
1

A Low-Complexity Parallelizable Numerical Algorithm for
Sparse Semidefinite Programming

Ramtin Madani, Abdulrahman Kalbat and Javad Lavaei

Abstract—In the past two decades, the semidefinite program-
ming technique has been proven to be extremely successful in
the convexificiation of hard optimization problems appearing in
graph theory, control theory, polynomial optimization theory, and
many areas in engineering. In particular, major power optimiza-
tion problems, such as optimal power flow, state estimation and
unit commitment, can be formulated or well approximated as
semidefinite programs (SDPs). However, the inability to efficiently
solve large-scale SDPs is an impediment to the deployment of
such formulations in practice. Motivated by the significant role
of SDPs in revolutionizing the decision-making process for real-
world systems, this paper designs a low-complexity numerical
algorithm for solving sparse SDPs, using the alternating direction
method of multipliers and the notion of tree decomposition
in graph theory. The iterations of the designed algorithm are
highly parallelizable and enjoy closed-form solutions, whose most
expensive computation amounts to eigenvalue decompositions
over certain submatrices of the SDP matrix. The proposed
algorithm is a general-purpose parallelizable SDP solver for
sparse SDPs, and its performance is demonstrated on the SDP
relaxation of the optimal power flow problem for real-world
benchmark systems with more than 13,600 nodes.

I. INTRODUCTION

Inspired by the seminal papers [1]–[3], there has been
a growing interest in semidefinite programming (SDP), due
in part to its applications in combinatorial optimization and
a large set of real-world problems across engineering [4]–
[7]. Semidefinite programming offers a convex formulation
or relaxation framework that is applicable to a wide range
of non-convex optimization problems, and has been proven
to achieve nontrivial bounds and approximation ratios that
are beyond the reach of conventional methods [3], [8]–[10].
While small- to medium-sized SDPs are efficiently solvable by
second-order-based interior point methods in polynomial time
up to any arbitrary precision [11], these methods are mostly
impractical for large-scale SDPs due to computation time and
memory issues. The primary obstacle is the requirement of
calculating Schur complement matrices and their Cholesky
factorizations. Several attempts have been made in order to
parallelize this procedure, which have led to software packages
such as SDPA and SMCP [12]–[14]. In presence of sparsity,
a graph-theoretic analysis of SDP problems is proven to be

Ramtin Madani is with the Electrical Engineering Department at the Univer-
sity of Texas at Arlington (ramtin.madani@uta.edu). Abdulrahman Kalbat is
with the Electrical Engineering Department, United Arab Emirates University
(akalbat@uaeu.ac.ae). Javad Lavaei is with the Department of Industrial
Engineering and Operations Research, University of California, Berkeley, and
also with the Tsinghua-Berkeley Shenzhen Institute (lavaei@berkeley.edu).
This work was supported by ONR YIP Award, DARPA Young Faculty
Award, AFOSR YIP Award, NSF CAREER Award 1351279, and NSF EECS
Award 1552096. Parts of this work have appeared in the conference paper
“Ramtin Madani, Abdulrahman Kalbat and Javad Lavaei, ADMM for sparse
semidefinite programming with applications to optimal power flow problem,
IEEE Conference on Decision and Control, 2015”.

effective in reducing the number of variables and the order
of conic constraints [15], [16]. This approach is remarkably
helpful for structured SDP problems, particularly those arising
in power system optimization [17].

A promising numerical technique for solving large-scale
SDP problems is the alternating direction method of multi-
pliers (ADMM), which is a first-order optimization algorithm
proposed in the mid-1970s [18] and [19]. While second-
order methods are capable of achieving a high accuracy
via expensive iterations, a modest accuracy can be attained
through tens of ADMM’s low-complexity iterations. In order
to obtain a highly accurate solution in a reasonable number of
iterations, great effort has been devoted to accelerating ADMM
[20], [21]. Because of the sensitivity of the gradient methods to
the condition number of the problem’s data, diagonal rescaling
is proposed in [22] to improve the performance of ADMM.
Moreover, several accelerated variants of ADMM as well as
parameter tuning methods have been proposed in the literature
to significantly improve the speed of convergence for specific
application domains [20]. The O(1n) worst-case convergence
rate of ADMM is proven in [23] and [24] under certain
assumptions, and a systematic framework is introduced in [25]
for the convergence analysis of ADMM by means of control-
theoretic methods.

The main objective of this work is to design a general-
purpose SDP solver for sparse large-scale SDPs, with a guar-
anteed convergence and parallelization capabilities under mild
assumptions. We start by defining a representative graph for
the large-scale SDP problem, from which a decomposed SDP
formulation is obtained using a tree/chordal/clique decompo-
sition technique. This decomposition replaces the large-scale
SDP matrix variable with certain submatrices of this matrix.
In order to solve the decomposed SDP problem iteratively,
a distributed ADMM-based algorithm is derived, whose iter-
ations comprise entry-wise matrix multiplication/division and
eigendecomposition on certain submatrices of the SDP matrix.
By finding the optimal solution for the distributed SDP, one
could recover the solution to the original SDP formulation
using an explicit formula.

This work is related to and improves upon some recent
papers in this area. The paper [26] applies ADMM to the dual
SDP formulation, leading to a centralized algorithm that is not
parallelizable and is computationally expensive for large-scale
SDPs. The work [16] decomposes a sparse SDP into smaller-
sized SDPs through a tree decomposition, which are then
solved by interior point methods. However, this approach is
limited by the large number of consistency constraints. Using
a first-order splitting method, [27] solves the decomposed
SDP problem created by [16], but the algorithm needs to
solve an optimization subproblem at every iteration. Similar

2

frameworks with the requirement of solving smaller SDPs
have been applied to power optimization problems [28]–[32].
In contrast with the above papers, the algorithm proposed in
this work is composed of low-complexity and parallelizable
iterations, which run fast if the treewidth of the sparsity graph
of the SDP problem is small. Since a wide range of real-world
optimization problems, including those appearing in power
systems, are sparse and benefit from a low treewidth, the
proposed algorithm enables solving such problems at scale.
This algorithm offers the following advantages compared to
the method developed in our related work [33]: i) it can
handle arbitrary constraints that are not necessarily local, ii)
it does not rely on the inversion of large matrices as an initial
step. Both of these improvements are essential for solving
general large-scale sparse SDP problems, including power
system optimization problems to be discussed later. This paper
is also related to [34], which designs a distributed algorithm
for second-order conic programs. In contrast to the existing
methods, the algorithm to be proposed in this paper applies
to higher-order conic problems, and does not require solving
any optimization sub-problem at any iteration.

The paper [35], as a conference version of this work, studies
the potential of ADMM for solving semidefinite programming
problems. However, it fails to solve large-scale SDPs and its
examples are limited to matrices with at most 300 rows. The
current paper improves upon [35] by means of an accelerated
version of ADMM combined with a preconditioner, which
enables solving real-world problems with over 13,600 rows
in the SDP matrix.

A. Motivation: Power System Optimization

Real-world power optimization problems are concerned
with the efficiency, robustness, reliability, security and re-
siliency of power systems, whose decision variables consist of
various real-time parameters across a time horizon and under
several failure scenarios. These parameters include voltages,
currents, phase angles, power productions, line flows, trans-
former settings, and the on/off statuses of generators and lines.
Several factors contribute to a high computational complexity
of power optimization problems, such as the nonlinearities
induced by laws of physics and discrete variables, the scale
of modern grids, the wide range of failure scenarios, and
the level of uncertainty for demand and renewable energy
sources. The above-mentioned factors give rise to non-convex
mixed-integer optimization problems with tens of thousands
of decision parameters. While the expected level of efficiency
and reliability in recent years necessitates the use of accurate
models of power systems that are inevitably highly nonconvex,
current state-of-the-art solvers such as CPLEX, Gurobi and
MOSEK are incapable of handling continuous non-convexity
and a large number of discrete parameters arising in real-world
power system optimization problems.

Recent approaches to tackle computationally-hard power
optimization problems rely on convex algebraic and/or ge-
ometry methods, such as conic relaxation and Sherali-Adams
hierarchies [17], [36]–[38]. These advanced techniques are
based on solving SDPs with a considerably large number of
variables and constraints. Hence, it is imperative to design

efficient and fast algorithms for large-scale SDPs, which are
applicable to fundamental power optimization problems such
as optimal power flow (OPF). The OPF problem is at the heart
of the operation of power systems, which finds an optimal
operating point of a power system by minimizing a certain
objective function (e.g., transmission loss or generation cost)
subject to power flow equations and operational constraints
[39], [40].

Several optimization techniques have been studied for the
OPF problem in recent years [41]. Due to the non-convexity
and NP-hardness of OPF, these algorithms are not robust, lack
performance guarantees and may not find a global optimum.
The paper [7] evaluates the potentials of SDP relaxations for
OPF and shows that a global minimum of the problem can
be found using an appropriate SDP formulation if the duality
gap is zero. SDP relaxation is shown to find global or near
globally optimal solutions (with global optimality guarantees
of at least 99%) for IEEE and Polish systems, and theoretically
proven to work under different conditions [17], [36], [42]–
[46]. Moreover, more advanced SDP relaxations based on the
sum-of-squares hierarchy have been proven to be effective for
solving hard instances of the OPF problem [37]. Note that SDP
relaxation is not unique and therefore if one relaxation does
not work for a particular power problem, it is always possible
to find a more complex SDP formulation to solve the problem
(to obtain different hierarchies of convex relaxation, please
refer to the tutorial paper [47] and the references therein).

Due to the great success of SDP for the OPF problem, conic
relaxations have been designed for other power optimization
problems, including state estimation, unit commitment and
charging of electric vehicles [38], [48]–[50]. However, the high
dimension of these conic formulations for real-world systems
is an impediment to their implementation. The main objective
of this work is to design a low-complexity numerical algorithm
or a general-purpose SDP solver for large-scale conic problems
that can be used for a variety of problems, including those
appearing in the operation of power systems.

This paper is organized as follows. Some preliminaries and
definitions are provided in Section II. An arbitrary sparse
SDP is converted into a decomposed SDP in Section III,
for which a numerical algorithm is developed in Section IV.
The application of this algorithm for OPF is investigated
in Section V. Numerical examples are given in Section VI,
followed by concluding remarks in Section VII.

Notations: R, C, and Hn denote the sets of real numbers,
complex numbers, and n×n Hermitian matrices, respectively.
The notation X1 ◦ X2 refers to the Hadamard (entrywise)
multiplication of matrices X1 and X2. The symbols 〈·, ·〉
and ‖ · ‖F denote the Frobenius inner product and norm
of matrices, respectively. The notation ‖v‖2 denotes the `2-
norm of a vector v. The m × n rectangular identity matrix,
whose (i, j) entry is equal to the Kronecker delta δij , is
denoted by Im×n. The notations Re{W}, Im{W}, rank{W},
and diag{W} denote the real part, imaginary part, rank, and
diagonal of a Hermitian matrix W, respectively. Given a
vector v, the notation diag{v} denotes a diagonal square
matrix whose entries are given by v. The notation W � 0

3

means that W is Hermitian and positive semidefinite. The
notation “i” is reserved for the imaginary unit. The superscripts
(·)∗ and (·)T represent the conjugate transpose and transpose
operators, respectively. Given a matrix W, its (l,m) entry is
denoted as Wlm. The subscript (·)opt is used to refer to an
optimal solution to an optimization problem. Given a matrix
W, its Moore-Penrose pseudoinverse is denoted as pinv{W}.
Given a simple graph H, its vertex and edge sets are denoted
by VH and EH, respectively, and the graph H is shown as
H = (VH, EH). Given two sets S1 and S2, the notation S1\S2
denotes the set of all elements of S1 that do not exist in S2.
Given a Hermitian matrix W and two sets of positive integer
numbers S1 and S2, define W{S1,S2} as a submatrix of
W obtained through two operations: (i) removing all rows
of W whose indices do not belong to S1, and (ii) removing
all columns of W whose indices do not belong to S2. For
instance, W {{1,2}, {2,3}} is a 2×2 matrix with the entries
W12,W13,W22,W23. The notation |D| shows the cardinality
of a discrete set D or the number of vertices of a graph D.

II. PRELIMINARIES

Consider the semidefinite program

minimize
X∈Hn

〈X,M0〉 (1a)

subject to ls ≤ 〈X,Ms〉 ≤ us, s = 1, . . . , p, (1b)
X � 0. (1c)

where M0,M1, . . . ,Mp ∈ Hn, and

(ls, us) ∈ ({−∞} ∪ R)× (R ∪ {+∞})

for every s = 1, . . . , p. Notice that the constraint (1b)
reduces to an equality constraint if ls = us. Problem (1) is
computationally expensive for a large number n due to the
presence of the positive semidefinite constraint (1c). However,
if M0,M1, . . . ,Mp are sparse, this expensive constraint can
be decomposed and expressed in terms of some principal
submatrices of X with smaller dimensions. This will be
explained next.

A. Representative Graph and Tree Decomposition

In order to leverage any possible sparsity of problem (1),
a simple graph shall be defined to capture the zero-nonzero
patterns of M0,M1, . . . ,Mp.

Definition 1 (Representative graph [51]). Define G = (VG , EG)
as the representative graph of the SDP problem (1), which is
a simple graph with n vertices whose edges are specified by
the nonzero off-diagonal entries of M0,M1, . . . ,Mp. In other
words, two arbitrary vertices i and j are connected if the
(i, j) entry of at least one of the matrices M0,M1, . . . ,Mp

is nonzero.

To illustrate Definition 1, consider the problem (1) with
n = 4 and p = 1 such that

M0 =

1 0 1 0
0 5 3 0
1 3 10 2
0 0 2 1

 , M1 =

0 3 0 0
3 0 1 2
0 1 0 1
0 2 1 1

 (2)

The representative graph of the SDP problem (1) in this case
is a graph with the vertex set {1, 2, 3, 4} such that every two
vertices are connected to one another except for the vertices
1 and 4. The reason is that the (1, 4) entries of M0 and M1

are both equal to 0.
Using a tree decomposition algorithm (also known as

chordal or clique decomposition), we can obtain a decomposed
formulation for problem (1), in which the positive semidefinite
requirement is imposed on certain principal submatrices of X
as opposed to X itself.

Definition 2 (Tree decomposition [52]). A tree graph T is
called a tree decomposition of G if it satisfies the following
properties:

1) Every node of T corresponds to and is identified by a
subset of VG .

2) Every vertex of G is a member of at least one node of T .
3) Tk is a connected graph for every k ∈ VG , where Tk

denotes the subgraph of T induced by all nodes of T
containing the vertex k of G.

4) The subgraphs Ti and Tj have at least one node in
common, for every (i, j) ∈ EG .

Each node of T is a bag (collection) of vertices of G and
hence it is referred to as a bag.

As an example, Figure 1 borrowed from [51] shows a tree
decomposition of the graph corresponding to the physical
structure of the IEEE 14-bus power network. Notice that four
properties are satisfied: 1) every bag of the tree decomposition
is a collection of the vertices of the graph, 2) every vertex of
the graph appears in at least one bag of the tree decomposition,
3) all bags containing each particular vertex of the graph
form a connected subgraph in the tree decomposition (for
example, there are three bags containing node 2 and they
form a connected path), and 4) every two connected vertices
of the graph appear in at least one common bag of the tree
decomposition.

Let T = (VT , ET) be an arbitrary tree decomposition of
G, with the set of bags VT = {C1, C2, . . . , Cq}. As will be
discussed in the next section, it is possible to cast problem (1)
in terms of those entries of X that appear in at least one of
the submatrices X{C1, C1},X{C2, C2}, . . . ,X{Cq, Cq}.These
entries of X are referred to as important entries. Once the
optimal values of the important entries of X are found via an
iterative algorithm, the remaining entries of X can be obtained
through an explicit formula to be stated later.

Among the factors that may contribute to the computational
complexity of the decomposed problem are: the size of the
largest bag, the number of bags, and the total number of
important entries. Finding a tree decomposition that leads
to the minimum number of important entries (minimum fill-
in problem) or possesses the minimum size for its largest
bag (treewidth problem) is known to be NP-hard. The al-
gorithm proposed in this paper reaches its maximum ef-
ficiency when a tree decomposition of the sparsity graph
with max{|C1|, . . . , |Cq|} = O(1) is already available. This
algorithm only requires a suboptimal tree decomposition with
a low width. Good decompositions can be easily found using
the nested dissection method. The work [53] proves that

4

1

2

3

5

4

7

8

9

6

11

14

13
12

10

6,12,13

1,2,5

2,4,5

2,3,4

4,5,9

6,9,13

4,7,9 7,8

5,6,9

9,13,14

6,9,11 9,10,11

Fig. 1: The graph of the IEEE 14-bus test case (left figure) and a tree decomposition of this graph (right figure)

nested dissection is O(log(|G|)) suboptimal for bounded-
degree graphs, and notes that: “we do not know a class of
graphs for which nested dissection is suboptimal by more than
a constant factor”. There are many other efficient algorithms
in the literature that find near-optimal tree decompositions
(specially for power networks due to their near planarity)
[54], [55]. In all of the experiments of this paper, a tree
decomposition of the sparsity graph is obtained in less than
90 seconds, using the algorithm described in [54]. Moreover,
optimization problems defined over physical infrastructures,
such as power systems, often benefit from the fact that the
topology of the system changes slowly, and therefore the
tree decomposition may be performed offline and used for
a class of SDP problems as opposed to a single instance of
the problem.

B. Sparsity Pattern of Matrices

Let Fn denote the set of symmetric n × n matrices with
entries belonging to the set {0, 1}. The distributed optimization
scheme to be proposed in this work uses a group of sparse
slack matrices. We identify the locations of nonzero entries of
such matrix variables using descriptive matrices in Fn.

Definition 3. Given an arbitrary matrix X ∈ Hn, define its
sparsity pattern as a matrix N ∈ Fn such that Nij = 1 if and
only if Xij 6= 0 for every i, j ∈ {1, ..., n}. Let |N| denote the
number of nonzero entries of N. Define the set

S(N) , {X ∈ Hn | X ◦N = X}.

Due to the Hermitian property of X, if d denotes the number
of nonzero diagonal entries of N, then every X ∈ S(N) can be
specified by (|N|+ d)/2 real-valued scalars corresponding to
Re{X} and (|N|−d)/2 real scalars corresponding to Im{X}.
Therefore, S(N) is |N|-dimensional over R.

Definition 4. Suppose that T = (VT , ET) is a tree decomposi-
tion of the representative graph G with the bags C1, C2, . . . , Cq .
• For r = 1, . . . , q, define Cr ∈ Fn as a sparsity pattern

whose (i, j) entry is equal to 1 if {i, j} ⊆ Cr and is 0
otherwise for every i, j ∈ {1, ..., n}.

• Define C ∈ Fn as an aggregate sparsity pattern whose
(i, j) entry is equal to 1 if and only if {i, j} ⊆ Cr for at
least one index r ∈ {1, . . . , q}.

• For s = 0, 1, . . . , p, define Ns ∈ Fn as the sparsity
pattern of Ms.

The sparsity pattern C, which can also be interpreted as the
adjacency matrix of a chordal extension of G induced by T ,

captures the locations of the important entries of X. The matrix
C will later be used to describe the domain of definition for
the variable of the decomposed SDP problem.

C. Indicator Functions

To streamline the formulation, we will replace any positivity
or positive semidefiniteness constraints in the decomposed
SDP problem by the indicator functions introduced below.

Definition 5. For every l ∈ {−∞} ∪ R and u ∈ R ∪ {+∞},
define the convex indicator function Il,u : R→ {0,+∞} as

Il,u(x) ,
{

0 if l ≤ x ≤ u
+∞ otherwise

Definition 6. For every r ∈ {1, 2, . . . , q}, define the convex
indicator function Jr : Hn → {0,+∞} as

Jr(X) ,

{
0 if X{Cr, Cr} � 0

+∞ otherwise

III. DECOMPOSED SDP

Consider the problem

minimize
X∈S(C)

〈X,M0〉 (3a)

subject to ls ≤ 〈X,Ms〉 ≤ us, s = 1, . . . , p, (3b)
X{Cr, Cr} � 0, r = 1, . . . , q (3c)

which is referred to as decomposed SDP throughout this paper.
Due to the chordal theorem [56], problems (1) and (3) lead
to the same optimal objective value. Furthermore, if Xref ∈
S(C) denotes an arbitrary solution of the decomposed SDP
problem (3), then there exists a solution Xopt to the SDP
problem (1) such that Xopt ◦C = Xref .

The matrix Xopt can be constructed by mapping certain
entries of Xref to 0 according to the sparsity patten. These en-
tries of the matrix variable X are referred to as missing entries
and cannot be found by solving the decomposed problem (3).
Several matrix completion approaches can be adopted to find
the missing entries, which enable the construction of a feasible
point for the original SDP (1). An algorithm is proposed in
[16] and [15] that obtains a completion for Xref within the
set {X ∈ Hn |X ◦C = Xref , X � 0} whose determinant is
maximum. However, such a solution may not be favorable for
applications that require a low-rank solution such as an SDP
relaxation. It is also known that there exists a polynomial-
time algorithm to fill a partially-known real-valued matrix in
such a way that the rank of the resulting matrix becomes

5

equal to the highest rank among all bags [57], [58]. In [51],
we extended this result to the complex domain by proposing
a recursive algorithm that transforms Xref ∈ S(C) into a
solution Xopt for the original SDP problem (1) whose rank
is upper bounded by the maximum rank among the matrices
Xref{C1, C1},Xref{C2, C2}, . . . ,Xref{Cq, Cq}. This algorithm
is stated below for completeness.

Matrix completion algorithm:
1) Set T ′ := T and X := Xref .
2) If T ′ has a single node, then consider Xopt as X and

terminate; otherwise continue to the next step.
3) Choose two bags Cx and Cy of T ′ such that Cx is a leaf

of T ′ and Cy is its unique neighbor.
4) Define

K , pinv{X{Cx ∩ Cy, Cx ∩ Cy}} (4a)

Gx , X{Cx \ Cy, Cx ∩ Cy} (4b)

Gy , X{Cy \ Cx, Cx ∩ Cy} (4c)

Ex , X{Cx \ Cy, Cx \ Cy} (4d)

Ey , X{Cy \ Cx, Cy \ Cx} (4e)

Sx , Ex −GxKG∗x = QxDxQ
∗
x (4f)

Sy , Ey −GyKG∗y = QyDyQ
∗
y (4g)

where QxDxQ
∗
x and QyDyQ

∗
y denote the eigenvalue

decompositions of Sx and Sy with the diagonals of Dx

and Dy arranged in descending order. Then, update a part
of X as follows:

X{Cy \ Cx, Cx \ Cy} := GyKG∗x

+ Qy

√
Dy I|Cy\Cx|×|Cx\Cy|

√
Dx Q∗x

and update X{Cx \ Cy, Cy \ Cx} accordingly to preserve
the Hermitian property of X.

5) Update T ′ by merging Cx into Cy , i.e., replace Cy with
Cx ∪ Cy and then remove Cx from T ′.

6) Go back to step 2.

Theorem 1. Consider an arbitrary solution Xref of the
decomposed SDP problem (3). The output of the matrix
completion algorithm, denoted as Xopt, is a solution of the
original SDP problem (1). Moreover, the rank of Xopt is
smaller than or equal to:

max

{
rank {Xref{Cr, Cr}}

∣∣∣∣ r = 1, . . . , q

}
.

Proof. Please refer to [51] or [17] for the proof.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Consider the optimization problem

minimize
x∈Rnx

y∈Rny

f(x) + g(y) (5a)

subject to Ax + By = c. (5b)

where c ∈ Rnc , A ∈ Rnc×nx and B ∈ Rnc×ny are constant
matrices, and f : Rnx → R∪{+∞} and g : Rny → R∪{+∞}
are convex functions. Notice that the variables x and y are
coupled through the linear constraint (5b) while the objective

function is separable. The augmented Lagrangian function for
problem (5) is equal to

Lµ(x,y, λ) = f(x) + g(y)

+ λT(Ax + By − c) + (µ/2)‖Ax + By − c‖22,
(6)

where λ ∈ Rnc is the Lagrange multiplier associated with
the constraint (5b), and µ ∈ R is a fixed parameter. ADMM
is one approach for solving problem (5), which performs the
following procedure at each iteration [59]:

xk+1 = argmin
x∈Rnx

Lµ(x,yk, λk), (7a)

yk+1 = argmin
y∈Rny

Lµ(xk+1,y, λk), (7b)

λk+1 = λk + µ(Axk+1 + Byk+1 − c). (7c)

where k = 0, 1, 2, . . ., for an arbitrary initialization
(x0,y0, λ0). In these equations, “argmin” means an arbitrary
minimizer of a convex function and does not need any
uniqueness assumption. Notice that each of the updates (7a)
and (7b) is an optimization sub-problem with respect to either
x and y, by freezing the other variable at its latest value.
Several acceleration techniques have been proposed in the
literature, aiming to improve the convergence behavior of
ADMM [20], [25]. One such approach, regarded as over-
relaxed ADMM, involves adopting a sequence of intermediate
Lagrange multipliers {λ̂k}∞k=1 as follows:

xk+1 = argmin
x∈Rnx

Lµ(x,yk, λk), (8a)

λ̂k+1 = λk + µ(α− 1)(Axk+1 + Byk − c), (8b)

yk+1 = argmin
y∈Rny

Lµ(xk+1,y, λ̂k+1), (8c)

λk+1 = λ̂k+1 + µ(Axk+1 + Byk+1 − c), (8d)

where α ∈ [1, 2] is a fixed parameter. We employ the
residue sequence {εk}∞k=1 proposed in [20] as measure for
convergence:

εk+1 = (1/µ)‖λk+1 − λk‖22 + µ‖B(yk+1 − yk)‖22 (9)

ADMM is particularly interesting for the cases where sub-
problems can be solved efficiently through an explicit formula.
Under such circumstances, it would be possible to execute a
large number of iterations in a short amount of time. In this
section, we first cast the decomposed SDP problem (3) in the
form (5) and then regroup the variables into two blocks P1

and P2 playing the roles of x and y in the ADMM algorithm.

A. Projection Onto Positive Semidefinite Cone

The algorithm to be proposed in this work requires the
projection of q matrices belonging to H|C1|,H|C2|, . . . ,H|Cq|
onto the positive semidefinite cone. This is probably the most
computationally expensive part of each iteration.

Definition 7. For a given Hermitian matrix Ẑ, define the
unique solution to the optimization problem

minimize
Z∈Hm

‖Z− Ẑ‖2F (10a)

subject to Z � 0 (10b)

6

Algorithm 1 Over-relaxed ADMM for decomposed SDP

1: Initialize X0, {z0s}
p
s=0, {X0

C;r}
q
r=1, {X0

N ;s}
p
s=0, {Λ0

C;r}
q
r=1, {Λ0

N ;s}
p
s=0, {λ0z;s}

p
s=0

2: repeat

3: Xk+1 :=
[∑q

r=1 Cr ◦ (Xk
C;r −Λk

C;r/µ) +
∑p
s=1 Ns ◦ (Xk

N ;s −Λk
N ;s/µ)

]
�C [

∑q
r=1 Cr +

∑p
s=1 Ns]

4: zk+1
0 := 〈M0,X

k
N ;0〉 − (λkz;0 + 1)/µ

5: zk+1
s := max{min{〈Ms,X

k
N ;s〉 − λkz;s/µ, us}, ls} for s = 1, 2, . . . , p

6: Λ̂k+1
C;r := Λk

C;r + µ(α− 1)(Xk+1 ◦Cr −Xk
C;r) for r = 1, 2, . . . , q

7: Λ̂k+1
N ;s := Λk

N ;s + µ(α− 1)(Xk+1 ◦Ns −Xk
N ;s) for s = 0, 1, . . . , p

8: λ̂k+1
z;s := λkz;s + µ(α− 1)(zk+1

s − 〈Ms,X
k
N ;s〉) for s = 0, 1, . . . , p

9: Xk+1
C;r := (Xk+1 ◦Cr + Λ̂k

C;r/µ)
+ for r = 1, 2, . . . , q

10: yk+1
s :=

zk+1
s +λ̂k

z;s/µ−〈Ms,Ns◦Xk+1+Λ̂k
N;s/µ〉

1+‖Ms‖2F
for s = 0, 1, . . . , p

11: Xk+1
N ;s := Ns ◦Xk+1 + Λ̂k

N,s/µ+ yk+1
s Ms for s = 0, 1, . . . , p

12: Λk+1
C;r := Λ̂k+1

C;r + µ(Xk+1 ◦Cr −Xk+1
C;r) for r = 1, 2, . . . , q

13: Λk+1
N ;s := Λ̂k+1

N ;s + µ(Xk+1 ◦Ns −Xk+1
N ;s) for s = 0, 1, . . . , p

14: λk+1
z;s := λ̂k+1

z;s + µ(zk+1
s − 〈Ms,X

k+1
N ;s 〉) for s = 0, 1, . . . , p

15: until meet stopping criterion

as the projection of Ẑ onto the cone of positive semidefinite
matrices, and denote it as Ẑ+.

The next Lemma reveals the interesting fact that problem
(10) can be solved through an eigenvalue decomposition of Ẑ.

Lemma 1. Let Ẑ = Q× diag{(ν1 . . . , νm)}×Q∗ denote the
eigenvalue decomposition of Ẑ. The solution of the projection
problem (10) is given by

Ẑ+ = Q× diag{(max{ν1, 0}, . . . ,max{νm, 0})} ×Q∗

Proof. Please refer to [60] for the proof.

B. ADMM for Decomposed SDP

We apply ADMM to the following reformulation of the
decomposed SDP problem (3):

minimize
X∈S(C)

{XN;s∈S(Ns)}ps=0

{XC;r∈S(Cr)}qr=1

{zs∈R}ps=0

z0 +

p∑
s=1

Ils,us(zs) +

q∑
r=1

Jr(XC;r)

subject to X ◦Cr = XC;r, r = 1, 2, . . . , q, (11a)
X ◦Ns = XN ;s, s = 0, 1, . . . , p, (11b)
zs = 〈Ms,XN ;s〉, s = 0, 1, . . . , p. (11c)

If X is a feasible solution of (11) with a finite objective value,
then

Jr(X) = Jr(X ◦Cr)
(11a)
= Jr(XC;r) = 0

which concludes that X{Cr, Cr} � 0. Morever,

Ils,us
(〈X,Ms〉) = Ils,us

(〈X ◦Ns,Ms〉)
(11b)
= Ils,us

(〈XN ;s,Ms〉)
(11c)
= Ils,us(zs) = 0

which yields that ls ≤ 〈X,Ms〉 ≤ us. Therefore, X is a
feasible point for problem (3) as well, with the same objective
value. Define

1) ΛC;r ∈ S(Cr) as the Lagrange multiplier associated with
the constraint (11a) for r = 1, 2, . . . , q,

2) ΛN ;s ∈ S(Ns) as the Lagrange multiplier associated
with the constraint (11b) for s = 0, 1, . . . , p,

3) λz;s ∈ R as the Lagrange multiplier associated with the
constraint (11c) for s = 0, 1, . . . , p.

We regroup the primal and dual variables as

(Block 1) P1 = (X, {zs}ps=0)

(Block 2) P2 = ({XC;r}qr=1, {XN ;s}ps=0)

(Dual) D = ({ΛC;r}qr=1, {ΛN ;s}ps=0, {λz;s}
p
s=0) .

Note that “block 1”, “block 2” and “D” play the roles of x,
y and λ in the standard formulation of ADMM, respectively.

7

The augmented Lagrangian can be calculated as

(2/µ)Lµ(P1,P2,D) = LD(D)/µ2

+ ‖z0 − 〈M0,XN ;0〉+ (1 + λz;0)/µ‖2F

+

p∑
s=1

(
‖zs − 〈Ms,XN ;s〉+ λz;s/µ‖2F + Ils,us(zs)

)
+

q∑
r=1

(
‖X ◦Cr −XC;r + (1/µ)ΛC;r‖2F + Jr(XC;k)

)
+

p∑
s=1

‖X ◦Ns −XN ;s + (1/µ)ΛN ;s‖2F (13)

where

LD(D) =− (1 + λz;0)
2

−
p∑
s=1

λ2z;s −
q∑
r=1

‖ΛC;r‖2F −
p∑
s=1

‖ΛN ;s‖2F (14)

Using the blocks P1 and P2, the ADMM iterations for
problem (11) can be expressed as follows:

1) The subproblem (7a) in terms of P1 consists of two
parallel steps:

(a) Minimization in terms of X: This step consists of
|C| scalar quadratic and unconstrained programs. It
possesses an explicit formula that involves |C| parallel
multiplication operations.

(b) Minimization in terms of {zs}ps=0: This step consists
of p + 1 scalar quadratic programs each with a box
constraint. It possesses an explicit formula that involves
p+ 1 parallel multiplication operations.

2) The subproblem (7b) in terms of P2 also consists of two
parallel steps:

(a) Minimization in terms of {XC;r}qr=1: This step consists
of q projection problems of the form (10). According
to Lemma 1, this reduces to q parallel eigenvalue de-
composition operations on matrices of sizes |Cr|× |Cr|
for r = 1, . . . , q.

(b) Minimization in terms of {XN ;s}ps=0: This step con-
sists of p unconstrained quadratic programs of sizes
|Ns| for s = 0, 1, . . . , p. The quadratic programs are
parallel and each of them possesses an explicit formula
that involves 2|Ns| multiplications.

3) Computation of the dual variables at each iteration, in
equation (7c), consists of three parallel steps:

(a) Updating {ΛC;r}qr=1: Computational costs for this step
involve no multiplications and are negligible.

(b) Updating {ΛN ;s}ps=0: Computational costs for this
step involve no multiplications and are negligible.

(c) Updating {λz;s}ps=0: This step is composed of p +
1 parallel inner product computations, each involving
|Ns| multiplications for s = 0, 1, . . . , p.

Like any other first-order method, ADMM can be applied to
the problem (3) or its various reformulations in many different
ways. However, the two-block partitioning into (P1,P2) is
meticulously performed in this work to achieve two goals:

• Making the optimization problem for each block naturally

decomposable into disjoint subproblems.
• Making all of the subproblems have explicit closed-form

solutions.

These two features distinguish the developed algorithm from a
generic ADMM-based algorithm for SDPs, and enable solving
large-scale sparse SDPs.

Notation 1. For every D,E ∈ Hn, the notation D �C E
refers to the entrywise division of those entries of D and E
that correspond to the ones of C i.e.,

(D�C E)ij ,

{
Dij/Eij if Cij = 1

0 if Cij = 0.

In what follows, we will elaborate on every step of the
ADMM iterations:
Block 1: The first step of the algorithm that corresponds to
(7a) consists of the operation

Pk+1
1 := argmin

P1

Lµ(P1,Pk2 ,Dk).

Notice that the minimization of Lµ(P1,Pk2 ,Dk) with respect
to P1 is decomposable in terms of the real scalars

Re{Xij} for i = 1, . . . , n; j = i, . . . , n (16a)
Im{Xij} for i = 1, . . . , n; j = i+ 1, . . . , n (16b)

zs for s = 1, . . . , p (16c)

which leads to an explicit formula.
Block 2: The second step of the algorithm that corresponds
to (7b) consists of the operation

Pk+1
2 = argmin

P2

Lµ(Pk+1
1 ,P2,Dk)

Notice that the minimization of Lµ(P1,Pk2 ,Dk) with respect
to P1 is decomposable in terms of the matrix variables
{XC;r}qr=1 and {XN ;s}ps=0. Hence, the update of XC;r

reduces to the problem (10) for Ẑ = XC;r{Cr, Cr}. As
shown in Lemma 1, this can be performed via the eigenvalue
decomposition of a |Cr|×|Cr| matrix. In addition, the updated
value of XN ;s is a minimizer of the function

LN ;s(Z) =‖zs − 〈Ms,Z〉+ λz;s/µ‖2F+
‖X ◦Ns − Z + (1/µ)ΛN ;s‖2F (18)

By taking the derivatives of this function, it is possible to find
an explicit formula for Zopt. Define L′N ;s(Z) ∈ S(Ns) as the
gradient of LN ;s(Z) with the following structure:

L′N ;s(Z) ,

[
∂LN ;s

∂Re{Zij}
+ i

∂LN ;s

∂Im{Zij}

]
i,j=1,...,n

Then, we have

L′N ;s(Z)/2 = Z−X ◦Ns − (1/µ)ΛN,s

+ (−zs + 〈Ms,Z〉 − λz;s/µ)Ms.

Therefore,

Zopt = X ◦Ns + (1/µ)ΛN,s + ysMs, (19)

where ys , zs−〈Ms,Z
opt〉+λz;s/µ. Hence, it only remains

to derive the scalar ys, which can be done by inner multiplying

8

Algorithm 2 Preconditioning of problem (3)

Require: {Ms}ps=0, {ls}
p
s=1, {us}

p
s=1, γ

1: M0 ← γ × M0

‖M0‖F
2: for s = 1, . . . , p do

3: ls ← ls
‖Ms‖F

4: us ← us

‖Ms‖F

5: Ms ← Ms

‖Ms‖F
6: end for

7: return {Ms}ps=0, {ls}
p
s=1, {us}

p
s=1

Ms to both sides of the equation (19).
Closed-form solutions for each step of the over-relaxed

ADMM can be derived similarly, which leads to Algorithm 1.

Theorem 2. Assume that Slater’s conditions hold for the
decomposable SDP problem (3). For α = 1, the sequence
{Xk}∞k=0 generated by Algorithm 1 converges to an optimal
solution for (3).

Proof. The convergence of both primal and dual variables is
guaranteed for a standard ADMM problem if the matrix B
in (5b) has full column rank [61]. After realizing that (1) is
obtained from a two-block ADMM procedure, the theorem
can be concluded form the fact that the equivalent of B for
the algorithm (1) is a mapping from the variables {XC;r}qr=1

and {XN ;s}ps=0 to

{XC;r}qr=1, {XN ;s}ps=0 and {〈Ms,XN ;s〉}ps=0

which is not singular, i.e., it has full column rank. The details
are omitted for brevity.

C. Parameter Selection and Preconditioning

The performance of the proposed algorithm somewhat de-
pends on the parameter µ. Since this algorithm is based on a
two-block ADMM technique with the blocks P1 and P2, one
may directly use the existing results for parameter selection
in two-block ADMM, such as the techniques developed in
[62] and [25]. However, given the complexity of finding an
optimal value of µ, it may be more efficient to instead take
more iterations with a sub-optimal value µ to reduce the
overall runtime by avoiding the preprocessing time needed
for designing µ. Another issue is that first-order methods,
including ADMM, are sensitive to the condition number of
the problem data. One may optimally precondition the derived
two-block ADMM by adopting the existing methods, such
as [22], which is a daunting task in general. In this paper,
we resort to a simple preconditioning technique, described
in Algorithm 2, to normalize different parts of the data.
More precisely, the constraints in (3b) are normalized and the
objective function is rescaled according to a tuning factor γ.

V. OPTIMAL POWER FLOW

Consider an n-bus electrical power network with the topol-
ogy described by a simple graph H = (VH, EH), meaning that

each vertex belonging to VH = {1, . . . , n} represents a node
of the network and each edge belonging to EH = {1, . . . ,m}
represents a transmission line. Define Cf ∈ {0, 1}m×n and
Ct ∈ {0, 1}m×n to be the “from” and “to” incidence matrices
of the network graph, respectively, i.e., the (l, k) entry of Cf is
equal to one if and only if k is the starting node of the branch
l, whereas the (l, k) entry of Ct is equal to one if and only if
k is the ending node of l. Define G = {1, . . . , u} to be the set
of generating units, and let Cg ∈ {0, 1}u×n denote the unit
incidence matrix, i.e., the (g, k) entry of Cg is 1 if and only if
unit g is located at bus k. Additionally, let Y ∈ Cn×n denote
the admittance matrix of the network, and define Yf ∈ Cm×n
and Yt ∈ Cm×n to be the “from” and “to” admittance
matrices, respectively. Define V ∈ Cn as the unknown voltage
phasor vector, i.e., Vk is the voltage phasor for node k ∈ VH.
Let P+Qi represent the vector of complex power supply by
generating units, where P ∈ Ru and Q ∈ Ru are the vectors
of active and reactive powers, respectively. Define Sd ∈ Cn to
be the vector of nodal complex power demand. Finally, define
sf = [sf ;1, sf ;2, . . . , sf ;m]> and st = [st;1, st;2, . . . , st;m]>

to be the vectors of complex power entering the starting and
ending nodes of branches, respectively.

The classical OPF problem can be described as follows:

minimize
V∈Cn

P,Q∈Ru

sf ,sf∈Cm

∑
g∈G

c2;gP
2
g + c1;gPg + c0;g (20a)

subject to V min
k ≤ |Vk| ≤ V max

k , k ∈ VH, (20b)

Qmin
g ≤ Qg ≤ Qmax

g , g ∈ G, (20c)

Pmin
g ≤ Pg ≤ Pmax

g , g ∈ G, (20d)

CT
g (P + Qi) = diag{VV∗Y∗}+ Sd, (20e)

|sf ;l| ≤ smax
l , l ∈ EH, (20f)

|st ;l| ≤ smax
l , l ∈ EH, (20g)

sf = diag{CfVV∗Y∗f}, (20h)

st = diag{CtVV∗Y∗t }, (20i)

where V min
k , V max

k , Pmin
g , Pmax

g , Qmin
g , Qmax

g and smax
l are

constant limits, and c2;g ≥ 0, c1;g and c0;g are coefficients
accounting for the cost of producing power by unit g. More
details on a general formulation may be found in [7].

OPF is a highly non-convex problem, which is known to
be difficult to solve in general. However, the constraints of
problem (20) can all be expressed as linear functions of the
entries of the quadratic matrix VV∗. This implies that the
constraints of OPF are linear in terms of a matrix variable
W , VV∗. One can reformulate OPF by replacing each
monomial ViV ∗j with the new variable Wij and represent the
constraints in the form of problem (1) with a representative
graph that is isomorphic to the network topology graph H.
In order to preserve the equivalence of the two formulations,
two additional constraints must be added to the problem: (i)
W � 0, (ii) rank{W} = 1. If we drop the rank condition
as the only non-convex constraint of the reformulated OPF

9

problem, we attain the SDP relaxation of OPF as follows:

minimize
W∈Hn

P′,P,Q∈Ru

sf ,sf∈Cm

∑
g∈G

c2;gP
′
g + c1;gPg + c0;g (21a)

subject to (V min
k)2 ≤Wkk ≤ (V max

k)2, k ∈ VH, (21b)

Qmin
g ≤ Qg ≤ Qmax

g , g ∈ G, (21c)

Pmin
g ≤ Pg ≤ Pmax

g , g ∈ G, (21d)

P + Qi = diag{WY∗}+ Sd, (21e)
sf = diag{CfWY∗f}, (21f)

st = diag{CtWY∗t }, (21g)[
P ′g Pg
Pg 1

]
� 0, g ∈ G, (21h)[

smax
l sf ;l
s∗f ;l smax

l

]
� 0, l ∈ EH, (21i)[

smax
l st;l
s∗t;l smax

l

]
� 0, l ∈ EH, (21j)

W � 0, (21k)

where the auxiliary variable P ′g accounts for the square of Pg
for each g ∈ G. Note that the above problem is an SDP because
its objective function is linear and its constraints are linear
scalar/matrix equalities and inequalities in the variables of the
problem [11]. Therefore, it can be put into the canonical form
(1) (please refer to [7] for details on such a reformulation).
As stated in the introduction, several papers in the literature
have shown great promises for finding global or near-global
solutions of OPF using the above relaxation or a penalized
version of the SDP relaxation. The major drawback of relaxing
the OPF problem to SDP is the requirement of defining a
matrix variable, which makes the number of scalar variables
of the problem quadratic with respect to the number of network
buses. However, we have shown in [17] that real-world grids
would have a low treewidth, e.g., at most 26 for the Polish
test system with over 3000 buses. This makes our proposed
numerical algorithm scalable and highly parallelizable for the
above SDP relaxation. As an example, the SDP relaxation of
OPF for a large-scale European grid with 9241 buses amounts
to simple operations over 857 matrices of size 31 by 31, as
well as 14035 matrices of size 2 by 2.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm for solving the SDP relaxation of OPF over Pan
European Grid Advanced Simulation and State Estimation
(PEGASE) test systems [63], [64]. All simulations are run in
MATLAB using a system with an Intel 3.0 GHz, 12-core CPU
and 256 GB RAM. The overall running time of 5000 iteration
is between 8 and 50 minutes in a MATLAB implementation
without parallelization. For larger cases, running time dimin-
ishes using MATLAB parallel computing toolbox and could
be further reduced in C++.

In all of the experiments, a tree decomposition of the
sparsity graph is obtained in less than 90 seconds, using
the algorithm described in [54]. The experiment results are
summarized in Table I. The second column indicates the total

number of upper and lower bounds of the form (3b) (i.e.,
2 × p). The number of positive-semidefinite submatrices of
the form (3c) and their maximum size are shown in the third
and forth columns, respectively. Notice that since no thermal
limits are imposed for the case 13659-bus system, the number
of constraints and bags for this case are smaller, compared to
its preceding system. The over-relaxation parameter α = 1.8
is used for all cases. The quality of solutions obtained via
5000 ADMM iterations is given in columns 7 to 10. As
shown in Figure 2, the residue function εk (as defined in
(9)) is monotonically decreasing for all simulated cases. The
convergence behavior of the ADMM coupling constraint (i.e.,
‖Ax5000 + By5000 − c‖2) and the cost value for different
cases are depicted in Figure 2, as well. In order to further
assess the quality of solutions after 5000 ADMM iterations,
the maximum violation of inequality constraints in (3b) and
the largest absolute value among the negative eigenvalues of
all submatrices X5000{Cr, Cr} are given in the eighth and
ninth columns. Small-sized bags, corresponding to submatrices
of W in (21), are combined to obtain a modest number of
bags. To elaborate on the algorithm, note that every iteration
amounts to a basic matrix operation or an eigendecomposition
over matrices of size at most 31×31 for the PEGASE 13659-
bus system.

The effect of different choices for tuning parameter µ on the
convergence of the objective value for the 13659-bus system
is illustrated in Figure 3a. Additionally, Figure 3b compares
different choices of the over-relaxation parameter for the 2869-
bus system. Further preconditioning efforts, in addition to the
one suggested in Algorithm 2, may reduce the number of
iterations (note that OPF is often very ill-conditioned due to
high inductance-to-resistance ratios), and this is left for future
work.

VII. CONCLUSION

Motivated by the application of sparse semidefinite pro-
gramming in many hard optimization problems across engi-
neering, the objective of this work is to design a fast and par-
allelizable numerical algorithm for solving sparse semidefinite
programs (SDPs). To this end, the underling sparsity structure
of a given SDP problem is captured using a tree decomposition
technique, leading to a decomposed SDP problem. A highly
distributed/parallelizable numerical algorithm is developed for
solving the decomposed SDP, based on the alternating direc-
tion method of multipliers (ADMM). Each iteration of the
designed algorithm has a closed-form solution, which involves
multiplications and eigenvalue decompositions over certain
submatrices induced by the tree decomposition of the sparsity
graph. The proposed algorithm is applied to the classical
optimal power flow problem, and also evaluated on large-
scale PEGASE benchmark systems. The numerical technique
developed in this paper enables solving complex models of
various power optimization problems, such as optimal power
flow, unit commitment and state estimation, through conic
optimization.

10

Number of Number Maximum Linear Maximum Maximum ADMM Running Running
Test cases inequality of size µ γ coupling inequality PSD cost time without time with

constraints bags of bags violation violation violation value parallelization parallelization
Case 1354-bus 17238 3398 13 1200 1e-6 1.0e-1 1.4e-2 6.2e-4 738.10 8 min 7 min
Case 2869-bus 34694 6637 13 2500 1e-6 2.3e-1 7.9e-2 7.6e-4 1328.52 14 min 10 min
Case 9241-bus 96108 14892 31 3200 1e-7 4.2e-1 2.1e-1 4.5e-4 3140.25 39 min 18 min
Case 13659-bus 90140 5185 31 3000 1e-6 5.8e-1 1.6e-1 1.5e-4 3850.71 50 min 24 min

TABLE I: Performance of the proposed algorithm for solving the SDP relaxation of the OPF problem on PEGASE test cases
via serial and parallel implementations.

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
1.5

10
2.0

10
2.5

10
3.0

10
3.5

10
4.0

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
-1.0

10
0.0

10
1.0

10
2.0

10
3.0

In
fe

a
s
ib

ili
ty

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

-15,000

-10,000

-5,000

0

5,000

10,000

15,000

C
o

s
t

V
a

lu
e

(a)

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
2.5

10
3.5

10
4.5

10
5.5

10
6.5

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
-1.0

10
0.0

10
1.0

10
2.0

10
3.0

In
fe

a
s
ib

ili
ty

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

-9,000

-6,000

-3,000

0

3,000

6,000

9,000

C
o

s
t

V
a

lu
e

(b)

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
3.0

10
4.0

10
5.0

10
6.0

10
7.0

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
-0.5

10
0.5

10
1.5

10
2.5

10
3.5

In
fe

a
s
ib

ili
ty

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

-30,000

-15,000

0

15,000

30,000

C
o

s
t

V
a

lu
e

(c)

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
3.5

10
4.0

10
4.5

10
5.0

10
5.5

10
6.0

10
6.5

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

10
-0.5

10
0.0

10
0.5

10
1.0

10
1.5

10
2.0

10
2.5

In
fe

a
s
ib

ili
ty

0 1,000 2,000 3,000 4,000 5,000

Iteration Number

0

1,000

2,000

3,000

4,000

5,000

6,000

C
o

s
t

V
a

lu
e

(d)

Fig. 2: These plots show the convergence behavior of the residue functions, indefeasibly sequences and cost values for PEGASE
test systems. (a): 1354-bus system, (b): 2869-bus system, (c): 9241-bus system, (d): 13659-bus system.

11

1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration Number

10
0

10
0.5

10
1.0

10
1.5

10
2.0

10
2.5

10
3.0

(a)

2,000 2,500 3,000 3,500 4,000 4,500 5,000

Iteration Number

600

800

1000

1200

1400

C
o
s
t
V

a
lu

e

(b)

Fig. 3: The effect of different choices for tuning parameters on the convergence of cost value, (a): 13659-bus system, (b):
2869-bus system.

REFERENCES

[1] F. Alizadeh-Dehkharghani, “Combinatorial optimization with interior
point methods and semi-definite matrices,” Ph.D. dissertation, University
of Minnesota, 1992.

[2] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. SIAM, 1994, vol. 13.

[3] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–
1145, 1995.

[4] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. SIAM, 1994, vol. 15.

[5] Y. Nesterov, “Semidefinite relaxation and nonconvex quadratic optimiza-
tion,” Optimization methods and software, vol. 9, no. 1-3, pp. 141–160,
1998.

[6] Z.-Q. Luo, “Applications of convex optimization in signal processing
and digital communication,” Mathematical Programming, vol. 97, no.
1-2, pp. 177–207, 2003.

[7] J. Lavaei and S. Low, “Zero duality gap in optimal power flow problem,”
IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 92–107, 2012.

[8] T.-H. Chang, Z.-Q. Luo, and C.-Y. Chi, “Approximation bounds for
semidefinite relaxation of max-min-fair multicast transmit beamforming
problem,” IEEE Transactions on Signal Processing, vol. 56, no. 8, pp.
3932–3943, 2008.

[9] H. D. Mittelmann and F. Vallentin, “High-accuracy semidefinite pro-
gramming bounds for kissing numbers,” Experimental Mathematics,
vol. 19, no. 2, pp. 175–179, 2010.

[10] E. de Klerk and R. Sotirov, “Improved semidefinite programming
bounds for quadratic assignment problems with suitable symmetry,”
Mathematical Programming, vol. 133, no. 1-2, pp. 75–91, 2012.

[11] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[12] K. Fujisawa, K. Nakata, M. Yamashita, and M. Fukuda, “SDPA project:
Solving large-scale semidefinite programs,” Journal of the Operations
Research Society of Japan, vol. 50, no. 4, pp. 278–298, 2007.

[13] K. Fujisawa, H. Sato, S. Matsuoka, T. Endo, M. Yamashita, and
M. Nakata, “High-performance general solver for extremely large-
scale semidefinite programming problems,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis, 2012.

[14] M. S. Andersen, J. Dahl, and L. Vandenberghe, “Implementation of
nonsymmetric interior-point methods for linear optimization over sparse
matrix cones,” Mathematical Programming Computation, vol. 2, no. 3-4,
pp. 167–201, 2010.

[15] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota,
“Exploiting sparsity in semidefinite programming via matrix completion
II: Implementation and numerical results,” Mathematical Programming,
vol. 95, no. 2, pp. 303–327, 2003.

[16] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity
in semidefinite programming via matrix completion I: General frame-
work,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 647–674,
2001.

[17] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relax-
ation for contingency-constrained optimal power flow problem,” IEEE
Transactions on Power Systems, vol. 31, no. 2, pp. 1297–1307, 2016.

[18] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Computers &
Mathematics with Applications, vol. 2, no. 1, pp. 17 – 40, 1976.

[19] R. Glowinsk and A. Marroco, “Sur l’approximation, par lments finis
d’ordre un, et la rsolution, par pnalisation-dualit d’une classe de prob-
lmes de dirichlet non linaires,” ESAIM: Mathematical Modelling and
Numerical Analysis, vol. 9, no. R2, pp. 41–76, 1975.

[20] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternat-
ing direction optimization methods,” SIAM Journal on Imaging Sciences,
vol. 7, no. 3, pp. 1588–1623, 2014.

[21] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[22] P. Giselsson and S. Boyd, “Diagonal scaling in Douglas-Rachford
splitting and ADMM,” in IEEE Conference on Decision and Control,
2014.

[23] B. He and X. Yuan, “On the O(1/n) convergence rate of the Douglas–
Rachford alternating direction method,” SIAM Journal on Numerical
Analysis, vol. 50, no. 2, pp. 700–709, 2012.

[24] R. D. C. Monteiro and B. F. Svaiter, “Iteration-complexity of block-
decomposition algorithms and the alternating direction method of mul-
tipliers,” SIAM Journal on Optimization, vol. 23, no. 1, pp. 475–507,
2013.

[25] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan,
“A general analysis of the convergence of ADMM,” in International
Conference on Machine Learning, 2015.

[26] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
Lagrangian methods for semidefinite programming,” Mathematical Pro-
gramming, vol. 2, no. 3-4, pp. 203–230, 2010.

[27] Y. Sun, M. S. Andersen, and L. Vandenberghe, “Decomposition in
conic optimization with partially separable structure,” SIAM Journal on
Optimization, vol. 24, no. 2, pp. 873–897, 2014.

[28] R. A. Jabr, “Exploiting sparsity in SDP relaxations of the OPF problem,”
IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 1138–1139,
2012.

[29] Y. Weng, Q. Li, R. Negi, and M. Ilić, “Distributed algorithm for SDP
state estimation,” in Innovative Smart Grid Technologies, 2013.

[30] A. Hauswirth, T. Summers, J. Warrington, J. Lygeros, A. Kettner, and
A. Brenzikofer, “A modular AC optimal power flow implementation for
distribution grid planning,” in IEEE PowerTech, 2015.

[31] H. Zhu and G. B. Giannakis, “Power system nonlinear state estimation
using distributed semidefinite programming,” IEEE Journal of Selected
Topics in Signal Processing, vol. 8, no. 6, pp. 1039–1050, 2014.

[32] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” IEEE Transactions on Smart Grid, vol. 4,
no. 3, pp. 1464–1475, 2013.

[33] A. Kalbat and J. Lavaei, “A fast distributed algorithm for decomposable
semidefinite programs,” in IEEE Conference on Decision and Control,
2015.

[34] Q. Peng and S. H. Low, “Distributed optimal power flow algorithm
for radial networks, I: Balanced single phase case,” to appear in IEEE
Transactions on Smart Grid, 2016.

[35] R. Madani, A. Kalbat, and J. Lavaei, “ADMM for sparse semidefinite
programming with applications to optimal power flow problem,” in IEEE
Conference on Decision and Control, 2015.

12

[36] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal
power flow problem: Mesh networks,” IEEE Transactions on Power
Systems, vol. 30, no. 1, pp. 199–211, 2015.

[37] C. Josz and D. K. Molzahn, “Moment/sum-of-squares hierarchy for
complex polynomial optimization,” arXiv preprint arXiv:1508.02068,
2015.

[38] S. Fattahi, M. Ashraphijuo, J. Lavaei, and A. Atamtürk, “Conic relax-
ations of the unit commitment problem,” Energy, vol. 134, pp. 1079–
1095, 2017.

[39] J. Momoh, R. Adapa, and M. El-Hawary, “A review of selected optimal
power flow literature to 1993. I. nonlinear and quadratic programming
approaches,” IEEE Transactions on Power Systems,, vol. 14, no. 1, pp.
96–104, 1999.

[40] J. Carpentier, “Contribution a l etude du dispatching economique,”
Bulletin Society Francaise Electricians, vol. 3, no. 8, pp. 431–447, 1962.

[41] M. B. Cain, R. P. O’Neill, and A. Castillo, “History of optimal power
flow and formulations,” Technical Report, 2012.

[42] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard
optimization problems easy to solve,” in IEEE Power and Energy Society
General Meeting, 2012.

[43] S. H. Low, “Convex relaxation of optimal power flow–Part I: Formu-
lations and equivalence,” IEEE Transactions on Control of Network
Systems, vol. 1, no. 1, pp. 15–27, 2014.

[44] J. Lavaei, D. Tse, and B. Zhang, “Geometry of power flows and
optimization in distribution networks,” IEEE Transactions on Power
Systems, vol. 29, no. 2, pp. 572–583, 2014.

[45] S. Sojoudi and J. Lavaei, “Exactness of semidefinite relaxations for
nonlinear optimization problems with underlying graph structure,” SIAM
Journal on Optimization, vol. 24, no. 4, pp. 1746–1778, 2014.

[46] L. Gan, N. Li, U. Topcu, and S. H. Low, “Optimal power flow in
distribution networks,” IEEE Conference on Decision and Control, 2013.

[47] R. Y. Zhang, C. Josz, and S. Sojoudi, “Conic optimization theory:
Convexification techniques and numerical algorithms,” arXiv preprint
arXiv:1709.08841, 2017.

[48] R. Madani, J. Lavaei, and R. Baldick, “Convexification of power flow
problem over arbitrary networks,” in IEEE Conference on Decision and
Control, 2015.

[49] R. Madani, J. Lavaei, R. Baldick, and A. Atamturk, “Power system
state estimation and bad data detection by means of conic relaxation,”
in Hawaii International Conference on System Sciences, 2017.

[50] S. Sojoudi and S. H. Low, “Optimal charging of plug-in hybrid electric
vehicles in smart grids,” in IEEE Power and Energy Society General
Meeting, 2011.

[51] R. Madani, S. Sojoudi, G. Fazelnia, and J. Lavaei, “Finding low-rank
solutions of sparse linear matrix inequalities using convex optimization,”
SIAM Journal on Optimization, vol. 27, no. 2, pp. 725–758, 2017.

[52] R. Halin, “S-functions for graphs,” Journal of geometry, vol. 8, no. 1-2,
pp. 171–186, 1976.

[53] J. R. Gilbert, “Some nested dissection order is nearly optimal,” Infor-
mation Processing Letters, vol. 26, no. 6, pp. 325–328, 1988.

[54] H. L. Bodlaender and A. M. Koster, “Treewidth computations I. Upper
bounds,” Information and Computation, vol. 208, no. 3, pp. 259–275,
2010.

[55] ——, “Treewidth computations II. Lower bounds,” Information and
Computation, vol. 209, no. 7, pp. 1103–1119, 2011.

[56] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive
definite completions of partial Hermitian matrices,” Linear Algebra and
its Applications, vol. 58, pp. 109–124, 1984.

[57] M. Laurent, “Polynomial instances of the positive semidefinite and
Euclidean distance matrix completion problems,” SIAM Journal on
Matrix Analysis and Applications, vol. 22, no. 3, pp. 874–894, 2001.

[58] M. Laurent and A. Varvitsiotis, “A new graph parameter related to
bounded rank positive semidefinite matrix completions,” Mathematical
Programming, vol. 145, no. 1-2, pp. 291–325, 2014.

[59] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[60] N. J. Higham, “Computing a nearest symmetric positive semidefinite
matrix,” Linear Algebra and its Applications, vol. 103, pp. 103–118,
1988.

[61] B. He and X. Yuan, “On non-ergodic convergence rate of Douglas-
Rachford alternating direction method of multipliers,” Numerische Math-
ematik, vol. 130, no. 3, pp. 567–577, 2014.

[62] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal
parameter selection for the alternating direction method of multipliers

(ADMM): quadratic problems,” IEEE Transactions on Automatic Con-
trol, vol. 60, no. 3, pp. 644–658, 2015.

[63] S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, “Con-
tingency ranking with respect to overloads in very large power systems
taking into account uncertainty, preventive, and corrective actions,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 4909–4917, 2013.

[64] C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “AC Power Flow
Data in Matpower and QCQP Format: iTesla, RTE Snapshots, and
PEGASE,” arXiv preprint arXiv:1603.01533, 2016.

Ramtin Madani is an Assistant Professor at the
Electrical Engineering Department of the University
of Texas at Arlington. He received the Ph.D. degree
in Electrical Engineering from Columbia University
in 2015, and was a postdoctoral scholar in the De-
partment of Industrial Engineering and Operations
Research at University of California, Berkeley in
2016.

Abdulrahman Kalbat is an Assistant Professor
in the Electrical Engineering Department at United
Arab Emirates University. He received the Ph.D.
degree in Electrical Engineering from Columbia
University in 2015.

Javad Lavaei (SM’10) is an Assistant Professor in
the Department of Industrial Engineering and Opera-
tions Research at University of California, Berkeley.
He obtained his Ph.D. degree in Control and Dynam-
ical Systems from California Institute of Technology
in 2011. He has won multiple awards, including NSF
CAREER Award, Office of Naval Research Young
Investigator Award, AFOSR Young Faculty Award,
DARPA Young Faculty Award, Google Faculty Re-
search Award, Donald P. Eckman Award, Resonate
Award, INFORMS Optimization Society Prize for

Young Researchers, INFORMS ENRE Energy Best Publication Award, and
SIAM Control and Systems Theory Prize.

	Introduction
	Motivation: Power System Optimization

	Preliminaries
	Representative Graph and Tree Decomposition
	Sparsity Pattern of Matrices
	Indicator Functions

	Decomposed SDP
	Alternating Direction Method of Multipliers
	Projection Onto Positive Semidefinite Cone
	ADMM for Decomposed SDP
	Parameter Selection and Preconditioning

	Optimal Power Flow
	Simulation Results
	Conclusion
	References
	Biographies
	Ramtin Madani
	Abdulrahman Kalbat
	Javad Lavaei

