which is obtained based on the local minimizer πn−1(x).
Subsequently, it is required to solve the optimal decision-
making problem

min
u∈A
{cn−2(xn−2, u) + Jπn−1(fn−2(xn−2, u))}

for every xn−2 ∈ RN . By repeating this procedure in a
backward fashion toward the time step 0, we obtain a group
of policy functions πk and inexact cost-to-go functions Jπk
for k = 0, . . . , n− 1. Given the initial state x0, let

u0 = π0(x0), x1 = f0(x0, u0)

u1 = π1(x1), x2 = f1(x1, u1)

. . .

un−1 = πn−1(xn−1), xn = fn(xn−1, un−1),

be the control inputs and the states induced by the poli-
cies π0, . . . , πn−1. Then, (u0, . . . , un−1) is an approximate
solution to the original optimal control problem (P1) with
the sub-optimal objective value Jπ0 (x0). This motivates us
to define locally minimum control policies based on solving
(P3) to local optimality.

Definition 1: Given a control policy π = (π0, . . . , πn−1),
the associated Q-functions Qπk (·, ·) and cost-to-go functions
Jπk (·) under the policy π are defined backwardly from the
time step n − 1 to the time step 0 through the following
recursion:

Jπn (x) = cn(x),

Qπk (x, u) = ck(x, u) + Jπk+1(fk(x, u)),

Jπk (x) = Qπk (x, πk(x)),



for k = 0, . . . , n− 1.
Definition 2 (locally minimum control policy): A control

policy π = (π0, . . . , πn−1) is said to be a locally minimum
control policy of DP if for all k ∈ {0, . . . , n − 1} and for
all x ∈ RN , the policy πk(x) is a local minimizer of the Q-
function Qπk (x, ·), meaning that there exists ε∗k(x) > 0 such
that

Qπk (x, πk(x)) ≤ Qπk (x, ũ), ∀ũ ∈ B(πk(x), ε∗k(x)) ∩A.

It is further called a spurious (non-global) locally minimum
control policy of DP if Jπ0 (x0) > J0(x0).

Definition 3 (local minimizer): A vector (u∗0, . . . , u
∗
n−1)

is said to be a local minimizer of the one-shot optimization
problem (P2) if there exists ε > 0 such that

C(x0, u
∗
0, . . . , u

∗
n−1) ≤ C(x0, ũ0, . . . , ũn−1)

for all ũi ∈ B(u∗i , ε) ∩ A where i = 0, . . . , n − 1. It is
further called a spurious local minimizer of the one-shot
optimization problem if C(x0, u

∗
0, . . . , u

∗
n−1) > J0(x0).

In the remainder of the paper, we will study the relation-
ship between the (spurious) local minimizers of the one-shot
problem and the (spurious) locally minimum control policies
of DP. The goal is to show that, under mild conditions,
the inexact DP method based on local search algorithms
solves the optimal control problem to global optimality if
and only if its corresponding one-shot optimization can be
successfully solved using local search methods.

III. MAIN RESULTS

A. Local minimizer: From one-shot optimization to DP

In this subsection, we will show that any strict local
minimizer of the one-shot problem is induced by a locally
minimum control policy π of DP. Before proving the theo-
rem, we first provide the following useful lemma.

Lemma 1: Given a function g : RN ×A → R, a point
x∗ ∈ RN and a number ε > 0, if u∗ ∈ A is a strict local
minimizer of the function g(x∗, ·), and g is continuous in
a neighborhood of (x∗, u∗), then there exist δ > 0 and a
function h : B(x∗, δ) → A such that h(x∗) = u∗ and that
the following holds for all x ∈ B(x∗, δ):

1) h(x) is a local minimizer of g(x, ·).
2) h(x) ∈ B(u∗, ε).
3) The function g(x, h(x)) is continuous at x.

Proof: By assumption, there exist δ1 > 0 and 0 <
ε1 < ε such that the function g is continuous on the set
B̄(x∗, δ1)× (B(u∗, ε1) ∩A) and

g(x∗, u) > g(x∗, u∗) (1)

for every u ∈ B(u∗, ε1) ∩ A with u 6= u∗. If u∗ is an
isolated point of A, then one can simply choose δ = δ1
and h(x) = u∗ for all x ∈ B(x∗, δ). Otherwise, there exists
u′ ∈ B(u∗, ε1) ∩A with u′ 6= u∗. Let

ε2 = ‖u′ − u∗‖ ∈ (0, ε1)

and consider the optimization problem

min
u

g(x∗, u)

s. t. ‖u− u∗‖ = ε2, u ∈ A.

The feasible set of the above problem is nonempty and
compact, and therefore its optimal value is attained by some
point û ∈ A. In light of (1), it holds that

∆ = g(x∗, û)− g(x∗, u∗) > 0.

Since g is uniformly continuous on the compact set
B̄(x∗, δ1) × (B̄(u∗, ε2) ∩ A), there exists 0 < δ ≤ δ1 such
that

|g(x, u)− g(x∗, u)| < ∆

2

for all x ∈ B(x∗, δ) and u ∈ B̄(u∗, ε2) ∩ A. For every
x ∈ B(x∗, δ), define h(x) to be an arbitrary global minimizer
of g(x, ·) over the compact set B̄(u∗, ε2)∩A. Then, h(x) ∈
B(u∗, ε) with h(x∗) = u∗. Moreover,

g(x, h(x)) = min
u∈B̄(u∗,ε2)∩A

g(x, u), ∀x ∈ B(x∗, δ),

which is a continuous function of x due to the Berge
maximum theorem [20]. It remains to show that h(x) is
a local minimizer of g(x, ·) over the entire space A. If
‖h(x)− u∗‖ = ε2, then

g(x, h(x)) > g(x∗, h(x))− ∆

2
≥ g(x∗, û)− ∆

2

= g(x∗, u∗) +
∆

2
> g(x, u∗),

which contradicts the fact that h(x) is a global minimizer
of g(x, ·) on the set B̄(u∗, ε2) ∩ A. As a result, h(x) ∈
B(u∗, ε2)∩A, which implies that h(x) is a global minimizer
of g(x, ·) over the set B(u∗, ε2) ∩ A; thus, it is a local
minimizer of g(x, ·) over the entire space A.

Theorem 1: If the one-shot problem has a (spurious) strict
local minimizer (u∗0, . . . , u

∗
n−1), then there exists a (spu-

rious) locally minimum control policy π of DP with the
property that πk(x∗k) = u∗k for all k ∈ {0, . . . , n − 1},
where (x∗0, . . . , x

∗
n) is the state sequence associated with the

(spurious) solution of the one-shot problem.
Proof: Assume that (u∗0, . . . , u

∗
n−1) is a strict local

minimizer of the one-shot problem. There exists ε > 0 such
that

C(x0;u∗0, . . . , u
∗
n−1) < C(x0;u0, . . . , un−1), (2)

for every control sequence (u0, . . . , un−1) 6= (u∗0, . . . , u
∗
n−1)

with the property that ui ∈ B(u∗i , ε)∩A for i = 0, . . . , n−1.
In what follows, we will prove by a backward induction
that there exist policies π0, . . . , πn−1, and positive numbers
δ0, . . . , δn, such that they jointly satisfy the following prop-
erties:

1) πk(xk) is a local minimizer of the function Qπk (xk, ·)
for all xk ∈ RN .

2) πk(x∗k) = u∗k.
3) For all xk ∈ B(x∗k, δk), it holds that

πk(xk) ∈ B(u∗k, ε), fk(xk, πk(xk)) ∈ B(x∗k+1, δk+1).



4) Jπk is lower semi-continuous on RN and continuous
on B(x∗k, δk).

For the base step k = n, we choose an arbitrary δn > 0
and notice that Jπn (x) = cn(x) , implying that Jπn is always
continuous. For k < n, assume that πk+1, . . . , πn−1 and
δk+1, . . . , δn with the above properties have been found.
First, by the continuity of fk, there exist δ′k > 0 and
0 < εk < ε such that

fk(xk, uk) ∈ B(x∗k+1, δk+1), ∀(xk, uk) ∈ Sk, (3)

where
Sk = B(x∗k, δ

′
k)× (B(u∗k, εk) ∩A).

Since

Qπk (xk, uk) = ck(xk, uk) + Jπk+1(fk(xk, uk))

and Jπk+1 is continuous on B(x∗k+1, δk+1), Qπk is continuous
on Sk. Next, for every ũk ∈ B(u∗k, εk) ∩A, if we define

x̃k+1 = fk(x∗k, ũk), ũk+1 = πk+1(x̃k+1),

x̃k+2 = fk+1(x̃k+1, ũk+1), ũk+2 = πk+2(x̃k+2),

. . .

x̃n−1 = fn−2(x̃n−2, ũn−2), ũn−1 = πn−1(x̃n−1),

by applying (3) and then the third property above repeatedly,
we arrive at

ũi ∈ B(u∗i , ε) ∩A, ∀i ∈ {k + 1, . . . , n− 1}.

When ũk 6= u∗k, it follows from (2) and the second property
above that

Qπk (x∗k, ũk) = C(x∗k; ũk, . . . , ũn−1)

= C(x0;u∗0, . . . , u
∗
k−1, ũk, . . . , ũn−1)−

k−1∑
i=0

ci(x
∗
i , u
∗
i )

> C(x0;u∗0, . . . , u
∗
n−1)−

k−1∑
i=0

ci(x
∗
i , u
∗
i )

= C(x∗k;u∗k, . . . , u
∗
n−1) = Qπk (x∗k, u

∗
k).

As a result, u∗k is a strict local minimizer of Qπk (x∗k, ·).
Applying Lemma 1 to the function Qπk with x∗k and εk, one
can find 0 < δk < δ′k and a function hk : B(x∗k, δk) → A
such that hk(x∗k) = u∗k and that the following holds for every
xk ∈ B(x∗k, δk):

1) hk(xk) is a local minimizer of Qπk (xk, ·).
2) hk(xk) ∈ B(u∗k, εk) ⊆ B(u∗k, ε), which together with

(3) implies that fk(xk, hk(xk)) ∈ B(x∗k+1, δk+1).
3) The function Qπk (xk, hk(xk)) is continuous at xk.
Let πk be the extension of the function hk by setting

πk(xk) to be any global minimizer of the lower semi-
continuous function Qπk (xk, ·) over the compact set A if xk /∈
B(x∗k, δk). Obviously, πk satisfies the first three properties.
To verify the last property, observe that

Jπk (xk) =

{
Qπk (xk, hk(xk)), if xk ∈ B(x∗k, δk),
Hk(xk), otherwise,

in which
Hk(xk) = min

u∈A
Qπk (xk, u),

and therefore Jπk is continuous on the set B(x∗k, δk). In ad-
dition, note that Jπk+1 and thus Qπk is lower semi-continuous,
while A is compact. Hence, it follows from the Berge maxi-
mum theorem [20] that Hk is also lower semi-continuous
on RN , which implies that Jπk is lower semi-continuous
on RN −B̄(x∗k, δk). For every point x̄k on the boundary
of B(x∗k, δk), since Hk is lower semi-continuous at x̄k, for
every ε̄ > 0 there exists δ̄ > 0 such that

Jπk (xk) ≥ Hk(xk) > Hk(x̄k)− ε̄ = Jπk (x̄k)− ε̄

holds for all xk ∈ B(x̄k, δ̄). Therefore, Jπk is also lower
semi-continuous at x̄k.

By the first and second properties, π = (π0, . . . , πn−1)
will be a locally minimum control policy of DP. Furthermore,
if (u∗0, . . . , u

∗
n−1) is a spurious local minimizer of the one-

shot problem, then

Jπ0 (x0) = C(x0;u∗0, . . . , u
∗
n−1) > J0(x0),

which implies that π is also a spurious locally minimum
control policy of DP.

Remark 1: DP can be viewed as a reformulation of the
optimal control problem from a single one-shot optimization
problem to a sequence of optimization problems. When a
non-convex problem is reformulated, its local minimizers
could change and for example convexification serves as a
reformulation in a higher dimensional space that eliminates
spurious solutions. However, Theorem 1 shows that, under
mild conditions, DP is a reformulation of one-shot optimiza-
tion problem that preserves local minimizers. Note that a
spurious solution of DP is a set of functions, where a spurious
solution of the one-shot optimization is a vector.

By taking the contrapositive of Theorem 1, one can
immediately obtain the result that the one-shot problem has
no spurious strict local minimizers as long as DP has no
spurious locally minimum control policies.

B. Local minimizer: From DP to one-shot optimization

Although the input sequence induced by the globally
minimal control policy is the global minimizer of the one-
shot problem, it turns out the induced input sequence under
a spurious locally minimum control policy of DP does not
generally imply a spurious local minimizer of the one-shot
problem. However, this implication is indeed the case if some
mild conditions are satisfied.

Before presenting the theorem, we first show that the
differences between two state sequences starting from the
same initial state are small if the the differences between the
corresponding control sequences are small.

Lemma 2: Consider the system under an input sequence
(u0, . . . , un−1) with associated state sequence (x0, . . . , xn).
Then, there exist continuous and non-decreasing functions
Lk(δ0, . . . , δk), k = 0, . . . , n− 1, satisfying Lk(0, . . . , 0) =
0 and the following property: for any input sequence



(ũ0, . . . , ũn−1) with ũi ∈ B(ui, δi) ∩ A for all i ∈
{0, . . . , n− 1}, it holds that

‖xk+1 − x̃k+1‖ ≤ Lk(δ0, . . . , δk),

where (x̃0, . . . , x̃n) is the state sequence correponding to
(ũ0, . . . , ũn−1) starting from the initial state x0.

Proof: For i = 1, we have

‖x1 − x̃1‖ =‖f0(x0, u0)− f0(x̃0, ũ0)‖
≤Lu,0(δ0)‖u0 − ũ0‖ ≤ L0(δ0),

where

Lu,0(δ0) = max
u∈B̄(u0,δ0)

‖∇uf0(x0, u)‖,

L0(δ0) = Lu,0(δ0)δ0.

By the above definition, L0 is continuous and non-decreasing
with L0(0) = 0. Then, for i = 2, we have

‖x2 − x̃2‖ = ‖f1(x1, u1)− f1(x̃1, ũ1)‖
≤ ‖f1(x1, u1)− f1(x̃1, u1) + f1(x̃1, u1)− f1(x̃1, ũ1)‖
≤ Lx,1(δ0)‖x1 − x̃1‖+ Lu,1(δ0, δ1)‖u1 − ũ1‖
≤ L1(δ0, δ1),

where

Lx,1(δ0) = max
x∈B̄(x1,L0(δ0))

‖∇xf1(x, u1)‖,

Lu,1(δ0, δ1) = max
x∈B̄(x1,L0(δ0)),u∈B̄(u1,δ1)

‖∇uf1(x, u)‖,

L1(δ0, δ1) =Lx,1(δ0)L0(δ0) + Lu,1(δ0, δ1)δ1.

Similarly, L1 is continuous and non-decreasing in δ0 and δ1,
and L0(0) = 0 further implies L1(0, 0) = 0. Repeating this
procedure yields that for every k ∈ {0, . . . , n−1}, there ex-
ists a continuous and non-decreasing function Lk(δ0, . . . , δk)
with Lk(0, . . . , 0) = 0 such that

‖xk+1 − x̃k+1‖ ≤ Lk(δ0, . . . , δk).

This completes the proof.
Theorem 2: Consider a (spurious) locally minimum con-

trol policy π = (π0, . . . , πn−1), and let the corresponding
input and state sequences associated with the initial state
x0 be denoted as (u∗0, . . . , u

∗
n−1) and (x∗0, . . . , x

∗
n). If πk is

Lipschitz continuous in a neighborhood of x∗k and ε∗k (see
Definition 2) is continuous at x∗k for k = 0, . . . , n− 1, then
(u∗0, . . . , u

∗
n−1) is also a (spurious) local minimizer of the

one-shot problem.
Proof: We first show that there exist positive constants

δ0, . . . , δn−1 such that for every L > 0 and i = 0, . . . , n−1,
the following holds:

δi + Ldi ≤ inf
x∈B̄(x∗

i ,di)
ε∗i (x), (4)

where d0 = 0 and di = Li−1(δ0, . . . , δi−1) for i > 0 with
Li−1 given in the statement of Lemma 2. In the latter case,
because Li−1 is continuous with Li−1(0, . . . , 0) = 0, and ε∗i
is continuous at x∗i , if δ0, . . . , δn−1 are sufficiently small,

inf
x∈B̄(x∗

i ,di)
ε∗i (x) ≥ 1

2
ε∗i (x

∗
i ) > 0.

Thus, at step n− 1, there must exist δ0, . . . , δn−1 for which
(4) holds. Then, at step n−2, if δ0, . . . , δn−2 do not make (4)
hold, since Ln−2 is non-decreasing, we can further reduce
δ0, . . . , δn−2 to satisfy (4) for i = n−2 without breaking (4)
for i = n−1. By repeating this procedure, one can show that
there exist positive constants δ0, . . . , δn−1 such that (4) holds
for all i ∈ {0, . . . , n − 1}. Moreover, we can again reduce
δ0, . . . , δn−1 such that each πi is Lipschitz continuous over
the set B̄(x∗i , di).

Now, it is desirable to show that for all ũi ∈ B(u∗i , δi)∩A
where i ∈ {0, . . . , n− 1}, we have

Jπ0 (x0) = C(x0;u∗0, . . . , u
∗
n−1) ≤ C(x0; ũ0, . . . , ũn−1).

Since (4) implies that δ0 ≤ ε∗0(x0), one can write

Jπ0 (x0) ≤ c0(x0, ũ0) + Jπ1 (x̃1),

where x̃1 = f0(x0, ũ0), ∀ũ0 ∈ B(u∗0, δ0) ∩A.

For every i ∈ {1, . . . , n − 1}, by the definition of local
optimality of πi(x̃i),

Jπi (x̃i) ≤ ci(x̃i, ũi) + Jπi+1(x̃i+1), (5)
where x̃i+1 = fi(x̃i, ũi), ∀ũi ∈ B(πi(x̃i), ε

∗
i (x̃i)) ∩A.

Now, we aim to show that (5) also holds for all ũi ∈
B(πi(x

∗
i ), δi) ∩A; or equivalently,

B(πi(x
∗
i ), δi) ∩A ⊆ B(πi(x̃i), ε

∗
i (x̃i)) ∩A.

It suffices to prove that

δi + ‖πi(x∗i )− πi(x̃i)‖ ≤ ε∗i (x̃i). (6)

Because of the Lipschitz continuity of πi in B̄(x∗i , di), there
exists a positive constant Lπ such that

‖πi(x∗i )− πi(x̃i)‖ ≤ Lπ‖x∗i − x̃i‖, i = 0, . . . , n− 1.

Then, the inequality (6) must hold because of (4).
Now, assume that π is a spurious locally minimum control

policy of DP, i.e., Jπ0 (x0) > J0(x0). Then, because of

C(x0;u∗0, . . . , u
∗
n−1) = Jπ0 (x0) > J0(x0),

(u∗0, . . . , u
∗
n−1) is also a spurious local minimizer of the one-

shot problem.
One situation where ε∗i (x) is continuous in a neightbor-

hood of x∗i is that the local minimizers of Qπi (x, ·) do
not bifurcate at x∗i . As shown later in Example 2, if the
local minimizers of Qπi (x, ·) bifurcates at x∗i , then ε∗i (x) is
discontinuous at x∗i and the infimum of ε∗i (x) may be zero.
In this case, there is no guarantee that the induced control
input of the locally optimal control policy of DP will also
be a local minimizer of the one-shot problem. Thus, the
assumption of the continuity of ε∗i (x) is necessary for the
results in Theorem 2 to be true. Another situation where the
results in Theorem 2 hold true is that the Hessian of Qπi (x, ·)
is positive definite. We present this idea below.

Theorem 3: Assume that A is convex. Consider a (spu-
rious) locally minimum control policy π = (π0, . . . , πn−1),
and let the corresponding input and state sequences associ-
ated with the initial state x0 be denoted as (u∗0, . . . , u

∗
n−1)



and (x∗0, . . . , x
∗
n). If πk is twice continuously differentiable

in a neighborhood of x∗k and

∇2
uQ

π
k (x∗k, u

∗
k) � 0, ∀k ∈ {0, . . . , n− 1},

then (u∗0, . . . , u
∗
n−1) is also a (spurious) local minimizer of

the one-shot problem.
Proof: First, we will use induction to find positive

numbers δ0, . . . , δn and ε0, . . . , εn−1 such that

∇2
uQ

π
k (x, u) � 0, (7)

πk(x) ∈ B(u∗k, εk), (8)
fk(x, u) ∈ B(x∗k+1, δk+1), (9)

for every x ∈ B(x∗k, δk), u ∈ B(u∗k, εk) ∩ A, and k ∈
{0, . . . , n − 1}. At the base step k = n, we choose an
arbitrary δn > 0. At the induction step, since fk is continuous
and ∇2

uQ
π
k is continuous at (x∗k, u

∗
k), there exist δk > 0

and εk > 0 such that both (7) and (9) are satisfied for all
x ∈ B(x∗k, δk) and u ∈ B(u∗k, εk) ∩ A. Moreover, as πk is
continuous at x∗k, (8) will be satisfied by further reducing δk.

For every (ũ0, . . . , ũn−1) with ũk ∈ B(u∗k, εk) ∩ A, let
(x̃0, . . . , x̃n) be its corresponding state sequence (note that
x̃0 = x0). It follows from (9) that

x̃k ∈ B(x∗k, δk), ∀k ∈ {0, . . . , n− 1},

which together with (8) implies that

πk(x̃k) ∈ B(u∗k, εk), ∀k ∈ {0, . . . , n− 1}.

In light of (7), Qπk (x̃k, ·) is a convex function on the convex
set B(u∗k, εk) ∩ A. Because πk(x̃k) ∈ B(u∗k, εk) ∩ A is a
local minimizer of the function Qπk (x̃k, ·), it must be a global
minimizer of this function over B(u∗k, εk) ∩ A. Thus, for
k ∈ {0, . . . , n− 1}, we have

ck(x̃k, ũk) + Jπk+1(x̃k+1) = Qπk (x̃k, ũk)

≥ Qπk (x̃k, πk(x̃k))

= Jπk (x̃k).

By adding all of the above inequalities, one can obtain

C(x0; ũ0, . . . , ũn−1) ≥ Jπ0 (x0) = C(x0;u∗0, . . . , u
∗
n−1),

which shows that (u∗0, . . . , u
∗
n−1) is a local minimizer of the

one-shot problem. Furthermore, if π is a spurious locally
minimum control policy of DP, namely, Jπ0 (x0) > J0(x∗0),
then

C(x0;u∗0, . . . , u
∗
n−1) = Jπ0 (x0) > J0(x0).

As a result, (u∗0, . . . , u
∗
n−1) is also a spurious local minimizer

of the one-shot problem.
By taking the contrapositive, one can immediately con-

clude that DP has no spurious locally minimum control poli-
cies that satisfy the regularity conditions in either Theorem
2 or Theorem 3 as long as the one-shot problem has no
spurious local minima.

C. Stationary point: From DP to one-shot optimization

In Section III-B, we have mentioned that if the assump-
tions of Theorem 2 or Theorem 3 are not satisfied, an induced
controlled input of the locally minimum control policy of DP
does not necessarily imply a local minimizer of the one-shot
problem. Therefore, it is desirable to discover what property
such induced input satisfies for the one-shot optimization
problem. In this subsection, we will show that under some
conditions the control input induced by a locally minimum
control policy of DP is also a stationary point of the one-shot
problem.

Definition 4: Given a set S and a continuously differen-
tiable function g, a point s∗ ∈ S is said to be a stationary
point of the optimization problem mins∈S g(s) if

∇sg(s∗) ∈ NS(s∗),

where NS(s∗) denotes the normal cone of the set S at the
point s∗ [21].

In the following theorem and its proof, we will regard the
gradient of a scalar function as a row vector. Let Dπ

k (x)
be the Jacobian matrix of πk(·) at point x, Df,x

k (x, u) be
the Jacobian matrix of the function fk(·, u) at point x while
viewing u as a constant, and similarly Df,u

k (x, u) be the
Jacobian matrix of fk(x, ·) at point u while viewing x as a
constant.

Theorem 4: Consider a locally minimum control policy
π = (π0, . . . , πn−1), and let the corresponding input and
state sequences associated with the initial state x0 be de-
noted as (u∗0, . . . , u

∗
n−1) and (x∗0, . . . , x

∗
n). If for every k ∈

{0, . . . , n− 1}:
1) πk is continuously differentiable in a neighborhood of

x∗k;
2) either πk(x∗k) is in the interior of A or Dπ

k (x∗k) = 0,

then (u∗0, . . . , u
∗
n−1) is a stationary point of the one-shot

problem satisfying the first-order necessary optimality con-
dition.

Proof: First, we will apply induction to prove that

∇xJπk (x∗k) = ∇xC(x∗k;u∗k, . . . , u
∗
n−1) (10)

holds for k ∈ {0, . . . , n}. The base step k = n is obvious.
For the induction step, observe that

∇xQπk (x, u) = ∇xck(x, u) +∇xJπk+1(fk(x, u))Df,x
k (x, u),

∇xJπk (x) = ∇x[Qπk (x, πk(x))]

= ∇xQπk (x, πk(x)) +∇uQπk (x, πk(x))Dπ
k (x).

Therefore,

∇xJπk (x∗k) =∇xck(x∗k, u
∗
k)

+∇xJπk+1(x∗k+1)Df,x
k (x∗k, u

∗
k)

+∇uQπk (x∗k, u
∗
k)Dπ

k (x∗k).

(11)

If u∗k is in the interior of A, since u∗k is a local minimizer of
Qπk (x∗k, ·), we have ∇uQπk (x∗k, u

∗
k) = 0. Otherwise, by the



assumption, it holds that Dπ
k (x∗k) = 0. In either case, the last

term of (11) is zero. On the other hand,

∇xC(x;u∗k, . . . , u
∗
n−1)

= ∇xck(x, u∗k) +∇x[C(fk(x, u∗k);u∗k+1, . . . , u
∗
n−1)]

= ∇xck(x, u∗k) +∇xC(fk(x, u∗k);u∗k+1, . . . , u
∗
n−1)

Df,x
k (x, u∗k).

Now, (10) can be obtained by taking x = x∗k in the above
equality and then combine it with the induction hypothesis
and (11). Finally, for k ∈ {0, . . . , n− 1}, one can write

∇uk
C(x0;u∗0, . . . , u

∗
n−1) = ∇uck(x∗k, u

∗
k)

+∇xC(x∗k+1;u∗k+1, . . . , u
∗
n−1)Df,u

k (x∗k, u
∗
k)

= ∇uck(x∗k, u
∗
k) +∇xJπk+1(x∗k+1)Df,u

k (x∗k, u
∗
k)

= ∇uQπk (x∗k, u
∗
k),

in which the last second equality is due to (10). Since u∗k is
a local minimizer of Qπk (x∗k, ·), ∇uQπk (x∗k, u

∗
k) ∈ NA(u∗k),

which shows that (u∗0, . . . , u
∗
n−1) is a stationary point of the

one-shot problem.

IV. NUMERICAL EXAMPLES

To be able to effectively demonstrate the results of
this paper through visualization, we will provide two low-
dimensional examples in this section.

Example 1: Consider an optimal control problem with the
control constraint A = [−10, 10] and

c0(x, u) = 0,

c1(x, u) =
1

4
u4 − 3x+ 4

3
u3 +

3x2 + 8x+ 3

2
u2

− x(x+ 1)(x+ 3)u+ exp (x4),

c2(x) = 0, f0(x, u) = x+ u, f1(x, u) = x+ u.

At the initial state x0 = 0, the one-shot problem can be
written as

min
u0∈A,u1∈A

{1

4
u4

1 −
3u0 + 4

3
u3

1 +
3u2

0 + 8u0 + 3

2
u2

1

− u0(u0 + 1)(u0 + 3)u1 + exp (u4
0)
}
.

This one-shot optimization problem has 3 spurious local min-
imizers (−0.523,−0.523), (−0.523, 2.477), (0.938, 0.938)
and the globally optimal minimizer (0.938, 3.938). The
landscape of this objective function is shown in Fig. 1(a).
The optimal control problem can also be solved sequentially
by DP. At the time step 1, the Q-function is Qπ1 (x, u1) =
c1(x, u1), which has the maximum point x+ 1, the spurious
local minimizer x and the global minimizer x+ 3. One can
choose a continuous policy

π1(x) =


−10, x < −10,

x, −10 ≤ x ≤ 10,

10, x > 10,

(a) Example 1

(b) Example 2

Fig. 1: Landscape of the one-shot optimization.

whose associated cost-to-go function is

Jπ1 (x) =


g(−10), x < −10,

g(x), −10 ≤ x ≤ 10,

g(10), x > 10,

where g(x) = − 1
12 (3x4 + 16x3 + 18x2) + exp(x4). At the

time step i = 0 and at the initial state x0 = 0, the Q-
function is Qπ1 (0, u0) = Jπ1 (u0), which has a spurious local
minimizer at −0.523 and a global minimum at 0.938. If we
choose π0(0) = −0.523, then the induced input under π of
DP is (−0.523,−0.523) and if we choose π0(0) = 0.938,
then the induced input under π of DP is (0.938, 0.938). Both
of these input sequences are spurious local minimizers of the
one-shot problem.

One can also choose

π1(x) =


−10, x < −13,

x+ 3, −13 ≤ x ≤ 7,

10, x > 7,

whose associated cost-to-go function is

Jπ1 (x) =


g(−10), x < −13,

g(x), −13 ≤ x ≤ 7,

g(10), x > 7,

where g(x) = − 1
12 (3x4 + 16x3 + 18x2 + 27) + exp(x4).

At the time step i = 0 and at the initial state x0 =
0, the Q-function is Qπ1 (0, u0) = Jπ1 (u0), which has a
spurious local minimizer at −0.523 and a global minimum
at 0.938. If we choose π0(0) = 0.938, then the locally
minimum control policy π is non-spurious and its induced
input (0.938, 3.938) is the global minimizer of the one-shot
problem. However, if we choose π0(0) = −0.523, then the



locally minimum control policy π is spurious and its induced
input (−0.523, 2.477) is the spurious minimizer of the one-
shot problem.

In this example, one can observe that each strictly local
minimizer of the one-shot problem corresponds to a locally
minimum control policy of DP, which validates the result
of Theorem 1. In addition, it can be noticed that since the
minimizer of Qπ1 (x, ·) does not bifurcate with x, Theorem 2
also holds.

Example 2: Consider the problem in Example 1 but
change c1(x, u) to 1

4u
4 − x

3u
3 − x2u2 + exp (x4). At the

initial state x0 = 0, the one-shot problem can be written as

min
u0∈A,u1∈A

{1

4
u4

1 −
u0

3
u3

1 − u2
0u

2
1 + exp (u4

0)
}
.

It has 3 stationary points (0, 0) and ((log( 8
3 ))

1
4 , 2(log( 8

3 ))
1
4 )

and (−(log( 8
3 ))

1
4 ,−2(log( 8

3 ))
1
4 ). The later two are the

global minimizers of this one-shot problem. To understand
why (0, 0) is not a local minimizer of the one-shot problem,
we take u0 = u1 = ε and use the Taylor expansion of the
exponential function to arrive at:

1

4
ε4 − 1

3
ε4 − ε4 + exp (ε4) = − 1

12
ε4 + 1 + o(ε4),

which is strictly less that 1 for sufficiently small values of
ε. This implies that (0, 0) is not a locally optimal solution
of the one-shot problem. The landscape of this objective
function is shown in Fig. 1(b). It can also be solved se-
quentially by DP. For the initial state x0, it has 3 different
induced input sequences under the locally minimum control
policy: (log( 8

3 ))
1
4 , 2(log( 8

3 ))
1
4 ), (−(log( 8

3 ))
1
4 ,−2(log( 8

3 ))
1
4 )

and (0, 0). The first two points are the global minimizers of
the one-shot problem but (0, 0) is not a local minimizer of
the one-shot problem.

In this example, the Q-function Qπ1 (x, ·) = c1(x, ·) has 3
stationary points 0,−x, 2x and all 3 points will merge to a
single point when x = 0 and ∇2

uQ1(0, 0) = 0. Therefore,
the assumptions in Theorem 2 and Theorem 3 are violated,
and (0, 0) is not a local minimizer of the one-shot problem.
This clarifies the role of the regularity conditions needed in
those theorems. On the other hand, consistent with Theorem
4, (0, 0) is a saddle point (which is a stationary point) of the
one-shot optimization.

V. CONCLUSIONS

In this paper, we study the (spurious) local solutions of
arbitrary optimal control problems through two different
formulations: one-shot (single) optimization problem aimed
at solving for all input values at the same time, and DP
method aimed at finding the input values sequentially. We
introduce the notions of spurious (non-global) local minimiz-
ers for the one-shot problem and spurious locally minimum
control policies for DP. We prove that under some mild
conditions, each local minimizer of the one-shot optimization
corresponds to an input sequence induced by some locally
minimum control policy of DP and vice versa. We also prove
that if the control sequence induced by a policy satisfies the

first-order optimality condition for DP, then it also satisfies
the first-order necessary optimality condition for the one-
shot optimization problem. This is the first result in the
literature on the connection between the spurious solutions
of the one-shot and DP methods. A natural future direction
would be to extend this work to stochastic dynamics under
a parameterized policy, which helps better understand the
quality of the local solutions obtained by reinforcement
learning algorithms.
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