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Abstract— We study the design of an optimal static decentral-
ized controller with a quadratic cost and propose a variant of
the homotopy continuation method using a damping technique.
This method generates a series of optimal distributed control
(ODC) problems via a continuous variation of the system
parameters. Diverging from the classical theme of a tracking a
specific trajectory of locally optimal controllers for these ODC
problems, we focus on the possibility of leveraging local-search
algorithms to locate among several locally optimal controller
trajectories the globally optimal trajectory. We analyze the
continuity and asymptotic properties of the locally and globally
optimal controller trajectories as the damping parameter varies.
In particular, we prove that under certain conditions, there is
no spurious locally optimal controller for an ODC problem with
favorable control structure and a large damping parameter. As
a result, the proposed method is able to locate the globally
optimal trajectory with a suitable discretization in the space
of the damping parameter. To demonstrate the effectiveness
of this technique, it is shown that even for instances with an
exponential number of connected components, damping could
merge the trajectories of all local solutions to the trajectory
of the global solutions. We further illustrate the convoluted
behavior of the locally optimal trajectories with numerical
examples on random systems.

I. INTRODUCTION

The optimal decentralized control (ODC) problem adds
controller constraints to the classical centralized optimal
control problem. This addition breaks down the separation
principle and the classical solution formulas culminated
in [3]. Although ODC has been proved intractable in gen-
eral [1], [19], the problem has convex formulations under
various assumptions such as partially nestedness [16], posi-
tiveness [14], and quadratic invariance [10]. More recently,
the System Level Framework [18] identifies a large set of
problems that have a convex formulation. However, it is
challenging to solve large-scale optimization problem arising
from the convex relaxations and reformulations.

As an alternative to convexification techniques with a high
computational complexity, local search methods are exten-
sively used in the practice of optimization. This approach
stands out for many problems in machine learning, where it is
empirically and theoretically shown that simple policy search
methods with stochastic gradient descent are able to effec-
tively solve non-convex optimization or learning problems in
practical scenarios [5], [8], [9]. Many efficiency statements
of local search from the machine learning literature, however,
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are unlikely to directly carry over to ODC, due to the recent
investigation of the topological properties of ODC in [6]
showing that — unlike many problems in machine learning
— ODC can have an exponential number of locally optimal
solutions, and therefore, the landscape of optimization is
highly complex.

This paper attempts to delineate the boundary of tractable
ODC instances that are solvable by local-search methods,
by studying the evolution of locally optimal decentralized
controllers as the system dynamics vary. We have recently
proved that one variation of the system dynamics called
“damping” effectively reduces the topological complexity
of the set of stabilizing decentralized controllers [6]. The
main objective of the present paper is to show how damping
reduces the number of locally optimal decentralized con-
trollers. We prove continuity and asymptotic properties of
the trajectories of the locally optimal solutions. Notably,
the analysis leads to the result that if the system dynamics
is dampened enough, there is no spurious locally optimal
controller, by which we mean all locally optimal controllers
are globally optimal for the damped system. The damped
system, therefore, is a tractable approximate ODC problem.
Furthermore, we show that this globally optimal controller
in the damped system can be continuously connected to
the globally optimal controller in the original system, if the
globally optimal decentralized controllers are unique in the
damping process.

This work is closely related to continuation methods
such as homotopy. They are known to be appealing yet
theoretically poorly understood [12]. Homotopy has been
used as an initialization strategy in optimal control: in [2],
the author mentioned the idea of gradually moving from a
stable system to the original system to obtain a stabilizing
controller. The paper [20] considered the H>-reduced order
problem and proposed several homotopy maps and initial-
ization strategies; in its numerical experiments, initialization
with a large multiple of —I was found appealing. The paper
[4] compared descent and continuation algorithms for the
Hy optimal reduced-order control problem and concluded
that homotopy methods are empirically superior to descent
methods. The difficulty of obtaining a convergence theory
for a general constrained optimal control problem can be
appreciated from the examples in [11]. Compared with those
earlier works, we consider a special type of continuation
named damping, to improve the locally optimal solutions in
optimal decentralized control. We de-emphasize the problem



of accurately following a given path and instead focus on
the evolution of several paths as well as the movement of
locally optimal solutions from one path to another.

The remainder of this paper is organized as follows.
Notations and problem formulations are given in Section II.
Continuity and asymptotic properties of the damping strategy
are outlined in Section III and Section IV, respectively.
Numerical experiments are detailed in Section V. Concluding
remarks are drawn in Section VL

II. PROBLEM FORMULATION

We study the optimal decentralized control (ODC) prob-
lem with a static controller and a quadratic cost. Consider
the linear time-invariant system

&(t) = Ax(t) + Bu(t),

where A € R"™ and B € R"™ ™ are real matrices
of compatible sizes. The vector xz(t) is the state of the
system with an unknown initialization x(0) = =y, where
xo is modeled as a random variable with zero mean and
a positive-definite covariance E[z(0)z(0)"] = Dy (note that
E[-] denotes the expectation operator). The control input ()
is to be determined via a static state-feedback law u(t) =
Kx(t) with the gain K € R™*™ such that some quadratic
performance measure is maximized. Given a controller K,
the closed-loop system is

i(t) = (A+ BE)x(t).

A matrix is said to be stable if all its eigenvalues lie in
the open left-half of the complex plane. The controller K is
said to stabilize the system (A, B) if A+ BK is stable. ODC
optimizes over the set of structured stabilizing controllers

Ks={K: A+ BK is stable, K € S}, (1)

where S C R™*™ is a linear subspace of matrices, often
specified by fixing certain entries of the matrix to zero. In
that case, the sparsity pattern can be equivalently described
with the indicator matrix Is, whose (i, j)-entry is defined to

be
1,
[Islij = {0’

The structural constraint X € S is then equivalent to
K oIs = K, where o denotes entry-wise multiplication.
In the following, we will consider a sequence of damped
cost functions, which are defined as

if K;; is free
if K;; =0.

J(K,a) =E /UOO [e72t (27 (1)Q&(t) +a' (t)Ra(t))] dt
s.t. @(t) = Az(t) + Ba(t)
2

where @Q > 0 is positive semi-definite and R > 0 is positive-
definite. The expectation is taken over zg. Setting z(t) =

e~ (t) and u(t) = e “*a(t), the cost J(K,«) can be
equivalently written as
J(K,a) =E /000 [mT(t)Qa:(t) + uT(t)Ru(t)] dt
st @(t) = (A — al)a(t) + Bu(t) 3)
u(t) = Kx(t),

ODC is commonly defined for a« = 0 as optimizing (3)
over the set of stabilizing structured controllers (1). Formally

m}%n J(K,0)
s.t. K stabilizes (A, B)
KeS.

In our setting, the notion of stability is relaxed for a positive
a. We define K as a stabilizing solution to (3) if K stabilizes
the system (A—al, B), in which case formulation (2) is also
meaningful. Formally, we define ODC with damping as

m}én J(K, o)
s.t. K stabilizes (A — al, B) “)
Kes.

Our relaxed notion of stability coincides with ODC when
a = 0. We emphasize that the relaxation of stability in
the damped regime is a solution method, while the ultimate
goal is to obtain an optimal stabilizing controller for the un-
damped system with o = 0. We shall denote the problem (4)
by ODC(«x). We write ODC(«, Kj) if a stabilizing controller
K is given (to be used for the initialization of local search
methods).

The two equivalent formulations above motivate the notion
of “damping property”. We make a formal statement below.

Lemma 1: The function J(K, «) defined in (2) and (3)
satisfies the following “damping property”: suppose that K
stabilizes the system (A — «l, B), then for all 8 > a, K
stabilizes the system (A — 81, B) and satisfies the relation
J(K,B) < J(K,a).

Proof: By formulation (4), when A—«al+ BK is stable
and § > «, it holds that A— I+ BK = (A—al+ BK) —
(8 — a)I is stable. Therefore, J(K, ) is well-defined. By
formulation (2), we have J(K, ) < J(K, ). [ ]

We denote the set of globally optimal controllers of the
damped ODC problem (4) by K*(«), and the set of locally
optimal controllers by KT (c). The set KT(a) contains those
controllers K that satisfy the following first-order optimality
conditions (see [15] for their derivation):

(A—al + BK)" P, (K)+

(5a)
P (K)A—al + BK)+ K'RK+Q =0
Lo(K)(A—al + BK) T+ (5b)
(A—al + BK)Lo(K) + Do =0
[(BTPy(K) + RK)Lo(K)] 0 Is =0 (5¢)
Kols =K. (5d)



The matrices P, (K) and L,,(K) are the closed-loop Grami-
ans. The above conditions provide a closed-form expression
for the cost

J(K7 a) = tr(DOPa(K))v (6)

where tr(-) denotes the trace of a matrix. Given «, the
equations (5a)-(5d) and (6) are algebraic, involving only
polynomial functions of the unknown matrices K, P, and
L. The matrices P, and L, are written as a function of
K because they are uniquely determined from (5a) and (5b)
given a stabilizing controller K. When the context is clear,
we drop the implicit dependence on K in the notations P,
and L,,.

The paper studies the properties of K*(a), K'(c), and
J(K,a) for any control K belonging to K*(a) or KT().
To motivate the study of K'(«a), Figure 1 illustrates the
evolution of five locally optimal distributed controllers for
a particular system as « varies (see Section V for details
on the experiment). It is known that systems of this type
have a large number of locally optimal controllers [6]. Fig-
ure la plots selected trajectories of J (K, o) against «, where
K € KT(a). The selected trajectories are connected to a
stabilizing controller in KT(0). The lowest curve corresponds
to J(K*(a), a). Figure 1b plots the distance of the selected
K € K'(a) from the controller K € K*(a).

The fact that even modest damping causes the locally
optimal trajectories to “collapse” to each other is an attractive
phenomenon. Especially, this leads to the following two
strategies for solving the ODC problem, which are detailed
in Algorithm 1 and Algorithm 2 below.

Algorithm 1 Improving an Existing Stabilizing Controller:
The Forward-Backward Method
Input: J(K,«a) and Ky € S that stabilizes the system

(A, B).
Output: A potentially improved K, € K(0).
Select a list of parameters 0 = ag < aq,...,< ag.

fort < 1,....,7T do

Obtain a K; € K'(a;) by solving ODC(ay, K; 1)
using local search.
end for
fort < T—-1,T—-2,...,0 do

Obtain a K; € K'(a;) by solving ODC(ay, K;41)
using local search.
end for

Algorithm 2 shall avoid many unnecessary local optimum.
It starts with a large enough o for which K = 0 is an initial
stabilizing controller in the set S and iteratively solves for
a better controller while reducing the damping parameter
o. The improvement at o = «; is achieved using local-
search and the initialization K;y; from the previous step.
Algorithm 1 has the potential to improve the locally optimal
controllers obtained from any method. It is different from
Algorithm 2 in that it starts with a potentially undesirable
controller for a« = 0 and gradually increases o to obtain
an improved optimal controller for a highly-damped system
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Fig. 1. Samples of locally optimal cost and locally optimal controller

trajectories of system given in equation (15) as the damping parameter «
varies.

Algorithm 2 Obtain a Stabilizing Controller: The Backward
Method
Input: J(K, «)
Output: A potentially stabilizing K, € KT(0).
Select a list of parameters 0 = ag < a4, ..., < ar, where
ar is large enough such that K1 = 0 stabilizes the system
(A - OéTI, B)
fort < T—-1,T-2,...,0do
Obtain a K; € K'(a;) by solving ODC(ay, Ki41)
using local search.
end for




and then applies a variant of Algorithm 2 to backtrack that
controller to a globally optimal controller for a = 0.

Due to the NP-hardness of ODC, one cannot expect
any guarantee for producing a globally optimal, or even a
stabilizing, decentralized controller, unless certain conditions
are met, which will be discussed later. The breakdown of
these strategies will be discussed in Section V.

III. CONTINUITY

This section studies the continuity properties of K*(«)
and Kt(a). The key notion of hemi-continuity captures the
evolution of parametrized optimization problems. The reader
is referred to [13] for an accessible treatment.

Definition 1: The set valued map I' : A — B is said to
be upper hemi-continuous (uhc) at a point a if for any open
neighborhood V' of I'(a) there exists a neighborhood U of
a such that T(U) C V.

If B is compact, uhc is equivalent to the graph of I" being
closed, meaning that if a,, — a* and b,, € I'(a,,) — b*, then
b* € T'(a*).

Definition 2: The set valued map I' : A — B is said to
be lower hemi-continuous (lhs) at a point a if for any open
neighborhood V' intersecting I'(a) there exists a neighbor-
hood U of a such that I'(x) intersects V for all x € U.

Equivalently, for all a,, — a € A and b € I'(a), there
exists a,,, subsequence of a,, and a corresponding b, €
T'(am,, ) such that by — b.

A set-valued map is said to be continuous if it is both upper
and lower hemi-continuous. A single-valued function is
continuous if and only if it is uhc. We restate a version of the
Berge Maximum Theorem with a compactness assumption
from [13].

Lemma 2 (Berge Maximum Theorem): Let A C R and
S C R™*™ Assume that J : S x A — R is jointly contin-
uous and I' : A — S is a compact-valued correspondence.
Define

K*(a) = argmin{J(K,a)|K € T'(a)}, for all & € A,
and
J(K*(a), ) = min{J(K,a)|K € I'(«)}, for all a € A.

If T is continuous at some « € A, then J(K*(a),a) is
continuous at «. Furthermore, K* is non-empty, compact-
valued, closed, and upper hemi-continuous.

The Berge Maximum Theorem does not trivially apply to
ODC since the set of stabilizing controllers is open and often
unbounded.

Theorem 1: Assume that K*(0) is non-empty. Then the
set K*(a) is non-empty for all « > 0. Moreover, K*(«) is
upper hemi-continuous and the optimal cost J(K*(«a), a) is
continuous and strictly decreasing with respect to a.

Proof: When K*(0) is non-empty, there is an optimal
decentralized controller for the undamped system. With
the set of stabilizing controller non-empty, we invoke the
“damping property” in Lemma 1 and conclude

J(K*(a),a) < J(K*(0),a) < J(EK*(0),0).

The inequality above assumed existence of a globally con-
troller for all values of the damping parameter «. This is
true because the lower-level set of J(K, «) is compact [17].
Precisely, define I"js () to be

I'y(a) ={K €S:A—al+ BK stable, J(K, o) < M}.
(N

The set-valued function I'j; is compact-valued for all con-
stant o given a fixed M. From the damping property, we
can select any M > J(K*(0),0) and optimize instead
over I'p/(a) without losing any globally optimal controller.
The continuity of T'p/(«) at « for almost all values of M
is proved in the appendix. The Berge Maximum Theorem
yields the desired continuity of K*(«) and J(K*(«),c). W
The argument above can be extended to characterize all
locally optimal controllers. A caveat is the possible exis-
tence of locally optimal controllers with unbounded costs.
Their existence does not contradict the damping property —
damping can introduce locally optimal controllers that are
not stabilizing without the damping.

Theorem 2: Assume that KT(0) is non-empty. Then, the
set KT(a) is nonempty for all a > 0. Suppose furthermore
that at an o > 0,

lim sup sup  J(K,a) < 0.
=0 qelag—e,ap+e] KEKT ()
Then K () is upper hemi-continuous at cg and the optimal
cost J(KT(a),a) is upper hemi-continuous at ay.
Proof: The fact that KT () is non-empty follows from
the existence of globally optimal controllers in Theorem 1.
Consider the parametrized optimization problem

min [|[VJ(K, )]
st. Ke F]\/[(Oé), ()
where || - || denotes the 2-norm of a vector. The assumption

of the Lemma ensures the existence of an M and an
€ > 0 such that M > J(K,a) for K € Kf(a) where
a € [ap — €,a0 + €]. This choice of M guarantees that
the formulation (8) does not cut off any locally optimal
controllers. As proved in the appendix, "y () is continuous
at aq for almost all values of M, and a large M can be
selected to make I'j; () continuous at «g. Berge Maximum
Theorem applies to conclude that KT(«) is upper hemi-
continuous. Since J(K, ) is jointly continuous in (K, ),
J(KT(a), ) is upper hemi-continuous. [ |

IV. ASYMPTOTIC PROPERTIES

In this section, we prove asymptotic properties of the
local solutions K T(c). The following theorem characterizes
the evolution of locally optimal controllers for a specific
sparsity pattern. The theorem justifies the practice of random
initialization around zero.

Theorem 3: Suppose that the sparsity pattern Ig is block-
diagonal with square blocks and that R has the same sparsity
pattern as Ig. Then, all points in K converge to the zero
matrix as & — oo. Furthermore, J(K,«) — 0 as o — o0
for all K € KT(a).



Proof: Recall the expression of the objective func-
tion (2), the first-order necessary conditions (5a)-(5d),
and (6). As « increases, some local solutions may disappeatr,
some new local solutions may appear. The appearance cannot
occur infinitely often because the equations (5a)-(5d) are
algebraic. Suppose that the number of local solutions does
not change when « is greater than some constant o. The
damping property ensures for all 8 > o > «q that

max J(K

max ,8) < max J(K,fB).

KeKt(a)
The right-hand side optimizes over a fixed, finite set of
controllers and approaches 0 as 8 — oo due to the for-
mulation (2) and the dominated convergence theorem. The
left-hand side, therefore, also converges to zero as  — oo.
From (6) and the assumption that Dj is positive-definite,
| Ps(K)| — 0 for all K € KT(8) as 8 — oc.

The sparsity assumption allows the expression of the
locally optimal controllers in (5¢) as

K = =R (BT Py(K)Lo(K)) 0 Is)(La(K) 0 Is) ™"
In particular, we bound

|BK|| < |[BR™BT Po(K)La (K

)”Amin(La(K))71.

Pre- and post-multiplying (5b) by the unit eigenvector v of
the smallest eigenvalue of L, (K) yields

Amin(La(K))(2a — 20T (A + BK)v) = v Dgv.  (9)

Therefore,

)\min(DO)
in(Lo(K)) >
Awin(La(K)) 2 2a + 2||A + BK||

)\min(DO)
~ 2o+ 2||A|| + 2||BK||

)\min (DO)

>
~ 20+ 2[|A|| + 2| BRT'BT Po(K) Lo (K) || Amin (L

which simplifies to

/\min(D ) — 2||BR_1BTPQ(K)L(¥<K)”
)\min(La(K)) > 0 (20[+2HA||)

(10)
Take the trace of (5b) and consider the estimate

20| All| Lol + tr(Do) > 2] Al tr(La) + tr(Do)
> 2atr(Ly) + 2tr(BR™Y((B'PyLy)ols)(Lools) ™"
> 2atr(Ly) — 2||[BR™Y((B"PyLy)ols)| tr((Lools) ™
=2atr(Ly) — 2||[BR™Y((BTPyLy)olIs)|n
> 20| L - 20| BR[| BT||I| Pl Lol

1D
where for clarity we drop the implicit dependence on K in
L, and P,. The second and the third inequalities use the fact

that |tr(AL)| < ||A]| tr(L) for a positive-definite matrix L
and an arbitrary matrix A. The estimate (11), combined with

oK)

La)
La)

the previous argument that || P, || — 0, concludes || L,|| — 0.
We also obtain from the inequality (11) that

Il < 5 e AT S BB TR
for a small enough P,. Combining (10) and (12) leads to
VK] < B - [(BT PaLa)ols]| - | (LaoTs) ™|
<UR BT 1Pl - 2ol - [Amin(Po)

< IR BT 1 Pal

(12)

% tI‘(D())
2a — 2n||A|| = 2n|| BR[| BT[] P
) (20 + 2] A])
Amin(Do) — 2|BR-1BTP,L,|’
which converges to 0 as o — o0. [ |

Not only do all locally optimal controllers approach zero,
the problem is also convex over bounded regions with enough
damping.

Theorem 4: For any given r > 0, the Hessian matrix
V2J(K,«) is positive definite over ||K|| < r for all large
o.

Proof: The proof requires the vectorized Hessian for-
mula given in Lemma 3.7 of [15], restated below. We use
® to denote the Kronecker project of two matrices and vec
to denote the vectorized operation that stack the columns of
a matrix together into a vector. Define j, : R™"™ — R by

Ja(vec(K)) = J(K,a). The Hessian of j, is given by the
formula

K)=2{(La(K)® R) + Go(K)" +Go(K)}, (13)
where
Go(K) =[I ® (BT P,(K) + RK)]x

[I®(A-al +BK)+(A—-al + BK)® 1]
(Inn + P(n,n))[La(K) @ B
and P(n,n) is an n? x n? permutation matrix.

We first show that H,(K) in (13) is positive definite for
any fixed K when « is large. Recall the definition of L, and
P, in (5a)-(5b) and apply the triangle inequality:
2af| Lo (K)|| < [ Doll +2[[A + BK|[|| Lo (K|
20| Po(K)|| < 1@l + 2/l A + BE ||| Pa (K|l + [ RIII K1J?,
which implies that ||P,(K)|| — 0 and ||Lo(K)|| — 0 as
a — 00. The minimum eigenvalue of L, (K') can be bounded

similarly: let v be the unit eigenvector of L, (K') correspond-
ing to Amin(La(K)); pre- and post-multiplying (5b) by v,

we obtain
o7
Dov Amin (Do)
Amin (Lo (K)) > > .
(La(K)) = 20 — 20T (A+ BK)v — 2a + 2||A + BK||
(14)

The first Hessian term L,
below using (14).

)\min (La (K

K)®R in (13) can bounded from

) ® R) = Amin(Loz (K))Amin(R)
> Amirl(DO)Amin(R)
= 20+ 2|[A+ BE|




‘We bound the norm of the second and the third Hessian term
|G (K)]| as follows:

[Ga(K)I| < I ® (BT Pa(K) + RE)
x| [I®(A—-al+BK)+(A—al+BK)aI]™ ||
X [(In,n + P(n,n))[La(K) @ Bl

S (“Amax I ® (A—al + BK)+ (A—al + BK)®1))™!
X || La (K|

S (20) 7Y La (K,

where < hides constants that do not depend on a. Comparing
the two estimates above, we find that the first term L, (K) ®
R in (13) dominates its following terms G, (K) " + G (K)
with a large « for all bounded K. Therefore, the Hessian
H, (K) is positive definite over bounded K when « is large.
Note that H,(K) is the Hessian of the objective function
when the controller is centralized. The conclusion carries
over the decentralized controller because the Hessian for
the decentralized controller is a principal sub-matrix of the
Hessian for the centralized controller. [ ]

Corollary 1: Under the assumption of Theorem 3 and
Theorem 4, there is no spurious locally optimal controller
for large a, or equivalently, KT(a) = K*(a) for all large
values of o

Proof: For any given r > 0, all controllers in the
ball B = {K : ||K|| < r} are stabilizing when « is
large. As a result, stability constraints can be relaxed over B.
Furthermore, from Theorem 3, when « is large, all locally
optimal controllers will be inside 5. From Theorem 4, the
objective function becomes convex over B for large enough
a. These observations imply that local and global solutions
coincide. [ ]

Corollary 2: Under the same assumption of Theorem 3
and Theorem 4, suppose further that the globally optimal so-
lution is unique for all damping parameters, namely, K*(«)
is a singleton set for all &« > 0. Then, the trajectory K*(«) is
continuous. Moreover, if there is an € > 0 such that the local
search method initialized at ¢ distance away from K*(«)
converges to K*(«), then Algorithm 1 and Algorithm 2
output the globally optimal stabilizing controller in K*(0)
with a proper discretization of the « space.

Proof: We have shown in Theorem 1 that K*(«) is
upper hemi-continuous. With the singleton assumption, we
conclude the continuity of K*(«) because a single-valued
function is continuous if and only if it is upper hemi-
continuous. We choose a discretization 0 = ag < a1 <
-+ < o, where arr is large enough for which the “no spu-
rious property” of Corollary 1 holds. As a result, Algorithm 1
and Algorithm 2 are able to locate the continuous globally
optimal trajectory K*(«) at & = ap. To obtain K*(0), we
follow the continuous K*(«) in the manner of Algorithm 1
and Algorithm 2, where o, and a4y are close enough so
K4 lies in the region where the local search method initial-
ized at Ky converges to K. This discretization inductively
yields a serious of controllers K;, fort =TT —1,...,0
that all lie on the path K*(«), for a € [0, o). [

Remark 1: A proper discretization 0 = ap < a3 < +++ <
ar has a large ar for which the “no spurious property” of
Corollary 1 holds. A proper discretization further requires oy
and o441 to be reasonably close to guarantee that the local
search method initialized at K, is able to converge to K,
in Algorithm 1 and Algorithm 2.

V. NUMERICAL EXPERIMENTS

This section documents various homotopy behaviors as the
damping parameter « varies. The focus is on the evolution
of locally optimal trajectories, which can be tracked by
any local search method. The experiments are performed
on small-sized systems so the random initialization can find
a reasonable number of distinct locally optimal solutions.
Despite the small system dimension, the existence of many
locally optimal solutions and their convoluted trajectories
demonstrate the efficiency of the proposed method for solv-
ing the optimal decentralized control problem.

The local search method used here is the projected gradient
descent. At a controller K?, we perform line search along the
direction K* = —V.J(K) o I's. The step size is determined
with backtracking and the Armijo rule, where we select s° as
the largest number in {5,350, 532, ...} such that K* 4+ s'K*
is stabilizing while

J(K'+ s'K%) < J(K') 4 ys"(VJ(K?), K.

Our choice of parameters is v = 0.001, 5 = 0.5, and 5 = 1.
We terminate the iteration when the norm of the gradient is
less than 1073,

A. Systems with a Large Number of Local Minima

We first consider an instance of the exponential class
from [6], where the feasible set is highly disconnected and
admits several local minima. The system matrices are given
by

1 2 0 0 0 1 0 0
2 0 1 0 -1 0 1 0

A=1o 21 0 2'B=1 0 21 0 1|
0 0 -2 0 0 0 -1 0

(15)

Do=1I, Is=1I, Q=I, R=1I1 (16)

When the dimension n is equal to 4, it is known that the
set of stabilizing decentralized controllers has at least 5
connected components and hence at least 5 locally optimal
controllers. We sample the initial controllers from the normal
distribution with zero mean and unit variance and, after
1000 samples, obtain 5 initial locally optimal solutions. We
gradually increase the damping parameter from 0 to 0.6
with a 0.002 increment, and track the trajectories of locally
optimal solutions in the spirit of Algorithm 1. The evolution
of the optimal cost and the distance from the best known
optimal controller is plotted Figure 1. Notice that all sub-
optimal local trajectories terminate after a modest damping
a ~ 0.2. After that, the minimization algorithm always
tracks a single trajectory. This illustrates the prediction of
Corollary 1. Especially, if we start tracking a sub-optimal



controller trajectory from o« = 0, we will be on the better
trajectory when a =~ 0.2. At that time, if we gradually
decrease « to zero, we obtain a stabilizing controller with a
lower cost.

The above observation is valid for larger systems. An
example is presented in the technical report [7], where among
the 50 locally optimal trajectories Algorithm 1 successfully
tracked the globally optimal trajectory.

B. Experiments on Random Systems

With the same initialization and optimization procedure,
we perform the experiments on 3-by-3 system matrices A
and B randomly generated from the normal distribution with
zero mean and unit variance. For 92 out of 100 samples, we
are not able to find more than one locally optimal trajectory.
Examples with more than one local trajectories are listed
below. The top plot in each figure shows the cost of locally
optimal controllers. The bottom plot shows the distance of
the locally optimal controllers to the controller with the
lowest cost. Note that the order of the cost trajectories may be
preserved during the damping (Figure 2), or may be disrupted
(Figure 3). More than one trajectory may have the lowest
cost as the damping increases (Figure 4), but with a high
damp, there is only one trajectory that has the lowest cost.
In Figure 3, at the intersection of the two curves, there are
two distinct global solutions and therefore Algorithm 1 may
fail to obtain the globally optimal decentralized controller.
This illustrates the necessity of assuming the uniqueness of
the globally optimal controller in Corollary 2.

VI. CONCLUSION

This paper showed that damping the system dynamics ef-
fectively reduces the number of locally optimal decentralized
control policies. We proved the asymptotic and continuity
properties of trajectories as the damping parameter varied.
These property led to sufficient conditions under which
the proposed local search methods were able to find the
global solution of the optimal distributed control problem.
The complicated phenomenon of continuation was illustrated
with numerical examples.
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APPENDIX

In Lemma 3 and Lemma 4 below, we prove the continuity
of the lower level-set map defined in (7).

Lemma 3: Assume that I'j; () is not empty for all « > 0
and a given M > 0, then I"j; () is an upper hemi-continuous
set-valued map.

Proof: From [17], T'ps(«v) is compact for all «. Due
to the damping property, for any « < 3, we have I'j;(a) C
T'ps(B). Therefore, to characterize the continuity of T' at a
point a* > 0, it suffices to consider the restricted map I'jy :
[a* —€e,a* + €] = Tp(a* + €) for some € > 0, that is,
to consider the range of I'j; to be compact. Therefore, the
sequence characterization of uhc applies. Suppose that a;; —
a*, select a sequence of K; € I'jr(«;) that converges to K*.
The continuity of J(K,«) implies J(K*,a*) < M. The
fact that the cost is bounded implies that A — o*I + BK is
stable. Since the subspaces of matrices are closed, we have
K* € §. All conditions for K* € I'(o*) are verified, and
therefore I'; is upper hemi-continuous. [ ]

Lemma 4: At any given o > 0, I'ps(«) is lower hemi-
continuous at o except when M € {J(K,a*) : K €
KT(a*)}, which is a finite set of locally optimal costs.

Proof: Prove by contradiction. Consider a sequence
a; — o* and a matrix K* € I'j;(a*), for which there exist
no subsequence of «; and K; € T'p/(«;) such that K; — K*.
We must have

o J(K*,a*) = M — otherwise by the continuity of
J, J(K*,a;) < M for large i and, since the set of
stabilizing controllers is open, K* € I"y/(«;) for large
7, which is a contradiction.

o K™ must be a local minimum of J(K, a*) — otherwise
there exists a sequence K; — K* with J(K;,a*) < M
and, by the continuity of J, there exists a sequence
of large enough indices nj,j = 1,2,..., such that
J(Kj, ;) < M; the sequence K; € I'p(an;)
converges to K*. '

The argument above implies that M is equal to the cost of
some locally optimal controller at o*. Because given a*,
J(K,a*) can be described as a linear function in terms of
K over an algebraic set given by (6), the cost of locally
optimal controller take only finitely many values. [ ]
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