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Convex Relaxation for Optimal Distributed Control Problems

Ghazal Fazelnia, Ramtin Madani, Abdulrahman Kalbat and Javad Lavaei

Abstract—This paper is concerned with the optimal distributed
control (ODC) problem for linear discrete-time deterministic and
stochastic systems. The objective is to design a static distributed
controller with a pre-specified structure that is globally optimal
with respect to a quadratic cost functional. It is shown that this
NP-hard problem has a quadratic formulation, which can be
relaxed to a semidefinite program (SDP). If the SDP relaxation
has a rank-1 solution, a globally optimal distributed controller
can be recovered from this solution. By utilizing the notion of
treewidth, it is proved that the nonlinearity of the ODC problem
appears in such a sparse way that an SDP relaxation of this
problem has a matrix solution with rank at most 3. Since the
proposed SDP relaxation is computationally expensive for a large-
scale system, a computationally-cheap SDP relaxation is also
developed with the property that its objective function indirectly
penalizes the rank of the SDP solution. Various techniques are
proposed to approximate a low-rank SDP solution with a rank-1
matrix, leading to near globally-optimal controllers together with
a bound on the optimality degree of each controller. The above
results are developed for both finite-horizon and infinite-horizon
ODC problems. The SDP relaxations developed in this work are
exact for the design of a centralized controller, hence serving as
an alternative for solving Riccati equations. The efficacy of the
proposed SDP relaxations is elucidated through a case study on
the distributed frequency control of power systems.

I. INTRODUCTION

The area of decentralized control is created to address
the challenges arising in the control of real-world systems
with many interconnected subsystems. The objective is to
design a structurally constrained controller—a set of partially
interacting local controllers—with the aim of reducing the
computation or communication complexity of the overall con-
troller. The local controllers of a decentralized controller may
not be allowed to exchange information. The term distributed
control is often used in lieu of decentralized control in the
case where there is some information exchange between the
local controllers (possibly distributed over a geographical
area). It has been long known that the design of a globally
optimal decentralized (distributed) controller is a daunting task
because it amounts to an NP-hard optimization problem in
general [1], [2]. Great effort has been devoted to investigating
this highly complex problem for special types of systems,
including spatially distributed systems [3]–[7], dynamically
decoupled systems [8], [9], weakly coupled systems [10], and
strongly connected systems [11]. Another special case that
has received considerable attention is the design of an op-
timal static distributed controller [12], [13]. Early approaches
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for the optimal decentralized control problem were based
on parameterization techniques [14], [15], which were then
evolved into matrix optimization methods [16], [17]. In fact,
with a structural assumption on the exchange of information
between subsystems, the performance offered by linear static
controllers may be far less than the optimal performance
achievable using a nonlinear time-varying controller [1].

Due to the recent advances in the area of convex opti-
mization, the focus of the existing research efforts has shifted
from deriving a closed-form solution for the above control
synthesis problem to finding a convex formulation of the
problem that can be efficiently solved numerically [18]–[21].
This has been carried out in the seminal work [22] by deriving
a sufficient condition named quadratic invariance, which has
been specialized in [23] by deploying the concept of partially
order sets. These conditions have been further investigated
in several other papers [24]–[26]. A different approach is
taken in the recent papers [27] and [28], where it has been
shown that the distributed control problem can be cast as a
convex optimization for positive systems. The recent literature
witnesses that the design of a fully decentralized controller
is much more complicated than the design of a distributed
controller with a sufficient number of interactions among the
local controllers.

Semidefinite programming (SDP) relaxation usually con-
verts an optimization problem with a vector variable to a
convex program with a matrix variable, via a lifting technique.
The exactness of the relaxation can then be interpreted as the
existence of a low-rank (e.g., rank-1) solution for the SDP
relaxation. Several papers have studied the existence of a low-
rank solution to matrix optimization problems with linear or
nonlinear constraints. For instance, the papers [29] and [30]
provide upper bounds on the lowest rank among all solutions
of a feasible linear matrix inequality problem. A rank-1 matrix
decomposition technique is developed in [31] to find a rank-1
solution whenever the number of constraints is small. We have
shown in [32] and [33] that semidefinite relaxation is able to
solve a large class of non-convex energy-related optimization
problems performed over power networks. We related the
success of the relaxation to the hidden structure of such
problems induced by the physics of a power grid. Inspired
by this positive result, we developed the notion of “nonlinear
optimization over graph” in [34]–[36]. Our technique maps
the structure of an abstract nonlinear optimization into a
graph from which the exactness of SDP relaxation may be
concluded. By adopting the graph technique developed in [34],
the objective of the present work is to study the potential of
SDP relaxation for the optimal distributed control problem.

In this paper, we cast the optimal distributed control (ODC)
problem as a non-convex optimization problem with only
quadratic scalar and matrix constraints, from which an SDP
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relaxation can be obtained. The goal is to show that this
relaxation has a low-rank solution whose rank depends on
the topology of the controller to be designed. In particular,
we prove that the design of a static distributed controller with
a pre-specified structure amounts to a sparse SDP relaxation
with a solution of rank at most 3. This positive result is a
consequence of the fact that the sparsity graph associated with
the underlying optimization problem has a small treewidth.
The notion of “treewidth” used in this paper could potentially
help to understand how much approximation is needed to make
the ODC problem tractable. This is due to a recent result
stating that a rank-constrained optimization problem has an
almost equivalent convex formulation whose size depends on
the treewidth of a certain graph [37]. In this work, we also
discuss how to round the rank-3 SDP matrix to a rank-1 matrix
in order to design a near globally-optimal controller.

We adopt two different formulations to study the finite-
and infinite-horizon distributed control problems. In the finite-
horizon case, the state vectors, controller inputs and measured
outputs at all times over the horizon are considered as decision
variables. This leads to a static optimization problem with
time-domain variables, which is regarded as the “time-domain
formulation”. In the infinite-horizon case, the system dynamics
are imposed through a Lyapunov equation as opposed to
the time-domain system equations. In this case, we cast the
ODC problem as an optimization problem with respect to a
Lyapunov matrix instead of time-domain variables, which is
referred to as the “Lyapunov-domain formulation”. The results
of this work hold true for both the time-domain formulation
corresponding to the finite-horizon control problem and the
Lyapunov-domain formulation associated with the infinite-
horizon deterministic/stochastic control problem.

We first investigate the ODC problem for the deterministic
systems and then the ODC problem for stochastic systems.
Our approach rests on formulating each of these problems as
a rank-constrained optimization from which an SDP relaxation
can be derived. Since the proposed relaxations with guaranteed
low-rank solutions are computationally expensive, we also
design computationally-cheap SDP relaxations for numerical
purposes. Afterwards, we develop some heuristic methods
to recover a near-optimal controller from a low-rank SDP
solution. Note that the computationally-cheap SDP relaxations
associated with the infinite-horizon ODC are exact in both
deterministic and stochastic cases for the classical (centralized)
LQR and H2 problems. We also conduct a case study on the
distributed frequency control of electrical power systems using
the aforementioned convex relaxation technique. In particular,
we perform simulations on a benchmark system for which the
designed near-optimal distributed frequency controllers have
global optimality degrees above 99%. Although the focus of
the paper is on static controllers, it is possible to extend the
main approach to accommodate optimization over classes of
structured dynamic controllers.

This work is organized as follows. The problem is in-
troduced in Section II, and then the SDP relaxation of a
quadratically-constrained quadratic program is studied via a
graph-theoretic approach. Three different SDP relaxations of
the finite-horizon deterministic ODC problem are presented for

the static controller design in Section III. The infinite-horizon
deterministic ODC problem is studied in Section IV. The
results are generalized to an infinite-horizon stochastic ODC
problem in Section V. Simulations are provided in Section VI,
followed by concluding remarks in Section VII.

A. Notations
R, Sn and S+

n denote the sets of real numbers, n × n
symmetric matrices and n× n positive semidefinite matrices,
respectively. The m × n rectangular identity matrix whose
(i, j) entry is equal to the Kronecker delta δij is denoted
by Im×n or alternatively In when m = n. The symbols
rank{W}, trace{W} and null{W} denote the rank, trace and
null space of a matrix W , respectively. The notation W � 0
means that W is symmetric and positive semidefinite. Given a
matrix W , its (l,m) entry is denoted as Wlm. Given a block
matrix W, its (l,m) block is shown as Wlm. Given a matrix
M , its Moore Penrose pseudoinverse is denoted as M+. The
superscript (·)opt is used to show a globally optimal value of
an optimization parameter. The symbols (·)T and ‖ · ‖ denote
the transpose and 2-norm operators, respectively. The symbols
〈·, ·〉 and ‖ · ‖F denote the Frobenius inner product and norm
of matrices, respectively. The notation | · | shows the size of
a vector, the cardinality of a set or the number of vertices
a graph, depending on the context. The expected value of a
random variable x is shown as E{x}. The submatirx of M
formed by rows from the set S1 and columns from the set S2

is denoted by M{S1,S2}. The notation G = (V, E) implies
that G is a graph with the vertex set V and the edge set E .

II. PRELIMINARIES

In this paper, the optimal distributed control (ODC) problem
is studied based on the following steps:
• First, the problem is cast as a non-convex optimization

problem with only quadratic scalar and/or matrix con-
straints.

• Second, the resulting non-convex problem is formulated
as a rank-constrained optimization problem.

• Third, a convex relaxation of the problem is derived by
dropping the non-convex rank constraint.

• Last, the rank of the minimum-rank solution of the SDP
relaxation is analyzed.

Since there is no unique SDP relaxation for the ODC problem,
a major part of this work is devoted to designing a sparse
quadratic formulation of the ODC problem with a guaranteed
low-rank SDP solution. To achieve this goal, a graph is
associated to each SDP, which is then sparsified to contrive
a problem with a low-rank solution. Note that this paper
significantly improves our recent result in [38].

A. Problem Formulation

The following variations of the optimal distributed control
problem will be studied in this work.

1) Finite-horizon deterministic ODC problem: Consider the
discrete-time system

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . , p− 1 (1a)
y[τ ] = Cx[τ ], τ = 0, 1, . . . , p (1b)



3

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

   

 

 

 

   

Fig. 1: A minimal tree decomposition for a ladder graph.

with the known matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n,
and x[0] = c ∈ Rn, where p is the terminal time. The
goal is to design a distributed static controller u[τ ] = Ky[τ ]
minimizing a quadratic cost function under the constraint that
the controller gain K must belong to a given linear subspace
K ⊆ Rm×r. The set K captures the sparsity structure of
the unknown constrained controller and, more specifically, it
contains all m × r real-valued matrices with forced zeros in
certain entries. The cost function

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (2)

is considered in this work, where α is a nonnegative scalar,
and Q and R are positive-definite matrices. This problem will
be studied in Section III.

Remark 1. The third term in the objective function of the ODC
problem is a soft penalty term aimed at avoiding a high-gain
controller. Instead of this soft penalty, we could impose a hard
constraint ‖K‖F ≤ β, for a given number β. The method to
be developed later can be adopted for the modified case.

2) Infinite-horizon deterministic ODC problem: The
infinite-horizon ODC problem corresponds to the case p =
+∞ subject to the additional constraint that the controller
must be stabilizing. This problem will be studied through a
Lyapunov-domain formulation in Section IV.

3) Infinite-horizon stochastic ODC problem: Consider the
discrete-time stochastic system

x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ], τ = 0, 1, . . . (3a)
y[τ ] = Cx[τ ] + Fv[τ ], τ = 0, 1, . . . (3b)

with the known matrices A, B, C, E, and F , where d[τ ]
and v[τ ] denote the input disturbance and measurement noise,
which are assumed to be zero-mean white-noise random
processes. The ODC problem for the above system will be
investigated in Section V.

B. Graph Theory Preliminaries

Definition 1. For two simple graphs G1 = (V, E1) and G2 =
(V, E2) with the same set of vertices, their union is defined as
G1 ∪ G2 = (V, E1 ∪ E2).

Definition 2. The representative graph of an n×n symmetric
matrix W , denoted by G(W ), is a simple graph with n vertices
whose edges are specified by the locations of the nonzero off-
diagonal entries of W . In other words, two disparate vertices
i and j are connected if Wij is nonzero.

Consider a graph G identified by a set of “vertices” and a
set of edges. This graph may have cycles, in which case it

cannot be a tree. Using the notion explained below, we can
map G into a tree T identified by a set of “nodes” and a set
of edges, where each node contains a group of vertices of G.

Definition 3 (Treewidth). Given a graph G = (V, E), a tree T
is called a tree decomposition of G if it satisfies the following
properties:

1) Every node of T corresponds to and is identified by a
subset of V .

2) Every vertex of G is a member of at least one node of T .
3) For every edge (i, j) of G, there should be a node in T

containing vertices i and j simultaneously.
4) Given an arbitrary vertex k of G, the subgraph induced

by all nodes of T containing vertex k must be connected
(more precisely, a tree).

Each node of T is a collection of vertices of G, and is referred
to as a bag. The width of T is the cardinality of its biggest bag
minus one. The treewidth of G is the minimum width over all
possible tree decompositions of G and is denoted by tw(G).

Every graph has a trivial tree decomposition with one
single bag consisting of all vertices of the graph. Figure 1
shows a graph G with 6 vertices named a, b, c, d, e, f , together
with its minimal tree decomposition T . Every node of T
is a set containing three members of V . The width of this
decomposition is therefore equal to 2. Observe that the edges
of the tree decomposition are chosen in such a way that every
subgraph induced by all bags containing each member of V
is a tree (as required by Property 4 stated before).

Note that if G is a tree itself, it has a minimal tree
decomposition T such that: (i) each bag corresponds to two
connected vertices of G, (ii) every two adjacent bags in T
share a vertex in common. Therefore, the treewidth of a tree
is equal to 1. The reader is referred to [39] for a comprehensive
literature review on treewidth.

C. SDP Relaxation

The objective of this subsection is to study semidefinite
programming (SDP) relaxations of a quadratically-constrained
quadratic program (QCQP) using a graph-theoretic approach.
Consider the standard non-convex QCQP problem

minimize
x∈Rn

f0(x) (4a)

subject to fk(x) ≤ 0, k = 1, . . . , q, (4b)

where fk(x) = xTAkx+ 2bTk x+ ck for k = 0, . . . , q. Define

Fk ,

[
ck bTk
bk Ak

]
. (5)

Each fk has the linear representation fk(x) = 〈Fk,W 〉 for the
following choice of W :

W , [x0 xT ]T [x0 xT ] (6)

where x0 , 1. On the other hand, an arbitrary matrix W ∈
Sn+1 can be factorized as (6) if and only if it satisfies three
properties: W11 = 1, W � 0, and rank{W} = 1. In this
representation of QCQP, the rank constraint carries all the non-
convexity. Neglecting this constraint yields the convex problem
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minimize
W∈Sn+1

〈F0,W 〉 (7a)

subject to 〈Fk,W 〉 ≤ 0 k = 1, . . . , q, (7b)
W11 = 1, (7c)
W � 0, (7d)

which is known as an SDP relaxation of the QCQP (4). The
existence of a rank-1 solution for an SDP relaxation guarantees
the equivalence of the original QCQP and its relaxed problem.

D. Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of the
SDP relaxation problem (7), define G = G(F0)∪· · ·∪G(Fq) as
the sparsity graph associated with (7). The graph G describes
the zero-nonzero pattern of the matrices F0, . . . , Fq , or alter-
natively captures the sparsity level of the QCQP problem (4).
Let T = (VT , ET ) be a tree decomposition of G. Denote its
width as t and its bags as B1,B2, ...,B|T |. It is known that
given such a decomposition, every solution W ref ∈ Sn+1 of
the SDP problem (7) can be transformed into a solution W opt

whose rank is upper bounded by t + 1 [30]. To perform this
transformation, a suitable polynomial-time recursive algorithm
will be proposed below.

Matrix completion algorithm:
1) Set T ′ := T and W := W ref .
2) If T ′ has a single node, then consider W opt as W and

terminate; otherwise continue to the next step.
3) Choose a pair of bags of T ′, namely Bi and Bj , such

that Bi is a leaf of T ′ and Bj is its unique neighbor.
4) Using the notation W{·, ·} introduced in Section I-A, let

O ,W{Bi ∩ Bj ,Bi ∩ Bj} (8a)

Vi ,W{Bi \ Bj ,Bi ∩ Bj} (8b)

Vj ,W{Bj \ Bi,Bi ∩ Bj} (8c)

Hi ,W{Bi \ Bj ,Bi \ Bj} ∈ Rni×ni (8d)

Hj ,W{Bj \ Bi,Bj \ Bi} ∈ Rnj×nj (8e)

Si , Hi − ViO+V Ti = QiΛiQ
T
i (8f)

Sj , Hj − VjO+V Tj = QjΛjQ
T
j (8g)

where QiΛiQ
T
i and QjΛjQ

T
j denote the eigenvalue

decompositions of Si and Sj with the diagonals of Λi
and Λj arranged in descending order. Then, update a part
of W as follows:

W{Bj\Bi,Bi\Bj}:=VjO
+V Ti +Qj

√
ΛjInj×ni

√
ΛiQ

T
i

and update W{Bi \ Bj ,Bj \ Bi} accordingly to preserve
the Hermitian property of W (note that Bi \ Bj is the
set-theoretic difference of Bi and Bj).

5) Update T ′ by merging Bi into Bj , i.e., replace Bj with
Bi ∪ Bj and then remove Bi from T ′.

6) Go back to step 2.

Theorem 1. The output of the matrix completion algorithm,
denoted as W opt, is a solution of the SDP problem (7) whose
rank is smaller than or equal to t+ 1.

Proof. Consider one run of Step 4 of the matrix completion al-
gorithm. Our first objective is to show that W{Bi∪Bj ,Bi∪Bj}
is a positive semidefinite matrix whose rank is upper bounded
by the maximum ranks of W{Bi,Bi} and W{Bj ,Bj}. To this
end, define

S,

[
Hi ZT

Z Hj

]
−
[
Vi
Vj

]
O+

[
Vi
Vj

]T
=

[
Qi 0
0 Qj

]
N

[
QTi 0
0 QTj

]
(9)

where Z ,W{Bj \ Bi,Bi \ Bj} and

N ,

[
Λi

√
Λi Ini×nj

√
Λj√

Λj Inj×ni

√
Λi Λj

]
(10)

It is straightforward to verify that

rank{S} = rank{N} = max {rank{Si}, rank{Sj}}

On the other hand, the Schur complement formula yields:

rank {W{Bi,Bi}} = rank{O+}+ rank{Si}
rank {W{Bj ,Bj}} = rank{O+}+ rank{Sj}
rank {W{Bi ∪ Bj ,Bi ∪ Bj}} = rank{O+}+ rank{S}

(see [40]). Combining the above equations leads to the con-
clusion that the rank of W{Bi∪Bj ,Bi∪Bj} is upper bounded
by the maximum ranks of W{Bi,Bi} and W{Bj ,Bj}. On the
other hand, since N is positive semidefinite, it follows from (9)
that W{Bi ∪Bj ,Bi ∪Bj} � 0. A simple induction concludes
that the output W opt of the matrix completion algorithm is
a positive semidefinite matrix whose rank is upper bounded
by t + 1. The proof is completed by noting that W opt and
W ref share the same values on their diagonals and those off-
diagonal locations corresponding to the edges of the sparsity
graph G.

III. FINITE-HORIZON DETERMINISTIC ODC PROBLEM

The primary objective of the ODC problem is to design a
structurally constrained gain K. Assume that the matrix K
has l free entries to be designed and all other entries are equal
to zero. Denote those free entries as h1, h2, . . . , hl. The space
of permissible controllers can be characterized as

K ,

{
l∑
i=1

hiNi

∣∣∣∣∣ h ∈ Rl
}
,

for some (fixed) matrices N1, . . . , Nl ∈ {0, 1}m×r where each
of these matrices has only one nonzero element. Now, the
ODC problem can be stated as follows.

Finite-Horizon ODC Problem: Minimize
p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (11a)

subject to

x[0] = c (11b)
x[τ + 1] = Ax[τ ] +Bu[τ ] τ = 0, 1, . . . , p− 1 (11c)

y[τ ] = Cx[τ ] τ = 0, 1, . . . , p (11d)
u[τ ] = Ky[τ ] τ = 0, 1, . . . , p (11e)
K = h1N1 + . . .+ hlNl (11f)

over the variables {x[τ ] ∈ Rn}pτ=0, {y[τ ] ∈ Rr}pτ=0, {u[τ ] ∈
Rm}pτ=0, K ∈ Rm×r and h ∈ Rl.
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(a) (b)

Fig. 2: Effect of a nonzero off-diagonal entry of the controller K on the
sparsity graph of the finite-horizon ODC: (a) a subgraph of G for the case
where K11 and K22 are the only free parameters of the controller K, (b)
a subgraph of G for the case where K12 is also a free parameter of the
controller.

A. Sparsification of ODC Problem

The finite-horizon ODC (11) problem is naturally a QCQP
problem. Consider an arbitrary SDP relaxation of the ODC
problem and let G be the sparsity graph of this relaxation. Due
to the existence of possibly nonzero off-diagonal elements in
Q and R, certain edges (and probably cycles) may exist in the
subgraphs of G associated with the state and input vectors x[τ ]
and u[τ ]. Under this circumstance, the treewidth of G could
be n or higher. To understand the effect of a non-diagonal
controller K, consider the case m = r = 2 and assume that the
controller K under design has three free elements as follows:

K =

[
K11 K12

0 K22

]
(12)

(i.e., h1 = K11, h2 = K12 and h3 = K22). Figure 2 shows a
part of the graph G. It can be observed that this subgraph
is acyclic for K12 = 0 but has a cycle as soon as K12

becomes a free parameter. As a result, the treewidth of G is
contingent upon the zero pattern of K. In order to guarantee
the existence of a low-rank solution, we diagonalize Q, R and
K through a reformulation of the ODC problem. Note that
this transformation is redundant if Q, R and K are already
diagonal. Let Qd ∈ Rn×n and Rd ∈ Rm×m be the respective
eigenvector matrices of Q and R, i.e.,

Q = QTd ΛQQd, R = RTd ΛRRd (13)

where ΛQ ∈ Rn×n and ΛR ∈ Rm×m are diagonal matrices.
Notice that there exist two constant binary matrices Φ1 ∈
Rm×l and Φ2 ∈ Rl×r such that

K =
{

Φ1diag{h}Φ2 | h ∈ Rl
}
, (14)

where diag{h} denotes a diagonal matrix whose diagonal
entries are inherited from the vector h [41]. Now, a sparse
formulation of the ODC problem can be obtained in terms of
the matrices

Ā , QdAQ
T
d , B̄ , QdBR

T
d , C̄ , Φ2CQ

T
d , c̄ , Qdc,

and the new set of variables x̄[τ ] , Qdx[τ ], ȳ[τ ] , Φ2y[τ ]
and ū[τ ] , Rdu[τ ] for τ = 0, 1, . . . , p.

Reformulated Finite-Horizon ODC Problem: Minimize
p∑
τ=0

(
x̄[τ ]TΛQx̄[τ ] + ū[τ ]TΛRū[τ ]

)
+ α‖h‖2 (15a)

subject to

x̄[0] = c̄× z (15b)
x̄[τ + 1] = Āx̄[τ ] + B̄ū[τ ] τ = 0, 1, . . . , p− 1 (15c)

ȳ[τ ] = C̄x̄[τ ] τ = 0, 1, . . . , p (15d)
z × ū[τ ] = RdΦ1diag{h}ȳ[τ ] τ = 0, 1, . . . , p (15e)

z2 = 1 (15f)

over the variables {x̄[τ ] ∈ Rn}pτ=0, {ȳ[τ ] ∈ Rl}pτ=0, {ū[τ ] ∈
Rm}pτ=0, h ∈ Rl and z ∈ R.

To cast the reformulated finite-horizon ODC as a quadratic
optimization, define

w ,
[
z hT x̄T ūT ȳT

]T ∈ Rnw (16)

where x̄ ,
[
x̄[0]T · · · x̄[p]T

]T
, ū ,

[
ū[0]T · · · ū[p]T

]T
,

ȳ ,
[
ȳ[0]T · · · ȳ[p]T

]T
and nw , 1+ l+(p+1)(n+ l+m).

The scalar auxiliary variable z plays the role of number 1
and is introduced to make the constraints (15b), (15c), (15d)
and (15e) homogenous, which will be later exploited to relax
the problem (it suffices to impose the additional quadratic
constraint (15f) as opposed to z = 1 without affecting the
solution).

B. SDP Relaxations of ODC Problem

In this subsection, two SDP relaxations are proposed for
the reformulated finite-horizon ODC problem given in (15).
For the first relaxation, there is a guarantee on the rank of
the solution. In contrast, the second relaxation offers a tighter
lower bound on the optimal cost of the ODC problem, but its
solution might be high rank and therefore its rounding to a
rank-1 solution could be more challenging.

1) Sparse SDP relaxation: Let e1, . . . , enw
denote the

standard basis for Rnw . The ODC problem consists of nl ,
(p+1)(n+l) linear constraints given in (15b), (15c) and (15d),
which can be formulated as

DTw = 0 (17)

for some matrix D ∈ Rnw×nl . Moreover, the objective
function (15a) and the constraints in (15e) and (15f) are all
quadratic and can be expressed in terms of some matrices
M ∈ Snw

, {Mi[τ ] ∈ Snw
}i=1,...,m; τ=0,1,...,p and E , e1e

T
1 .

This leads to the following formulation of (15).

Sparse Formulation of ODC Problem: Minimize

〈M,wwT 〉 (18a)

subject to

DTw = 0 (18b)

〈Mi[τ ], wwT 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (18c)

〈E,wwT 〉 = 1 (18d)

with the variable w ∈ Rnw .
For every j = 1, . . . , nl, define

Dj = D:,je
T
j + ejD

T
:,j (19)

where D:,j denotes the j-th column of D. An SDP relaxation
of (18) will be obtained below.
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Fig. 3: Sparsity graph of the problem (20) (some edges of vertex z are not
shown to improve the legibility of the graph).

Sparse Relaxation of Finite-Horizon ODC: Minimize

〈M,W 〉 (20a)

subject to

〈Dj ,W 〉 = 0 j = 1, . . . , nl (20b)
〈Mi[τ ],W 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (20c)
〈E,W 〉 = 1 (20d)

W � 0 (20e)

with the variable W ∈ Snw
.

The problem (20) is a convex relaxation of the QCQP
problem (18). The sparsity graph of this problem is equal to

G =G(D1) ∪ . . . ∪ G(Dnl
) ∪ G(M1[0]) ∪ . . . ∪ G(Mm[0])

∪ . . . ∪ G(M1[p]) ∪ . . . ∪ G(Mm[p]),

where the vertices of G correspond to the entries of w. In
particular, the vertex set of G can be partitioned into five vertex
subsets, where subset 1 consists of a single vertex associated
with the variable z and subsets 2-5 correspond to the vectors
x̄, ū, ȳ and h, respectively. The underlying sparsity graph
G for the sparse formulation of the ODC problem is drawn
in Figure 3, where each vertex of the graph is labeled by
its corresponding variable. To maintain the readability of the
graph, some edges of vertex z are not shown in the picture.
Indeed, z is connected to all vertices corresponding to the
elements of x̄, ū and ȳ due to the linear terms in (18b).

Theorem 2. The sparsity graph of the sparse relaxation of
the finite-horizon ODC problem has treewidth 2.

Proof. It follows from the graph drawn in Figure 3 that
removing vertex z from the sparsity graph G makes the
remaining subgraph acyclic. This implies that the treewidth
of G is at most 2. On the other hand, the treewidth cannot
be 1 in light of the cycles of the graph.

Consider the variable W of the SDP relaxation (20). The
exactness of this relaxation is tantamount to the existence of
an optimal rank-1 solution W opt for (20). In this case, an
optimal vector wopt for the ODC problem can be recovered

by decomposing W opt as (wopt)(wopt)T (note that w has been
defined in (16)). The following observation can be made.

Corollary 1. The sparse relaxation of the finite-horizon ODC
problem has a matrix solution with rank at most 3.

Proof. This corollary is an immediate consequence of Theo-
rems 1 and 2.

Remark 2. Since the treewidth of the sparse relaxation of
the finite-horizon ODC problem (20) is equal to 2, it is
possible to significantly reduce its computational complexity.
More precisely, the complicating constraint W � 0 can be
replaced by positive semidefinite constraints on certain 3× 3
submatrices of W , as given below:

W{Bi,Bi} � 0, k = 1, . . . , |T | (21)

where T is an optimal tree decomposition of the sparsity graph
G, and B1, . . . ,B|T | denote its bags. After this simplification of
the hard constraint W � 0, a quadratic number of entries of
W turn out to be redundant (not appearing in any constraint)
and can be removed from the optimization [30], [42].

2) Dense SDP relaxation: Define D⊥ ∈ Rnw×(nw−nl)

as an arbitrary full row rank matrix satisfying the relation
DTD⊥ = 0. It follows from (18b) that every feasible vector w
satisfies the equation w = D⊥w̃, for a vector w̃ ∈ R(nw−nl).
Define

M̃ = (D⊥)TMD⊥ (22a)

M̃i[τ ] = (D⊥)TMi[τ ]D⊥ (22b)

Ẽ = (D⊥)T e1e
T
1 D
⊥. (22c)

The problem (18) can be cast in terms of w̃ as shown below.

Dense Formulation of ODC Problem: Minimize

〈M̃, w̃w̃T 〉 (23a)

subject to

〈M̃i[τ ], w̃w̃T 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (23b)

〈Ẽ, w̃w̃T 〉 = 1 (23c)

over w̃ ∈ R(nw−nl).
The SDP relaxation of the above formulation is provided next.

Dense Relaxation of Finite-Horizon ODC: Minimize

〈M̃, W̃ 〉 (24a)

subject to
〈M̃i[τ ], W̃ 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (24b)

〈Ẽ, W̃ 〉 = 1 (24c)

W̃ � 0 (24d)

over W̃ ∈ S(nw−nl).

Remark 3. Let Fs and Fd denote the feasible sets for the
sparse and dense SDP relaxation problems in (20) and (24),
respectively. It can be easily seen that

{D⊥W̃ (D⊥)T | W̃ ∈ Fd} ⊆ Fs (25)

Therefore, the lower bound provided by the dense SDP relax-
ation problem (24) is equal to or tighter than that of the sparse
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SDP relaxation (20). However, the rank of the SDP solution
of the dense relaxation may be high, which complicates its
rounding to a rank-1 matrix. Hence, the sparse relaxation may
be useful for recovering a near globally-optimal controller,
while the dense relaxation may be used to bound the global
optimality degree of the recovered controller.

C. Rounding of SDP Solution to Rank-1 Matrix

Let W opt either denote a low-rank solution for the sparse
relaxation (20) or be equal to D⊥W̃ opt(D⊥)T for a low-
rank solution W̃ opt (if any) of the dense relaxation (24). If
the rank of W opt is 1, then W opt can be mapped back into
a globally optimal controller for the ODC problem through
the eigenvalue decomposition W opt = wopt(wopt)T . Assume
that W opt does not have rank 1. There are multiple heuristic
methods to recover a near globally-optimal controller, some
of which are delineated below.
Direct Recovery Method: If W opt had rank 1, then the
(2, 1), (3, 1), . . . , (|h|+1, 1) entries of W opt would have corre-
sponded to the vector hopt containing the free entries of Kopt.
Inspired by this observation, if W opt has rank greater than 1,
then a near globally-optimal controller may still be recovered
from the first column of W opt. We refer to this approach as
Direct Recovery Method.
Penalized SDP Relaxation: Recall that an SDP relaxation
can be obtained by eliminating a rank constraint. In the case
where this removal changes the solution, one strategy is to
compensate for the rank constraint by incorporating an additive
penalty function, denoted as Ψ(W ), into the objective of SDP
relaxation. A common penalty function Ψ(·) is ε× trace{W},
where ε is a design parameter. This problem is referred to as
Penalized SDP Relaxation throughout this paper.
Indirect Recovery Method: Define x as the aggregate state
vector obtained by stacking x[0], ..., x[p]. The objective func-
tion of every proposed SDP relaxation depends strongly on
x and only weakly on K if α is small. In particular, if
α = 0, then the SDP objective function is not in terms of
K. This implies that the relaxation may have two feasible
matrix solutions both leading to the same optimal cost such
that their first columns overlap on the part corresponding to x
and not the part corresponding to h. Hence, unlike the direct
method that recovers h from the first column of W opt, it may
be advantageous to first recover x and then solve a second
convex optimization to generate a structured controller that
is able to generate state values as closely to the recovered
aggregate state vector as possible. More precisely, given an
SDP solution W opt, define x̂ ∈ Rn(p+1) as a vector containing
the entries (|h|+ 2, 1), (|h|+ 3, 1), . . . , (1 + |h|+n(p+ 1), 1)
of W opt. Define the indirect recovery method as the convex
optimization problem

minimize
p∑
τ=0

‖x̂[τ + 1]− (A+BKC)x̂[τ ]‖2 (26a)

subject to K = h1M1 + . . .+ hlMl (26b)

with the variables K ∈ Rm×r and h ∈ Rl. Let K̂ denote a
solution of the above problem. In the case where W opt has rank
1 or the state part of the matrix W opt corresponds to the true
solution of the ODC problem, x̂ is the same as xopt and K̂ is

an optimal controller. Otherwise, K̂ is a feasible controller that
aims to make the closed-loop system follow the near-optimal
state trajectory vector x̂. As tested in Section VI, the above
controller recovery method exhibits a remarkable performance
on power systems.

D. Computationally-Cheap SDP Relaxation

Two SDP relaxations have been proposed earlier. Although
these problems are convex, it may be difficult to solve them
efficiently for a large-scale system. This is due to the fact
that the size of each SDP matrix depends on the number of
scalar variables at all times from 0 to p. There is an efficient
approach to derive a computationally-cheap SDP relaxation.
This will be explained below for the case where r,m ≤ n.

Notation 1. For every matrix M ∈ Rn1×n2 , define the sparsity
pattern of M as follows

S(M) , {S ∈ Rn1×n2 | ∀(i, j) Mij = 0⇒ Sij = 0} (27)

With no loss of generality, we assume that C has full row
rank. There exists an invertible matrix Φ ∈ Rn×n such that
CΦ =

[
Ir 0

]
. Define also

K2 , {Φ1SΦT1 | S ∈ S(Φ2ΦT2 )}. (28)

where Φ1 and Φ2 are defined in (14). Indeed, K2 captures the
sparsity pattern of the matrix KKT . For example, if K consists
of block-diagonal (rectangular) matrix, K2 will also include
block-diagonal (square) matrices. Let µ ∈ R be a positive
number such that Q � µ×Φ−TΦ−1, where Φ−T denotes the
transpose of the inverse of Φ. Define

Q̂ := Q− µ× Φ−TΦ−1. (29)

Using the slack matrix variables

X , [x[0] x[1] . . . x[p]] , U , [u[0] u[1] . . . u[p]] , (30)

an efficient relaxation of the ODC problem can be obtained.

Computationally-Cheap Relaxation of Finite-Horizon
ODC: Minimize

trace{XT Q̂X + µ W22 + UTRU}+ α trace{W33} (31a)

subject to

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . , p− 1, (31b)
x[0] = c, (31c)

W =

 In Φ−1X [K 0]T

XTΦ−T W22 UT

[K 0] U W33

 , (31d)

K ∈ K, (31e)

W33 ∈ K2, (31f)
W � 0, (31g)

over K ∈ Rm×r, X ∈ Rn×(p+1), U ∈ Rm×(p+1) and W ∈
Sn+m+p+1 (note that W22 and W33 are two blocks of the
block matrix variable W).

Note that the above relaxation can be naturally cast as
an SDP problem by replacing each quadratic term in its
objective with a new variable and then using the Schur
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complement. We refer to the SDP formulation of this problem
as computationally-cheap SDP relaxation.

Theorem 3. The problem (31) is a convex relaxation of the
ODC problem. Furthermore, the relaxation is exact if and only
if it possesses a solution (Kopt, Xopt, U opt,Wopt) such that
rank{Wopt} = n.

Proof. It is evident that the problem (31) is a convex program.
To prove the remaining parts of the theorem, it suffices to
show that the ODC problem is equivalent to (31) subject to
the additional constraint rank{W} = n. To this end, consider
a feasible solution (K,X,U,W) such that rank{W} = n.
Since In has rank n, taking the Schur complement of the
blocks (1, 1), (1, 2), (2, 1) and (2, 2) of W yields that

0=W22−XTΦ−T (In)−1Φ−1X and 0=W33−KKT (32)

On the other hand,
p∑
τ=0

(
x[τ ]TQx[τ ]+u[τ ]TRu[τ ]

)
= trace{XTQX+UTRU} (33)

It follows from (32) and (33) that the ODC problem and its
computationally cheap relaxation lead to the same objective
at the respective points (K,X,U) and (K,X,U,W). In
addition, it can be concluded from the Schur complement of
the blocks (1, 1), (1, 2), (3, 1) and (3, 2) of W that

U = [K 0]Φ−1X = KCX (34)

or equivalently
u[τ ] = KCx[τ ] for τ = 0, 1, . . . , p (35)

This implies that (K,X,U) is a feasible solution of the ODC
problem. Hence, the optimal objective value of the ODC
problem is a lower bound on that of the computationally-cheap
relaxation under the additional constraint rank{W} = n.

Now, consider a feasible solution (K,X,U) of the ODC
problem. Define W22 = XTΦ−TΦ−1X and K2 = KKT .
Observe that W can be written as the rank-n matrix WrW

T
r ,

where
Wr =

[
In Φ−1X [K 0]T

]T
(36)

Thus, (K,X,U,W) is a feasible solution of the
computationally-cheap SDP relaxation. This implies that
the optimal objective value of the ODC problem is an upper
bound on that of the computationally-cheap SDP relaxation
under the additional constraint rank{W} = n. The proof
is completed by combining this property with its opposite
statement proved earlier.

The sparse and dense SDP relaxations were both obtained
by defining a matrix W as the product of two vectors. How-
ever, the computationally-cheap relaxation of the finite-horizon
ODC Problem is obtained by defining W as the product of
two matrices. This significantly reduces the computational
complexity. To shed light on this fact, notice that the numbers
of rows for the matrix variables of the sparse and dense SDP
relaxations are on the order of np, whereas the number of rows
for the computationally-cheap SDP solution is on the order of
n+ p.

Remark 4. The computationally-cheap relaxation of the finite-
horizon ODC Problem automatically acts as a penalized SDP
relaxation. To explain this remarkable feature of the proposed
relaxation, notice that the terms trace{W22} and trace{W33}
in the objective function of the relaxation inherently penalize
the trace of W. This automatic penalization helps significantly
with the reduction of the rank of W at optimality. As a result,
it is expected that the quality of the relaxation will be better
for higher values of α and µ.

Remark 5. Consider the extreme case where r = n, C = In,
α = 0, p = ∞, and the unknown controller K is unstruc-
tured. This amounts to the famous LQR problem and the
optimal controller can be found using the Riccati equation.
It is straightforward to verify that the computationally-cheap
relaxation of the ODC problem is always exact in this case
even though it is infinite-dimensional. The proof is based on
the following facts:
• When K is unstructured, the constraint (31e) and (31f)

can be omitted. Therefore, there is no structural con-
straint on W33 and W31 (i.e., the (3, 1) block entry).

• Then, the constraint (31d) reduces to W22 =
XTΦ−TΦ−1X due to the term trace{W22} in the ob-
jective function. Consequently, the objective function can
be rearranged as

∑∞
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
.

• The only remaining constraints are the state evolution
equation and x[0] = c. It is known that the remaining
feed-forward problem has a solution (Xopt, U opt) such
that U opt = KoptXopt for some matrix Kopt.

E. Stability Enforcement

The finite-horizon ODC problem studied before had no
stability conditions. We have verified in the simulations in
Section VI that the closed-loop stability may be automatically
guaranteed for physical systems if p is large enough. In this
subsection, we aim to directly enforce stability by imposing
additional constraints on the proposed SDP relaxations.

Theorem 4. There exists a controller u[τ ] = Ky[τ ] with the
structure K ∈ K to stabilize the system (1) if and only if there
exist a (Lyapunov) matrix P ∈ Sn, a matrix K ∈ Rm×r, and
auxiliary variables L ∈ Rm×n and G ∈ S2n+m such that[

P − In AP +BG32

PAT + G23B
T P

]
� 0, (37a)

K ∈ K, (37b)
G � 0, (37c)

G33 ∈ K2, (37d)
rank{G} = n, (37e)

where

G ,

 In Φ−1P [K 0]T

PΦ−T G22 G23

[K 0] G32 G33

 (38)

Proof. It is well-known that the system (1) is stable under a
controller u[τ ] = Ky[τ ] if and only if there exists a positive-
definite matrix P ∈ Sn to satisfy the Lyapunov inequality:

(A+BKC)TP (A+BKC)− P + In � 0 (39)
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or equivalently[
P − In AP +BKCP

PAT + PKTCTBT P

]
� 0 (40)

Due to the analogy between W and G, the argument made in
the proof of Theorem 3 can be adopted to complete the proof
of this theorem (note that G32 plays the role of KCP ).

Theorem 4 translates the stability of the closed-loop system
into a rank-n condition. Consider one of the aforementioned
SDP relaxations of the ODC problem. To enforce stability,
it results from Theorem 4 that two actions can be taken:
(i) addition of the convex constraints (37a)-(37d) to SDP
relaxations, (ii) compensation for the rank-n condition through
an appropriate convex penalization of G in the objective
function of SDP relaxations. Note that the penalization is vital
because otherwise G22 and G33 would grow unboundedly to
satisfy the condition G � 0.

IV. INFINITE-HORIZON DETERMINISTIC ODC PROBLEM

In this section, we study the infinite-horizon ODC problem,
corresponding to p = +∞ and subject to a stability condition.

A. Lyapunov Formulation

The finite-horizon ODC was investigated through a time-
domain formulation. However, to deal with the infinite di-
mension of the infinite-horizon ODC and its hard stability
constraint, a Lyapunov approach will be taken here. Consider
the following optimization problem.

Lyapunov Formulation of ODC: Minimize

cTPc+ α‖K‖2F (41a)

subject to
G G (AG+BL)T LT

G Q−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (41b)

[
P In
In G

]
� 0, (41c)

K ∈ K, (41d)
L = KCG, (41e)

over K ∈ Rm×r, L ∈ Rm×n, P ∈ Sn and G ∈ Sn.
It will be shown in the next theorem that the above formu-

lation is tantamount to the infinite-horizon ODC problem.

Theorem 5. The infinite-horizon deterministic ODC problem
is equivalent to finding a controller K ∈ K, a symmetric
Lyapunov matrix P ∈ Sn, an auxiliary symmetric matrix
G ∈ Sn and an auxiliary matrix L ∈ Rm×n to solve the
optimization problem (41).

Proof. Given an arbitrary control gain K, we have:

∞∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
= x[0]TPx[0] (42)

where

P =(A+BKC)TP (A+BKC)+Q+(KC)TR(KC) (43a)
P � 0 (43b)

On the other hand, it is well-known that replacing the equality
sign “=” in (43a) with the inequality sign “�” does not affect
the solution of the optimization problem [43]. After pre- and
post-multiplying the Lyapunov inequality obtained from (43a)
with P−1 and using the Schur complement formula, the
constraints (43a) and (43b) can be combined as

P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0
S 0 P−1 0

(KC)P−1 0 0 R−1

 � 0 (44)

where S = (A + BKC)P−1. By replacing P−1 with a new
variable G in the above matrix and defining L as KCG, the
constraints (41b) and (41e) will be obtained. On the other
hand, according to the generalization of Schur complement in
[40], the constraint (41c) holds if and only if

G � 0, null{G} ⊆ null{In}, and P � G−1. (45)

Therefore, the minimization of cTPc subject to the con-
straint (41c) ensures that P = G−1 is satisfied for at least
one optimal solution of the optimization problem.

Theorem 6. Consider the special case where r = n, C = In,
α = 0 and K contains the set of all unstructured controllers.
Then, the infinite-horizon deterministic ODC problem has the
same solution as the convex optimization problem obtained
from the nonlinear optimization (41) by removing its non-
convex constraint (41e).

Proof. It is easy to verify that a solution (Kopt, P opt, Gopt,
Lopt) of the convex problem stated in the theorem can be
mapped to the solution (Lopt(Gopt)−1, P opt, Gopt, Lopt) of the
non-convex problem (41) and vice versa (recall that C = In
by assumption). This completes the proof.

B. SDP Relaxation
Theorem 6 states that a classical optimal control problem

can be precisely solved via a convex relaxation of the nonlinear
optimization (41) by eliminating its constraint (41e). However,
this simple convex relaxation does not work satisfactorily for
a general control structure K = Φ1diag{h}Φ2. To design a
better relaxation, define

w =
[
1 hT vec{Φ2CG}T

]T
(46)

where vec{Φ2CG} is an nl × 1 column vector obtained
by stacking the columns of Φ2CG. It is possible to write
every entry of the bilinear matrix term KCG as a linear
function of the entries of the parametric matrix wwT . Hence,
by introducing a new matrix variable W playing the role of
wwT , the nonlinear constraint (41e) can be rewritten as a linear
constraint in term of W.

Notation 2. Define the sampling operator samp : Rl×nl →
Rl×n as follows:

samp{X} =
[
Xi,(n−1)j+i

]
i=1,...,l; j=1,...,n

. (47)
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Now, one can relax the non-convex mapping constraint
W = wwT to W � 0 and another constraint stating that
the first column of W is equal to w. This yields the following
convex relaxation of problem (41).

SDP Relaxation of Infinite-Horizon Deterministic ODC:
Minimize

cTPc+ α trace{W33} (48a)

subject to
G G (AG+BL)T LT

G Q−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (48b)

[
P In
In G

]
� 0, (48c)

L = Φ1 × samp{W32}, (48d)

W =

 1 vec{Φ2CG}T hT

vec{Φ2CG} W22 W23

h W32 W33

 , (48e)

W � 0, (48f)

over h ∈ Rl, L ∈ Rm×n, P ∈ Sn, G ∈ Sn and W ∈
S1+l(n+1).

If the relaxed problem (48) has the same solution as the
infinite-horizon ODC in (41), the relaxation is exact.

Theorem 7. The following statements hold regarding the
relaxation of the infinite-horizon deterministic ODC in (48):

i) The relaxation is exact if it has a solution (hopt, P opt,
Gopt, Lopt,Wopt) such that rank{Wopt} = 1.

ii) The relaxation always has a solution (hopt, P opt, Gopt,
Lopt,Wopt) such that rank{Wopt} ≤ 3.

Proof. Consider a sparsity graph G of (48), constructed as
follows. The graph G has 1 + l(n+ 1) vertices corresponding
to the rows of W. Two arbitrary disparate vertices i, j ∈ {1, 2,
. . . , 1 + l(n+ 1)} are adjacent in G if Wij appears in at least
one of the constraints of the problem (48) excluding the global
constraint W � 0. For example, vertex 1 is connected to all
remaining vertices of G. The graph G with its vertex 1 removed
is depicted in Figure 4. This graph is acyclic and therefore the
treewidth of G is at most 2. Hence, it follows from Theorem 1
that (48) has a matrix solution with rank at most 3.

Theorem 7 states that the SDP relaxation of the infinite-
horizon ODC problem has a low-rank solution. However, it
does not imply that every solution of the relaxation is low-
rank. Theorem 1 provides a procedure for converting a high-
rank solution of the SDP relaxation into a low-rank one.

C. Computationally-Cheap Relaxation

The aforementioned SDP relaxation has a high dimension
for a large-scale system, which makes it less interesting for
computational purposes. Moreover, the quality of its optimal
objective value can be improved using some indirect penalty
technique. The objective of this subsection is to offer a
computationally-cheap SDP relaxation for the ODC problem,
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Fig. 4: The sparsity graph for the infinite-horizon deterministic ODC in the
case where K consists of diagonal matrices (the central vertex corresponding
to the constant 1 is removed for simplicity).

whose solution outperforms that of the previous SDP relax-
ation. For this purpose, consider again a scalar µ such that
Q � µ× Φ−TΦ−1 and define Q̂ according to (29).

Computationally-Cheap Relaxation of Infinite-horizon De-
terministic ODC: Minimize

cTPc+ α trace{W33} (49a)

subject to
G− µW22 G (AG+BL)T LT

G Q̂−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (49b)

[
P In
In G

]
� 0, (49c)

W =

 In Φ−1G [K 0]T

GΦ−T W22 LT

[K 0] L W33

 , (49d)

K ∈ K, (49e)

W33 ∈ K2, (49f)
W � 0, (49g)

over K ∈ Rm×r, L ∈ Rm×n, P ∈ Sn, G ∈ Sn and W ∈
S2n+m.

The following remarks can be made regarding (49):
• The constraint (49b) corresponds to the Lyapunov in-

equality associated with (43a), where W22 in its first
block aims to play the role of P−1Φ−TΦ−1P−1.

• The constraint (49c) ensures that the relation P = G−1

occurs at optimality (at least for one of the solution of
the problem).

• The constraint (49d) is a surrogate for the only compli-
cating constraint of the ODC problem, i.e., L = KCG.

• Since no non-convex rank constraint is imposed on the
problem, the rank constraint is compensated in vari-
ous ways. More precisely, the entries of W are con-
strained in the objective function (49a) through the term
α trace{W33}, in the first block of the constraint (49b)
through the term G−µW22, and also via the constraints
(49e) and (49f). These terms aim to automatically penal-
ize the rank of W indirectly.

• The proposed relaxation takes advantage of the sparsity of
not only K, but also KKT (through the constraint (49f)).

Theorem 8. The problem (49) is a convex relaxation of
the infinite-horizon ODC problem. Furthermore, the re-
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laxation is exact if and only if it possesses a solution
(Kopt, Lopt, P opt, Gopt,Wopt) such that rank{Wopt} = n.

Proof. The objective function and constraints of the problem
(49) are all linear functions of the tuple (K,L, P,G,W).
Hence, this relaxation is indeed convex. To study the rela-
tionship between this optimization problem and the infinite-
horizon ODC, consider a feasible point (K,L, P,G) of the
ODC formulation (41). It can be deduced from the relation
L = KCG that (K,L, P,G,W) is a feasible solution of the
problem (49) if the free blocks of W are considered as

W22 = GΦ−TΦ−1G, W33 = KKT (50)

(note that (41b) and (49b) are equivalent for this choice of
W). This implies that the problem (49) is a convex relaxation
of the infinite-horizon ODC problem.

Consider now a solution (Kopt, Lopt, P opt, Gopt,Wopt)
of the computationally-cheap SDP relaxation such that
rank{Wopt} = n. Since the rank of the first block of Wopt

(i.e., In) is already n, a Schur complement argument on the
blocks (1, 1), (1, 3), (2, 1) and (2, 3) of Wopt yields that

0 = Lopt − [Kopt 0](In)−1Φ−1Gopt (51)

or equivalently Lopt = KoptCGopt, which is tantamount to
the constraint (41e). This implies that (Kopt, Lopt, P opt, Gopt)
is a solution of the infinite-horizon ODC problem (41) and
hence the relaxation is exact. So far, we have shown that the
existence of a rank-n solution Wopt guarantees the exactness
of the relaxation. The converse of this statement can also be
proved similarly.

The variable W in the first SDP relaxation (48) has 1+l(n+
1) rows. In contrast, this number reduces to 2n + m for the
matrix W in the computationally-cheap relaxation (49). This
significantly reduces the computation time of the relaxation.

Corollary 2. Consider the special case where r = n, C = In,
α = 0 and K contains the set of all unstructured controllers.
Then, the computationally-cheap relaxation problem (49) is
exact for the infinite-horizon ODC problem.

Proof. The proof follows from that of Theorem 6.

D. Controller Recovery

In this subsection, two controller recovery methods will be
described. With no loss of generality, our focus will be on the
computationally-cheap relaxation problem (49).

Direct Recovery Method for Infinite-Horizon ODC: A near-
optimal controller K for the infinite-horizon ODC problem is
chosen to be equal to the optimal matrix Kopt obtained from
the computationally-cheap relaxation problem (49).

Indirect Recovery Method for Infinite-Horizon ODC:
Let (Kopt, Lopt, P opt, Gopt,Wopt) denote a solution of the
computationally-cheap relaxation problem (49). Given a pre-
specified nonnegative number ε, a near-optimal controller
K̂ for the infinite-horizon ODC problem is recovered by
minimizing

ε× γ + α‖K‖2F (52a)

subject to(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0
(KC) 0 R−1

�0 (52b)

K = h1N1 + . . .+ hlNl. (52c)

over K ∈ Rm×r, h ∈ Rl and γ ∈ R. Note that this
is a convex program. The direct recovery method assumes
that the controller Kopt obtained from the computationally-
cheap relaxation problem (49) is near-optimal, whereas the
indirect method assumes that the controller Kopt might be
unacceptably imprecise while the inverse of the Lyapunov
matrix is near-optimal. The indirect method is built on the
previous SDP relaxation by fixing G at its optimal value and
then perturbing Q as Q − γIn to facilitate the recovery of
a stabilizing controller. The underlying idea is that the SDP
relaxation depends strongly on G and weakly on P . In other
words, there might be two feasible solutions with similar costs
for the SDP relaxation whose G parts are identical while their
P parts are very different. Hence, the indirect method focuses
on G.

V. INFINITE-HORIZON STOCHASTIC ODC PROBLEM

This section is mainly concerned with the stochastic optimal
distributed control (SODC) problem, which aims to design a
stabilizing static controller u[τ ] = Ky[τ ] to minimize the cost
function

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (53)

subject to the system dynamics (3) and the controller require-
ment K ∈ K, for a nonnegative scalar α and positive-definite
matrices Q and R. Define two covariance matrices as

Σd = E{Ed[0]d[0]TET } Σv = E{Fv[0]v[0]TFT } (54)

Consider the following optimization problem.

Lyapunov Formulation of SODC: Minimize

〈P,Σd〉+ 〈M +KTRK,Σv〉+ α‖K‖2F (55a)

subject to
G G (AG+BL)T LT

G Q−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (55b)

[
P In
In G

]
� 0, (55c)[

M (BK)T

BK G

]
� 0, (55d)

K ∈ K (55e)
L = KCG (55f)

over the controller K ∈ Rm×r, Lyapunov matrix P ∈ Sn and
auxiliary matrices G ∈ Sn, L ∈ Rm×n and M ∈ Sr.

Theorem 9. The infinite-horizon SODC problem adopts the
non-convex formulation (55).
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Proof. It is straightforward to verify that

x[τ ] = (A+BKC)τx[0]

+

τ−1∑
t=0

(A+BKC)τ−t−1(Ed[t] +BKFv[t]) (56)

for τ = 1, 2, . . . ,∞. On the other hand, since the controller
under design must be stabilizing, (A + BKC)τ approaches
zero as τ goes to +∞. In light of the above equation, it can
be verified that

E
{

lim
τ→+∞

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)}
= E

{
lim

τ→+∞
x[τ ]T

(
Q+ CTKTRKC

)
x[τ ]

}
+ E

{
lim

τ→+∞
v[τ ]TFTKTRKFv[τ ]

}
= 〈P,Σd〉+ 〈(BK)TP (BK) +KTRK,Σv〉 (57)

where

P =

∞∑
t=0

(
(A+BKC)t

)T
(Q+ CTKTRKC)(A+BKC)t

Similar to the proof of Theorem 5, the above infinite series
can be replaced by the expanded Lyapunov inequality (44):
After replacing P−1 and KCP−1 in (44) with new variables
G and L, it can be concluded that:
• The condition (44) is identical to the set of con-

straints (55b) and (55f).
• The cost function (57) can be expressed as

〈P,Σd〉+ 〈(BK)TG−1(BK) +KTRK,Σv〉+ α‖K‖2F
• Since P appears only once in the constraints of the

optimization problem (55) (i.e., the condition (55c)) and
the objective function of this optimization includes the
term 〈P,Σd〉, an optimal value of P is equal to G−1

(Notice that Σd � 0).
• Similarly, the optimal value of M is equal to

(BK)TG−1(BK).
The proof follows from the above observations.

The traditional H2 optimal control problem (i.e., in the
centralized case) can be solved using Riccati equations. It will
be shown in the next proposition that dropping the non-convex
constraint (55f) results in a convex optimization that correctly
solves the centralized H2 optimal control problem.

Proposition 1. Consider the special case where r = n,
C = In, α = 0, Σv = 0, and K contains the set of all
unstructured controllers. Then, the SODC problem has the
same solution as the convex optimization problem obtained
from the nonlinear optimization (55a)-(55) by removing its
non-convex constraint (55f).

Proof. It is similar to the proof of Theorem 6.

Consider the vector w defined in (46). Similar to the infinite-
horizon ODC case, the bilinear matrix term KCG can be
represented as a linear function of the entries of the parametric
matrix W defined as wwT . Now, a convex relaxation can be

attained by relaxing the constraint W = wwT to W � 0 and
adding another constraint stating that the first column of W
is equal to w.

Relaxation of Infinite-Horizon SODC: Minimize
〈P,Σd〉+ 〈M +KTRK,Σv〉+ α trace{W33} (58a)

subject to
G G (AG+BL)T LT

G Q−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (58b)

[
P In
In G

]
� 0, (58c)

K = Φ1diag{h}Φ2, (58d)[
M (BK)T

BK G

]
� 0, (58e)

L = Φ1samp{W32}, (58f)

W =

 1 vec{Φ2CG}T hT

vec{Φ2CG} W22 W23

h W32 W33

 , (58g)

W � 0, (58h)

over the controller K ∈ Rm×r, Lyapunov matrix P ∈ Sn and
auxiliary matrices G ∈ Sn, L ∈ Rm×n, M ∈ Sr, h ∈ Rl and
W ∈ S1+l(n+1).

Theorem 10. The following statements hold regarding the
convex relaxation of the infinite-horizon SODC problem:

i) The relaxation is exact if it has a solution
(hopt,Kopt, P opt, Gopt, Lopt,M opt,Wopt) such that
rank{W opt} = 1.

ii) The relaxation always has a solution
(hopt,Kopt, P opt, Gopt, Lopt,M opt,Wopt) such that
rank{W opt} ≤ 3.

Proof. The proof is omitted (see Theorems 7 and 9).

As before, it can be deduced from Theorem 10 that the
infinite-horizon SODC problem has a convex relaxation with
the property that its exactness amounts to the existence of a
rank-1 matrix solution Wopt. Moreover, it is always guaranteed
that this relaxation has a solution such that rank{Wopt} ≤ 3.

A computationally-cheap SDP relaxation for the SODC
problem will be derived below. Let µ1 and µ2 be two nonneg-
ative numbers such that

Q � µ1 × Φ−TΦ−1, Σv � µ2 × Ir (59)

Define Q̂ := Q− µ1 × Φ−TΦ−1 and Σ̂v := Σv − µ2 × Ir.

Computationally-Cheap Relaxation of Infinite-Horizon
SODC: Minimize

〈P,Σd〉+〈M,Σv〉+〈KTRK, Σ̂v〉+〈µ2R+αIm,W33〉 (60a)

subject to
G− µ1W22 G (AG+BL)T LT

G Q̂−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (60b)
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P In
In G

]
� 0, (60c)[

M (BK)T

BK G

]
� 0, (60d)

W =

 In Φ−1G [K 0]T

GΦ−T W22 LT

[K 0] L W33

 , (60e)

K ∈ K, (60f)

W33 ∈ K2, (60g)
W � 0, (60h)

over K ∈ Rm×r, P ∈ Sn, G ∈ Sn, L ∈ Rm×n, M ∈ Sr and
W ∈ S2n+m.

It should be noted that the constraint (60d) ensures that the
relation M = (BK)TG−1(BK) occurs at optimality.

Theorem 11. The problem (60) is a convex relax-
ation of the SODC problem. Furthermore, the relax-
ation is exact if and only if it possesses a solution
(Kopt, Lopt, P opt, Gopt,M opt,Wopt) such that rank{Wopt} =
n.
Proof. Since the proof is similar to that of the infinite-horizon
case presented earlier, it is omitted here.

For the retrieval of a near-optimal controller, the direct
recovery method delineated for the infinite-horizon ODC prob-
lem can be readily deployed. However, the indirect recovery
method requires some modifications, which will be explained
below. Let (Kopt, Lopt, P opt, Gopt,M opt,Wopt) denote a so-
lution of the computationally-cheap relaxation of SODC. A
near-optimal controller K for SODC may be recovered by
minimizing

〈KT (BT (Gopt)−1B +R)K,Σv〉+ α‖K‖2F + ε× γ (61a)

subject to[
(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0
(KC) 0 R−1

]
� 0 (61b)

K ∈ h1N1 + . . .+ hlNl. (61c)

over K ∈ Rm×r, h ∈ Rl and γ ∈ R, where ε is a pre-specified
nonnegative number. This is a convex program.

VI. DISTRIBUTED FREQUENCY CONTROL PROBLEM

Consider the distributed frequency control (DFC) problem
that aims to design an optimal distributed frequency controller
for a transmission system consisting of ñ generator and load
buses connected to each other via a physical circuit. The
objective of the distributed controller is to optimally adjust
the mechanical power input to each generator based on the
rotor angle and frequency signals. The structure of the con-
troller must obey a pre-determined communication topology,
specifying what generators can exchange their rotor angle and
frequency measurements with one another. To derive a simple
state-space model of the power system, we start with the
widely-used per-unit swing equation

Miθ̈i +Diθ̇i = PMi − PEi, (62)

(a) Decentralized (b) Localized

(c) Ring (d) Star Topology (G10 in center)

Fig. 5: Four communication topologies studied for IEEE 39-bus system.

where θi denotes the voltage (or rotor) angle at a generator bus
i (in rad), PMi is the mechanical power input to the generator
at bus i (in per unit), PEi is the electrical active power injection
at bus i (in per unit), Mi is the inertia coefficient of the
generator at bus i (in pu-sec2/rad), and Di is the damping
coefficient of the generator at bus i (in pu-sec/rad) [44]. The
electrical real power PEi in (62) comes from the nonlinear
AC power flow equation

PEi =

n∑
j=1

|Vi||Vj |[Gij cos(θi − θj) +Bij sin(θi − θj)] (63)

where n denotes the number of buses in the system, Vi is
the voltage phasor at bus i, Gij is the line conductance, and
Bij is the line susceptance. To simplify the formulation, a
commonly-used technique is to approximate equation (63) by
its corresponding DC power flow equation in which all the
voltage magnitudes are assumed to be 1 per unit, each branch
is modeled as a series inductor, and the angle differences
across the lines are assumed to be relatively small:

PEi =

n∑
j=1

Bij(θi − θj) (64)

It is possible to rewrite (64) into the matrix format PE = Lθ,
where PE and θ are the vectors of real power injections and
voltage (or rotor) angles at only the generator buses (after
removing the load buses and the intermediate zero buses). In
this equation, L denotes the Laplacian matrix and can be found
as follows [45]:

Lii =

n̄∑
k=1,k 6=i

BKron
ik and Lij = −BKron

ij (i 6= j) (65)

where BKron is the susceptance of the Kron reduced admit-
tance matrix Y Kron defined as

Y Kron
ij = Yij −YikYkj/Ykk (i, j = 1, 2, . . . , n and i, j 6= k)

where k is the index of the non-generator bus to be eliminated
from the admittance matrix and n̄ is the number of generator
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(a) Optimality degree for finite-horizon DFC
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(b) Near-optimal cost for finite-horizon DFC
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(c) Stability degree for finite-horizon DFC

Fig. 6: A near-optimal controller K̂ is designed to solve the finite-horizon DFC problem for every control topology given in Figure 5 and every α between
0 and 100: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability (maximum of the absolute eigenvalues of the closed-loop system).
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(a) Optimality degree for infinite-horizon DFC
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(b) Near-optimal cost for infinite-horizon DFC
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(c) Stability degree for infinite-horizon DFC

Fig. 7: A near-optimal controller K̂ is designed to solve the infinite-horizon DFC problem for every control topology given in Figure 5 and every α between
0 and 15: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability (maximum of the absolute eigenvalues of the closed-loop system).
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(a) Optimality degree for stochastic DFC
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(b) Near-optimal cost for stochastic DFC
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(c) Stability degree for stochastic DFC

Fig. 8: A near-optimal controller K̂ is designed to solve the stochastic DFC problem for every control topology given in Figure 5 and every α between 0
and 15 under the assumptions that Σd = I and Σv = 0: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability
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(a) Optimality degree for stochastic DFC

0 5 10 15
200

210

220

230

240

U
p
p
e
r 

B
o
u
n
d

σ

 

 

Ring

Localized

Star

Decentralized

(b) Near-optimal cost for stochastic DFC
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(c) Stability degree for stochastic DFC

Fig. 9: A near-optimal controller K̂ is designed to solve the stochastic DFC problem for every control topology given in Figure 5 and every σ between 0
and 15 under the assumptions that Σd = I , α = 0 and Σv = σI: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability

buses. Note that the Kron reduction method aims to eliminate
the static buses of the network because the dynamics and
interactions of only the generator buses are of interest [46].

By defining the rotor angle state vector as θ = [θ1, . . . , θn̄]T

and the frequency state vector as w = [w1, . . . , wn̄]T and by
substituting the matrix format of PE into (62), the state-space
model of the swing equation used for frequency control in
power systems could be written as[
θ̇
ẇ

]
=

[
0n̄×n̄ In̄
−M−1L −M−1D

][
θ
w

]
+

[
0n̄×n̄
M−1

]
PM , y=

[
θ
w

]
(66)

where M = diag(M1, . . . ,Mn̄) and D = diag(D1, . . . , Dn̄).

It is assumed that both rotor angle and frequency are available
for measurement at each generator (implying that C = I2n̄).

We evaluate the performance of the aforementioned SDP
relaxations on the problem of designing an optimal distributed
frequency control for IEEE 39-Bus New England Power
System. By substituting the per-unit inertia (M) and damping
(D) coefficients for the 10 generators of IEEE 39-Bus system,
the continuous-time state space model matrices Ac, Bc and
Cc can be found [47]. The system is then discretized to the
discrete-time model matrices A, B and C with the sampling
time of 0.2 second. The initial values of the rotor angle (θ0)
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were calculated by solving power (or load) flow problem for
the system using MATPOWER [48]. In practice, the rotor
speed does not vary significantly from synchronous speed and
thus the initial frequency (w0) was assumed to be 1.0 per unit.

We aim to solve thousands of SDP relaxations for these
systems and evaluate their performance for different control
topologies and a wide range of values for (α,Σd,Σv). Note
that the computation time for each SDP relaxation is from a
fraction of a second to 4 seconds on a desktop computer with
an Intel Core i7 quad-core 3.4 GHz CPU and 16 GB RAM.

The 39-bus system has 10 generators, labeled as
G1, G2, . . . , G10. Four communication topologies are con-
sidered in this work: decentralized, localized, star, and ring.
These topologies are visualized in Figure 5. The locations of
the generators in the figure are based on the exact coordinates
of the power plants named in [49]. Note that G1 represents a
group of generators, but it is considered as a single node near
the border between New York and Connecticut in this map.
G4 and G5 are very close in distance, but G4 was somewhat
shifted from its real coordinates to make the communication
link between them visible in this map.

Define the optimality degree associated with a recovered
controller as:

Optimality degree (%) = 100− upper bound - lower bound

upper bound
× 100

where “upper bound” and ‘lower bound” denote the cost of
the recovered near globally-optimal controller and the optimal
objective of SDP relaxation, respectively. Notice that the em-
ployed optimality measure evaluates the performance within
the specified set of controllers. For example, the optimality
degree of 100% means that among the linear static controllers
possessing the given structure, a globally optimal one is
obtained.

A. Finite-Horizon DFC
Assume that Q = I, R = 0.1I , and p = 80. Suppose also

that α is a parameter between 0 and 100. The goal is to solve
a finite-horizon DFC problem for each value of α and for
each of the four aforementioned communication topologies.
This will be achieved in two steps. First, the convex relaxation
of the finite-horizon DFC is solved. Second, a near-optimal
controller K̂ is designed by choosing the best solution of the
direct and indirect recovery methods. The results are reported
in Figures 6(a)-(c). The following observations can be made:
• The designed controllers are almost 100% globally op-

timal for three control topologies of decentralized, lo-
calized and ring, and this result holds for all possible
values of α. The optimality degree for the star controller
is above 70% and approaches 100% (even though slowly)
as α grows.

• For every value of α ∈ [0, 100], the decentralized
controller has the lowest performance, while the ring
controller offers the best performance.

• The closed-loop system is always stable for all 4 control
topologies and all possible values of α.

B. Infinite-Horizon DFC
Consider the problem of solving an infinite-horizon DFC

problem for each value of α in the interval [0, 15] and each

of the four aforementioned communication topologies. Similar
to the previous experiment, stabilizing near-optimal controllers
are designed for all of these cases. The results are summarized
in Figure 7.

C. Stochastic DFC
Assume that Σd is equal to I . We consider two different

scenarios:
i) Suppose that Σv = 0, while α varies from 0 to 15.

We solve the convex relaxation of each stochastic DFC,
from which a near-optimal solution K̂ is designed by
choosing the best solution of the direct and indirect
recovery methods.The outcome is plotted in Figure 8.

ii) Suppose that α = 0, while Σv is equal to σI with σ
varying between 0 and 15. As before, we design a near-
optimal controller for each stochastic DFC problem. The
results are reported in Figure 9.

D. Performance Evaluation
In the above experiments, three convex relaxations were

solved for the finite-horizon DFC, infinite-horizon DFC and
stochastic DFC problems. Interestingly, the designed con-
trollers were all stabilizing (with no exception), and their opti-
mality degrees were close to 99% in case of the decentralized,
localized and ring structures. In case of the star structure, the
optimality degree was higher than 70% in finite-horizon DFC,
higher than 77% in infinite-horizon DFC and around 94% for
various levels of σ and α in stochastic DFC.

VII. CONCLUSIONS

This paper studies the optimal distributed control (ODC)
problem for linear discrete-time deterministic and stochas-
tic systems. The objective is to design a static distributed
controller with a pre-determined structure to minimize a
quadratic cost functional. We propose semidefinite program-
ming (SDP) relaxations for both time-domain and Lyapunov-
domain formulations of the ODC problem. The notion of
tree decomposition is exploited to prove the existence of
a low-rank solution for the SDP relaxation problems with
rank at most 3. Computationally-cheap relaxations are also
developed for finite-horizon, infinite-horizon, and stochastic
ODC problems. These relaxations are guaranteed to exactly
solve the LQR and H2 problems for the classical centralized
control problem. The proposed relaxation techniques are tested
on the problem of the distributed frequency control of power
systems, leading to near-optimal controllers with global opti-
mality degrees above 99%. The generalization of the results
of this paper to dynamics controllers is left as future work.
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