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Abstract—This two-part paper is concerned with the optimal
distributed control (ODC) problem. In Part I, the finite-horizon
ODC problem was investigated for deterministic systems. In this
part, we first study the infinite-horizon ODC problem (for deter-
ministic systems) and then generalize the results to a stochastic
ODC problem (for stochastic systems). By adopting a Lyapunov
approach, we show that each of these non-convex controller
design problems admits a rank-constrained formulation, which
can be relaxed to a semidefinite program (SDP). The notion of
treewidth is then utilized to prove that the SDP relaxation has a
matrix solution with rank at most 3. If the SDP relaxation has a
rank-1 solution, a globally optimal solution can be recovered from
it; otherwise, a near-optimal controller together with a bound on
its optimality degree may be attained. Since the proposed SDP
relaxation is not computationally attractive, a computationally-
cheap SDP relaxation is also developed. It is shown that this
relaxation works as well as Riccati equations in the extreme
case of designing a centralized controller. The superiority of
the proposed technique is demonstrated on several thousand
simulations for two physical systems (mass spring and electrical
power network) and random systems.

I. INTRODUCTION

Real-world systems mostly consist of many interconnected

subsystems, and designing an optimal controller for them

pose several challenges to the field of control. The area of

distributed control is created to address the challenges arising

in the control of these systems. The objective is to design

a constrained controller whose structure is specified by a

set of permissible interactions between the local controllers

with the aim of reducing the computation or communication

complexity of the overall controller. If the local controllers

are not allowed to exchange information, the problem is

often called decentralized controller design. It has been long

known that the design of an optimal distributed (decentralized)

controller is a daunting task because it amounts to an NP-

hard optimization problem in general [1], [2]. Great effort has

been devoted to investigating this highly complex problem

for special types of systems, including spatially distributed

systems [3], [4], [5], [6], [7], dynamically decoupled systems

[8], [9], weakly coupled systems [10], and strongly connected

systems [11].

There is no surprise that the decentralized control problem

is computationally hard to solve. This is a consequence of

the fact that several classes of optimization problems, in-

cluding polynomial optimization and quadratically-constrained

quadratic program (QCQP) as a special case, are NP-hard
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in the worst case. Due to the complexity of such prob-

lems, various convex relaxation methods based on linear

matrix inequality (LMI), semidefinite programming (SDP),

and second-order cone programming (SOCP) have gained

popularity [12], [13]. These techniques enlarge the possibly

non-convex feasible set into a convex set characterizable via

convex functions, and then provide the exact or a lower bound

on the optimal objective value. The SDP relaxation usually

converts an optimization with a vector variable to a convex

optimization with a matrix variable, via a lifting technique.

The exactness of the relaxation can then be interpreted as

the existence of a low-rank (e.g., rank-1) solution for the

SDP relaxation. Several papers have studied the existence of

a low-rank solution to matrix optimizations with linear or

nonlinear (e.g., LMI) constraints. For instance, the papers [14],

[15], [16] provide an upper bound on the lowest rank among

all solutions of a feasible LMI problem. A rank-1 matrix

decomposition technique is developed in [17] to find a rank-

1 solution whenever the number of constraints is small. We

have shown in [18] and [19] that the SDP relaxation is able to

solve a large class of non-convex energy-related optimization

problems performed over power networks. We related the

success of the relaxation to the hidden structure of those

optimizations induced by the physics of a power grid. Inspired

by this positive result, we developed the notion of “nonlinear

optimization over graph” in [20] and [21]. Our technique

maps the structure of an abstract nonlinear optimization into

a graph from which the exactness of the SDP relaxation may

be concluded. By adopting the graph technique developed in

[20] and [21], the objective of the present work is to study

the potential of the SDP relaxation for the optimal distributed

control problem.

In Part I of the paper, the problem of finite-horizon optimal

distributed control (ODC) was investigated. In this part, two

problems of infinite-horizon ODC (for deterministic systems)

and stochastic ODC (for stochastic systems) will be studied.

Following the technique developed in Part I, our approach rests

on formulating each of these problems as a rank-constrained

optimization from which an SDP relaxation can be derived.

With no loss of generality, this part focuses on the design of a

static controller. As the first contribution of this part, we show

that infinite-horizon ODC and stochastic ODC both admit

sparse SDP relaxations with solutions of rank at most 3. Since

a rank-1 SDP matrix can be mapped back into a globally-

optimal controller, the rank-3 solution may be deployed to

retrieve a near-global controller.

Since the proposed relaxations are computationally expen-

sive, we propose two computationally-cheap SDP relaxations

associated with infinite-horizon ODC and stochastic ODC. Af-
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terwards, we develop effective heuristic methods to recover a

near-optimal controller from the low-rank SDP solution. Note

that the computationally-cheap SDP relaxations associated

with infinite-horizon ODC and stochastic ODC are both exact

for the classical (centralized) LQR and H2 problems. This

implies that the relaxations indirectly solve Riccati equations

in the extreme case where the controller under design is un-

structured. In this work, we conduct thousands of simulations

on a mass-spring system, an electrical power network, and

100 random systems to elucidate the efficacy of the proposed

relaxations. In particular, the design of numerous near-optimal

structured controllers with global optimality degrees above

99% will be demonstrated.

This paper is organized as follows. The infinite-horizon

ODC problem is studied in Section II. The results are gen-

eralized to a stochastic ODC problem in Section III. Various

experiments and simulations for two case studies are provided

in Section IV-B. Concluding remarks are drawn in Section V.

Notations: R and S
n denote the sets of real numbers and n×n

symmetric matrices, respectively. rank{W} and trace{W}
denote the rank and trace of a matrix W . The notation W � 0
means that W is symmetric and positive semidefinite. Given

a matrix W , its (l, m) entry is denoted as Wlm . Given a

block matrix W, its (l, m) block is shown as Wlm. The

superscript (·)opt is used to show the globally optimal value of

an optimization parameter. The symbols (·)T and ‖ · ‖ denote

the transpose and 2-norm operators, respectively. The notation

|x| shows the size of a vector x. The expected value of a

random variable x is shown as E{x}.

II. DETERMINISTIC CONTROL SYSTEMS

We study the optimal distributed control problem for deter-

ministic systems in this section and then generalize our results

to stochastic systems in the next section. Consider the discrete-

time system
{

x[τ + 1] = Ax[τ ] + Bu[τ ]
y[τ ] = Cx[τ ]

τ = 0, 1, 2, ... (1)

with the known matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n,

and x[0] ∈ R
n. With no loss of generality, assume that C has

full row rank. The goal is to design a distributed controller

minimizing a quadratic cost function. Similar to Part I, we

focus on the static case where the objective is to design a static

controller of the form u[τ ] = Ky[τ ] under the constraint that

the controller gain K must belong to a given linear subspace

K ⊆ R
m×r . The set K captures the sparsity structure of

the unknown constrained controller u[τ ] = Ky[τ ] and, more

specifically, it contains all m × r real-valued matrices with

forced zeros in certain entries. This problem will be formalized

below.

Optimal Distributed Control (ODC) problem: Design a

stabilizing static controller u[τ ] = Ky[τ ] to minimize the cost

function

p∑

τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (2)

subject to the system dynamics (1) and the controller require-

ment K ∈ K, for a terminal time p, a nonnegative scalar α,

and positive-definite matrices Q and R.

Remark 1. The third term in the objective function of the

ODC problem is a soft penalty term aimed at avoiding a high-

gain controller. Instead of this soft penalty, we could impose

a hard constraint trace{KKT } ≤ β, for a given number β.

The method to be developed later can readily be adopted for

the modified case.

Part I of the paper tackled the finite-horizon ODC problem,

where p was a finite number. In this section, we deal with

the infinite-horizon ODC problem, corresponding to the case

p = +∞. This problem will be studied based on the following

steps:

• First, the infinite-horizon ODC problem is cast as an

optimization with linear matrix inequality constraints as

well as quadratic constraints.

• Second, the resulting non-convex problem is formulated

as a rank-constrained optimization.

• Third, an SDP relaxation of the problem is derived by

dropping the non-convex rank constraint.

• Last, the rank of the minimum-rank solution of the SDP

relaxation is analyzed.

A. Lyapunov Formulation

The finite-horizon ODC has been investigated in Part I of

the paper through a time-domain formulation. However, to deal

with the infinite dimension of the infinite-horizon ODC and its

hard stability constraint, a Lyapunov approach will be taken

below.

Theorem 1. The infinite-horizon ODC problem is equivalent

to finding a controller K ∈ K, a symmetric Lyapunov

matrix P ∈ S
n, an auxiliary symmetric matrix G ∈ S

n

and an auxiliary matrix L ∈ R
n×r to satisfy the following

optimization problem:

min
K,L,P,G

x[0]TPx[0] + α trace{KKT } (3a)

subject to:




G G (AG + BL)T LT

G Q−1 0 0
AG + BL 0 G 0

L 0 0 R−1



 � 0, (3b)

[
P I

I G

]
� 0, (3c)

L = KCG (3d)

Proof. Given an arbitrary control gain K, consider the sys-

tem (1) under the controller u[τ ] = Ky[τ ]. It is evident that

x[τ ] = (A + BKC)τx[0], τ = 0, 1, ...,∞ (4)

Hence, the cost function (2) can be written as:

∞
X

τ=0

“

x[τ ]TQx[τ ] + u[τ ]T Ru[τ ]
”

+ α trace{KK
T} =

= x[0]TPx[0] + α trace{KK
T}

(5)
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where

P =

∞∑

τ=0

((A + BKC)τ )T (Q + CT KT RKC)(A + BKC)τ

(6)

or equivalently

(A + BKC)T P (A + BKC) − P + Q + (KC)T R(KC) = 0
(7a)

P � 0 (7b)

On the other hand, it is well-known that replacing the equality

sign “=” in (7a) with the inequality sign “�” does not affect

the solution of the optimization problem [13]. After pre- and

post-multiplying the Lyapunov inequality obtained from (7a)

with P−1 and using the Schur complement formula, the

constraints (7a) and (7b) can be combined as




P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0
S 0 P−1 0

(KC)P−1 0 0 R−1



 � 0 (8)

where S = (A + BKC)P−1 and 0’s in the above matrix

are zero matrices of appropriate dimensions. By replacing

P−1 with a new variable G in the above matrix and defining

L as KCG, the constraints (3b) and (3d) will be obtained.

The minimization of x[0]TPx[0] subject to the constraint (3c)

ensures that P = G−1 is satisfied for at least one optimal

solution of the optimization problem.

Theorem 2. Consider the special case where C = I, α = 0
and K contains the set of all unstructured controllers. Then,

the infinite-horizon ODC problem has the same solution as

the convex optimization problem obtained from the nonlinear

optimization (3) by removing its non-convex constraint (3d).

Proof. It is easy to verify that a solution (Kopt, P opt, Gopt,

Lopt) of the convex problem stated in the theorem can be

mapped to the solution (Lopt(Gopt)−1, P opt, Gopt, Lopt) of the

non-convex problem (3) and vice versa (recall that C = I by

assumption). This completes the proof.

B. SDP Relaxation

Theorem 2 states that a classical optimal control problem

can be precisely solved via a convex relaxation of the nonlinear

optimization (3) by eliminating its constraint (3d). However,

this simple convex relaxation does not work satisfactorily for

a general control structure K. To design a better relaxation,

define

w :=
[

1 hT vec{CG}T
]T

(9)

where h is a column vector containing the variables (free

parameters) of K, and vec{CG} is a column vector containing

all scalar entries of CG. It is possible to write every entry

of the bilinear matrix term KCG as a linear function of the

entries of the parametric matrix wwT . Hence, by introducing a

new matrix variable W playing the role of wwT , the nonlinear

constraint (3d) can be rewritten as a linear constraint in term

of W . In addition, the term α trace{KKT } in the objective

function of the ODC problem is also linear in W . Now, one

can relax the non-convex mapping constraint W = wwT to

W � 0 and another constraint stating that the first column

of W is equal to w. This convex problem is referred to as

SDP relaxation of ODC in this work. In the case where the

relaxation has the same solution as ODC, the relaxation is

said to be exact.

Theorem 3. Consider the case where K contains only diago-

nal matrices. The following statements hold regarding the SDP

relaxation of the infinite-horizon ODC problem:

i) The relaxation is exact if it has a solution (Kopt, P opt,

Gopt, Lopt, W opt) such that rank{W opt} = 1.

ii) The relaxation always has a solution (Kopt, P opt, Gopt,

Lopt, W opt) such that rank{W opt} ≤ 3.

Proof. To study the SDP relaxation of the aforementioned

control problem, we need to define a sparsity graph G. Let

η denote the number of rows of W . The graph G has η

vertices with the property that two arbitrary disparate vertices

i, j ∈ {1, 2, ..., η} are connected in the graph if Wij appears in

at least one of the constraints of the SDP relaxation excluding

the global constraint W � 0. For example, vertex 1 is

connected to all remaining vertices of the graph. The graph G
with its vertex 1 removed is depicted in Figure 1. This graph

is acyclic and therefore the treewidth of the graph G is at most

2. Hence, It follows from Theorem 1 provided in Part I of the

paper that the SDP relaxation has a matrix solution with rank

at most 2+1.

Theorem 3 states that the SDP relaxation of the infinite-

horizon ODC problem has a low-rank solution. However, it

does not imply that every solution of the relaxation is low-

rank. Theorem 1 developed in Part I provides a procedure for

converting a high-rank solution of the SDP relaxation into a

matrix solution with rank at most 3. The above theorem will

be generalized below.

Proposition 1. The infinite-horizon ODC problem has a

convex relaxation with the property that its exactness amounts

to the existence of a rank-1 matrix solution W opt. Moreover, it

is always guaranteed that this relaxation has a solution such

that rank{W opt} ≤ 3.

Proof. The procedure of designing an SDP relaxation with

a guaranteed low-rank solution is spelled out for the time

domain formulation in Part I of the paper. The idea will be only

sketched here. As explained in the Part I paper, there are two

binary matrices Φ1 and Φ2 such that K = Φ1diag{k}Φ2 for

every K ∈ K, where diag{k} denotes a diagonal matrix whose

diagonal contains the free (variable) entries of K. Hence, the

design of a structured control gain K for the system (A, B, C)
amounts to the design of a diagonal control gain diag{k}
for the system (A, BΦ1, Φ2C) (after updating the matrices

Q and R accordingly). It follows from Theorem 3 that the

SDP relaxation of the ODC problem equivalently formulated

for the new system satisfies the properties of this theorem.

In this section, it has been shown that the infinite-horizon

ODC problem has an SDP relaxation with a low-rank solu-

tion. Nevertheless, there are many SDP relaxations with this
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Fig. 1: The sparsity graph for the infinite-horizon ODC problem in the case
where K consists of diagonal matrices (the central vertex 1 is removed for
simplicity).

property and it is desirable to find the one offering the highest

lower bound on the optimal solution of the ODC problem.

To this end, the abovementioned SDP relaxation should be

reformulated in such a way that the diagonal entries of the

matrix W are incorporated into as many constraints of the

problem as possible in order to indirectly penalize the rank

of the matrix W . This idea will be flourished next, but for a

computationally-cheap relaxation of the ODC problem.

C. Computationally-Cheap SDP Relaxation

The aforementioned SDP relaxation has a high dimension

for a large-scale system, which makes it less interesting for

computational purposes. Moreover, the quality of its optimal

objective value can be improved using some indirect penalty

technique. The objective of this subsection is to offer a

computationally-cheap SDP relaxation for the ODC problem,

whose solution outperforms that of the previous SDP relax-

ation. For this purpose, Consider an invertible matrix Φ such

that

CΦ =
[

I 0
]

(10)

where I the is identity matrix and “0” is an r × (n − r) zero

matrix. Define also

K2 = {KKT | K ∈ K} (11)

Indeed, K2 captures the sparsity pattern of the matrix KKT .

For example, if K consists of block-diagonal (rectangular)

matrix, K2 will also include block-diagonal (square) matrices.

Let µ ∈ R be a positive number such that

Q � µ × Φ−T Φ−1 (12)

where Φ−T denotes the transpose of the inverse of Φ. Define

Q̂ := Q − µ × Φ−T Φ−1.

Computationally-Cheap SDP Relaxation of ODC: This

optimization problem is defined as the minimization of

trace{x[0]TPx[0] + αW33} (13)

subject to the constraints




G − µW22 G (AG + BL)T LT

G Q̂−1 0 0
AG + BL 0 G 0

L 0 0 R−1



 � 0, (14a)

[
P I

I G

]
� 0, (14b)

W :=





In Φ−1G

[
KT

0

]

GΦ−T
W22 LT

[
K 0

]
L W33



 � 0, (14c)

K ∈ K, (14d)

W33 ∈ K2, (14e)

with the parameter set {K, L, G, P, W}, where the dependent

variables W22 and W33 represent two blocks of W.

The following remarks can be made regarding the

computationally-cheap SDP relaxation:

• The constraint (14a) corresponds to the Lyapunov in-

equality associated with (7a), where W22 in its first block

aims to play the role of P−1Φ−T Φ−1P−1.

• The constraint (14b) ensures that the relation P = G−1

occurs at optimality (at least for one of the solution of

the problem).

• The constraint (14c) is a surrogate for the only compli-

cating constraint of the ODC problem, i.e., L = KCG.

• Since no non-convex rank constraint is imposed on the

problem to maintain the convexity of the relaxation, the

rank constraint is compensated in various ways. More

precisely, the entries of W are constrained in the ob-

jective function (13) through the term trace{αW33}, in

the first block of the constraint (14a) through the term

G− µW22, and also via the constraints (14d) and (14e).

These terms aim to automatically penalize the rank of W

indirectly.

• The proposed relaxation takes advantage of the sparsity of

not only K, but also KKT (through the constraint (14e)).

Theorem 4. The computationally-cheap SDP relaxation is

a convex relaxation of the infinite-horizon ODC problem.

Furthermore, the relaxation is exact if and only if it

possesses a solution (Kopt, Lopt, P opt, Gopt, Wopt) such that

rank{Wopt} = n.

Proof. The objective function and constraints of the

computationally-cheap SDP relaxation are all linear functions

of the tuple (K, L, P, G, W). Hence, this relaxation is indeed

convex. To study the relationship between this optimization

problem and the infinite-horizon ODC, consider a feasible

point (K, L, P, G) of the ODC formulation (3). It can be de-

duced from the relation L = KCG that (K, L, P, G, W) is a

feasible solution of the computationally-cheap SDP relaxation

if the free blocks of W are considered as

W22 = GΦ−T Φ−1G, W33 = KKT (15)

(note that (3b) and (14a) are equivalent for this choice of
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W). This implies that computationally-cheap SDP problem

is a convex relaxation of the infinite-horizon ODC problem.

Consider now a solution (Kopt, Lopt, P opt, Gopt, W opt)
of the computationally-cheap SDP relaxation such that

rank{Wopt} = n. Since the rank of the first block of W
opt

(i.e., In) is already n, a Schur complement argument on the

blocks (1, 1), (1, 3), (2, 1) and (2, 3) of W
opt yields that

0 = Lopt −
[

Kopt 0
]
(In)−1Φ−1Gopt (16)

or equivalently Lopt = KoptCGopt, which is tantamount to the

constraint (3d). This implies that (Kopt, Lopt, P opt, Gopt) is a

solution of the ODC problem and hence the relaxation is exact.

So far, we have shown that the existence of a rank-n solution

W
opt guarantees the exactness of the relaxation. The converse

of this statement can also be proved similarly.

The matrix variable W in the first SDP relaxation of

the infinite-horizon ODC problem had O(n2) rows. In con-

trast, this number reduces to O(n) for the matrix W in

the computationally-cheap SDP relaxation, which significantly

reduces the computation time of the relaxation.

Corollary 1. Consider the special case where C = I, α = 0
and K contains the set of all unstructured controllers. Then,

the computationally-cheap SDP relaxation is exact for the

infinite-horizon ODC problem.

Proof. The proof follows from that of Theorem 2.

D. Controller Recovery

Once the computationally-cheap SDP relaxation is solved, a

controller K must be recovered. This can be achieved in two

ways as explained below.

Direct Recovery Method for ODC: A near-optimal controller

K̂ for the infinite-horizon ODC problem is chosen to be equal

to the optimal matrix Kopt obtained from the computationally-

cheap SDP relaxation.

Indirect Recovery Method for ODC: Let (Kopt, Lopt, P opt,

Gopt, Wopt) denote a solution of the computationally-cheap

SDP relaxation. A near-optimal controller K̂ for the infinite-

horizon ODC problem is recovered by solving a convex

program with the variables K ∈ K and γ ∈ R to minimize

the cost function

ε × γ + α trace{KKT } (17)

subject to the constraint



(Gopt)−1 − Q + γIn (A + BKC)T (KC)T

(A + BKC) Gopt 0
(KC) 0 R−1



 � 0

(18)

where ε is a pre-specified nonnegative number.

The direct recovery method assumes that the controller Kopt

obtained from the computationally-cheap SDP relaxation is

near-optimal, whereas the indirect method assumes that the

controller Kopt might be unacceptably imprecise while the

inverse of the Lyapunov matrix is near-optimal. The indirect

method is built on the SDP relaxation by fixing G at its

optimal value and then perturbing Q as Q − γIn to facilitate

the recovery of a stabilizing controller. It may rarely happen

that a stabilizing controller can be recovered from a solution

Gopt if γ is set to zero. In other words, since the solution

of the computationally-cheap SDP relaxation is not exact in

general, there may not exist any controller K̂ satisfying the

Lyapunov equation jointly with Gopt. Nonetheless, perturbing

the diagonal entries of Q with γ boosts the degree of the

freedom of the problem and helps with the existence of a

controller K̂. Although none of the proposed recovery methods

is universally better than the other one, we have verified

in numerous simulations that the indirect recovery method

significantly outperforms the direct recovery method with a

high probability.

III. STOCHASTIC CONTROL SYSTEMS

The ODC problem was investigated for a deterministic

system in the preceding section. The objective of this section is

to generalize the results derived earlier to stochastic systems.

To this end, consider the discrete-time system

{
x[τ + 1] = Ax[τ ] + Bu[τ ] + Ed[τ ]

y[τ ] = Cx[τ ] + Fv[τ ]
τ = 0, 1, 2, ...

(19)

with the known matrices A, B, C , E, and F , where

• x[τ ] ∈ R
n, u[τ ] ∈ R

m and y[τ ] ∈ R
r denote the state,

input and output of the system.

• d[τ ] and v[τ ] denote the input disturbance and measure-

ment noise, which are assumed to be zero-mean white-

noise random processes.

The goal is to design an optimal distributed controller. In order

to simplify the presentation, we focus on the static case where

the objective is to design a static controller of the form u[τ ] =
Ky[τ ] under the structural constraint K ∈ K. This section of

this paper is mainly concerned with the following problem.

Stochastic Optimal Distributed Control (SODC) problem:

Design a stabilizing static controller u[τ ] = Ky[τ ] to minimize

the cost function

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT }

(20)

subject to the system dynamics (19) and the controller require-

ment K ∈ K, for a nonnegative scalar α and positive-definite

matrices Q and R.

Define two covariance matrices as below:

Σd = E{Ed[0]d[0]TET }, Σv = E{Fv[0]v[0]TF T} (21)

In what follows, the SODC problem will be formulated as a

nonlinear optimization program.

Theorem 5. The SODC problem is equivalent to finding a

controller K ∈ K, a symmetric Lyapunov matrix P ∈ S
n,

and auxiliary matrices G ∈ S
n, L ∈ R

n×r and M ∈ S
r to

minimize the objective function

trace{PΣd + MΣv + KT RKΣv} + α trace{KKT } (22)
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subject to the constraints




G G (AG + BL)T LT

G Q−1 0 0
AG + BL 0 G 0

L 0 0 R−1



 � 0, (23a)

[
P I

I G

]
� 0, (23b)

[
M (BK)T

BK G

]
� 0, (23c)

L = KCG (23d)

Proof. It is straightforward to verify that

x[τ ] = (A + BKC)τx[0]

+

τ−1∑

t=0

(A + BKC)tEd[τ − t − 1]

+

τ−1∑

t=0

(A + BKC)tBKFv[τ − t − 1]

(24)

for τ = 1, 2, .... On the other hand, since the controller under

design must be stabilizing, (A+BKC)τ approaches zero as τ

goes to +∞. In light of the above equation, it can be verified

that

E



lim
τ→+∞

“

x[τ ]T Qx[τ ] + u[τ ]T Ru[τ ]
”

+ α trace{KK
T}

ff

=

= E



lim
τ→+∞

x[τ ]T
“

Q + C
T
K

T
RKC

”

x[τ ]

ff

+ E



lim
τ→+∞

v[τ ]T F
T
K

T
RKFv[τ ]

ff

+ α trace{KK
T}

= trace{PΣd + (BK)T
P (BK)Σv + K

T
RKΣv + αKK

T}
(25)

where

P =

∞∑

t=0

(
(A + BKC)t

)T
(Q + CT KT RKC)(A + BKC)t

(26)

Similar to the proof of Theorem 1, the above infinite series can

be replaced by the following expanded Lyapunov inequality:




P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0
S 0 P−1 0

(KC)P−1 0 0 R−1



 � 0 (27)

where S = (A + BKC)P−1. After replacing P−1 and

KCP−1 with new variables G and L, it can be concluded

that:

• The condition (27) is identical to the set of con-

straints (23a) and (23d).

• The cost function (25) can be expressed as

trace{PΣd + (BK)T
G

−1(BK)Σv + K
T
RKΣv + αKK

T}
(28)

• Since P appears only once in the constraints of the

optimization problem (22)-(23) (i.e., the condition (23b))

and the objective function of this optimization includes

the term trace{PΣd}, the optimal value of P is equal to

G−1.

• Similarly, the optimal value of M is equal to

(BK)T G−1(BK).

The proof follows from the above observations.

The SODC problem is cast as a (deterministic) nonlinear

program in Theorem 5. This optimization problem is non-

convex due only to the complicating constraint (23d) . More

precisely, the removal of this nonlinear constraint makes the

optimization problem a semidefinite program (note that the

term KT RK in the objective function is convex due to the

assumption R � 0).

The traditional H2 optimal control problem (i.e., in the

centralized case) can be solved using Riccati equations. It

will be shown in the next proposition that the abovementioned

semidefinite program correctly solves the centralized H2 op-

timal control problem.

Proposition 2. Consider the special case where C = I,

α = 0, Σv = 0, and K contains the set of all unstruc-

tured controllers. Then, the SODC problem has the same

solution as the convex optimization problem obtained from the

nonlinear optimization (22)-(23) by removing its non-convex

constraint (23d).

Proof. It is similar to the proof of Theorem 2.

Proposition 2 states that a classical optimal control problem

can be precisely solved via a convex relaxation of the nonlinear

optimization (22)-(23) by eliminating its constraint (23d).

However, this simple convex relaxation does not work satis-

factorily for a general control structure K. To design a better

relaxation, consider the vector w defined in (9). Similar to

infinite-horizon ODC, the bilinear matrix term KCG can

be represented as a linear function of the entries of the

parametric matrix W defined as wwT . Now, relaxing the

constraint W = wwT to W � 0 and adding another constraint

stating that the first column of W is equal to w leads to an

SDP relaxation. This convex problem is referred to as SDP

relaxation of SODC. In the case where the relaxation has the

same solution as SODC, the relaxation is said to be exact.

Proposition 3. Consider the case where K contains only

diagonal matrices. The following statements hold regarding

the SDP relaxation of the SODC problem:

i) The relaxation is exact if it has a solution (Kopt, P opt,

Gopt, Lopt, M opt, W opt) such that rank{W opt} = 1.

ii) The relaxation always has a solution (Kopt, P opt, Gopt,

Lopt, M opt, W opt) such that rank{W opt} ≤ 3.

Proof. The proof is omitted (see Theorems 3 and 5).

As before, it can be deduced from Proposition 3 that the

SODC problem has a convex relaxation with the property

that its exactness amounts to the existence of a rank-1 matrix

solution W opt. Moreover, it is always guaranteed that this

relaxation has a solution such that rank{W opt} ≤ 3.

A computationally-cheap SDP relaxation will be derived

below. Let µ1 and µ2 be two nonnegative numbers such that

Q � µ1 × Φ−T Φ−1, Σv � µ2 × I (29)

Define Q̂ := Q − µ1 × Φ−T Φ−1 and Σ̂v := Σv − µ2 × I.
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Computationally-Cheap SDP Relaxation of SODC: This

optimization problem is defined as the minimization of

trace{PΣd +MΣv +µ2RW33 +αW33 +KT RKΣ̂v} (30)

subject to the constraints





G− µ1W22 G (AG + BL)T LT

G Q̂−1 0 0
AG + BL 0 G 0

L 0 0 R−1



 � 0, (31a)

[
P I

I G

]
� 0, (31b)

[
M (BK)T

BK G

]
� 0, (31c)

W :=





In Φ−1G

[
KT

0

]

GΦ−T
W22 LT

[
K 0

]
L W33




� 0, (31d)

K ∈ K, (31e)

W33 ∈ K2, (31f)

with the parameter set {K, L, G, P, M, W}.

It should be noted that the constraint (31c) ensures that the

relation M = (BK)T G−1(BK) occurs at optimality.

Theorem 6. The computationally-cheap SDP relaxation is

a convex relaxation of the SODC problem. Furthermore,

the relaxation is exact if and only if possesses a solution

(Kopt, Lopt, P opt, Gopt,M opt, Wopt) such that rank{Wopt} = n.

Proof. Since the proof is similar to that of the infinite-horizon

case presented earlier, it is omitted here.

For the retrieval of a near-optimal controller, the Direct

Recovery Method delineated for the infinite-horizon ODC

problem can be readily deployed. However, the Indirect Re-

covery Method explained earlier should be modified.

Indirect Recovery Method for SODC: Let (Kopt, Lopt, P opt,

Gopt, M opt, Wopt) denote a solution of the computationally-

cheap SDP relaxation of SODC. A near-optimal controller

K̂ for the SODC problem is recovered by solving a convex

program with the variables K ∈ K and γ ∈ R to minimize

the cost function

ε×γ+trace{(BK)T (Gopt)−1(BK)Σv+KT RKΣv+α KKT }
(32)

subject to the constraint




(Gopt)−1 − Q + γIn (A + BKC)T (KC)T

(A + BKC) Gopt 0
(KC) 0 R−1



 � 0

(33)

where ε is a pre-specified nonnegative number.

The above recovery method is obtained by assuming that

Gopt is the optimal value of the inverse Lyapunov matrix for

the ODC problem.

Fig. 2: Mass-spring system with two masses

IV. CASE STUDIES

In this section, we elucidate the results of this two-part paper

on a mass-spring system, an electrical power network, and 100

random system. We will solve thousands of SDP relaxations

for these systems and evaluate their performance for different

control topologies and a wide range of values for (α, Σd, Σv).
Note that the computation time for each SDP relaxation is from

a fraction of a second to 4 seconds on a desktop computer with

an Intel Core i7 quad-core 3.4 GHz CPU and 16 GB RAM.

A. Case Study 1: Mass-Spring Systems

In this subsection, the aim is to evaluate the performance of

the developed controller design techniques on the Mass-Spring

system, as a classical physical system. Consider a mass-spring

system consisting of N masses. This system is exemplified

in Figure 2 for N = 2. The system can be modeled in the

continuous-time domain as

ẋc(t) = Acxc(t) + Bcuc(t) (34)

where the state vector xc(t) can be partitioned as

[o1(t)
T o2(t)

T ] with o1(t) ∈ R
n equal to the vector of

positions and o2(t) ∈ R
n equal to the vector of velocities of

the N masses. We assume that N = 10 and adopt the values of

Ac and Bc from [22]. The goal is to design a static sampled-

data controller with a pre-specified structure (i.e., the controller

is composed of a sampler, a static discrete-time structured

controller and a zero-order holder). Three ODC problems will

be solved below.

Finite-Horizon ODC: In this experiment, we first discretize

the system with the sampling time of 0.4 second and denote

the obtained system as

x[τ + 1] = Ax[τ ] + Bu[τ ], τ = 0, 1, ... (35)

It is aimed to design a constrained controller u[τ ] = Kx[τ ] to

minimize the cost function
p∑

τ=0

(
x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
(36)

with x[0] equal to the vector of 1’s. We solve an SDP

relaxation for the six different control structures shown in

Figure 3. The free parameters of each controller are colored

in red in this figure. For example, Structure (c) corresponds

to a fully decentralized controller, where each local controller

has access to the position and velocity of its associated mass.

In contrast, Structure (e) allows only five of the masses to

be controlled. Similarly, Structure (a) implies limited com-

munications between neighboring local controllers, whereas

Structure (d) enables some communications between the local

control of Mass 1 and the remaining local controllers. For each

structure, the SDP relaxation of Problem D-2 is solved for four

different terminal times p = 5, 10, 15 and 20 (please refer to



8

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Six different structures for the controller K: the free parameters are

colored in red (uncolored entries are set to zero).

Part I of the paper for more details about the SDP relaxations

of the finite-horizon ODC problem). The results are tabulated

in Table I. Four metrics are reported for each structure and

terminal time:

• Lower bound: This number is equal to the optimal objec-

tive value of the SDP relaxation, which serves as a lower

bound on the minimum value of the cost function (36).

• Upper bound: This number corresponds to the cost

function (36) at a near-optimal controller K̂ retrieved

using the Direct Recovery Method. This number serves

as an upper bound on the minimum value of the cost

function (36).

• Infinite-horizon performance: This is equal to the infinite

sum
∑∞

τ=0

(
x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
associated with the

system (35) under the designed near-optimal controller.

• Stability: This indicates the stability or instability of the

closed-loop system.

Note that since a stability constraint was not imposed on the

aforementioned finite-horizon control problem, the stability

was not guaranteed. However, it can be observed that the

designed controller is always stabilizing for p = 20. As

demonstrated in Table I, the upper and lower bounds are very

close to each other in many scenarios, in which cases the

recovered controllers are almost globally optimal. It can also

be observed that there is a non-negligible gap between the

lower and upper bounds for Structures (e) and (f), implying

that the design of a controller with any of these structures

may be computationally hard. Note that a powerful sparsity

promoting technique is proposed in [22], which is able to

design a controller of Structure (a) or (c) for p = ∞ but

cannot handle the other structures or a finite terminal time.

Infinite-Horizon ODC: To study the effects of the initial

state on the designed near-optimal controller, we generated

K bounds p = 5 p = 10 p = 15 p = 30

(a) upper bound 126.752 140.105 140.681 140.691

lower bound 126.713 140.080 140.660 140.690
infinite-horizon perf. ∞ ∞ ∞ 140.691

stability unstable unstable unstable stable

(b) upper bound 126.809 140.183 140.685 140.702

lower bound 126.713 140.080 140.661 140.690
infinite-horizon perf. ∞ ∞ 140.770 140.702

stability unstable unstable stable stable

(c) upper bound 127.916 140.762 140.792 140.795

lower bound 126.713 140.080 140.660 140.690
infinite-horizon perf. 150.972 140.992 140.796 140.795

stability stable stable stable stable

(d) upper bound 127.430 140.761 140.762 140.761

lower bound 126.713 140.080 140.661 140.690
infinite-horizon perf. 159.633 141.020 140.766 140.761

stability stable stable stable stable

(e) upper bound 175.560 235.240 240.189 242.973

lower bound 167.220 215.202 222.793 226.797
infinite-horizon perf. 277.690 282.580 271.675 267.333

stability stable stable stable stable

(f) upper bound 175.401 230.210 231.022 230.382
lower bound 164.114 208.484 214.723 216.431

infinite-horizon perf. 357.197 287.767 242.976 232.069

stability stable unstable stable stable

TABLE I: The outcome of the SDP relaxation of Problem D-2 for the 6

different control structures given in Figure 3.

100 random initial states with entries drawn from a normal

distribution. We then solved the computationally-cheap SDP

relaxation combined with the Direct Recovery Method to de-

sign a controller of Structure (c) minimizing the cost function

(36). In this experiment, the sampling time is considered as

0.1 second. The values of controllers’ parameters are depicted

in Figure 4, where the 20 points on the x-axis represent 20

different entries of the designed decentralized controller. As

can be seen, the parameters of the controller vary over the 100

trials. This contrasts with the fact that the optimal controller

associated with a centralized (classical) LQR problem is

universally optimal and its parameters are independent of the

initial state. Define a measure of near-global optimality as

follows:

Optimality degree (%) = 100 −
upper bound - lower bound

upper bound
× 100

The optimality degrees of the controllers designed for these

100 random trials are depicted in Figure 5. As can be seen, the

optimality degree is better than 95% for more than 98 trials.

It should be mentioned that all of these controllers stabilize

the system.

Stochastic ODC: In this experiment, two control structures

of “decentralized” and “distributed” (shown in Figures 3(c)

and (a)) will be studied for the matrix K ∈ R
10×20. We

assume that the system is subject to both input disturbance and

measurement noise. Consider the case Σd = I and Σv = σI,

where σ varies from 0 to 5. Using the computationally-

cheap SDP relaxation in conjunction with the indirect recovery

method, a near-optimal controller is designed for each of

the aforementioned control structures under various noise

levels. The results are reported in Figure 6. The structured

controllers designed using the SDP relaxation are all stable
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Fig. 4: The near-optimal values of the free parameters of the decentralized

controller K̂ for a mass-spring system under 100 random initial states.

Corresponding to each free parameter i ∈ {1,2, ...,20}, the 100 values of
this parameter (associated with different trials) are shown as 100 points on a
vertical line.

Fig. 5: Optimality degree (%) of the decentralized controller K̂ for a mass-

spring system under 100 random initial states.

with optimality degrees higher than 95% in the worst case

and close to 99% in many cases.

B. Case Study II: Frequency Control in Power Systems

In this subsection, the performance of the computationally-

cheap SDP relaxation combined with the indirect recovery

method will be evaluated on the problem of designing an

optimal distributed frequency control for IEEE 39-Bus New

England Power System. The one-line diagram of this system

is shown in Figure 7. The main objective of the unknown

controller is to optimally adjust the mechanical power input

to each generator as well as being structurally constrained by

a user-defined communication topology. This pre-determined

communication topology specifies which generators exchange

their rotor angle and frequency measurements with one an-

other.

In this example, we stick with a simple classical model of

the power system. However, our result can be deployed for a

complicated high-order model with nonlinear terms (our SDP

relaxation may be revised to handle possible nonlinear terms

in the dynamics). To derive a simple state-space model of the

power system, we start with the widely-used per-unit swing

equation

Miθ̈i + Diθ̇i = PMi − PEi (37)

where θi denotes the voltage (or rotor) angle at bus i (in rad),

PMi is the mechanical power input to the generator at bus i

(in per unit), PEi is the electrical active power injection at bus

i (in per unit), Mi is the inertia coefficient of the generator at

bus i (in pu-sec2/rad), and Di is the damping coefficient of

the generator at bus i (in pu-sec/rad) [23]. The electrical real

power PEi in (37) comes from the nonlinear AC power flow

equation:

PEi =

n∑

j=1

|Vi||Vj| [ Gij cos(θi − θj) + Bij sin(θi − θj) ]

(38)

where n denotes the number of buses in the system, Vi is

the voltage phasor at bus i, Gij is the line conductance, and

Bij is the line susceptance. To simplify the formulation, a

commonly-used technique is to approximate equation (38) by

its corresponding DC power flow equation stated below:

PEi =

n∑

j=1

Bij(θi − θj) (39)

The approximation error is often small in practice due to the

common practice of power engineering, which rests upon the

following assumptions:

• For most networks, G � B −→ G = 0
• For most neighbouring buses, |θi − θj | ≤ (10o to 15o)

−→ sin(θi − θj) ≈ θi − θj

−→ cos(θi − θj) ≈ 1
• In per unit, |Vi| is close to 1 (0.95 to 1.05)

−→ |Vi||Vj| ≈ 1

It is possible to rewrite (39) into the matrix format PE = Lθ,

where PE and θ are the vectors of real power injections and

voltage (or rotor) angles at only the generator buses (after

removing the load buses and the intermediate zero buses). In

this equation, L denotes the Laplacian matrix and can be found

as follows [24]:

Lii =

n̄∑

j=1,j 6=i

BKron
ij if i = j

Lij = −BKron
ij if i 6= j

(40)

where BKron is the susceptance of the Kron reduced admit-

tance matrix Y Kron defined as

Y Kron
ij = Yij−

YikYkj

Ykk

(i, j = 1, 2, . . . , n and i, j 6= k) (41)

where k is the index of the non-generator bus to be eliminated

from the admittance matrix and n̄ is the number of generator

buses. Note that the Kron reduction method aims to eliminate

the static buses of the network because the dynamics and

interactions of only the generator buses are of interest [25].

By defining the rotor angle state vector as θ = [θ1, . . . , θn̄]T

and the frequency state vector as w = [w1, . . . , wn̄]T and by

substituting the matrix format of PE into (37), the state space

model of the swing equation used for frequency control in

power systems could be written as
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(a) Optimality degree of the near-optimal controller for a stochastic
mass spring system.

(b) Cost of the near-optimal controller for a stochastic mass spring
system.

Fig. 6: The optimality degree and the optimal cost of the near-optimal controller designed for the mass-spring system for two different control structures.
The noise covariance matrix Σv is assumed to be equal to σI , where σ varies over a wide range.
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Fig. 7: Single line diagram of IEEE 39-Bus New England Power System.

[
θ̇

ẇ

]
=

[
0n̄×n̄ In̄

−M−1L −M−1D

][
θ

w

]
+

[
0n̄×n̄

M−1

]
PM

y =

[
θ

w

]
(42)

where M = diag(M1, . . . , Mn̄) and D = diag(D1, . . . , Dn̄).
It is assumed that both rotor angle and frequency are available

for measurement at each generator (implying that C = I2n̄).

This is a reasonable assumption with the recent advances in

Phasor Measurement Unit (PMU) technology [26].

By substituting the per-unit inertia (M) and damping (D)

coefficients for the 10 generators of IEEE 39-Bus system [27]

based on the data in Table II, the continuous-time state space

model matrices Ac, Bc and Cc can be found. The system is

then discretized to the discrete-time model matrices A, B and

C with the sampling time of 0.2 second. The initial values

Bus Gen M D θ0 w0

30 G10 4 5 -0.0839 1.0

31 G2 3 4 0.0000 1.0

32 G3 2.5 4 0.0325 1.0

33 G4 4 6 0.0451 1.0

34 G5 2 3.5 0.0194 1.0

35 G6 3.5 3 -0.0073 1.0

36 G7 3 7.5 0.1304 1.0

37 G8 2.5 4 0.0211 1.0

38 G9 2 6.5 0.127 1.0

39 G1 6 5 -0.2074 1.0

TABLE II: The data and initial values of generators (in per unit) for IEEE

39-Bus New England Power System.

G10

G2

G3G4

G5

G6

G7

G8 G9

G1

Fig. 8: Weighted graph of the Kron reduced network of IEEE 39-Bus New
England Power System. Weights (thicknesses) of all edges are normalized to
the minimum off-diagonal entry of the susceptance BKron.

of the rotor angle (θ0) were calculated by solving power (or

load) flow problem for the system using MATPOWER [28].

In practice, the rotor speed does not vary significantly from

synchronous speed and thus the initial frequency (w0) was

assumed to be 1.0 per unit. Both θ0 and w0 are reported for

each generator in Table II.

The 39-bus system has 10 generators, labeled as G1, G2, ...,

G10. Four communication topologies are considered in this

work: decentralized, localized, star, and ring. In order to better

understand how the interactions among the 10 generators in the
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(a) Decentralized (b) Localized

(c) Ring (d) Star Topology (G10 in center)

Fig. 9: Four communication topologies studied for IEEE 39-bus system.

system are related to the communication structures, the Kron

reduced network of the system is visualized by the weighted

graph shown in Figure 8. In a fully decentralized structure,

none of the generators communicate with each other. In a

localized communication structure, the generators may only

communicate with their close neighbors. In a star topology,

a single generator is able to communicate with all other

generators in the system. The ring communication structure—

forming a closed path—aims to provide communications be-

tween neighbors. These topologies are visualized in Figure 9.

The locations of the generators in the figure are based on the

exact coordinates of the power plants named in [29]. Note

that G1 represents a group of generators, but it is considered

as a single node near the border between New York and

Connecticut in this map. G4 and G5 are very close in distance,

but G4 was somewhat shifted from its real coordinates to make

the communication link between them visible in this map.

Finite-Horizon ODC: Assume that Q = I, R = 0.1I, and

p = 80. Suppose also that α is a parameter between 0 and

100. The goal is to solve a finite-horizon ODC problem for

each value of α and for each of the four aforementioned

communication topologies. This will be achieved in two

steps. First, a computationally-cheap SDP relaxation is solved.

Second, a near-optimal controller K̂ is designed by choosing

the best solution of the direct and indirect recovery methods.

The results are reported in Figures 10(a)-(c). The following

observations can be made:

• The designed controllers are almost 100% optimal for

three control topologies of decentralized, localized and

ring, and this result holds for all possible values of α.

The optimality degree for the star controller is above 70%

and approaches 100% (even though slowly) as α grows.

• For every value of α ∈ [0, 100], the decentralized

controller has the lowest performance while the ring

controller offers the best performance.

• The closed-loop system is always stable for all 4 control

topologies and all possible values of α.

Infinite-Horizon ODC: Consider the problem of solving an

infinite-horizon ODC problem for each value of α in the

interval [0, 15] and each of the four aforementioned com-

munication topologies. Similar to the previous experiment,

stabilizing near-optimal controllers are designed for all these

cases. The results are summarized in Figure 11.

Stochastic ODC: Assume that the power system is under

input disturbance and measurement noise. The disturbance

can arise from non-dispatchable supplies (such as renewable

energy) and fluctuating loads, among others. The measurement

noise may account for the inaccuracy of the rotor angle and
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(a) Optimality degree for finite-horizon ODC
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(b) Near-optimal cost for finite-horizon ODC
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(c) Stability degree for finite-horizon ODC

Fig. 10: A near-optimal controller K̂ is designed to solve the finite-
horizon ODC problem for every control topology given in Figure 9 and every
α between 0 and 100: (a) optimality degree, (b) near-optimal cost, and (c)

closed-loop stability (maximum of the absolute eigenvalues of the closed-loop
system).

frequency measurements. Assume that Σd is equal to I. We

consider two different scenarios:

i) Suppose that Σv = 0, while α varies from 0 to 15. For

each SODC problem, we solve a computationally-cheap

SDP relaxation, from which a near-optimal solution K̂

is designed by choosing the best solution of the direct

and indirect recovery methods. The outcome is plotted in

Figure 12.

ii) Suppose that α = 0, while Σv is equal to σI with σ

varying between 0 and 15. As before, we design a near-

optimal controller for each SODC problem. The results

are reported in Figure 13.

In the above experiments, we designed structured controllers
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(a) Optimality degree for infinite-horizon ODC
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(b) Near-optimal cost for infinite-horizon ODC
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(c) Stability degree for infinite-horizon ODC

Fig. 11: A near-optimal controller K̂ is designed to solve the infinite-
horizon ODC problem for every control topology given in Figure 9 and every
α between 0 and 15: (a) optimality degree, (b) near-optimal cost, and (c)

closed-loop stability (maximum of the absolute eigenvalues of the closed-
loop system).

to optimize a finite-horizon ODC, an infinite-horizon ODC

or a stochastic ODC problem. This was achieved by solving

their associated computationally-cheap SDP relaxations. Inter-

estingly, the designed controllers were all stabilizing (with no

exception), and their optimality degrees were close to 99% in

case of decentralized, localized and ring structures. In case of

the star structure, the optimality degree was higher than 70% in

finite-horizon ODC, higher than 77% in infinite-horizon ODC

and around 94% for various levels of σ and α in stochastic

ODC.
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(a) Optimality degree for stochastic ODC
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(b) Near-optimal cost for stochastic ODC

0 5 10 15
0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
a
x
 o

f 
A

b
s
o
lu

te
 E

ig
s

α

 

 

Ring
Localized
Star
Decentralized

(c) Stability degree for stochastic ODC

Fig. 12: A near-optimal controller K̂ is designed to solve the stochastic
ODC problem for every control topology given in Figure 9 and every α
between 0 and 15 under the assumptions that Σd = I and Σv = 0: (a)

optimality degree, (b) near-optimal cost, and (c) closed-loop stability

C. Random Systems

The goal of this example is to test the efficiency of the

computationally-cheap SDP relaxation combined with the in-

direct recovery method on 100 highly-unstable random sys-

tems. Assume that n = m = r = 25, and that C, Q, R

are identity matrices of appropriate dimensions. Suppose that

Σd = I and Σv = 0. To make the problem harder, assume that

the controller under design must satisfy the hard constraint

trace{KKT } ≤ 2 (to avoid a high gain K). We generated

hundred random tuples (A, B,K) according to the following

rules:

• The entries of A were uniformly chosen from the interval

[0, 0.5] at random.

• The entries of B were uniformly chosen from the interval
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(a) Optimality degree for stochastic ODC
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(b) Near-optimal cost for stochastic ODC
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(c) Stability degree for stochastic ODC

Fig. 13: A near-optimal controller K̂ is designed to solve the stochastic
ODC problem for every control topology given in Figure 9 and every σ
between 0 and 15 under the assumptions that Σd = I , α = 0 and Σv = σI:

(a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability

[0, 1] at random.

• Each entry of the matrix K was enforced to be zero with

the probability of 70%.

Note that although the matrices A and B are nonnegative, the

matrix K under design can have both positive and negative

entries. The randomly generated systems are highly unstable

with the maximum absolute eigenvalue as high as 6 (instability

for discrete-time systems requires a maximum magnitude less

than 1). Although the control of such systems was not easy and

the control structure was enforced to be 70% sparse with an

enforced sparsity pattern, the proposed technique was always

able to design a “stabilizing” near-optimal controller with an

optimality degree between 50% and 75%. The results are

reported in Figure 14.
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(b) Stability level of open-loop and closed-loop systems

Fig. 14: The optimality degree and the stability level (maximum of the absolute eigenvalues) associated with 100 near-optimal sparse controllers designed
for 100 highly-unstable random systems.

V. CONCLUSIONS

Part I of the paper was concerned with a finite-horizon

optimal distributed control (ODC) problem. This part studies

an infinite-horizon ODC problem as well as a stochastic ODC

problem. The objective is to design a fixed-order distributed

controller with a pre-determined structure to minimize a

quadratic cost functional for either a deterministic or a stochas-

tic system. For both infinite-horizon ODC and stochastic ODC,

the problem is cast as a rank-constrained optimization with

only one non-convex constraint requiring the rank of a variable

matrix to be 1. This paper proposes a semidefinite program

(SDP) as a convex relaxation, which is obtained by dropping

the rank constraint. The notion of treewidth is exploited to

study the rank of the minimum-rank solution of the SDP

relaxation. This method is applied to the static distributed

control case and it is shown that the SDP relaxation has

a matrix solution with rank at most 3. Moreover, multiple

recovery methods are proposed to round the rank-3 solution to

rank 1, from which a near-global controller may be retrieved.

Computationally-cheap SDP relaxations are also developed for

infinite-horizon ODC and stochastic ODC. These relaxations

are guaranteed to exactly solve the LQR and H2 problems for

the classical centralized control problem. The results of this

two-part paper are tested on real-world and random systems

through thousands of simulations.
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