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Abstract

The operation of power grids is becoming increasingly data-centric. While the abundance of data

could improve the efficiency of the system, it poses major reliability challenges. In particular, state es-

timation aims to learn the behavior of the network from data but an undetected attack on this problem

could lead to a large-scale blackout. Nevertheless, understanding vulnerability of state estimation against

cyber attacks has been hindered by the lack of tools studying the topological and data-analytic aspects

of the network. Algorithmic robustness is of critical need to extract reliable information from abundant

but untrusted grid data. We propose a robust state estimation framework that leverages network spar-

sity and data abundance. For a large-scale power grid, we quantify, analyze, and visualize the regions

of the network prone to cyber attacks. We also propose an optimization-based graphical boundary de-

fense mechanism to identify the border of the geographical area whose data has been manipulated. The

proposed method does not allow a local attack to have a global effect on the data analysis of the entire

network, which enhances the situational awareness of the grid especially in the face of adversity. The de-

veloped mathematical framework reveals key geometric and algebraic factors that can affect algorithmic

robustness and is used to study the vulnerability of the U.S. power grid in this paper.
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While real-world data abound for many complex systems, they are often noisy and corrupted. Acquir-

ing reliable information from abundant but untrusted data is key to enhancing cybersecurity for mission-

critical systems, such as transportation and power grid. Since many of these systems are inherently network

structured, data analytics cannot be satisfactorily understood without incorporating their underlying graph

topologies. Consider the power system state estimation (SE) as an example, which constantly monitors the

status of the grid by filtering and fusing a large volume of data every few minutes. It plays a critical role

in the economic and reliable operation of the grid because major operational problems such as security-

constrained optimal power flow, contingency analysis, and transient stability analysis rely on its output. The

current industry practice is based on a set of heuristic iterative algorithms proposed in the 70s, which are

known empirically to work properly under normal situations. However, those algorithms become brittle un-

der adverse conditions, such as natural hazards, equipment faults, and even cyber attacks. The significance

of functioning SE to operators was illustrated by the 2003 large-scale blackout, in which the failure of SE

contributed to the inability of providing real-time diagnostic support [22]. Despite substantial advances in

algorithm design, namely using semidefinite programming, holomorphic embedding load flow methods, and

homotopy continuation methods, a major obstacle still remains: the lack of a framework for the design of a

robust and scalable algorithm together with a realistic evaluation of its vulnerability [1, 11, 18]. Developing

such a framework is challenging for three reasons: (a) the model of a power system is highly nonlinear

and nonconvex due to physical laws, (b) computational resources required by the existing algorithms grow

rapidly in the size of the system, and (c) the number of scenarios for adverse conditions is too large to be

enumerated (it is higher than the number of atoms in the observable universe for systems with as low as

500 possible attack points). These challenges have limited the scope of previous studies to simple approxi-

mate models or conservative methods that ignore the topology-dependent characterization of vulnerabilities

[11, 18]. Similar hurdles exist in studying vulnerability of data analytics for other large-scale complex

graphs, including ecological and social systems [24, 10], due to the lack of statistical tools for untrusted data

with underlying nonlinear and structured (rather than random) graphical models.

Here we focus on the U.S. grid, which is the largest machine on earth with more than 450,000 miles

of transmission lines (Figure 1). It consists of three large and nearly independent synchronous systems

(Eastern, Western, and Texas) that together span the lower 48 United States, most of Canada, and some parts

of Mexico. Due to confidentiality requirements on critical infrastructure information, we report our findings
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Figure 1: The U.S. power transmission network. (A) Map of the Eastern, Western and Texas interconnec-

tions. (B) Schematic diagram of a portion of the network. Each blue circle indicates a node (e.g., generator

bus or load bus). Nodes are connected by transmission lines. Power is generated, transported and consumed

in different locations (the amount of power is shown as the width of the orange arrow).
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on modified grids, which match the size, complexity, and characteristics of actual grids [6]. Basic properties

of the data are listed in Table 1. Central to the vulnerability analysis is that we provide formal statistical

guarantees that rely on the physical and cyber infrastructure, which can be realistically evaluated on any

large-scale system to depict high-granularity characteristics through graph topology, as shown in Figure 2.

Figure 2: Vulnerability map of the modified U.S. power grid. A line is robust (shown in green) if it stops

error propagation from one end to the other during state estimation; otherwise, it is vulnerable (shown in

red). Because the vulnerability map varies according to the set of available measurements, we demonstrate

the map for a single profile with abundant data, which includes voltage magnitude as well as real and reactive

power injections per bus and real in addition to reactive power flows per branch.

Data abundance meets algorithmic robustness

Existing SE software solves nonlinear least squares (NLS) for the set of complex voltage phasors based on

power flow measurements. NLS is a nonconvex problem, so even in the absence of measurement errors,

local search algorithms such as Newton’s method can become “stuck” at local minima, which are spurious

and do not correspond to a useful estimate of the state. When this occurs, the conventional wisdom is to

conclude that the estimations are unduly influenced by bad data, which are subsequently identified, down-

weighted and even discarded to rectify the outputs [16, 14, 19, 11]. Nevertheless, this is misleading and even

harmful, especially during unusual or emergency situations when accurate estimates are needed, because

erroneously rejecting useful information can further reduce the reliability. Even though advanced convex

relaxation techniques, such as semidefinite programming, can partially address this issue [18], the primary

disadvantage is their heavy computational and memory requirements.
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Compared to the classic state estimation where one needs to obtain useful information from limited

data, there is a paradigm shift from a limited-but-trustworthy data regime to an abundant-but-untrusted data

regime due to the significant growth in instrumentation and communication in the electric grid,. Hence, a

natural question arises: Can the additional information from abundant data sources be leveraged to enhance

the robustness of the algorithm?

In this section, we provide a strong positive answer to this challenging question. We propose a new

representation for the common types of measurements, such as the real and reactive power flows and voltage

magnitudes, by fully exploiting the sparsity structure of power networks. This representation framework

comprises physical quantities such as voltage magnitudes squared and phasor products over the lines. A

key advantage is that one can express all power flow measurements as a linear combination of these basic

parameters. From a computational complexity perspective, this enables depicting the boundary between easy

and difficult instances of SE with respect to the number and locations of sensor measurements. Particularly,

it is well-known that the SE problem is usually unidentifiable (i.e., there are multiple solutions that are

consistent with the measurements) in the traditional power flow setting, where each bus has only 2 sensor

measurements. Yet, our analysis shows that the problem becomes solvable as soon as the SE problem is

modestly over-determined (i.e., there exists a method to uniquely recover the true state of the system). In

contrast, this guarantee is almost vacuous using existing theoretical tools [7].

While the new parameter representation is effective under clean data, it turns out that it can be used

to deal with corrupted and untrusted data as well. To this end, we propose a two-step pipeline. The first

step is to solve a convex optimization, where the objective deals with both dense noise due to measurement

error and sparse noise due to bad data. Because the variables correspond to physical quantities, they can be

mathematically constrained within a set of second-order cones (SOCs) to improve robustness, though the

unconstrained versions based on linear programming (LP) or quadratic programming (QP) are also viable

options. Based on the estimations from Step 1, the next step directly reconstructs the voltage phasors from

the set of linear bases using elementary algebra. As a general remark, the rationale of the design of the

optimization algorithm in Step 1 can be also explained by an interesting connection to the robust statistics

literature. It can be shown that the optimization is equivalent to minimizing the Huber loss, which is well-

known to be robust to outliers (supplementary material). Previous methods have incorporated Huber loss,

but they are either in the setting of the DC approximation or a nonconvex formulation [17, 4]. There is also

a lack of theoretical understanding of the performance in the literature. Furthermore, the incorporation of

conic constraints tightens the relaxation, but the analysis becomes more involved.

Next, we provide a theoretical guarantee for global recovery in the case of sparse bad data. Consider

the following “corrupted sensing model” where the nonlinearity is hidden within a linear model using our

method to be explained later:

y = Ax+w + b. (1)

Here, y is the set of m sensor measurements for the vector x consisting of latent variables, A is the sensing

matrix, w is the dense random noise due to measurement error, and b is sparse bad data. Let J ⊂ {1, ...,m}
denote a set of measurements that are biased by sparse dense noise b (i.e., bk �= 0 if and only if k ∈ J ) and

J c be its complement set; let AJ be the submatrix with rows indexed by J in A. Denote the pseudoinverse

of AJ c as A+
J c = (A�

J cAJ c)−1A�
J c . Then, under some mild “observability condition,” the proposed two-

step pipeline (the unconstrained version) can simultaneously recover the true state and detect the bad data if

the following condition is satisfied:

ρGRC(J ) = ‖A+�
J c A

�
J ‖∞ < 1, (GRC)
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Figure 3: Evaluation of algorithmic robustness for different levels of bad data. The bad data are gener-

ated by the “scattered attack” strategy, where a subset of lines are chosen whose branch measurements are

all corrupted. For state estimation, we consider Newton’s method to solve nonlinear least squares (NLS) as

the baseline, and compare it with the proposed methods based on quadratic programming (QP) and second-

order cone programming (SOCP). For each percentage of bad points within dataset, we show (A) the root

mean squared error (RMSE) and (B) the F1 score of bad data detection, averaged over 20 independent sim-

ulations. For RMSE, a desirable value is any number less than 0.01. The F1 score is the harmonic average

of precision and recall. Because NLS deteriorates significantly with the addition of bad data, we only show

the simulation results up to 2% of bad data, which corresponds to about 380 number of bad data. We tested

on the synthetic Texas Interconnection with full sensor measurement set.

where ‖ · ‖∞ denotes the matrix infinity norm (i.e., the maximum absolute column sum of the matrix).

Intuitively, ρGRC(J ) measures the alignment of the corrupted data and the clean data. The condition states

that if the bad data are not aligned with the benign data, then it is possible to detect them.

We compare the proposed technique to the conventional approach based on Newton’s method with bad

data detection (BDD) in some empirical evaluations. For Newton’s method, measurements with residual

larger than a threshold are removed and SE is re-solved. As shown in Figure 3, our method significantly

improves on Newton’s method in terms of estimation accuracy and bad data detection rates. Contrary to

the prevailing wisdom, BDD is not effective because it depends on the quality of the initial estimation

from Newton’s method, which can be badly influenced by the bad data. In contrast, the key idea of the

proposed method is to incorporate a BDD term in the optimization so that the best configuration of the state

estimation and bad data vector be detected simultaneously. Since we solve either LP/QP or second-order

cone programming (SOCP), the runtime is manageable for real-time applications. We also see that the SOCP

version is more robust than the unconstrained LP/QP version (see Figure 3S in the supplementary material

for close comparison) .

From global recovery to boundary defense

The above results demonstrate that the proposed two-step pipeline can deal with random sparse bad data.

More importantly, we are concerned about the scenario where the bad data are engineered, or a whole

subregion’s data are compromised. This corresponds to adverse conditions such as cyberattacks or natural

disasters. In this situation, Newton’s method is particularly vulnerable, because by simply solving the
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nonlinear least squares, the influence of bad data will propagate throughout the system, as shown in Figure

4. What can we say about the robustness in this case?

It turns out that to defend against cyberattacks where the data for a geographical area are attacked, we

need to devise a new defense mechanism. Because the basic “observability” condition is not satisfied, it is

unrealistic to recover the state within the region. A well-defined problem is how to identify the boundary of

the attacked region to be able to limit the spread from and impact of small disruptions to local regions.

To this end, we propose a new notion of defense on networks, called “boundary defense mechanism.”

For a given attack scenario, there is a natural partition of the network into the attacked, inner and outer

boundaries, and safe regions (Figure 5(A)). If boundary defense is successful, then no matter how erroneous

the state estimation is within the attacked region, the estimates at the boundary and in the safe region are

unaffected. This is a fairly general framework, because it incorporates a wide range of adversarial scenarios

that are localized, including line outage, substation down, natural disasters, and cyberattacks. However, a

key challenge arises: due to the large number of possible scenarios, it is clearly unrealistic to evaluate the

efficacy of boundary defense separately for each case. How can one provide a systematic assessment of the

robustness that can be applied to a variety of scenarios?

Our key idea is that instead of treating the power grid as a collection of buses and lines, we analyze

each line individually. Specifically, we associate a “vulnerability index” (VI) to each line in one of the 2

directions. Note that VI is algorithmically dependent. In the case of unconstrained LP or QP, this metric for

line i → j is given by the following minimax optimization:

αLP
i→j = max

‖ξ‖∞≤1
min

h∈HLP(ξ)
‖h‖∞ (VI)

where HLP(ξ) =
{
h | A�

Mi→j
bd�,X i→j

bd

h+A�
Mi→j

bd×,X i→j
bd

ξ = 0
}

is the set of admissible h for a given vector ξ

in the unit hypercube, the index sets Mi→j
bd� and Mi→j

bd× correspond to the defending and defective measure-

ments on the boundary, and X i→j
bd denotes the set of variables associated with the boundary (supplementary

A B C

Figure 4: Evaluation of the boundary defense mechanism. (A) The grid is under “zonal attack,” where the

measurements within a zone are corrupted (shown in red). State estimation based on (B) Newton’s method

for nonlinear least squares, and (C) the proposed method with SOC constraints, where in both cases, buses

with an estimation error greater than 0.002 are marked red. The errors propagate throughout the grid in (B),
but are contained within the zonal boundary in (C).
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Figure 5: Illustration of the boundary defense mechanism. (A) Schematic diagram showing the attacked

nodes as well as inner and outer boundary nodes. (B) Vulnerability index evaluation. Only nodes and lines

considered in the evaluation are highlighted for each line evaluation, with each line direction considered

from the attacked node to the inner boundary node.

material). We use the subscript notation AMi→j
bd�,X i→j

bd
to indicate the submatrix of A whose rows are in-

dexed by Mi→j
bd� and columns are indexed by X i→j

bd . Figure 5(B) illustrates the nodes and lines relevant to

the evaluation of four lines for a given attack scenario. The case of SOCP is defined similarly:

αSOCP
i→j (x) = max

‖ξ‖∞≤1
min

h∈HSOCP(ξ,x)
‖h‖∞ (VI-SOC)

where HSOCP(ξ,x) is the set of admissible h defined in the supplementary material. Firstly, it can be seen

that (VI-SOC) depends on the true state x. However, this is not an issue because it can be shown that for

every x that corresponds to a complex voltage state of the system, we have

αSOCP
i→j (x) ≤ αLP

i→j

In other words, the incorporation of second-order cone constraints always improves robustness.

Our main result is stated in the following theorem (formal statement can be found in the supplementary):

Theorem 1 (Boundary defense mechanism). Consider a partition of the network into the attacked, bound-
ary, and safe regions, where the bad data are contained within the attacked region. If the vulnerability index
(LP/QP or SOCP) in the direction that points outwards from the attacked region is less than 1 for all lines
on the boundary, then the solution obtained from the two-step pipeline has the following properties: (i) all
the detected data are bad data, so there are no false positives in Step 1; and (ii) after removing the subgraph
of the attacked region from the main graph, direct recovery in Step 2 recovers the underlying state of the
system for the un-attacked region.
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From an attacker’s point of view, by attacking data in a local region, the adversary hopes that error

would propagate throughout the system due to miscalculation. Indeed, this normally occurs for Newton’s

method. In contrast, the above theorem guarantees that it will never happen using the proposed algorithm

as long as the boundary defense condition is satisfied. This explains the intriguing phenomenon observed in

the beginning—for the case of topological errors (line or substation outage) or cyberattacks, the boundary

defense mechanism is “triggered” to contain the error within the local neighborhood.

Geographic mapping of vulnerabilities

Based on the mathematical tools developed in the previous section, we assess the robustness of the synthetic

U.S. grid. First, we visualize the vulnerability index on the map for both (VI) and (VI-SOC) in Figure 6.

Due to its dependence on the underlying state, (VI-SOC) is shown for a profile described by the dataset,

which represents a snapshot of the operating status. A line is considered “robust” if the VIs in both di-

rections are less than 1; otherwise, it is “vulnerable (V-line).” The plot shows a geographic distribution of

robust/vulnerable lines for the east coast of the U.S. grid. It can be seen that the density of vulnerable lines is

relatively high for populated areas like Boston and New York, where we also observe a high density of robust

lines. On average, 59% lines are robust across the states, which is further split into each of the independent

synchronous regions, as shown in Table 1. In addition, it can be validated in the map that (VI-SOC) always

improves (VI), which implies that the incorporation of SOCP constraints can help rectify state estimation

and BDD.

The vulnerability map can be used in various ways. For instance, it can be used to investigate whether

topological errors for a line or a substation can be contained locally. This corresponds to the case when there

A B

Figure 6: Comparison of vulnerability maps under different optimization strategies. Vulnerability

maps when using the proposed (A) LP/QP and (B) SOCP are shown, where a robust line is marked green

and a vulnerable line is colored red.
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Figure 7: Comparison of bus critical index maps under different optimization strategies. Since the bus

critical indices are no larger than 3 within the map, we only show the locations with values 2 (yellow) and 3

(red) for the proposed (A) LP/QP and (B) SOCP state estimation strategies.

is a model mismatch for a transmission line or substation, such that the associated measurements are largely

biased. While this is a challenging problem, it could be addressed using the vulnerability map systematically.

Specifically, if the erroneous line/substation is surrounded by robust lines, then it is guaranteed that the error

will be contained locally via the boundary defense mechanism. Otherwise, there is a possibility that error

will “escape” through a vulnerable line to affect the outside region, which is referred to as a “critical line

(C-line)” or a “critical bus (C-bus).” In particular, for topological errors such as line mis-specification, it can

be regarded as a pair of gross injection errors at the two ends of the line; hence, we can identify it as long as

the line is not a C-line. A summary of statistics is shown in Table 1.

Furthermore, we can extend the case study by defining a criticality index (CI) for each substation. CI

gauges how many nodes in its neighborhoods will be affected if this substation is down. The higher the

value, the more crucial the situation if the substation is compromised. This is analogous to the cascading

failures for generators, but the difference is clear—our focus is on the robustness of data analytics rather

than physical dynamics. For each substation, CI can be calculated as the size of the connected component

rooted at the node, where an edge between two nodes is present if and only if the physical line that connects

them is vulnerable. We visualize the distribution of CI on the map as shown in Figure 7. It can be seen that

they are concentrated in populated areas.

Relating vulnerability to network and optimization properties

To investigate factors that affect line vulnerability, we shift our focus to the underlying network and opti-

mization properties. So far, our study has been conducted with respect to a specific measurement profile,

which corresponds to the set of full nodal and branch measurements. An important question is: How do the
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Basic properties Properties of LP/QP Properties of SOCP

Buses Lines V-lines C-lines C-bus Bus CI V-lines C-lines C-bus Bus CI

Texas 2,000 3,206 .3762 .4251 .4775 .20 .2979 .3674 .4225 .06

Western 10,000 12,706 .4715 .5231 .5313 .15 .3979 .4636 .4860 .06

Eastern 70,000 88,207 .4932 .5415 .5327 .14 .4104 .4780 .4810 .05

Table 1: Summary statistics of network properties and vulnerability characteristics. We show the

percentage of V-lines and C-lines among all network lines, and the percentage of C-bus among all network

buses for LP/QP and SOCP. We also show the average bus critical index, which measures the influence of a

single-bus attack on the rest of the network.
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Figure 8: Comparison of different measurement profiles and redundancy. We consider three different

methods for sensor augmentation, as detailed in the main text. The redundancy value is calculated as the

number of sensors divided by 2 × nb(number of buses) − 1, which is the degree of freedom in the tradi-

tional power flow problem. Each point for (A) RMSE and (B) F1 score is obtained by averaging over 20

independent simulations.

number and locations of measurement sensors affect line vulnerability? In particular, does decreasing the

number of sensors make the network significantly more vulnerable, and what type of sensor measurements

can bolster boundary defense?

For this purpose, we examine three methods for “measurement augmentation.” The first method (Method

1) starts from a spanning tree of the network and incrementally adds a set of lines to the tree to obtain a

subgraph that will be used for taking measurements. In this method, each bus is equipped with only voltage

magnitude measurements, and each line has 3 out of 4 branch flow measurements. The second method

(Method 2) starts with the full network, where each node has voltage magnitude measurements and each

line has one real and one reactive power measurements, and it grows the set of sensors by randomly adding

branch measurements. The third method (Method 3) differs from Method 2 only in that it grows the set

of sensors by randomly adding branch measurements as well as nodal power injections. To evaluate these

three methods, we devise a “scattered attack” strategy, where we randomly select 25 lines of the 2000-bus

Texas Interconnection and corrupt all of its branch measurements, which amounts to 100 bad data. We then

employ our proposed method to first detect bad data, and then rerun SE on the sanitized measurement set.

The observation is that, in general, both the root mean squared error (RMSE) and the F1 score for bad data

detection are enhanced as more sensors are added to the network, as shown in Figure 8. Specifically, an F1
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Figure 9: Characterization of vulnerability based on measurement profiles. The five measurement

profiles are full nodal measurements and 2/3/4 branch flows per line (I/III/IV); real and reactive power

injections per bus and 3 branch flows per line (II); and voltage magnitude per bus and 3 branch flows per

line (V). For each state estimation method (LP/QP or SOCP), we show the percentage of (A) V-lines, (B)
C-lines and (C) C-buses within the Texas Interconnection.

score close to 1 indicates that the algorithm detects all bad data (high recall rate) and does not falsely blame

the good data (high precision rate).

There is also a major discrepancy among different methods for the same level of measurement redun-

dancy. For instance, Method 1 significantly outperforms the other two methods at a low redundancy rate,

whereas Method 2 steadily outmatches Method 3 with more sensors. To explain this phenomenon, we need

to examine the types of available measurements. Thus, we select five typical measurement profiles as snap-

shots of Figure 8 and calculate the percentage of V-lines, C-lines, and the average CI in each case (Figure

9). It turns out that the inclusion of voltage magnitude or branch flow measurements can enhance the ro-

bustness, whereas the addition of nodal power injections is a major factor that weakens the defense. For

example, with only voltage magnitude and branch flow measurements, the network is almost “everywhere

defendable,” namely the locations of scattered attack can be accurately detected with high probability. On

the contrary, with the inclusion of nodal injections, even with a high rate of branch flow measurements, the

network is still vulnerable. Intuitively, this is because nodal power injections are highly coupled measure-

ments, which depend on state variables at all lines connected to the node. When one or few of the branches

are under attack, this can lead to miscalculations at all incident lines. In contrast, voltage magnitude and

branch flows are more localized measurements, whose corruptions have less effects on adjacent buses/lines.

In addition to the measurement set, network vulnerability also depends on topological properties. In

particular, our findings show that the connectivity degree for each node is positively correlated with line

vulnerability (Figure 10(A)). For a boundary defense node, it is increasingly likely to defend against attacks

as the degree grows. However, this trend is less obvious when the node is under attack. The reason is that

high-degree nodes have more unattacked measurements to leverage in order to rectify the corrupted lines.

On the other hand, it is more likely for a line to be critical if it is connected to a high-degree bus, as is

shown in Figure 10(B). This is because by the definition of critical line, as long as one of the remaining lines

incident to that bus is vulnerable, then the error will propagate out through the vulnerable line. Similarly, a

high-degree node is more likely to be a critical bus. In addition to the degree of connections, which is a local
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Figure 10: Characterization of vulnerability through nodal degrees. (A) Percentage of V-lines when the

nodes are at the boundary or in the attacked region. In this case, we distinguish the two directions of a line.

Percentage of (B) C-lines and (C) C-buses averaged over nodes with the same degree. Since the distribution

of nodal degrees is light tailed, we group nodes with degree 8 or higher to the same bin.

property, we have observed an interesting relation to the tree decomposition of the network, which provides

a generalization of the discussed method. However, due to the technicality, we leave it to the supplementary

materials.

As for the optimization property, our theoretical analysis indicates that the incorporation of SOCs always

improves line robustness (Proposition 2S). This can be visually verified in Figure 6. This can be also

observed in Figure 9 for different measurement profiles.

Conclusion

Our vulnerability analysis of power system state estimation is distinguished from previous works by its

scalability but also by (i) robust two-step convex formulation of the nonconvex nonlinear problem; (ii) strong

formal guarantees of boundary defense against cyber attacks; and (iii) localized vulnerability assessment

that accounts for network and optimization properties. This study provides a set of notions and tools—

the definition of vulnerability index, the boundary defense mechanism, and the analysis of topological and

optimization relations to vulnerability—that are applicable to graph-structured data.

Our analysis is based on the assumption that the amount of data is not too low—an assumption far from

being restrictive, as we show that with the right set of measurements, one can identify the true state of the

system with only one more sensor per bus on average compared to the classical setting of power flow that

is known to have multiple spurious local minima. More importantly, the emerging scenario of “abundant

but untrusted data” considered in this study is more practically realistic and algorithmically challenging

than the traditional scenario of “redundant and reliable data.” We proposed a robust two-step algorithm to

simultaneously perform bad data detection and state estimation. We showed how the number and locations

of sensors affect the robustness of state estimation to bad data. A well-chosen set of measurements is able

to significantly improve bad data robustness and estimation accuracy without increasing the sensing budget.

We also proposed a boundary defense mechanism to defend against cyber attacks. When a subregion

of the network is under attack, it becomes unrealistic to reliably recover the state within the region. By

attacking locally, the adversary hopes that due to miscalculation, the error will propagate throughout the

grid. However, under some mild conditions, our result shows that this will never occur using the proposed

mathematical technique—we can detect the boundary of the attack region and remove the compromised data.
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Furthermore, this formal condition can be quantified and visualized on the map, leading to a system-wide

vulnerability map to facilitate security assessment.

Based on the proposed mathematical framework, our analysis revealed several key factors that can affect

the robustness of the network. A highly connected node is able to defend against attacks if it happens to lie

on the boundary, but it is also more prone to attacks with higher collateral damage. For a given topological

structure, the inclusion of nodal power injection data can weaken the defense; by contrast, the inclusion of

voltage magnitude or branch power flow measurements can enhance the robustness against bad data, which

gives rise to a higher bad data detection accuracy. From an algorithmic perspective, the incorporation of

second-order cone constraints is theoretically shown to be beneficial for network robustness, which is also

validated through extensive experiments. Our analysis offers a scientific foundation for vulnerability-based

resource allocation, which in the case of a power grid would be based on prioritizing upgrades of sensing

infrastructure for critical locations.

Method summary

The power grid is modeled as a network of buses connected by transmission lines, where each bus is as-

sociated with a complex voltage phasor as the state. Given the topology and measurement profile, some

linear basis variables can be constructed for each bus and branch adaptively—if there are no branch mea-

surements and nodal power injections on the connected buses, then the corresponding branch variables can

be ignored. This ensures sparsity of the basis. From the measurements, we first estimate the linear basis

using a quadratic programming or second-order cone programming. Bad data detection is performed by

thresholding the estimated bad data vector. Then, we rerun the estimation on the sanitized dataset, whose

results are fed into the second step in the pipeline to produce a state estimation.

We considered two types of attacks. The first attack is “scattered attack” (Figures 3 and 8), where a

random subset of lines are chosen whose measurements are all corrupted. In this case, the bad data are

scattered throughout the network, and the goal is to correctly recover the overall system state. The second

attack is “zonal attack” (Figure 4), where all measurements within a zone—usually governed by a single

utility—are corrupted. In this case, the goal is to identify the boundary of the attack and correctly recover

the state outside the attacked zone. For stealthy attack, there is a problem of symmetry, namely, without

additional information, it is impossible to decide which zone is under attack, since the only inconsistency is

observed at the boundary. To avoid this case, we arbitrarily break the symmetry by introducing some sensors

within the attacked zone that are more secure than others, such that their values cannot be modified. We can

also perform posterior inference based on our prior knowledge of which zones are more likely to be secured

than others.

The vulnerability analysis is based on the partition of measurements and variables into attacked and

boundary categories (Figure 5). The vulnerability index is defined by a min-max problem, which is NP-hard

in general. For small-scale problems, we developed an efficient enumeration strategy that scales exponen-

tially by the number of bad measurements. For large-scale instance, we proposed two reformulations of the

problem, namely linear complimentarity problem and mixed-integer programming, which can be employed

to solve the problem efficiently. The critical index for buses (Figure 7) is obtained by counting the size of

the subgraph rooted at the substation and linked by a directional edge that is vulnerable. A critical line is

identified when any one of the adjacent lines pointing outwards is vulnerable.

The formal result of boundary defense mechanism is established through a series of propositions and

lemmas. The key steps include (1) a “glueable property,” which shows that local property of vulnerability

implies global property (Lemma 2S and 5S), (2) a result that establishes that boundary defense can stop

12



error from propagation (Lemma 1S and 3S), and (3) a statistical analysis of the first step algorithm based

on concentration bounds and a primal-dual witness argument. Further details on the linear representation,

two-step pipeline algorithm, theoretical analysis, and experimental setup are given in the supplementary

materials.
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Supplementary Material

This supplementary material includes formal theory and additional experimental details for the paper “Bound-

ary Defense against Cyber Threat for Power System Operation.” The manuscript is organized as follows. We

first discuss the preliminaries in Section A, including notations, power system modeling, the proposed lin-

ear basis of representation, and the measurement model considered in the study. We introduce the two-step

pipeline of state estimation in Section B, where we discuss the algorithms with and without the second-

order cone constraints and their connection to robust statistics. Section C introduces the boundary defense

mechanism, including the main results for boundary defense (Lemmas 7 and 14), implications of local prop-

erty for global property (Lemmas 11 and 17), and performance guarantees for estimation accuracy and bad

data detection (Theorems 12, 13, 19 and 20). The proofs of the main theorems are delegated to Section E.

Experimental details and additional figures are shown in Section D.

A Preliminaries

A.1 Notations

Vectors are shown by bold letters, and matrices are shown by bold and capital letters. Let xi denote the i-th
element of vector x. We use R and C as the sets of real and complex numbers, and S

n and H
n to represent

the spaces of n× n real symmetric matrices and n× n complex Hermitian matrices, respectively. A set of

indices {1, 2, ...,m} is denoted by [m]. The cardinality |J | of a set J is the number of elements in a set.

The support supp(x) of a vector x is the set of indices of the nonzero entries of x. For a set J ⊂ [m],
we use J c = [m] \ J to denote its complement. The symbols (·)� and (·)∗ represent the transpose and

conjugate transpose operators. We use 	(·), 
(·) and Tr (·) to denote the real part, imaginary part and trace

of a scalar/matrix. The imaginary unit is denoted as i. The notations ∠x and |x| indicate the angle and

magnitude of a complex scalar. For a convex function g(x), we use ∇g(x) and ∂g(x) to denote its gradient

and subgradient at x, respectively. We use λmin(A) to denote the smallest eigenvalue of A, and A � 0 to

indicate that A is a positive semidefinite matrix. Let I(n) denote the identity matrix of dimension n, but

sometimes for simplicity, we omit the superscript whenever the dimension is clear from the context. The

notations ‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞ show the cardinality, 1-norm, 2-form and ∞-norm of x. We use

‖ · ‖∞ to denote the matrix infinity norm (i.e., the maximum absolute column sum of the matrix). Note that

the notations p and q are used for active power and reactive power, respectively.

A.2 Power system modeling

We model the electric grid as a graph G := {N ,L}, where N := [nb] and L := [nl] represent its sets

of buses and branches. Each branch � ∈ L that connects bus f and bus t is characterized by the branch

admittance y� = g� + ib� and the shunt admittance ysh
� = gsh

� + ibsh
� , where g� (resp., gsh

� ) and b� (resp., bsh
� )

denote the (shunt) conductance and susceptance, respectively. Typically, gsh
� � bsh

� , so it is set to zero in

the subsequent description. In addition, to avoid duplicate definition, each line � = (i, j) is defined with a

direction from bus i (i.e., from end, given by f(�) = i) to bus j (i.e., to end, given by t(�) = j). We also use

{i, j}� or simply {i, j} to denote a line � that connects nodes i and j.

The power system state is described by the complex voltage at each bus v =
[
v1, ..., vnb

]� ∈ C
nb ,

where vk ∈ C is the complex voltage at bus k ∈ N with magnitude |vk| and phase θk := ∠vk. Given the
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complex voltages, by Ohm’s law, the complex current injected into line {k, j}� at bus k is given by:

ikj = y�(vk − vj) +
i

2
bsh
� vk.

By defining θkj := θk − θj , one can write the power flow from bus k to bus j as

p
(�)
kj = |vk|2g� − |vk||vj |(g� cos θkj − b� sin θkj),

q
(�)
kj = −|vk|2(b� + 1

2b
sh
� ) + |vk||vj |(b� cos θkj − g� sin θkj),

and active (reactive) power injections at bust f as

pk =
∑
{k,j}�

p
(�)
kj , qk =

∑
{k,j}�

q
(�)
kj . (2)

The above formulas are based on polar coordinates of complex voltages, where measurements are nonlin-

ear functions of voltage magnitudes and phases. Another popular representation is based on rectangular

coordinates of complex numbers, where measurements are expressed as quadratic functions of the real and

imaginary parts of voltages (see [5, Chap. 1] for more details). We use “PV bus” and “PQ bus” to denote

buses with real power injection and voltage magnitudes, and buses with real and reactive power injection

measurements, respectively.

A.3 Linear basis of representation

We introduce a new basis of representation, where measurements can be expressed as linear combinations
of the quantities derived form bus voltages. Specifically, for a given system G, we introduce two groups of

variables:

1. voltage magnitude square, x
mg
k := |vk|2, for each bus k ∈ N , and

2. real and imaginary parts of complex products, denoted as xre
� := 	(viv∗j ) and xim

� := 
(viv∗j ), re-

spectively, for each line � = (i, j). Note that there is only one set of variables {xre
� , x

im
� } for each

line.

Using this representation, we can derive various types of power and voltage measurements as follows:

• Voltage magnitude square. The voltage square magnitude square at bus k ∈ N is simply x
mg
k by

definition;

• Branch power flows. For each line � = (i, j), the real and reactive power flows from bus i to bus j
and in the reverse direction are given by:

p
(�)
ij = g�x

mg
i − g�x

re
� − b�x

im
�

q
(�)
ij = −(b� +

1
2b

sh
� )x

mg
i + b�x

re
� − g�x

im
�

p
(�)
ji = g�x

mg
j − g�x

re
� + b�x

im
�

q
(�)
ji = −(b� +

1
2b

sh
� )x

mg
j + b�x

re
� + g�x

im
�
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• Nodal power injection. The power injection at bus node k consists of real and reactive powers, i.e.

pk + iqk, where:

pk =
∑
k∈�

g�x
mg
k −

∑
k∈�

g�x
re
� − (

∑
f(�)=k

b� −
∑

t(�)=k

b�)x
im
�

qk = −(
∑
k∈�

b� +
1
2b

sh
� )x

mg
k +

∑
k∈�

b�x
re
� − (

∑
f(�)=k

g� −
∑

t(�)=k

g�)x
im
� ,

where
∑

k∈� is the sum over all lines � ∈ L that are connected to k,
∑

f(�)=k is the sum over all lines

� where f(�) = k, and similarly,
∑

t(�)=k is the sum over all lines � where t(�) = k. Equivalently, we

can use (2) to combine the branch power flows defined above.

Thus, each customary measurement in power systems that belongs to one of the above measurement types
can be represented by a linear function1:

mi(x) = a�
i x�, (3)

where ai ∈ R
nx is the vector for the i-th noiseless measurement and x� = ({xmg

k }k∈N , {xim
� , xim

� }�∈L) is

the regression vector. By collecting all the sensor measurements in a vector m ∈ R
nm , we have

m = Ax�, (4)

where A ∈ R
nm×nx is the sensing matrix with rows a�

i for i ∈ [nm].

A.4 Measurement model

To perform SE, the supervisory control and data acquisition (SCADA) system collects measurements about

power flows and complex voltages at key locations instrumented with sensors. This process is subject to

both ubiquitous sensor noise and randomly occurring sensor faults. We consider the measurement model as

follows:

y = Ax� +w� + b�, (5)

where A ∈ R
nm×nx and x� ∈ R

nx are the sensing matrix and the true regression vector in (4), w� ∈ R
nm

denotes random noise, and b� ∈ R
m is the bad data error that accounts for sensor failures or adversarial

noise [13]. Note that x serves as an intermediate parameter and the end goal is to find v.

Because the sensor data are of different types and their corresponding measurements could be of different

scales, we introduce the following condition.

Definition 2 (Measurement normalization convention). Each row of A corresponding to a voltage magni-
tude measurement is normalized by the degree of connection of the node k, ‖ai‖22 = deg(k), and 1 otherwise
‖ai‖22 = 1, where ai is the i-th row of A. The only exception is when the line vulnerability (c.f., Def. 9) is
calculated, when all the measurements are normalized by 1.

This condition is straightforward to implement in practice, since the sensing matrix A is fixed for a given

set of measurements. This is also known as preconditioning, which assists with the statistical performance

of regression.

1It is straightforward to include linear PMU measurements in our analysis as well using the relation tan θij = xim
� /xre

� for each

line � = (i, j). Thus, as long as we have two adjacent PMU measurements, we can use the phase difference to construct a linear

measurement equation xim
� − tan θijx

re
� = 0.
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B Two-step pipeline of state estimation

This section describes the proposed two-step state estimation method. For the first step, we develop algo-

rithms in two categories, which differ by whether or not the second-order cone constraints are incorporated.

Within each category, we also propose two slight variations, which differ by whether the term of squared

loss is included. For the second step, we propose two approaches based on quadratic programming.

B.1 Step 1: Estimation of x�

In the first step, the goal is to estimate x� from a set of noisy and corrupted measurements y. We consider

two cases separately. In the first case, the dense noise is negligible, i.e., w� = 0, and we only need to

consider the sparse measurement corruption b.

Case 1: Sparse corruption but no dense noise (i.e., w = 0)

In this case, the measurements are given by y = Ax�+b�. To estimate x�, we solve the following program:

min
b∈Rnm ,x∈Rnx

‖b‖1, subject to Ax+ b = y. (S(1): �1)

Briefly, under some mild conditions on observability and robusteness to be specified in Section C, we can

faithfully recover b� from the above program. As a consequence, x� can be obtained by performing regres-

sion using the remaining good data.

For this case, we can also incorporate second-order cone (SOC) constraints:

min
b∈Rnm ,x∈Rnx

‖b‖1, subject to Ax+ b = y, x ∈ K, (S(1): �1-K)

where

K =

{
x ∈ R

nx

∣∣∣ [ x
mg
i xre

� + jxim
�

xre
� − jxim

� x
mg
j

]
� 0, ∀� := (i, j) ∈ L

}
. (6)

Let σ(x) denote the index of the variable x (e.g., x
mg
i , xre

� , x
im
� ) in the vector x. For instance, σ(x

mg
i ) denotes

the index of x
mg
i in x. The SOC constraint can be equivalently written as:

c�� x ≥ ‖D�x‖2 ⇔
[
D�

c��

]
x ∈ C5, (7)

where c� ∈ R
nx has its σ(x

mg
i ) and σ(x

mg
j ) entries to be 1√

2
and 0 elsewhere, and D� ∈ R

4×nx has

its (1, σ(x
mg
i )) and (2, σ(x

mg
j )) entries to be 1√

2
and its (3, σ(xre

� )) and (4, σ(xim
� )) entries to be 1, and 0

elsewhere, and C5 denotes the second-order cone of dimension 5.

The problem (S(1): �1-K) can be reformulated as:

min
b∈Rnm ,x∈Rnx

‖b‖1, subject to Ax+ b = y,

[
D�

c��

]
x ∈ C5, ∀� ∈ L (8)

using standard SOCP notations. The Lagrangian is given by:

L (x, b, {ν�,μ�}�∈L,h) = ‖b‖1 + h� (y −Ax− b)−
∑
�∈L

(
ν�c

�
� x+ μ�D�x

)
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The Karush-Kuhn-Tucker (KKT) conditions are given by:

(primal feasibility) Ax+ b = y, c�� x ≥ ‖D�x‖2 , ∀� ∈ L (9)

(dual feasibility) ν� ≥ ‖μ�‖2, ∀� ∈ L (10)

(stationarity) −
∑
�∈L

(ν�c� +D�
� μ�) = A�h, h ∈ ∂‖b‖1 (11)

(complementary slackness) ν�c
�
� x+ μ�

� D�x = 0, ∀� ∈ L. (12)

Therefore, the dual program of (S(1): �1-K) is given by:

max
h∈Rnm ,{ν�,μ�}�∈L

h�y (13a)

subject to −
∑
�∈L

(ν�c� +D�
� μ�) = A�h (13b)

‖h‖∞ ≤ 1 (13c)

ν� ≥ ‖μ�‖2, ∀� ∈ L (13d)

Case 2: Sparse corruption and dense noise

In this case, the dense noise cannot be ignored, and the measurements are given by (3). We perform the

estimation by solving the following mixed-objective optimization:

min
b∈Rnm ,x∈Rnx

1
2nm

‖y −Ax− b‖22 + λ‖b‖1, (S(1): �2�1)

where λ > 0 is the regularization coefficient. Due to the existence of dense noise, it is no longer possible to

exactly recover the true x�; however, if the magnitude of each dense noise is small, then we can still have

strong statistical bounds on the estimation error.

We can also incorporate second-order cone constraints:

min
b∈Rnm ,x∈Rnx

1
2nm

‖y −Ax− b‖22 + λ‖b‖1, subject to x ∈ K, (S(1): �2�1-K)

where K is defined in (6). The Lagrangian of (S(1): �2�1-K) is given by:

L (x, b, {μ�}�∈L, {ν�}�∈L,h) = 1
2nm

‖y −Ax− b‖22 + λ‖b‖1 −
∑
�∈L

(
ν�c

�
� x+ μ�D�x

)
The KKT conditions are given by:

(primal feasibility) c�� x ≥ ‖D�x‖2 , ∀� ∈ L (14)

(dual feasibility) ν� ≥ ‖μ�‖2, ∀� ∈ L (15)

(stationarity)
1

nm
A�(y −Ax− b) +

∑
�∈L

(ν�c� +D�
� μ�) = 0 (16)

1

nm
(y −Ax− b) = λh, h ∈ ∂‖b‖1 (17)

(complementary slackness) ν�c
�
� x+ μ�

� D�x = 0, ∀� ∈ L. (18)

The KKT conditions are important for the analysis in Section C.
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B.2 Connection with robust statistics for bad data detection

The so-called bad data rejection and state estimation form an important part of power systems supervisory

control and data acquisition. There are traditional statistical approaches to bad data rejection that involve

iteratively eliminating the measurements with the largest residual that are obtained from a least squares

estimation (see [26, Section 9.6]). Such a smooth quadratic objective can, however, mask bad data by

“spreading” the error around the system. An alternative approach developed in [3] is to use an �1 objective,

which can identify multiple bad data directly. However, the resulting estimate does not average out the effect

of dense, independent measurement errors.

The so-called Huber loss that is quadratic for small measurement residuals but constant or linear for

large measurement residuals has been explored in [17, 4, 27]. The quadratic-linear loss function is convex,

continuous and differentiable at the transition between the quadratic and linear part, and is given by [12]:

fHuber(r;ψ) =

{
1
2r

2 |r| ≤ ψ

ψ(|r| − 1
2ψ) |r| > ψ

, (19)

where ψ is the hyper-parameter controlling the transition point between the �2 and �1 loss functions.

There is an interesting connection between (S(1): �2�1) and the Huber loss. To see this, we can view

the optimization over b and x in (S(1): �2�1) as an inner optimization with b for a given x, and an outer

optimization with x. The inner optimization is composed of a series of smaller optimization problems

min
bi

1
2nm

(yi − a�
i x− bi)

2 + ψ|bi|, (20)

for i ∈ [nm], which has the optimal solution

b∗i = sign(yi − a�
i x)max

(
0,

∣∣∣yi − a�
i x

∣∣∣− ψ
)
, (21)

where sign(y) is the sign of y. Now, by defining ri := yi − a�
i x, we substitute the solution into the outer

optimization to obtain

1
nm

∑
i∈[nm]

1
2(ri − sign(ri)max (0, |ri| − ψ))2 + ψ|max (0, |ri| − ψ) |. (22)

Hence, it can be seen that the above expression is equal to the Huber loss:

1

nm

∑
i∈[nm]

fHuber(yi − a�
i x;ψ). (23)

Despite the wide usage of Huber loss in power system estimation, the existing studies in the literature are

mostly empirical. The approach proposed here allows for strong mathematical results that go well beyond

the promising empirical results.

B.3 Step 2: Recovery of v

The goal of the second step is to recover the underlying system voltage v from the estimation x̂ obtained in

Step 1. First, we transform x̂ into estimations of voltage magnitudes and phase differences:

• The voltage magnitude at each bus k ∈ N can be obtained by |v̂k| =
√

x̂
mg
k ;
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• The phase difference along each line � = (i, j) is given by θ̂ij = arctan x̂im
� /x̂re

� .

To obtain the estimations of phases at each bus, we propose two methds. The first method is to solve the

least-squares problem

θ̂ = arg min
θ∈Rnb

∑
�=(i,j)

(θi − θj − θ̂ij)
2, (S(2): �2)

which has a closed-form solution: let θΔ be a collection of θ̂ij , and L ∈ R
nl×nb be a sparse matrix with

L(�, i) := 1 and L(�, j) := −1 for each line � = (i, j) and zero elsewhere. Then, the solution for (S(2): �2)

is given by:

θ̂ = (L�L)−1L�θΔ. (24)

The second approach is to solve a mixed-objective problem, similar to the first step:

θ̂ = arg min
θ∈Rnb

1
nl

∑
�=(i,j)

(θi − θj − θ̂ij)
2 + λ2

∑
�=(i,j)

|θi − θj − θ̂ij |. (S(2): �2�1)

In this case, there is no longer a closed-form solution available, but the advantage is that it is robust to large

errors in the phase difference estimation, in case the first step method does not fully detect the bad data in

the measurements.

Finally, we can reconstruct v̂ via the formula:

v̂k = |v̂k|eiθ̂k , k ∈ N . (25)

If the regression vector from Step 1 is exact, i.e., x̂ = x�, then we can use (S(2): �2) to accurately recover the

system state v̂ = v. Even if the x̂ is not exact, the second stage estimator (S(2): �2�1) has nice properties to

control the estimation error, and therefore any potential error in θ̂ij does not propagate along the branches.

C Boundary defense mechanism

In this section, we give a detailed discussion of the new notion of defense on networks, called “boundary

defense mechanism.” For a given attack scenario, we define a natural partition of the network into the

attacked, inner and outer boundaries, and safe regions. We describe a fairly general framework, which

incorporates a wide range of adversarial scenarios that are localized, including line outage, substation down,

and zonal attacks. For the rest of the analysis, we denote x� and b� as the ground truth for state x and bad

data b, as defined in (5).

Definition 3 (Attacked, boundary, and safe regions). Let Nat be the set of nodes under attack and the
“attacked region” Bat := {Nat,Lat} be the induced subgraph. Let the “inner boundary” be the set of
nodes adjacent to the attacked region Nbi := {i ∈ N \ Nat | ∃j ∈ Nat, s.t. {i, j} ∈ L} and the induced
graph be denoted as Bbi, and the “outer boundary” be the set of nodes adjacent to the inner boundary
region Nbo := {i ∈ N \ (NB ∪Nbi) | ∃j ∈ Nbi, s.t. {i, j} ∈ L} and the induced graph be denoted as
Bbo. Let Nbd := Nbi ∪ Nbo be nodes in the “boundary region” and Bbd := {Nbd,Lbd} be the induced
subgraph. We also denote the set of lines that bridge nodes between Bat and Bbi as Lat∩bi, and the set of
lines that brige nodes between Bbi and Bbo as Lbi∩bo. Lastly, let NBsf

:= N \ (Nat ∪ Nbd) be the rest of
the nodes and the “safe region” Bsf := {Nsf ,Lsf} be the induced subgraph.
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When there is an attack on a local region, a subset of the local measurements are compromised. We use

B = Bat ∪ Bbi to delineate the smallest subgraph to cover this region. For the simplicity of the analysis,

we assume that there are no lines connecting two inner boundary nodes in Bbi, and that no two nodes in

Bat are connected to the same node in Bbi (one can always enlarge the region B to satisfy these conditions).

Furthermore, we make the assumption that no measurements on the nodes (e.g., voltage magnitudes and

nodal injections) or on the lines (e.g., power branch flows) within the boundary region Bbd are attacked.

The partition set notations in Def. 3 are illustrated in Fig. 11. With the set partition notions ready, we

introduce a partition of the measurements and variables.

�

�

Attacked inner 
region ���

Attacked inner 
boundary ���

Unaffected region
��� 	 
 � ����  ����

Unaffected outer 
boundary ���

Affected region 
� 	 ���  ���

Attacked boundary 
��� 	 ����  ���

Figure 11: The illustrations of the partition set concepts introduced for the case of zonal attacks. Lines or

buses whose measurements are under attack are shown in red.

Definition 4 (Attacked, boundary and safe variables and measurements). The set of “attacked variables”
Xat includes variables on nodes in Bat and lines in Lat ∪ Lat∩bi. The set of “boundary variables” Xbd

includes variables on nodes in Bbd and lines in Lbd. The set of “safe variables” Xsf includes all other
variables. The set of “attacked measurements” Mat includes measurements on nodes in Bat and lines
in Lat. The set of “inner boundary measurements” Mbi includes nodal power injections in Bbi and line
measurements in Lat∩bi, and the set of “outer boundary measurements” Mbo includes voltage magnitude
and line measurements in Bbd. Together, they form the “boundary measurements” Mbd := Mbi ∪ Mbo.
The rest of the measurements Msf are “safe measurements.”
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By definition, the sets Msf , Mbo, Mbi, Mat form a partition of [nm], and the sets Xsf , Xbd, and Xat

form a partition of [nx]. Thus, we can rearrange and partition the matrix A as follows:

A =

⎡
⎢⎢⎣
AMsf ,Xsf

AMsf ,Xbd
AMsf ,Xat

AMbo,Xsf
AMbo,Xbd

AMbo,Xat

AMbi,Xsf
AMbi,Xbd

AMbi,Xat

AMat,Xsf
AMat,Xbd

AMat,Xat

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat

⎤
⎥⎥⎦ . (26)

There is no loss of generality in arranging A as above, which is simply for the purpose of presentation. Let

I
(nm)
Mat

, I
(nm)
Mbi

, I
(nm)
Mbo

, and I
(nm)
Msf

be matrices that consist of the Mat, Mbi, Mbo, and Msf rows from the

identity matrix of size nm, respectively, and I
(nx)
Xat

, I
(nx)
Xbd

and I
(nx)
Xsf

be the matrices that consist of the Xat,

Xbd and Xsf rows from the identity matrix of size nx. Then, we can obtain each subblock that accounts for

a set of measurements (e.g. Msf ) and variables (e.g. Xsf ) using the equation AMsf ,Xsf
= I

(nm)
Msf

AI
(nx)�
Xsf

without having to specify a particular order sequence of measurements y or variables x,

We introduce the following properties to characterize the sensing matrix A.

Definition 5 (Lower eigenvalue). Let QMbd,Xbd
:=

[
AMbd,Xbd

I
(|Mbd|)�
Mbi

]
, where I

(|Mbd|)
Mbi

consists of
Mbi rows of the size–|Mbd| identity matrix. Then, the lower eigenvalue Cmin is the lower bound:

min
{
λmin

(
Q�

Mbd,Xbd
QMbd,Xbd

)
, λmin

(
A�

Mbo,Xbd
AMbo,Xbd

)
, λmin

(
A�

Msf ,Xsf
AMsf ,Xsf

)}
≥ Cmin.

(27)

The value Cmin characterizes the influence of bad data on the identifiability of x� outside the attacked

region. If Cmin is strictly positive and one can accurately detect the support of bad data on the boundary,

then it is possible to obtain a satisfactory estimation of x� outside the attacked region.

The next property turns out to be critical for bad data support recovery.

Definition 6 (Global mutual incoherence). Let J denote the support of bad data, and let the pseudoinverse
of AJ c be A+

J c = (A�
J cAJ c)−1A�

J c . Then, the mutual incoherence parameter ρ(kb) is given by:

ρ(J ) = ‖A�+
J c A

�
J ‖∞. (28)

The name “mutual incoherence” originates from the compressed sensing literature [9, 21, 28, 25]. The

proposed mutual incoherence definition is not the same as any of the existing mutual incoherence conditions.

Intuitively, it measures the alignment of the sensing directions of the corrupted measurements (i.e., AJ )

with those of the clean data (i.e., AJ c). If these directions are misaligned (a.k.a., incoherent), then the value

ρ(J ) is low, and it is likely to uncover the support of bad data. In general, the less bad data exist, the

more likely that ρ(J ) will be small. However, the main drawback of this metric is that it depends on each

instance of the bad data support J , and therefore it cannot be used as a robustness metric in a general sense.

Moreover, it turns out that this metric is more conservative than the vulnerability index to be discussed next

(see Proposition 10).

C.1 Vulnerability index and boundary defense for linear/quadratic programming

Our goal is to find the attacked region by detecting a sufficiently large number of measurements within

Mat while avoiding making false positive detection for measurements belonging to the unaffected region.
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In other words, if Ĵ := supp(b̂) denotes the support of the estimated bad data, then it is desirable to have

Ĵ ⊆ Mat∪Mbi (here, we relax the condition that Ĵ ⊆ J and allow both false positives and false negatives

within the attacked region). The following lemma establishes a key result for the estimation without SOCs.

Lemma 7 (Boundary defense stops error propagation). Suppose tthat here is no dense measurement noise
(i.e., w = 0), and the bad data are confined within Mat, i.e., supp(b�) ⊆ Mat. Also, suppose that
AMsf∪Mbd,Xsf∪Xbd

has full column rank. If for an arbitrary b�Mbd
with support limited to the inner bound-

ary, i.e., supp(b�Mbd
) ⊆ Mbi, the solution x̂bd ∈ Xbd to the program

min
xbd

‖zMbd
−AMbd,Xbd

xbd‖1 (29)

is unique and satisfies the properties x̂bd = x�bd, where zMbd
= AMbd,Xbd

x�bd+b�Mbd
, then the solution

x̂ to (S(1): �1) satisfies the properties x̂bd = x�bd and x̂sf = x�sf .

To sketch the proof, since by assumption the unique optimal solution for the measurement-sensing ma-

trix pair (yMsf
,AMsf ,Xsf∪Xbd

) given x�bd recovers the ground truth x�sf , we aim at showing that the unique

optimal solution of (yMbd∪Mat
,AMbd∪Mat,Xbd∪Xat) corresponding to the boundary state coincides with

x�bd, which completes the proof because this set of measurements is independent of the states xsf . This

achieves a de facto coupling of the “weakly coupled” system due to the overlapping regions corresponding

to measurements yMbd
.

Proof. There are two ways to prove the statement. The first one relies on logical reasoning that is intuitive,

while the second approach is based on KKT conditions that can be easily generalized to measurements with

dense noise. We start with the first approach, which partitions the loss function in (S(1): �1) into the sum of

three terms:

f1(xsf ,xbd) = ‖yMsf
−AMsf ,Xsf

xsf −AMsf ,Xbd
xbd‖1;

f2(xbd,xat) = ‖yMbd
−AMbd,Xbd

xbd −AMbd,Xatxat‖1;
f3(xat) = ‖yMat

−AMat,Xatxat‖1.

Let zMbd
= yMbd

− AMbd,Xatxat = AMbd,Xbd
x�bd − AMbd,Xat(x�at − xat), and by the structure of

AMbd,Xat shown in (26), we have supp (AMbd,Xat(xat − x�at)) ⊆ Mat. Hence, we have that the unique

optimal of f2(xbd,xat) satisfies x̂bd = x�bd for any given xat. Since there are no bad data for yMsf

and yMbd
and moreover AMsf∪Mbd,Xsf∪Xbd

has full column rank, the unique minimum of f1(xsf ,xbd) is

(x̂sf , x̂bd) = (x�sf ,x�bd). Therefore, for any given xat, the unique optimal of f1(xsf ,xbd) + f2(xbd,xat)
is (x̂sf , x̂bd) = (x�sf ,x�bd). Since f3(xat) does not depend on (xsf ,xbd), the unique optimal solution of

(S(1): �1) recovers the true solution.

The second approach is as follows. We can write the dual program of (S(1): �1) as:

max
h∈Rnm

h�y, subject to A�h = 0, ‖h‖∞ ≤ 1. (S(1): �1-dual)

To show that

(
x̂ =

[
x�
�sf x�

�bd x̂at

]�
, b̂ =

[
0� b̂

�
Mbd

b̂
�
Mat

]�)
is the optimal solution of (S(1): �1),

we simply need to find a dual certificate h� =
[
h�
Msf

h�
Mbd

h�
Mat

]�
that satisfies the KKT conditions:

(dual feasibility) A�h� = 0, (30)

(stationarity) h� ∈ ∂‖b̂‖1. (31)
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Since by the reasoning above,
[
x�
�sf x�

�bd

]�
is the unique optimal of the objective f1(xsf ,xbd)+f2(xbd,xat),

it corresponds to a dual certificate
[
h�
Msf

h�
Mbd

]�
such that

A�
Msf ,Xsf∪Xbd

hMsf
+A�

Mbd,Xsf∪Xbd
hMbd

= 0, (32)

‖hMsf
‖∞ ≤ 1, ‖hMbd

‖∞ ≤ 1. (33)

Similarly, by the optimality of x̂at for f3(xat), we can find a dual certificate such that:

A�
Mat,Xat

hMat = 0, hMat ∈ ∂‖b̂Mat‖1. (34)

Thus, by the structure of A, the construction h� =
[
h�
Msf

h�
Mbd

h�
Mat

]�
yields a dual certificate.

A key condition in Lemma 7 is the recovery of the boundary variables in the presence of arbitrary bad

data that occur in the attacked region. This condition needs to be checked for every possible attack scenario,

which is not useful to understand the system vulnerability in the general case. Instead, we propose a line-

based vulnerability index notion in the main text, which provides a sufficient condition in this context. The

technical definition is as follows.

Definition 8 (Local boundary variables and measurements). For each line � that connects nodes i and j, let
us distinguish the directions i → j and j → i. For the direction i → j, let i denote the node under attack
and j be the node within the inner defense boundary. Accordingly, let Bi→j

bo denote the set of buses (other
than i) that are directly connected to j as the outer boundary, Bi→j

bi = {j} be the one-bus inner boundary,
and Bi→j

at = {i} be the one-bus attack set. Let Li→j
bd represent the union of line � and the set of lines that

bridge Bi→j
bi and Bi→j

bo . Define the “boundary variables” X i→j
bd as the collection of voltage magnitudes

{xmg
k }

k∈Bi→j
bi ∪Bi→j

bo
and variables {xreη , ximη } for the set of lines η ∈ L that connect the inner boundary j

to nodes in the outer boundary Bi→j
bo . Define the “boundary measurements” Mi→j

bd = Mi→j
bd� ∪ Mi→j

bd×
as the collection of measurements that depend only on the boundary variables X i→j

bd , denoted by Mi→j
bd�,

and measurements that depend on both X i→j
bd and variables {xre� , xim� } of the attacked line �, denoted by

Mi→j
bd×. The above terms can be similarly defined for the direction j → i by replacing i → j to j → i in the

notations. Thus, for each line, we will have two sets of boundary variables and measurements.

With the above notations, we can formally describe the line vulnerability index.

Definition 9 (Line vulnerability index). For each line {i, j}� ∈ L, define the line vulnerability metric αi→j

along the direction i → j as the optimal objective value of the following minimax program:

αi→j = max
ξ∈{−1,+1}n

i→j
×

min
α∈R,h∈Rn

i→j
�
α (35a)

subject to A�
Mi→j

bd�,X i→j
bd

h+A�
Mi→j

bd×,X i→j
bd

ξ = 0 (35b)

‖h‖∞ ≤ α, (35c)

where ni→j
� = |Mi→j

bd�| and ni→j
× = |Mi→j

bd×| are the number of measurements in Mi→j
bd� and Mi→j

bd×,
respectively, and X i→j

bd , Mi→j
bd� and Mi→j

bd× are the boundary variables and measurement indices introduced
in Def. 8. Similarly, we can define the backward line vulnerability metric αj→i by replacing i → j to j → i
in (35). We adopt the measurement normalization convention in Def. 2.
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Note that for the simple case where there are no lines between any two nodes in NBbi
, we can extend the

above definition to treat each node in NBbi
separately. Due to the localized nature, this condition is much

weaker than the global mutual incoherence condition in Def. 6. This is intuitive, because if the network is

attacked and the data for a subset of the network are manipulated, then this can be modeled by a cut that

removes a subgraph. Then, even if data analytics cannot reason about the lines inside the subgraph, we can

still identify the boundary of the subgraph and correctly recover the state for the rest of the network. In fact,

we can show the following relationship with the mutual incoherence metric.

Proposition 10 (Mutual incoherence is more conservative than vulnerability index). For each line � and the
corresponding partitions of measurements Mi→j

bd�, Mi→j
bd× and variables X i→j

bd , let

ρ(Mi→j
bd×),= ‖A�+

Mi→j
bd�,X i→j

bd

A�
Mi→j

bd×,X i→j
bd

‖∞

be the mutual incoherence metric defined in Def. 6. Then, it holds that ρ(Mi→j
bd×) ≥ αi→j .

Proof. Notice that the line vulnerability index can be written as

αi→j = max

ξ∈{−1,+1}n
i→j
×

min

α∈R,h∈Rn
i→j
�
‖h‖∞ (36a)

subject to A�
Mi→j

bd�,X i→j
bd

h+A�
Mi→j

bd×,X i→j
bd

ξ = 0. (36b)

Since for any ξ, the vector ĥ(ξ) = −A�+

Mi→j
bd�,X i→j

bd

A�
Mi→j

bd×,X i→j
bd

ξ is a feasible point for the inner optimiza-

tion, and

max
ξ∈{−1,+1}n

i→j
×

‖ĥ(ξ)‖∞ = ρ(Mi→j
bd×), (37)

the proof is immediately concluded.

A key step in establishing the validity of the boundary defense mechanism is to ensure that local defense

is sufficient to guard against attacks when solving the problem globally.

Lemma 11 (Local property implies global property). Given Bat,Bbi,Bbo, and Bsf and the associated set

partitioning (c.f., Def. 4), let A◦ =

⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦, and let Lat∩bi := {{i, j} ∈ L | i ∈ Bat, j ∈ Bbi}

be the set of lines that bridge between Bat and Bbi. If αi→j ≤ 1− γ and γ > 0 for all {i, j} ∈ Lat∩bi such
that i ∈ Bat and j ∈ Bbi, then for any ĥMbi

∈ [−1, 1]|Mbi|, there exists an ĥMsf∪Mbo
with the properties

‖ĥMsf∪Mbo
‖∞ ≤ 1− γ and

A◦�
Msf∪Mbo

ĥMsf∪Mbo
+A◦�

Mbi
ĥMbi

= 0. (38)

Proof. First, we show that a sufficient condition for the existence of ĥMsf∪Mbo
=

[
ĥ
�
Msf

ĥ
�
Mbo

]�
such

that ‖ĥMsf∪Mbo
‖∞ ≤ 1 − γ and (38) is satisfied is that for any ĥMbi

, there exists an ĥMbo
such that

‖ĥMbo
‖∞ ≤ 1− γ and

A�
Mbo,Xbd

ĥMbo
+A�

Mbi,Xbd
ĥMbi

= 0. (39)
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This is immediate by simply choosing ĥMsf∪Mbo
=

[
0� ĥ

�
Mbo

]�
. In what follows, we prove (39) by

induction. The induction rule is as follows: we start by arbitrarily choosing one line {i, j} ∈ Lat∩bi, where

i ∈ Bat and j ∈ Bbi, and initialize the measurement set M(1)
bo := Mi→j

bd�, M(1)
bi := Mi→j

bd× and the variable

set X (1)
bd := X i→j

bd . For each step k, we add a new line {f, t} ∈ Lat∩bi and the associated measurements

and variables to M(k)
bo , M(k)

bi and X (k)
bd , respectively. After the inclusion of all the lines in Lat∩bi, we should

obtain the set Mbo, Mbi and Xbd. In each step, we check whether there exists a vector ĥM(k)
bo

such that

‖ĥM(k)
bo

‖∞ ≤ 1− γ and

A�
M(k)

bo ,X (k)
bd

ĥM(k)
bo

+A�
M(k)

bi ,X (k)
bd

ĥM(k)
bi

= 0. (40)

The base case for k = 1 follows directly from the condition that αi→j ≤ 1 − γ. For any k ≥ 1, let

{f, t} ∈ Lat∩bi denote the line to be added, where f ∈ Mat and t ∈ Mbi. There are two possible cases:

1) the new line does not share any nodes with the lines that have been already added; or 2) the new line

shares the attack node f with one (or more) of the lines already added (note that by definition, the new line

cannot share the inner boundary node t with one (or more) of the lines already added). For each case, there

are also three events that may occur: a) one or more of the nodes in Bi→j
bo are connected to one or more

of the nodes in the inner boundaries of lines that have already been added; and/or b) one or more of the

nodes in the outer boundary of the lines that have already been added are connected to t; or c) none of the

above (note that by definition, there are no lines within the inner boundary region). We need to consider

all the combinations between the three cases and the three events to show that (40) holds in all scenarios.

Fortunately, all the combinations can be reduced to two typical scenarios, where the proofs can be directly

applied. We consider these scenarios now.

The first scenario applies to Cases 1c and 2c, where M(k+1)
bo = M(k)

bo ∪ Mf→t
bd�, M(k+1)

bi = M(k)
bi ∪

Mf→t
bd×, X (k+1)

bd = X (k)
bd ∪X f→t

bd , M(k)
bo ∩Mf→t

bd� = ∅, M(k)
bi ∩Mf→t

bd× = ∅, and X (k)
bd ∩X f→t

bd = ∅. Therefore,

for any given ĥM(k+1)
bi

=
[
ĥ
�
M(k)

bi
ξ̂
�]�

with ‖ξ̂‖∞ ≤ 1, we can always find ĥM(k+1)
bo

=
[
ĥ
�
M(k)

bo
ĥ
�]�

,

where ĥM(k)
bo

is given by (40) and ĥM(k)
bo

is given by (35), and ‖ĥM(k+1)
bo

‖∞ ≤ 1− γ by definition.

The second scenario applies to Cases 1a, 1b, 2a and 2b. Let Ñbo be the set of nodes in the outer boundary

shared by the new line Bf→t
bo and those of the lines that have been added. Then, we have M(k+1)

bo =

M(k)
bo ∪ Mf→t

bd�, M(k+1)
bi = M(k)

bi ∪ Mf→t
bd×, X (k+1)

bd = X (k)
bd ∪ X f→t

bd , where M(k)
bo ∩ Mf→t

bd� is the set of

voltage magnitude measurements of nodes in Ñbo, M(k)
bi ∩ Mf→t

bd× = ∅, and X (k)
bd ∩ X f→t

bd is the set of

voltage magnitude variables of nodes in Ñbo. For any given ĥM(k)
bi

and ξ̂
�

, we can always find ĥM(k)
bo

and

ĥ
�

, where ĥM(k)
bo

is given by (40) and ĥM(k)
bo

is given by (35). Let ĥM(k)
bo

be further divided into the parts

corresponding to the voltage magnitude measurements (if available) of nodes in Ñbo (i.e.
[
ĥM(k)

bo

]
Ñbo

) and

the rest (i.e.
[
ĥM(k)

bo

]
Ñ c

bo

); similarly, let ĥ be further divided into
[
ĥ
]
Ñbo

and the rest
[
ĥ
]
Ñ c

bo

. Then, by

setting ĥM(k+1)
bo

=

[[
ĥM(k)

bo

]�
Ñ c

bo

1
deg(Ñbo)

◦
([

ĥM(k)
bo

]
Ñbo

+
[
ĥ
]
Ñbo

)� [
ĥ
]�
Ñ c

bo

]�

, where deg(Ñbo)

is the connectivity degree for each node in Ñbo, and ◦ indicates the Hadamard (element-wise) product, we

can satisfy (40) for any given ĥM(k+1)
bi

=
[
ĥ
�
M(k)

bi
ξ̂
�]�

(note that the voltage magnitude measurement in
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the calculation of line vulnerability metric is normalized by 1, but it is weighted by the degree of each node

in the actual estimation algorithm, c.f., Def. 2). Moreover, by construction, we have ‖ĥM(k+1)
bo

‖∞ ≤ 1− γ

for all k. This completes the induction proof.

Lemma 11 implies that as long as all the line vulnerability indices are bounded away from 1, we have

a desirable property in terms of defending against bad data on the boundary. This is formalized in the

following theorem.

Theorem 12. Consider the measurements y = Ax� + b�, where supp(b�) ⊆ Mat. Suppose that for the
given partitioning of the network as Bat,Bbi,Bbo, and Bsf , the following conditions hold:

• (Full column rank for the safe and boundary region) AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=

[
AMbd,Xbd

I
(|Mbd|)�
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αi→j ≤ 1− γ for some γ > 0.

Then, the solution to (S(1): �1), denoted as (x̂, b̂), uniquely recovers the true state outside the attacked region
(i.e., x̂sf = x�sf and x̂bd = x�bd). Furthermore, the state estimation by (S(2): �2) recovers the true state for
the unaffected region (i.e., v̂k = vk for k ∈ Bsf ∪ Bbd).

Proof. To prove the claim, we simply need to show that for an arbitrary b� with its support limited to the

inner boundary supp(b�) ⊆ Mbi, the solution x̂bd ∈ Xbd to the program

min
xbd

‖zMbd
−AMbd,Xbd

xbd‖1 (41)

is unique and satisfies x̂bd = x�bd, where zMbd
= AMbd,Xbd

x�bd + b�. To show this, we obtain the dual

program:

max
hMbd

h�
Mbd

zMbd
, subject to A�

Mbd,Xbd
hMbd

= 0, ‖hMbd
‖∞ ≤ 1. (42)

Our goal is to find a dual certificate h�Mbd
that satisfies the KKT conditions:

(dual feasibility) A�
Mbd,Xbd

h�Mbd
= 0, (43)

(stationarity) h�Mbd
∈ ∂‖b�‖1. (44)

By the limited support assumption, we need to find a vector h� such that h�Mbi
= sign(b�Mbi

) and

‖h�Mbo
‖∞ ≤ 1. By the mutual incoherence condition and Lemma 11, we can always find h�Mbo

that

satisfies (43) for any given h�Mbi
and ‖h�Mbo

‖ ≤ 1 − γ < 1. Thus, this certifies the optimality of

(x�bd, b�) for (42).

To show that (x�bd, b�) is the unique optimal solution, let (x̃, b̃) be an arbitrary feasible point of

(41) that is different from (x�bd, b�). Due to the lower eigenvalue condition, the matrix QMbd,Xbd
:=[

AMbd,Xbd
I
(|Mbd|)�
Mbi

]
has full column rank. By letting J̃ = supp(b̃), the set J̃ can not be equal to or
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be a subset of Mbi, because otherwise, from QMbd,Xbd

[
x�bd

b�

]
= QMbd,Xbd

[
x̃

b̃

]
= zMbd

, we must have[
x�bd

b�

]
=

[
x̃

b̃

]
, which is contradictory to the assumption. Let J̃c = J̃ \Mbi; then,

‖b�‖1 = h�
�Mbd

zMbd
(45)

= h�
�Mbd

(AMbd,Xbd
x̃+ I�

J̃c
b̃J̃c

+ I�
Mbi

b̃Mbi
) (46)

= h�
�J̃c

b̃J̃c
+ h�

�Mbi
b̃Mbi

(47)

≤ ‖h�J̃c
‖∞‖b̃J̃c

‖1 + ‖h�Mbi
‖∞‖b̃Mbi

‖1 (48)

< ‖b̃J̃c
‖1 + ‖b̃Mbi

‖1 (49)

= ‖b̃‖1, (50)

where (45) is due to the strong duality between (41) and (42), (46) is due to the primal feasibility of (x̃, b̃),
(47) is due to the dual feasibility condition (43), (48) is due to the Hölder inequality, and (49) is due to the

strict feasibility of h�. Thus, we have shown the uniqueness of the optimal solution (x�bd, b�). Together

with Lemma 11, we have proved the theorem.

This result can be used to certify robustness under different attack scenarios. For example, if there is

a topological error caused by line mis-specification, say � = (i, j), we can treat the two ends of the line

as the attacked nodes, i.e., Nat = {i, j}, treat the adjacent nodes to them as inner boundary Nbi, and treat

the adjacent nodes to inner boundary as outer boundary Nbo. As long as the line vulnerability index for the

lines surrounding the attacked nodes are less than 1, one can identify this gross injection error and thus the

topological mistake. We can extend the analysis to the case where the measurements have both sparse bad

data and dense noise. In this case, we need to solve a program that combines quadratic loss with absolute

value loss. The guarantees now depend on the distribution of the dense noise.

Theorem 13 (Robust SE with (S(1): �2�1)). Consider the measurements y = Ax�+w�+b�, where w� has
independent entries with zero mean and subgaussian parameter σ and supp(b�) ⊆ Mat. Suppose that the
rows of A are normalized (c.f., Def. 2), and the regularization parameter λ is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (51)

In addition, suppose that for the given partitioning of the network, i.e. Bat,Bbi,Bbo, and Bsf , the following
conditions hold:

• (Full column rank for the safe and boundary region) AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=

[
AMbd,Xbd

I
(|Mbd|)�
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αi→j ≤ 1− γ for some γ > 0.

Then, the following properties hold for the solution to (S(1): �2�1), denoted as (x̂, b̂):
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1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b�))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) Let A◦ :=

⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦ and Q◦

Mbi
=

[
A◦ I◦�

Mbi

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q
◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞

)

be a threshold value, and let b̃Mbi
= AMbi,Xat(x�at − x̂at) be the error at the boundary. Then, all

bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

3. (Bounded error) The estimator error is bounded by

‖x�Xsf∪Xbd
− x̂Xsf∪Xbd

‖2 ≤ t

√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

Despite the difference in measurement assumptions (i.e., existence of dense noise w) and estimation al-

gorithms (i.e., (S(1): �1) or (S(1): �2�1)), it is remarkable that the boundary defense conditions in Theorems

12 and 13 are coincident. In the case of negligible dense noise, a deterministic boundary defense is achieved.

With the presence of dense noise, it is no longer possible to have deterministic guarantees; however, The-

orem 13 indicates that with a proper selection of the penalty coefficient λ, one can avoid false detection

of bad data in the unaffected region (part 1), detect bad data with magnitudes greater than a threshold in

the attacked region (part 2), and achieve estimation within bounded error margin for states within the unaf-

fected region. Furthermore, both the bad data threshold and the error bound decrease with stronger mutual

incoherence condition and lower-eigenvalue condition. The proof of the theorem is provided in Section E.1.

C.2 Vulnerability index and boundary defense for second-order cone programming

In this section, we extend the analysis of boundary defense to the case where we perform state estimation

with the additional second-order cone constraints.

Lemma 14 (Boundary defense stops error propagation with SOCP). Suppose that there is no dense mea-
surement noise (i.e., w = 0), and the bad data are confined within Mat, i.e., supp(b�) ⊆ Mat. Let Kbd

and Kat be the subsets of SOC constraints K restricted to variables xbd and xat, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ [ xmg
i xre

� + jxim
�

xre
� − jxim

� xmg
j

]
� 0,

∀� := (i, j) ∈ Lat ∪ Lat∩bi, where xmg
i = x̂mg

i ∀i ∈ Bbi

}
,
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be the confined feasible set for xat, which fixes the boundary variables x̂bd in the SOCP constraints. Assume
that for an arbitrary b�Mbd

with its support limited to the inner boundary, i.e. supp(b�Mbd
) ⊆ Mbi, the

solution x̂bd ∈ Xbd to the program

min
xbd∈Kbd

‖zMbd
−AMbd,Xbd

xbd‖1, (52)

is unique and satisfies x̂bd = x�bd, where zMbd
= AMbd,Xbd

x�bd + b�Mbd
. Assume that the optimal

solution x̂at to
min

xat∈Kat

‖yMat
−AMat,Xatxat‖1, (53)

also satisfies that x̂at ∈ K̃at(x�bd). Then, the solution x̂ to (S(1): �1-K) satisfies x̂bd = x�bd and x̂sf =
x�sf .

Proof. To show that

(
x̂ =

[
x�
�sf x�

�bd x̂�
at

]�
, b̂ =

[
0� b̂

�
Mbd

b̂
�
Mat

]�)
is the optimal solution of

(S(1): �1-K), we simply need to find a dual certificate
(
h� =

[
h�
Msf

h�
Mbd

h�
Mat

]�
, {ν�,u�}�∈L

)
that

satisfies the KKT conditions:

(stationarity) h� ∈ ∂‖b̂‖1, (54)

(dual feasibility) A�h� +
∑
�∈L

(
ν�c� +D�

� u�

)
= 0; ν� ≥ ‖u�‖2, ∀� ∈ L, (55)

(complementary slackness) ν�c
�
� x̂+ u�

� D�x̂ = 0, ∀� ∈ L, (56)

For a given xbd = x�bd, let x̂sf be the optimal solution to

min
xsf∈Ksf

‖yMsf
−AMsf ,Xsf

xsf −AMsf ,Xbd
x�bd‖1,

where Ksf is set of all SOCP constraints that involve at least one variable in Xsf . By the lower eigenvalue

condition, x̂sf = x�sf is the unique optimal solution. Since for a given x̂at ∈ K̃at(x�bd), x̂bd = x�bd is the

unique optimal of (52), we can conclude that
[
x�
�sf x�

�bd

]�
is the unique optimal of

min
xsf∈Ksf ,xbd∈Kbd

‖yMsf
−AMsf ,Xsf

xsf −AMsf ,Xbd
xbd‖1 + ‖zMbd

−AMbd,Xbd
xbd‖1,

which corresponds to a dual certificate
([

h�
Msf

h�
Mbd

]�
, {ν�,u�}�∈Lsf∪Lbd

)
such that

A�
Msf ,Xsf∪Xbd

hMsf
+A�

Mbd,Xsf∪Xbd
hMbd

+
∑

�∈Lsf∪Lbd

(
ν�c� +D�

� u�

)
= 0, (57a)

ν� ≥ ‖u�‖2, ∀� ∈ Lsf ∪ Lbd, (57b)

ν�c
�
� x̂+ u�

� D�x̂ = 0, ∀� ∈ Lsf ∪ Lbd, (57c)

‖hMsf
‖∞ ≤ 1, ‖hMbd

‖∞ ≤ 1. (57d)

Similarly, by the optimality of x̂at for (53), we can find a dual certificate such that:

A�
Mat,Xat

hMat +
∑
�∈Lat

(
ν�c� +D�

� u�

)
= 0, hMat ∈ ∂‖b̂Mat‖1.

Thus, by setting
(
{ν� = 0,u� = 0}�∈Lat∩bi

)
, and note that L = Lsf ∪Lbd ∪Lat∩bi ∪Lat, the construction(

{ν�,u�}�∈L
)

and h� =
[
h�
Msf

h�
Mbd

h�
Mat

]�
yield a dual certificate.
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Now, we formally define the vulnerability index.

Definition 15 (Line vulnerability for SOCP). For each line {i, j}� ∈ L and a given x ∈ K that satisfies
primal feasibility, define the line vulnerability metric αSOCP

i→j along the direction i → j as the optimal value
of the following minimax program:

αSOCP
i→j (x) = max

ξ∈{−1,+1}n
i→j
×

min
α∈R,ω∈Rn

i→j
L ,h∈Rn

i→j
�

α (58a)

subject to A�
Mi→j

bd�,X i→j
bd

h+A�
Mi→j

bd×,X i→j
bd

ξ +
∑

�∈Li→j
bd

ω�T �x = 0 (58b)

ω� ≥ 0, ∀� ∈ Li→j
bd (58c)

‖h‖∞ ≤ α, (58d)

where ni→j
� = |Mi→j

bd�|, n
i→j
× = |Mi→j

bd×|, n
i→j
L = |Li→j

bd | are the number of measurements/lines in Mi→j
bd�,

Mi→j
bd× and Li→j

bd , respectively, and X i→j
bd , Mi→j

bd�, Mi→j
bd× and Li→j

bd are defined in Def. 8. Also, we define
T � = c�c

�
� −D�

� D�, where c� and D� are given in (7). Similarly, we define the backward line vulnerability
metric αj→i by replacing i → j to j → i in (58). We adopt the measurement normalization convention in
Def. 2.

Lemma 16. The line vulnerability metric αSOCP
i→j (x) for a given x ∈ K that satisfies the primal feasibility

coincides with the optimal objective value of the following minimax program:

α̃SOCP
i→j (x) = max

ξ̃∈[−1,+1]
n
i→j
×

min
α̃∈R,ν∈Rn

i→j
L ,h̃∈Rn

i→j
�

α̃ (59a)

subject to A�
Mi→j

bd�,X i→j
bd

h̃+A�
Mi→j

bd×,X i→j
bd

ξ̃ +
∑

�∈Li→j
bd

ν�c� +D�
� u� = 0 (59b)

ν� ≥ ‖u�‖2, ∀� ∈ Li→j
bd (59c)

ν�c
�
� x+ u�

� D�x = 0, ∀� ∈ Li→j
bd (59d)

‖h̃‖∞ ≤ α̃, (59e)

with the same notations as in Def. 9, where c� and D� are define in (7).

Proof. The equivalence between optimizing over [−1,+1]n
i→j
× and {−1,+1}n

i→j
× for the outer minimiza-

tion can be reasoned as in (21) due to the convexity of the feasibility region given x ∈ K and ξ̃. Since x
satisfies the primal feasibility, which can be expressed as in (7), a standard result (c.f., [2, Lemma 15]) in

analogy to linear programming indicates that (59d) is equivalent to:

ν�D�x+ c�� xu� = 0, ∀� ∈ Li→j
bd ,

which indicates that ν� = ω�c
�
� x and u� = −ω�D�x for ω� ≥ 0 and � ∈ Li→j

bd . It can be verified that this

also satisfies the SOCP constraints (59c). By the definition of T � = c�c
�
� −D�

� D�, the equivalence to (58)

is established.

32



Lemma 17 (Local property implies global property for SOCP). Given Bat,Bbi,Bbo, and Bsf and the as-

sociated set partitioning (c.f., Def. 4), let A◦ =

⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦, and c◦� and D◦

� to be the

subvector and submatrix of c� and D� indexed by Xsf ∪ Xbd. If αSOCP
i→j ≤ 1 − γ and γ > 0 for all

{i, j} ∈ Lat∩bi such that i ∈ Bat and j ∈ Bbi, then for any ĥMbi
∈ [−1, 1]|Mbi|, there exist ĥMsf∪Mbo

and
{ν̂�, û�}�∈Lat∩bi∪Lbd∪Lsf

with the properties that ‖ĥMsf∪Mbo
‖∞ ≤ 1− γ and

A◦�
Msf∪Mbo

ĥMsf∪Mbo
+A◦�

Mbi
ĥMbi

+
∑

�∈Lat∩bi∪Lbd∪Lsf

ν̂�c
◦
� +D◦�

� û� = 0. (60)

Proof. The proof is similar to the one for Lemma 11. First, we show that a sufficient condition for Lemma

17 is that for any ĥMbi
, there exists ĥMbo

and {ν̂�, û�}�∈Lat∩bi∪Lbd
such that ‖ĥMbo

‖∞ ≤ 1− γ and

A�
Mbo,Xbd

ĥMbo
+A�

Mbi,Xbd
ĥMbi

+
∑

�∈Lat∩bi∪Lbd

[
ν̂�c� +D�

� û�

]
Xbd

= 0. (61)

This is immediate by simply choosing ĥMsf∪Mbo
=

[
0� ĥ

�
Mbo

]�
and ν̂� = 0 and û� = 0 for � ∈ Lsf .

In what follows, we prove (61) by induction. The induction rule is as follows: we start by arbitrarily

choosing one line {i, j} ∈ Lat∩bi, where i ∈ Bat and j ∈ Bbi, and initialize the line set L(1)
bd = Li→j

bd , the

measurement set M(1)
bo := Mi→j

bd�, M(1)
bi := Mi→j

bd× and the variable set X (1)
bd := X i→j

bd . For each step k,

we add a new line {f, t} ∈ Lat∩bi such that L(k)
bd = L(k−1)

bd ∪ Lf→t
bd , and the associated measurements and

variables to M(k)
bo , M(k)

bi and X (k)
bd , respectively. After the inclusion of all the lines in Lat∩bi, we should

obtain the set Mbo, Mbi and Xbd. In each step, we check whether there exist {ν̂�, û�}�∈L(k)
bd

and ĥM(k)
bo

such that ‖ĥM(k)
bo

‖∞ ≤ 1− γ and

A�
M(k)

bo ,X (k)
bd

ĥM(k)
bo

+A�
M(k)

bi ,X (k)
bd

ĥM(k)
bi

+
∑

�∈L(k)
bd

[
ν̂�c� +D�

� û�

]
X (k)

bd

= 0. (62)

The base case for k = 1 follows directly from the condition that αSOCP
i→j ≤ 1 − γ. For any k ≥ 1, let

{f, t} ∈ Lat∩bi denote the line to be added, where f ∈ Mat and t ∈ Mbi. There are two possible cases:

1) the new line does not share any nodes with lines that have been already added; or 2) the new line shares

the attack node f with one (or more) of the lines already added (note that by definition, the new line cannot

share the inner boundary node t with one (or more) of the lines already added). For each case, there are

also three events that might occur: a) one or more of the nodes in Bf→t
bo are connected to one or more

of the nodes in the inner boundaries of lines that have already been added; and/or b) one or more of the

nodes in outer boundary of the lines that have already been added are connected to t; or c) none of the

above (note that by definition, there are no lines within the inner boundary region). We need to consider

all the combinations between the three cases and the three events to show that (40) holds in all scenarios.

Fortunately, all the combinations can be reduced to two typical scenarios, where the proofs can be directly

applied. We consider these scenarios now.

The first scenario applies to Cases 1c and 2c, where M(k+1)
bo = M(k)

bo ∪ Mf→t
bd�, M(k+1)

bi = M(k)
bi ∪

Mf→t
bd×, X (k+1)

bd = X (k)
bd ∪ X f→t

bd , M(k)
bo ∩ Mf→t

bd� = ∅, M(k)
bi ∩ Mf→t

bd× = ∅, and X (k)
bd ∩ X f→t

bd = ∅.

Therefore, for any given ĥM(k+1)
bi

=
[
ĥ
�
M(k)

bi
ξ̂
�]�

, we can always find ĥM(k+1)
bo

=
[
ĥ
�
M(k)

bo
ĥ
�]�

and
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{ν̂�, û�}�∈L(k+1)
bd

= {ν̂�, û�}L(k)
bd ∪Lf→t

bd

, where ĥM(k)
bo

and {ν̂�, û�}L(k)
bd

are given by (62), ĥ and {ν̂�, û�}Lf→t
bd

are given by (58), and ‖ĥM(k+1)
bo

‖∞ ≤ 1− γ by definition.

The second scenario applies to Cases 1a, 1b, 2a and 2b. Let Ñbo be the set of nodes in the outer

boundary shared by the new line Bf→t
bo and those of the lines that have been added. Then, we have

M(k+1)
bo = M(k)

bo ∪ Mf→t
bd�, M(k+1)

bi = M(k)
bi ∪ Mf→t

bd×, X (k+1)
bd = X (k)

bd ∪ X f→t
bd , where M(k)

bo ∩ Mf→t
bd�

is the set of voltage magnitude measurements of nodes in Ñbo, M(k)
bi ∩ Mf→t

bd× = ∅, and X (k)
bd ∩ X f→t

bd

is the set of voltage magnitude variables of nodes in Ñbo. For any given ĥM(k)
bi

and ξ̂
�

with ‖ξ̂‖∞ ≤ 1,

we can always find ĥM(k)
bo

, ĥ
�

, {ν̂�, û�}L(k)
bd

and {ν̂�, û�}Lf→t
bd

, where ĥM(k)
bo

and {ν̂�, û�}L(k)
bd

are given by

(62), and ĥM(k)
bo

and {ν̂�, û�}Lf→t
bd

are given by (58). Let ĥM(k)
bo

be further divided into the parts corre-

sponding to the voltage magnitude measurements (if available) of nodes in Ñbo, namely
[
ĥM(k)

bo

]
Ñbo

and

the rest, namely
[
ĥM(k)

bo

]
Ñ c

bo

; similarly, ĥ be further divided into
[
ĥ
]
Ñbo

and the rest, namely
[
ĥ
]
Ñ c

bo

.

Then, we set ĥM(k+1)
bo

=

[[
ĥM(k)

bo

]�
Ñ c

bo

1
deg(Ñbo)

◦
([

ĥM(k)
bo

]
Ñbo

+
[
ĥ
]
Ñbo

)� [
ĥ
]�
Ñ c

bo

]�

. Similarly,

we can perform the transformation for {ν̂�, û�}L(k+1)
bd

. Hence, we can satisfy (62) for any given ĥM(k+1)
bi

=[
ĥ
�
M(k)

bi
ξ̂
�]�

with ‖ξ̂‖∞ ≤ 1 (note that the voltage magnitude measurement in the calculation of line

vulnerability metric is normalized by 1, but it is weighted by the degree of connections of each node the

actual estimation algorithm, c.f., Def. 2). Moreover, by construction, we have ‖ĥM(k+1)
bo

‖∞ ≤ 1− γ for all

k. This completes the induction proof.

Proposition 18 (SOC constraint can improve line vulnerability). For any x ∈ K, it holds that

αSOCP
i→j (x) ≤ αi→j

Proof. For any given ξ, let ĥ be the optimal solution of the inner minimizer in (35) with ‖ĥ‖∞ ≤ αi→j .

Then, the tuple (αSOCP
i→j = αi→j ,ω = 0,h = ĥ) is a feasible solution for (58), which proves that we always

have αSOCP
i→j (x) ≤ αi→j .

The above proposition implies a key advantage of incorporating SOCP constraints—to improve robust-

ness. This has also been empirically validated in our study as shown in the main text.

Theorem 19. Consider the measurements y = Ax� + b�, where supp(b�) ⊆ Mat, and also a partitioning
of the network as Bat,Bbi,Bbo, and Bsf . Let Kbd and Kat be the subsets of SOCP constraints K restricted
to variables xbd and xat, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ [ xmg
i xre

� + jxim
�

xre
� − jxim

� xmg
j

]
� 0,

∀� := (i, j) ∈ Lat ∪ Lat∩bi, where xmg
i = x̂mg

i ∀i ∈ Bbi

}
,

be the confined feasible set for xat, which fixes the boundary variables x̂bd in the SOCP constraints. Sup-
pose that the following conditions hold:
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• (Full column rank for the safe and boundary region) AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=

[
AMbd,Xbd

I
(|Mbd|)�
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αSOCP

i→j ≤ 1− γ for some γ > 0.

• (Nonbinding SOCP constraints in the boundary) the solution for the attacked states satisfies x̂at ∈
K̃at(x�bd).

Then, the solution to (S(1): �1-K), denoted as (x̂, b̂), uniquely recovers the true state outside the attacked
region (i.e., x̂sf = x�sf and x̂bd = x�bd). Furthermore, the state estimation by (S(2): �2) recovers the true
state for the unaffected region (i.e., v̂k = vk for k ∈ Bsf ∪ Bbd).

Proof. To prove the claim, we simply need to show that for an arbitrary b� with its support limited to the

inner boundary supp(b�) ⊆ Mbi, the solution x̂bd ∈ Xbd to the program

min
xbd∈Kbd,b

‖b‖1, subject to AMbd,Xbd
xbd + b = zMbd

(63)

is unique and satisfies x̂bd = x�bd, where zMbd
= AMbd,Xbd

x�bd + b�. To show this, we obtain the dual

program:

min
hMbd

,{ν�,μ�}�∈Lbd

h�
Mbd

zMbd
(64a)

subject to A�
Mbd,Xbd

hMbd
+

∑
�∈Lat∩bi∪Lbd

(ν�c� +D�
� μ�) = 0 (64b)

‖hMbd
‖∞ ≤ 1 (64c)

ν� ≥ ‖μ�‖2, ∀� ∈ Lbd, (64d)

Our goal is to find a dual certificate h�Mbd
and {λ��,μ��}Lbd

that satisfies the KKT conditions:

(dual feasibility) λ�� ≥ ‖μ��‖2, ∀� ∈ Lbd (65)

(stationarity) A�
Mbd,Xbd

h�Mbd
+

∑
�∈Lat∩bi∪Lbd

(λ��c� +D�
� μ��) = 0, (66)

h�Mbd
∈ ∂‖b�‖1 (67)

(complementary slackness) λ��c
�
� x� + μ�

��D�x� = 0, ∀� ∈ Lbd. (68)

where x� =
[
x�
�sf x�

�bd x̂�
at

]�
. By the limited support assumption, we need to find a vector h� such

that h�Mbi
= sign(b�Mbi

) and ‖h�Mbo
‖∞ ≤ 1. By the vulnerability index condition and Lemma 17,

we can always find h�Mbo
and {λ��,μ��}Lbd

that satisfy the KKT conditions for a given h�Mbi
, such

that ‖h�Mbo
‖ ≤ 1 − γ < 1. Thus, this certifies the optimality of (x�bd, b�) for (42). Clearly, under the

nonbinding SOCP constraints assumption, (x�bd, b�) is feasible. Following the uniqueness argument of

Theorem 12, we conclude the proof.
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We can extend the analysis to the case where the measurements have both sparse bad data and dense

noise. In this case, we need to solve a second-order cone program that combines quadratic loss with absolute

value loss, in addition to the SOCP constraints.

Theorem 20 (Robust SE with (S(1): �2�1-K)). Given the measurements y = Ax� + w� + b�, where w�

has independent entries with zero mean and subgaussian parameter σ and supp(b�) ⊆ Mat, consider a
partitioning of the network as Bat,Bbi,Bbo, and Bsf . Let Kbd and Kat be the subsets of SOCP constraints
K restricted to the variables xbd and xat, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ [ xmg
i xre

� + jxim
�

xre
� − jxim

� xmg
j

]
� 0,

∀� := (i, j) ∈ Lat ∪ Lat∩bi, where xmg
i = x̂mg

i ∀i ∈ Bbi

}
,

be the confined feasible set for xat, which fixes the boundary variables x̂bd in the SOCP constraints. Sup-
pose that the rows of A are normalized (c.f., Def. 2), and the regularization parameter λ is chosen such
that

λ >
2

nmγ

√
2σ2 log nm. (69)

In addition, suppose the following conditions hold:

• (Full column rank for the safe and boundary region) both AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=

[
AMbd,Xbd

I
(|Mbd|)�
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αSOCP

i→j ≤ 1− γ for some γ > 0.

• (Nonbinding SOCP constraints in the boundary) the solution for the attacked states satisfies x̂at ∈
K̃at(x�bd).

Then, the following properties hold for the solution to (S(1): �2�1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b�))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) Let A◦ :=

⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦ and Q◦

Mbi
=

[
A◦ I◦�

Mbi

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖∞
)

be a threshold value, and let b̃Mbi
= AMbi,Xat(x�at − x̂at) be the error at the boundary. Then, all

bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

36



3. (Bounded error) The estimator error is bounded by

‖x�Xsf∪Xbd
− x̂Xsf∪Xbd

‖2 ≤ t

√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

C.3 Scalable methods to calculate the vulnerability index

The minimax program (35) consists of a linear programming in the inner minimization and a discrete op-

timization in the outer maximization. For small-scale systems, the number of feasible points in the outer

maximization is not too large. This is the case when we consider the vulnerability on a line-by-line basis.

But for large-scale problems when we consider a group of attacked lines, it is essential to develop more

scalable numerical algorithms. We first show the following result.

Lemma 21. The line vulnerability index αi→j coincides with the optimal value of the following minimax
program:

α̃i→j = max
ξ̃∈[−1,+1]

n
i→j
×

min
α̃∈R,h̃∈Rn

i→j
�
α̃ (70a)

subject to A�
Mi→j

bd�,X i→j
bd

h̃+A�
Mi→j

bd×,X i→j
bd

ξ̃ = 0 (70b)

‖h̃‖∞ ≤ α̃, (70c)

with the same notations as in Def. 9. Note that the difference in (70) is that the minimizer is over the
hypercube [−1,+1]n

i→j
× rather than the simplex {−1,+1}n

i→j
× .

Proof. Since the feasible region of the outside maximizer in (70) is a superset of that in (35), we always

have α̃i→j ≥ αi→j . To show the other direction, we simply need to show that for any ξ̃ ∈ [−1,+1]n
i→j
× ,

we can always find a feasible solution for the minimizer h̃ such that ‖h̃‖∞ ≤ αi→j . Since ξ̃ belongs to

a hypercube, which is convex, there always exists a set of non-negative coefficients βk such that βk ≥ 0,∑
k βk = 1 and ξ̃ =

∑
k βkξk, where ξk ∈ {−1,+1}n

i→j
× . Since for each ξk, there exists hk such that it is

feasible in (35) and ‖hk‖∞ ≤ αi→j , by choosing h̃ =
∑

k βkhk, we have:

‖h̃‖∞ ≤
∑
k

βk‖hk‖∞ ≤
∑
k

βkαi→j = αi→j ,

which completes the proof.

We can thereby reformulate the problem as a linear complimentarity problem as follows. The KKT

conditions for the inner minimization of (70) are:

• (Primal feasibility) A�
Mi→j

bd�,X i→j
bd

h+A�
Mi→j

bd×,X i→j
bd

ξ = 0, q+ = α1−h, q− = α1+h, q+ ≥ 0, q− ≥
0;

• (Dual feasibility) μ+ ≥ 0,μ− ≥ 0;
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• (Stationarity) The Lagrangian function

L(α,h,μ+,μ−,λ) = α+ λ�(A�
Mi→j

bd�,X i→j
bd

h+A�
Mi→j

bd×,X i→j
bd

ξ) + μ�
+(h− α1) + μ�

−(−h− α1)

and stationarity conditions:

∂L
∂α

= 1− μ�
+1− μ�

−1 = 0

∂L
∂h

= AMi→j
bd�,X i→j

bd
λ+ μ+ − μ− = 0

• (complementary slackness) μ+ ◦ q+ = 0, μ− ◦ q− = 0

Thus, we can write (70) as a linear complementarity problem:

α̃i→j = max

ξ∈Rn
i→j
× ,α∈R,h∈Rn

i→j
�

α (71a)

subject to − 1 ≤ ξ ≤ 1 (71b)

A�
Mi→j

bd�,X i→j
bd

h+A�
Mi→j

bd×,X i→j
bd

ξ = 0 (71c)

q+ = α1− h (71d)

q− = α1+ h (71e)

1− μ�
+1− μ�

−1 = 0 (71f)

AMi→j
bd�,X i→j

bd
λ+ μ+ − μ− = 0 (71g)

μ+ ◦ q+ = μ− ◦ q− = 0 (71h)

, q+, q−,μ+,μ− ≥ 0 (71i)

This problem can be solved readily using off-the-shelf solvers such as PATH Solver [8] or YALMIP

[15]. We can also use the big-M method to replace the complimentarity condition using a mixed-integer

formulation, and solve the problem using standard packages such as Gurobi. In our experiments, we only

focus on each line, so the improvement of computation is not significant. The advantage becomes more

obvious when we scale the computation to multiple lines.

C.4 Extension to tree decomposition

So far, we have been focusing on evaluating line vulnerabilities. In this section, we introduce a powerful

extension of the vulnerability index to tree decomposition of a graph. This allows us to study the effect of

sparsity on network robustness. We use N (G) to represent the vertices of graph G, and L(i;G) = {j ∈ N |
{i, j} ∈ L} to represent the set of nodes in G that are connected to node i. First, we introduce the standard

definition of tree decomposition and treewidth.

Definition 22 (Tree decomposition and treewidth). A tree decomposition of a graph G := {N ,L} is (T ,W),
where T is a tree and W := {Wt | t ∈ N (T )} is the set of “bags” Wt which satisfies the following
properties

1. (Node coverage) ∪t∈N (T )Wt = N (G), i.e., the union of the vertices of T , referred to as “bags,” is
the set of nodes of G;
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2. (Edge coverage) For any (i, j) ∈ L, there exists t ∈ N (T ) such that i, j ∈ Wt, i.e., each edge of G is
in at least one of the “bags” of T ;

3. (Running intersection property) The subtree of T consisting of all “bags” containing u ∈ N is
connected.

Furthermore, the width of a tree decomposition is max(|Wt| − 1 : t ∈ N (T )). The treewidth of G is the
minimum width of a tree decomposition of G.

Clearly, a graph may have several different tree decompositions. The analysis below does not require

any particular tree decompositions. However, the easiest tree decomposition is to lump all vertices into one

bag, which does not reveal any robustness properties of the graph. In general, the smaller the width of the

decomposition, the easier it is to certify robustness.

Definition 23 (Infected bags, link bags, safe bags). For a given set of attacked nodes Nat and a tree de-
composition (T ,W), any bag that contains attacked nodes is referred to as an infected bag W if

t ∈ W if =
{Wt | Wt ∩ Nat �= ∅}. Furthermore, the set of lines induced by the union of infected bags is denoted
as Lif . The bags that are immediately connected to an infected bag are called link bags W lk

t ∈ W lk =
{Wt | Wt ∩ Nat = ∅, ∃ W if

t′ ,Wt ∈ L(W if
t′ ; T )}, and the set of lines induced by the union of link bags

is shown as Llk. The rest of the bags are safe bags Wsf
t , and the set of lines induced by the union of safe

bags is represented by Lsf . Nodes shared between a link bag W lk
t and an infected bag W if

t are called ad-
hesion nodes Nad(W lk

t ,W if
t ) = W lk

t ∩ W if
t ⊆ Nad, and the rest of the nodes in W lk

t are outer link nodes
Nol(W lk

t ,W if
t ) = W lk

t \W if
t ⊆ Nol. We denote the edges that connect adhesion nodes in W lk

t with infected
nodes by Lad(W lk

t ) ⊆ Lad.

Definition 24 (Attacked, boundary and safe variables and measurements for tree decomposition). The set
of “infected variables” Xif includes all variables on lines induced by W if and on nodes in W if except for
adhesion nodes Nad. The set of “link variables” Xlk includes variables on nodes in W lk and the induced
lines. The set of “safe variables” Xsf includes all other variables. The set of “infected measurements” Mif

includes measurements on lines induced by nodes in W if and on nodes in W if except for voltage magnitude
measurements on Nad. The set of “adhesion measurements” Mad includes nodal power injections on nodes
in Nad and line measurements on Lad, and the set of “outer link measurements” Mol includes voltage mag-
nitude on nodes in W lk and line measurements induced by nodes in W lk. Together, they form the “boundary
measurements” Mbd := Mad ∪Mol. The rest of the measurements Msf are “safe measurements.”

Next, we introduce some useful properties associated with the above definitions. If T ′ is a subtree of

T , we use GT ′ to denote the subgraph of G induced by the nodes in all the bags associated with T ′, namely

∪t∈T ′Wt.

Lemma 25. The following properties are satisfied:

(i) There are no shared nodes between the safe bags and the infected bags.

(ii) There are no shared nodes between the set of outer link nodes and the infected bags.

(iii) Suppose that the infected bags form a subtree of T . Then, there are no shared outer link nodes between
any link bags.
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(iv) Suppose that the infected bags form a subtree of T . Consider any link bag W lk
t that is adjacent to

only one infected bag W if
t′ connected by an edge L(W lk

t ,W if
t′ ). If we delete the edge, the tree falls

apart into two connected components, T1 and T2. Deleting the adhesion nodes W lk
t ∩ W if

t′ from N
disconnects G into the two subgraphs GT1 − (W lk

t ∩ W if
t′ ) and GT2 − (W lk

t ∩ W if
t′ ). Furthermore,

all the infected nodes are contained in only one of the subgraph, and there is no edge across the two
subgraphs.

Proof. (i): For any safe bag Wsf
t and affected bag W if

t , if there exists a node i that is shared between them,

it contradicts the definition of a safe bag.

(ii): For any link bag W lk
t and affected bag W if

t , if there exists a node i that is shared between W if
t and

the outer link nodes in W lk
t , then by the running intersection property, it must also appear in the infected

bag connected to W lk
t . This is contradictory, because it makes i an adhesion node.

(iii): For any two link bags W lk
t and W lk

t′ , suppose that they share an outer link node i. By the running

intersection property, there must exist a path of bags between W lk
t and W lk

t′ . Since this path cannot go

through the infected bags, it must be outside the infected region. Since the infected bags form a subtree, this

would create a loop within T , which is impossible. Therefore, there cannot be any shared outer link nodes

between any two link bags.

(iv) Assume that there is a node i that belongs to both GT1 − (W lk
t ∩ W if

t′ ) and GT2 − (W lk
t ∩ W if

t′ ).
Therefore, by the node coverage property, there must exist Wx with x ∈ T1 and Wy with y ∈ T2 such that

i ∈ Wx and i ∈ Wy. Since W lk
t and W if

t′ lie on a x − y path in T , by the running intersection property,

i ∈ W lk
t ∩W if

t′ . Hence, i belongs to neither GT1 − (W lk
t ∩W if

t′ ) nor GT2 − (W lk
t ∩W if

t′ ).
Now, assume that there is an edge (i, j) in G such that i ∈ GT1−(W lk

t ∩W if
t′ ) and j ∈ GT2−(W lk

t ∩W if
t′ ).

Then, by the edge coverage property, there must be a bag Wx containing both i and j. However, x cannot

be in both T1 and T2, otherwise, i and j will belong to W lk
t ∩ W if

t′ . Assume that x �∈ T2. Since j is in

GT2 − (W lk
t ∩ W if

t′ ), it must be in a bag y ∈ T2 different than x. Since j belongs to both Wx and Wy,

it lies on a x − y path in T . By the running intersection property, we have j ∈ W lk
t ∩ W if

t′ , which is a

contradiction.

If the infected bags form a subtree and we can find a link bag that is adjacent to only one infected bag,

then by property (iv) in Lemma 25, if we remove the adhesion nodes, we can separate the infected region

with the rest of the safe region.

Now, we can define a generalized version of vulnerability index using tree decomposition.

Definition 26 (Bag vulnerability index). For each adhesion link L(W lk
t ,W if

t ), define the measurement and
variable partitions according to Def. 24. The bag vulnerability index αW if

t →W lk
t

is given by the optimal
value of the following minimax program:

αW if
t →W lk

t
= max

ξ∈{−1,+1}|Mad|
min

α∈R,h∈R|Mol|
α (72a)

subject to A�
Mol,Xlk

h+A�
Mad,Xlk

ξ = 0 (72b)

‖h‖∞ ≤ α, (72c)

where Mol,Mad and Xlk are the boundary measurement and variable indices introduced in Def. 24.

Similarly, we can extend the definition to incorporate SOCs.

40



Definition 27 (Bag vulnerability index for SOCP). For each adhesion link L(W lk
t ,W if

t ), define the mea-
surement and variable partitions according to Def. 24. The bag vulnerability index αSOCP

W if
t →W lk

t
for a given

x ∈ K that satisfies primal feasibility is given by the optimal value of the following minimax program:

αSOCP
W if

t →W lk
t
= max

ξ∈{−1,+1}|Mad|
min

α∈R,h∈R|Mol|
α (73a)

subject to A�
Mol,Xlk

h+A�
Mad,Xlk

ξ +
∑

�∈L(W lk
t )

ω�T �x = 0 (73b)

ω� ≥ 0, ∀� ∈ L(W lk
t ) (73c)

‖h‖∞ ≤ α, (73d)

where Mol,Mad and Xlk are the boundary measurement and variable indices introduced in Def. 24,
L(W lk

t ) is the set of lines induced by nodes in W lk
t . Also, we define T � = c�c

�
� −D�

� D�, where c� and D�

are defined in (7).

With the above definition of bag vulnerability index, we can show the following key results for SE

robustness.

Lemma 28 (Local property implies global property in tree decomposition). Consider a tree decomposition
T and the associated set partitioning (c.f., Def. 24). Suppose that the infected bags form a subtree of T , and
that there exists a link bag W lk

t that is adjacent to only one infected bag W if
t . For simplicity of presentation,

we also treat the rest of the bags in the subtree as infected. Let A◦ =

⎡
⎣AMsf ,Xsf

AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

⎤
⎦ be a

submatrix of the sensing matrix. If αW if
t →W lk

t
≤ 1− γ for some γ > 0, then for any ĥMad

∈ [−1, 1]|Mad|,

there exists an ĥMsf∪Mol
such that ‖ĥMsf∪Mol

‖∞ ≤ 1− γ and

A◦�
Msf∪Mol

ĥMsf∪Mol
+A◦�

Mad
ĥMad

= 0. (74)

Proof. The proof is similar to Lemma 11. First, we show that a sufficient condition for the existence of

ĥMsf∪Mol
=

[
ĥ
�
Msf

ĥ
�
Mol

]�
such that ‖ĥMsf∪Mol

‖∞ ≤ 1− γ and (74) is satisfied is that for any ĥMad
,

there exists a vector ĥMol
such that ‖ĥMol

‖∞ ≤ 1− γ and

A�
Mol,Xlk

ĥMol
+A�

Mad,Xlk
ĥMad

= 0. (75)

This is immediate by simply choosing ĥMsf∪Mol
=

[
0� ĥ

�
Mol

]�
. Since it is guaranteed that there exists

a vector ĥMol
to satisfy (75) under the condition that αW if

t →W lk
t
≤ 1− γ, the claim is proved.

Lemma 29 (Local property implies global property for SOCP with tree decomposition). Consider a tree de-
composition T and the associated set partitioning (c.f., Def. 24). Suppose that the infected bags form a sub-
tree of T , and that there exists a link bag W lk

t that is adjacent to only one infected bag W if
t . For simplicity of

presentation, we also treat the rest of the bags in the subtree as infected. Let A◦ =

⎡
⎣AMsf ,Xsf

AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

⎤
⎦

be a submatrix of the sensing matrix, and c◦� and D◦
� be the subvector and submatrix of c� and D� indexed
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by Xsf∪Xlk. If αSOCP
W if

t →W lk
t
≤ 1−γ for some γ > 0, then for any ĥMad

∈ [−1, 1]|Mad|, there exist ĥMsf∪Mol

and {ν̂�, û�}�∈Lad(W lk
t )∪L(W lk

t )∪Lsf
such that ‖ĥMsf∪Mol

‖∞ ≤ 1− γ and

A◦�
Msf∪Mol

ĥMsf∪Mol
+A◦�

Mad
ĥMad

+
∑

�∈Lad(W lk
t )∪L(W lk

t )∪Lsf

ν̂�c
◦
� +D◦�

� û� = 0. (76)

Proof. The proof is similar to the one for Lemma 17. First, we show that a sufficient condition for Lemma

29 is that for any ĥMad
, there exists a vector ĥMol

and {ν̂�, û�}�∈L(W lk
t ) such that ‖ĥMol

‖∞ ≤ 1− γ and

A�
Mol,Xlk

ĥMol
+A�

Mad,Xlk
ĥMad

+
∑

�∈Lad(W lk
t )∪L(W lk

t )

[
ν̂�c� +D�

� û�

]
Xlk

= 0. (77)

This is immediate by simply choosing ĥMsf∪Mol
=

[
0� ĥ

�
Mol

]�
and ν̂� = 0 and û� = 0 for � ∈ Lsf .

Since it is guaranteed that there exist ĥMol
and {ν̂�, û�}�∈L(W lk

t ) to satisfy (77) under the condition that

αSOCP
W if

t →W lk
t
≤ 1− γ, the claim is proved.

Theorem 30 (Robust SE with (S(1): �2�1) for tree decomposition). Consider a tree decomposition T and
the associated set partitioning (c.f., Def. 24). Suppose that the infected bags form a subtree of T , and
that there exists a link bag W lk

t that is adjacent to only one infected bag W if
t . Given the measurements

y = Ax� +w� + b�, where w� has independent entries with zero mean and subgaussian parameter σ and
supp(b�) ⊆ Mif , suppose that the rows of A are normalized (c.f., Def. 2) and the regularization parameter
λ is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (78)

In addition, assume that the following conditions hold:

• (Full column rank for the safe and boundary region) AMsf∪Mlk,Xsf∪Xlk
and

QMlk,Xlk
=

[
AMlk,Xlk

I
(|Mlk|)�
Mad

]
have full column rank.

• (Localized mutual incoherence for bags) for the link bag W lk
t that is adjacent to only one infected bag

W if
t , we have αW if

t →W lk
t
≤ 1− γ for some γ > 0.

Then, the following properties hold for the solution to (S(1): �2�1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b�))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) Let A◦ :=

⎡
⎣AMsf ,Xsf

AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

⎤
⎦ and Q◦

Mad
=

[
A◦ I◦�

Mad

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q
◦�
Mad

Q◦
Mad

)−1I�
b ‖∞

)
be a threshold value, and let b̃Mad

= AMad,Xif
(x�if − x̂if) be the error at the boundary. Then, all

bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .
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3. (Bounded error) The estimator error is bounded by

‖x�Xsf∪Xlk
− x̂Xsf∪Xlk

‖2 ≤ t

√
|Xsf |+ |Xlk|+ |Mad|

Cmin
+ nmλ‖Ix(Q

◦�
Mad

Q◦
Mad

)−1I�
b ‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

Theorem 31 (SE robustness with (S(1): �2�1-K) for tree decomposition). Given a tree decomposition T
and the associated set partitioning (c.f., Def. 24), suppose that the infected bags form a subtree of T and
that there exists a link bag W lk

t that is adjacent to only one infected bag W if
t . Consider the measurements

y = Ax� +w� + b�, where w� has independent entries with zero mean and subgaussian parameter σ and
supp(b�) ⊆ Mif . Let Klk and Kif be the subsets of SOCP constraints K restricted to the variables xlk and
xif , respectively, and let

K̃if(x̂lk) =

{
xif

∣∣∣ [ xmg
i xre

� + jxim
�

xre
� − jxim

� xmg
j

]
� 0,

∀� = (i, j) ∈ Lif ∪ Lad(W lk
t ), where xmg

i = x̂mg
i ∀i ∈ Nad(W lk

t ,W if
t )

}
,

be the confined feasible set for xif , which fixes the boundary variables x̂lk in the SOCP constraints. Suppose
that rows of A are normalized (c.f., Def. 2), and the regularization parameter λ is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (79)

In addition, suppose that the following conditions hold:

• (Full column rank for the safe and boundary region) AMsf∪Mlk,Xsf∪Xlk
and

QMlk,Xlk
=

[
AMlk,Xlk

I
(|Mlk|)�
Mad

]
have full column rank.

• (Localized mutual incoherence for bags) for the link bag W lk
t that is adjacent to only one infected bag

W if
t , we have αSOCP

W if
t →W lk

t
≤ 1− γ for some γ > 0.

• (Nonbinding SOCP constraints in the boundary) the solution for the attacked states satisfies x̂if ∈
K̃if(x�lk).

Then, the following properties hold for the solution to (S(1): �2�1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b�))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) Let A◦ :=

⎡
⎣AMsf ,Xsf

AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

⎤
⎦ and Q◦

Mad
=

[
A◦ I◦�

Mad

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q
◦�
Mad

Q◦
Mad

)−1Q◦�
Mad

‖∞
)
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be a threshold value, and let b̃Mad
= AMad,Xif

(x�if − x̂if) be the error at the boundary. Then, all
bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

3. (Bounded error) The estimator error is bounded by

‖x�Xsf∪Xlk
− x̂Xsf∪Xlk

‖2 ≤ t

√
|Xsf |+ |Xlk|+ |Mad|

Cmin
+ nmλ‖Ix(Q

◦�
Mad

Q◦
Mad

)−1Q◦�
Mad

‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

The proofs of Theorems 30 and 31 are similar to those of Theorems 13 and 20 in Section E and are

omitted for brevity. As shown in our analysis, tree decomposition provides an efficient way to define the

boundary between infected and safe nodes. Tree decomposition has been employed in semidefinite pro-

gramming (SDP) to efficiently deal with network with chordal sparsity [23]. The smaller the treewidth, the

faster it is to solve SDP [30]. Our analysis shows that with smaller treewidth, it is generally easier to certify

robustness for SE. This is mainly due to the fact that the adhesion set is bounded by the treewidth, which

limits the number of nodes that an infected bag can influence.

D Experimental details

Noisy measurements: For each simulation, we randomly generate dense noise w and sparse bad data b, and

add them to the clean data according to (5). The dense noise for each measurement is zero-mean Gaussian

variable, with standard deviation of 1e-5 (per unit) for voltage magnitude measurements and 0.005 (per unit)

for all the other measurements. The difference in standard deviation is due to the fact that voltage magnitude

sensors have higher standards of accuracy compared to power meters. For the sparse bad data, its support

is randomly selected among the line measurements. We randomly select a set of lines, whose branch flow

measurements are all compromised accordingly. The values for the sparse noise can be arbitrarily large, and

we assume these parameters are uniformly chosen from the set [−4.25,−3.75] ∪ [3.75, 4.25] (per unit).

Performance metrics: We use the root-mean-square error (RMSE) as the metric for estimation ac-

curacy, which is defined as
√

1
nb

∑
i∈N |vi − v̂i|2, where vi and v̂i are the true and estimated complex

voltage at bus i ∈ N . To evaluate the bad data detection accuracy, we use the F1 score, which is defined as
2∗precision×recall

precision+recall
, where precision is given by

#True positives |J ∩Ĵ |
#Conditional positives |Ĵ | , and recall is given by

#True positives |J ∩Ĵ |
#Conditional positives |J | ,

and J and Ĵ denote the true and estimated supports of bad data (# indicates the number of elements). The

F1 score is the harmonic average of the precision and recall, which reaches its best value at 1 (perfect

precision and recall) and worst at 0.

Experimental setup: We evaluate the proposed method (step-1 estimators include (S(1): �1), (S(1): �2�1),

(S(1): �1-K) or (S(1): �2�1-K)) combined with step-2 recovery method (S(2): �2) or (S(2): �2�1)), and com-

pare it with the current practice of nonlinear least square (NLS) method based on Newton’s algorithm. We

use SeDuMi [20] as the optimization solver and the MATPOWER implementation of NLS. Throughout the

experiment, we choose λ in (S(1): �2�1) to be 3 × 10−4/nm, λ2 in (S(1): �2�1-K) to be 0.1, and a bad data

detection threshold of 0.01 for stage-1 estimators. After the removal of bad data (i.e., cleaning step), we

perform the estimation with the remaining data. All the experiments are performed on a standard laptop

with 3.3GHz Intel Core i7 and 16GB memory.
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Convergence issue of Newton’s method: We performed a simple experiment, where there is no noise

in the measurements, and we use both Newton’s method and our proposed method to estimate the state for

the IEEE 300-bus system [29]. Since Newton’s method depends on the initial point, we randomly generate

an initial point, where we add a complex vector on top of the ground truth. The magnitude of each entry is

uniformly chosen from [1 − τ, 1 + τ ], and angle (in degrees) uniformly chosen from [−100 × τ, 100 × τ ].
We increase τ to enlarge the initialization distance. As shown in Figure 12, as we increase τ , Newton’s

method becomes less and less reliable. This can be due to several factors, for example, if the initial point is

far from the ground truth, the algorithm can become stuck at a local optimal. On the contrary, our proposed

method based on (S(1): �2�1) does not depend on the initial point and can recover the ground truth for all the

experiments.

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

Initialization distance

RM
SE

Newton’s method
Proposed method

Figure 12: Plots of RMSE against initilization distance τ for Newton’s method. The RMSE is averaged

over 20 simulations. For the Newton’s method, we show both the mean performance (circled line) and the

min/max range (black shades).

Simulations on measurement redundancy: In the main paper, we demonstrated the performance of

(S(1): �2�1-K) for different sensor measurement profiles. We have tested three different methods to add ad-

ditional sensors: the first method (Method 1) starts from a spanning tree of the network and incrementally

adds a set of lines to the tree. In this method, each bus is equipped with only voltage magnitude measure-

ments, and each line has 3 out of 4 branch flow measurements. The second method (Method 2) starts with

the full network, where each node has voltage magnitude measurements and each line has one real and one

reactive power measurements, and it grows the set of sensors by randomly adding branch measurements.

The third method (Method 3) differs from Method 2 only in that it grows the set of sensors by randomly

adding branch measurements as well as nodal power injections. In Figure 13, we compared the performance

of (S(1): �2�1) with (S(1): �2�1-K) in terms of both estimation accuracy and bad data detection rates. It can

be seen that (S(1): �2�1-K) consistently outperforms (S(1): �2�1) at different redundancy rates. We can also

observe that Method 1 is more efficient in terms of improvement of performance with additional sensors.

Visualization of vulnerability maps for different measurement profiles: In Figure 9 from the main

text, we show statistics regarding vulnerability index and critical index for different measurement profiles.

Figures 14 and 15 show the geographical distributions of VI and CI, respectively. It can be seen that

(S(1): �2�1-K) is consistently more robust in terms of VI and CI than (S(1): �2�1). This is also theoreti-

cally proven in Proposition 18. We also see that the more vulnerable lines exist, the higher the bus critical

index tends to be. By comparing Figure (B, G) with Figure (C, H), we see that the inclusion of nodal power

injections is likely to cause vulnerable lines. By including more branch flow measurements, as shown in

Figure (A, C, D) and Figure (F, H, I), or more voltage magnitude measurements, as shown in Figure (B, C,
E) or Figure (G, H, J), it is more likely to robustify the network.
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Figure 13: Performance of proposed algorithms with different rates of measurement redundancy. Plots for

different methods to add measurements: (A, B) Method 1, (C, D) Method 2, (E, F) Method 3. Results for

(S(1): �2�1-K) (red) and (S(1): �2�1) (green) are shown, which are averaged over 20 independent simulations.

E Proofs

E.1 Proof of Theorem 13

For an arbitrary set of attacked measurements Mat, their boundary Mbd := Mbi ∪ Mbo and unaffected

measurements Msf , as well as the associated variables xat, xbd and xsf , respectively, we design the primal-

dual witness (PDW) process as follows:

(1) Set b̂Msf
= 0 and b̂Mbo

= 0;
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Figure 14: Vulnerability maps for different measurement profiles and optimization techniques. (A–E) and

(F–J) are series of maps without and with the SOCs, respectively. (A, F), (C, H) and (D, I) correspond

to PV or PQ nodal measurements together with 2, 3, and 4 branch power flows, respectively. (B, G) and

(E, J) correspond to only PQ or only voltage magnitude nodal measurements with 3 branch power flows,

respectively.
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Figure 15: Bus critical index maps for different measurement profiles and optimization techniques. (A–E)
and (F–J) are series of maps without and with the SOCs, respectively. (A, F), (C, H) and (D, I) correspond

to PV or PQ nodal measurements together with 2, 3, and 4 branch power flows, respectively. (B, G) and

(E, J) correspond to only PQ or only voltage magnitude nodal measurements with 3 branch power flows,

respectively. Color indicates low (yellowish) to high (reddish) critical index. If the critical index is 0, which

occurs when attacking the bus does not affect any of its neighbors, the grey color is shown.
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(2) Determine x̂ =
[
x̂�
sf x̂�

bd x̂�
at

]�
and b̂ =

[
0� 0� b̂

�
Mbi

b̂
�
Mat

]�
by solving the following

program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
yMsf

yMbo

yMbi

yMat

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat

⎤
⎥⎥⎦
⎡
⎣xsf

xbd

xat

⎤
⎦−

⎡
⎢⎢⎣

0
0

bMbi

bMat

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥
2

2

+ λ

∥∥∥∥
[
bMbi

bMat

]∥∥∥∥
1

,

(80)

and ĥMbi
∈ ∂‖b̂Mbi

‖1 and ĥMat ∈ ∂‖b̂Mat‖1 satisfying the optimality conditions

− 1

nm
(yMat

−AMat,Xatx̂at − b̂Mat) + λĥMat = 0, (81a)

− 1

nm

(
yMbi

−AMbi,Xbd
x̂bd −AMbi,Xatx̂at − b̂Mbi

)
+ λĥMbi

= 0. (81b)

(3) Solve (ĥMsf
, ĥMbo

) via the zero-subgradient equation:

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (82)

where x̂ =
[
x̂�
Bsf

x̂�
Bbd

x̂�
Bat

]�
and b̂ =

[
0� 0� b̂

�
Mbi

b̂
�
Mat

]�
are solutions obtained in (80),

and ĥ =
[
ĥ
�
Msf

ĥ
�
Mbo

ĥ
�
Mbi

ĥ
�
Mat

]�
where (ĥMbi

, ĥMat) are given in (81). Check whether strict

feasibility conditions ‖ĥMsf
‖∞ < 1 and ‖ĥMbo

‖∞ < 1 hold.

Lemma 32. If the PDW procedure succeeds, then (x̂, b̂) that is optimal for (80) is also optimal for (S(1): �2�1).
Furthermore, for any optimal solution (x̃, b̃), if x̂at = x̃at, we must have x̂sf = x̃sf and x̂bd = x̃bd (i.e.,
uniqueness property in the weak sense).

Proof. The KKT conditions of (S(1): �2�1) for a given primal-dual pair (x̂, b̂) and ĥ are given by:

A�(y −Ax̂− b̂) = 0, (83a)

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (83b)

‖ĥ‖∞ ≤ 1 (83c)

If PDW succeeds, then the optimality conditions (83) are satisfied, which certify the optimality of (x̂, b̂).

The subgradient ĥ satisfies ‖ĥMsf
‖∞ < 1, ‖ĥMbo

‖∞ < 1 and
〈
ĥ, b̂

〉
= ‖b̂‖1. Now, let (x̃, b̃) be any

other optimal, and let F (x, b) = 1
2nm

‖y −Ax− b‖22, then we have

F (x̂, b̂) + λ
〈
ĥ, b̂

〉
= F (x̃, b̃) + λ‖b̃‖1,

and hence,

F (x̂, b̂) + λ
〈
ĥ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
.

By the optimality conditions in (83), we have λĥ = −∇bF (x̂, b̂) = 1
nm

(y −Ax̂− b̂), which implies that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃) = λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
≤ 0
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due to convexity. Therefore, ‖b̃‖1 ≤
〈
ĥ, b̃

〉
. Since by Holder’s inequality, we also have

〈
ĥ, b̃

〉
≤

‖ĥ‖∞‖b̃‖1, and ‖ĥ‖∞ ≤ 1, it holds that ‖b̃‖1 =
〈
ĥ, b̃

〉
. Since by the success of PDW, ‖ĥMsf

‖∞ < 1

and ‖ĥMbo
‖∞ < 1, we have b̃j = 0 for all j ∈ Msf ∪Mbo. To show the weak uniqueness, let (x̃, b̃) be

another optimal solution, and assume that x̂at = x̃at. Then, by fixing xat in the optimization (80) as x̂at

and by the lower eigenvalue condition, the the function is strictly convex in xsf , xbd and bMbi
.

Proof of Theorem 13

Proof. Part 1): By the construction of PDW, we have b̂Msf
= b�Msf

= 0 and b̂Mbo
= b�Mbo

= 0. In the

following, we allow the optimal solution x̂at and b̂Mat of (80) to take any value. Thus, for any given x̂at

and b̂Mat , we can fix xat and bMat in (80) and solve the following smaller program:

min
bMbi

,xsf ,xbd

1

2nm

∥∥∥∥∥
⎡
⎣yMsf

yMbo

zMbi

⎤
⎦

︸ ︷︷ ︸
z◦

−

⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦

︸ ︷︷ ︸
A◦

[
xsf

xbd

]
︸ ︷︷ ︸

x◦

−

⎡
⎣ 0

0
bMbi

⎤
⎦∥∥∥∥∥

2

2

+ λ ‖bMbi
‖1 , (84)

where zMbi
= yMbi

−AMbi,Xatx̂at = AMbi,Xbd
x�bd+b̃Mbi

and b̃Mbi
= AMbi,Xat(x�at−x̂at). Let I◦ be

an identity matrix of size nm−|Mat|, and x◦ and w◦ be the subvectors of x and w indexed by Msf∪Mbo∪
Mbi, respectively. Thus, we have z◦ = A◦x◦

� + w◦
� + I◦�

Mbi
b̃Mbi

. The solution (xsf ,xbd, bMbi
) of (84)

is unique and coincides with that of (80) due to the lower eigenvalue condition. Thus, the zero-subgradient

condition (81) is satisfied, which together with (82) can be written as:

− 1

nm

⎛
⎝
⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦[

x�sf − x̂sf

x�bd − x̂bd

]
+

⎡
⎣ 0

0

b̃Mbi
− b̂Mbi

⎤
⎦
⎞
⎠− 1

nm

⎡
⎣w�Msf

w�Mbo

w�Mbi

⎤
⎦+λ

⎡
⎣ ĥMsf

ĥMbo

ĥMbi

⎤
⎦ = 0.

(85)

We can partition the above relation into equations indexed by Mbi, which can be rearranged as:

ĥMbi
=

1

nmλ

[
I◦
Mbi

A◦ I◦
Mbi

I◦�
Mbi

] [ x◦
� − x̂◦

b̃Mbi
− b̂Mbi

]
+

1

nmλ
I◦
Mbi

w◦
� , (86)

as well as those indexed by Msf ∪Mbo, which can be solved for ĥMsf∪Mbo
=

[
ĥ
�
Msf

ĥ
�
Mbo

]�
:

ĥMsf∪Mbo
=

1

nmλ
I◦
Msf∪Mbo

(
A◦(x◦

� − x̂◦) +w◦
�

)
. (87)

Since x̂◦ is the optimal solution of (84), it satisfies the optimality condition:

A◦�
(
A◦(x◦

� − x̂◦) +w◦
� + I◦�

Mbi
(b̃Mbi

− b̂Mbi
)
)
= 0 (88)

Combining (86), (87) and (88) and after some elementary operations, we have

A◦�
Msf∪Mbo

ĥMsf∪Mbo
+A◦�

Mbi
ĥMbi

= 0. (89)

By Lemma 11, for any ĥMbi
∈ ∂‖b̂Mbi

‖1, there always exists ĥMsf∪Mbo
such that ‖ĥMsf∪Mbo

‖∞ < 1.

Thus, the strict feasibility condition is satisfied deterministically.
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Part 2): By the lower eigenvalue condition the and definition of Q◦
Mbi

=
[
A◦ I◦�

Mbi

]
, we can solve

(86) and (88):

Δ :=

[
x◦
� − x̂◦

b̃Mbi
− b̂Mbi

]
= −(Q◦�

Mbi
Q◦

Mbi
)−1Q◦�

Mbi
w◦

� + nmλ(Q◦�
Mbi

Q◦
Mbi

)−1

[
0

ĥMbi

]
(90)

Let Ix and Ib denote the matrices that consist of the first |Xsf |+ |Xbd| rows and the last |Mbi| rows of the

identity matrix of size |Xsf | + |Xbd| + |Mbi|, respectively. Then, we can bound the estimation error Δ in

(90). First, we bound the infinity norm of b̃Mbi
− b̂Mbi

= IbΔ. By triangle inequality,

‖IbΔ‖∞ ≤ ‖Ib(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖∞ + nmλ‖Ib(Q

◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞. (91)

Since the second term is deterministic, we will now bound the first term. By the normalized measurement

condition (2) (we assume all measurement vectors are normalized by 1 without loss of generality) and

the lower eigenvalue condition, each entry of (Q◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
� is zero-mean sub-Gaussian with

parameter at most

σ2‖(Q◦�
Mbi

Q◦
Mbi

)−1‖2 ≤
σ2

Cmin
. (92)

Thus, by the union bound, we have

P

(
‖Ib(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖∞ > t

)
≤ 2 exp

(
−Cmint

2

2σ2
+ log |Mbi|

)
. (93)

Then, set t = nmλ
2
√
Cmin

, and note that by our choice of λ, we have Cmint
2

2σ2 > log |Mbi|. Thus, we conclude that

‖b̃Mbi
− b̂Mbi

‖∞ ≤ nmλ

(
1

2
√
Cmin

+ ‖Ib(Q
◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞

)
(94)

with probability greater than 1− 2 exp(−c2n
2
mλ2). This indicates that all bad data entries greater than

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q
◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞

)
(95)

will be detected by b̂Mbi
.

Part 3): Now, we bound the �2 norm of the signal error x◦
� − x̂◦ = IxΔ,

‖IxΔ‖2 ≤ ‖Ix(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖2 + nmλ‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞,2. (96)

For the first term, by the application of standard sub-gaussian concentration,

P

(
‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖2 > ‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖F + t‖Ix(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖2
)

is upper bounded by exp
(
− c1t2

σ4

)
. Since

‖Ix(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖F ≤ ‖Ix‖2‖(Q◦�
Mbi

Q◦
Mbi

)−1‖2‖Q◦�
Mbi

‖F ≤
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
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due to the lower eigenvalue condition and the normalized measurement condition, and similarly it holds that

‖Ix(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖2 ≤ ‖Ix‖2‖(Q◦�
Mbi

Q◦
Mbi

)−1‖2‖Q◦�
Mbi

‖F ≤
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
.

Moreover,

P

(
‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖2 > t

√
|Xsf |+ |Xbd|+ |Mbi|

Cmin

)
≤ exp

(
−c1t

2

σ4

)
.

Together, we conclude that

‖x� − x̂‖2 ≤ t

√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1I�
b ‖∞,2 (97)

with probability greater than 1− exp
(
− c1t2

σ4

)
.

Lemma 33. Suppose that Q◦�
Mbi

Q◦
Mbi

is invertible, where Q◦
Mbi

=
[
A◦ I◦�

Mbi

]
. Then, it holds that

IMsf∪Mbo
A◦Ix(Q

◦�
Mbi

Q◦
Mbi

)−1I�
b = −A�+

Msf∪Mbo
A�

Mbi
. (98)

Proof. By the definition of Q◦
Mbi

and block matrix inversion formula, we have

Ix(Q
◦�
Mbi

Q◦
Mbi

)−1I�
b

= −(A◦�A◦)−1A�
Mbi

(I −AMbi
(A◦�A◦)−1A�

Mbi
)−1

= −(A◦�A◦)−1A�
Mbi

(I +AMbi
(A�

Msf∪Mbo
AMsf∪Mbo

)−1A�
Mbi

)

= −(A◦�A◦)−1(I +A�
Mbi

AMbi
(A�

Msf∪Mbo
AMsf∪Mbo

)−1)A�
Mbi

= −(A�
Msf∪Mbo

AMsf∪Mbo
)−1A�

Mbi
,

where the first equation follows from the Sherman-Morrison-Woodbury formula and the rest are elementary

operations.

Lemma 34. Suppose that Q◦�
Mbi

Q◦
Mbi

is invertible. Then, it holds that

Ib(Q
◦�
Mbi

Q◦
Mbi

)−1I�
b = I +AMbi

(A�
Msf∪Mbo

AMsf∪Mbo
)−1A�

Mbi
(99)

Proof. By the definition of Q◦
Mbi

and block matrix inversion formula, we have

Ib(Q
◦�
Mbi

Q◦
Mbi

)−1I�
b = (I −AMbi

(A◦�A◦)−1A�
Mbi

)−1

= I +AMbi
(A�

Msf∪Mbo
AMsf∪Mbo

)−1A�
Mbi

,

where the second equation follows from the Sherman-Morrison-Woodbury formula.
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E.2 Proof of Theorem 20

For an arbitrary set of attacked measurements Mat, their boundary Mbd := Mbi ∪ Mbo and unaffected

measurements Msf , as well as the associated variables xat, xbd and xsf , respectively, we design the primal-

dual witness process as follows:

1) Set b̂Msf
= 0 and b̂Mbo

= 0;

2) Determine x̂ =
[
x̂�
sf x̂�

bd x̂�
at

]�
and b̂ =

[
0� 0� b̂

�
Mbi

b̂
�
Mat

]�
by solving the following

program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
yMsf

yMbo

yMbi

yMat

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat

⎤
⎥⎥⎦
⎡
⎣xsf

xbd

xat

⎤
⎦−

⎡
⎢⎢⎣

0
0

bMbi

bMat

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥
2

2

+λ

∥∥∥∥
[
bMbi

bMat

]∥∥∥∥
1

,

(100a)

subject to c�� x ≥ ‖D�x‖2 , ∀� ∈ L, (100b)

and ĥMbi
∈ ∂‖b̂Mbi

‖1 and ĥMat ∈ ∂‖b̂Mat‖1 satisfying the optimality conditions

− 1

nm
(yMat

−AMat,Xatx̂at − b̂Mat) + λĥMat = 0, (101a)

− 1

nm

(
yMbi

−AMbi,Xbd
x̂bd −AMbi,Xatx̂at − b̂Mbi

)
+ λĥMbi

= 0. (101b)

3) Solve (ĥMsf
, ĥMbo

) via the zero-subgradient equation:

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (102)

where x̂ =
[
x̂�
Bsf

x̂�
Bbd

x̂�
Bat

]�
and b̂ =

[
0� 0� b̂

�
Mbi

b̂
�
Mat

]�
are solutions obtained in (80),

and ĥ =
[
ĥ
�
Msf

ĥ
�
Mbo

ĥ
�
Mbi

ĥ
�
Mat

]�
where (ĥMbi

, ĥMat) are given in (81). Check whether strict

feasibility conditions ‖ĥMsf
‖∞ < 1 and ‖ĥMbo

‖∞ < 1 hold.

Lemma 35. If the PDW procedure succeeds, then (x̂, b̂) that is optimal for (100) is also optimal for
(S(1): �2�1-K). Furthermore, for any optimal solution (x̃, b̃), if x̂at = x̃at, it holds that x̂sf = x̃sf and
x̂bd = x̃bd (i.e., uniqueness property in the weak sense).

Proof. The KKT conditions of (S(1): �2�1-K) for a given primal-dual pair (x̂, b̂) and ĥ are given by:

1

nm
A�(y −Ax̂− b̂) + λ

∑
�∈L

(ν�c� +D�
� μ�) = 0, (103a)

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (103b)

ĥ ∈ ∂‖b̂‖1, ‖ĥ‖∞ ≤ 1 (103c)

If PDW succeeds, then the optimality conditions (103) are satisfied, which certify the optimality of (x̂, b̂).

The subgradient ĥ satisfies ‖ĥMsf
‖∞ < 1, ‖ĥMbo

‖∞ < 1 and
〈
ĥ, b̂

〉
= ‖b̂‖1. Now, let (x̃, b̃) be any
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other optimal, and let F (x, b) = 1
2nm

‖y −Ax− b‖22; then,

F (x̂, b̂) + λ
〈
ĥ, b̂

〉
= F (x̃, b̃) + λ‖b̃‖1,

and hence,

F (x̂, b̂) + λ
〈
ĥ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
.

By the optimality conditions in (103), we have λĥ = −∇bF (x̂, b̂) = 1
nm

(y−Ax̂− b̂), which implies that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃) = λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
≤ 0

due to convexity. We thus have ‖b̃‖1 ≤
〈
ĥ, b̃

〉
. Since by Holder’s inequality, we also have

〈
ĥ, b̃

〉
≤

‖ĥ‖∞‖b̃‖1, and ‖ĥ‖∞ ≤ 1, it holds that ‖b̃‖1 =
〈
ĥ, b̃

〉
. Since by the success of PDW, ‖ĥMsf

‖∞ < 1,

‖ĥMbo
‖∞ < 1, we have b̃j = 0 for j ∈ Msf ∪Mbo. To show the weak uniqueness, let (x̃, b̃) be another

optimal solution, and assume that x̂at = x̃at. Then, by fixing xat in the optimization (100) at x̂at and by

the lower eigenvalue condition, the the function is strictly convex in xsf , xbd and bMbi
.

Proof of Theorem 20

Proof. Part 1): By the construction of PDW, we have b̂Msf
= b�Msf

= 0 and b̂Mbo
= b�Mbo

= 0. In the

following, we allow the optimal solution x̂at and b̂Mat of (100) to take any value as long as the nonbinding

SOC constraints assumption is satisfied. Thus, for any given x̂at and b̂Mat , we can fix xat and bMat in

(100) and solve the following smaller program:

min
bMbi

,xsf ,xbd

1

2nm

∥∥∥∥∥
⎡
⎣yMsf

yMbo

zMbi

⎤
⎦

︸ ︷︷ ︸
z◦

−

⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦

︸ ︷︷ ︸
A◦

[
xsf

xbd

]
︸ ︷︷ ︸

x◦

−

⎡
⎣ 0

0
bMbi

⎤
⎦∥∥∥∥∥

2

2

+ λ ‖bMbi
‖1 , (104a)

subject to c�� x ≥ ‖D�x‖2 , ∀� ∈ L \ Lat, (104b)

where zMbi
= yMbi

−AMbi,Xatx̂at = AMbi,Xbd
x�bd + b̃Mbi

and b̃Mbi
= AMbi,Xat(x�at − x̂at). Let I◦

be an identity matrix of size nm−|Mat|, and x◦, c◦� and D◦
� be the subvector and submatrix of x, c� and D�

indexed by Xsf and Xbd, respectively, and w◦ be the subvector of w indexed by Msf ∪Mbo ∪Mbi. Thus,

we have z◦ = A◦x◦
�+w◦

�+I◦�
Mbi

b̃Mbi
. The solution (xsf ,xbd, bMbi

) of (104) is unique and coincides with

that of (100) due to the lower eigenvalue condition. Thus, the zero-subgradient condition (101) is satisfied,

which together with (102) can be written as:

− 1

nm

⎛
⎝
⎡
⎣AMsf ,Xsf

AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

⎤
⎦[

x�sf − x̂sf

x�bd − x̂bd

]
+

⎡
⎣ 0

0

b̃Mbi
− b̂Mbi

⎤
⎦
⎞
⎠− 1

nm

⎡
⎣w�Msf

w�Mbo

w�Mbi

⎤
⎦+λ

⎡
⎣ ĥMsf

ĥMbo

ĥMbi

⎤
⎦ = 0.

(105)

We can partition the above relation into equations indexed by Mbi, which can be rearranged as:

ĥMbi
=

1

nmλ

[
I◦
Mbi

A◦ I◦
Mbi

I◦�
Mbi

] [ x◦
� − x̂◦

b̃Mbi
− b̂Mbi

]
+

1

nmλ
I◦
Mbi

w◦
� , (106)
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as well as those indexed by Msf ∪Mbo, which can be solved for ĥMsf∪Mbo
=

[
ĥ
�
Msf

ĥ
�
Mbo

]�
:

ĥMsf∪Mbo
=

1

nmλ
I◦
Msf∪Mbo

(
A◦(x◦

� − x̂◦) +w◦
�

)
. (107)

Since x̂◦ is the optimal solution of (104), it satisfies the optimality condition:

1

nm
A◦�

(
A◦(x◦

� − x̂◦) +w◦
� + I◦�

Mbi
(b̃Mbi

− b̂Mbi
)
)
+

∑
�∈Lat∩bi∪Lbd∪Lsf

ν̂�c
◦
� +D◦�

� û� = 0 (108)

Combining (106), (107) and (108) and after some elementary operations, it yields that

λA◦�
Msf∪Mbo

ĥMsf∪Mbo
+ λA◦�

Mbi
ĥMbi

+
∑

�∈Lat∩bi∪Lbd∪Lsf

ν̂�c
◦
� +D◦�

� û� = 0. (109)

By Lemma 17, for any ĥMbi
∈ ∂‖b̂Mbi

‖1, there always exist ĥMsf∪Mbo
and {ν̂�, û�}Lat∩bi∪Lbd∪Lsf

such

that ‖ĥMsf∪Mbo
‖∞ < 1. Thus, the strict feasibility condition is satisfied deterministically.

Part 2): Thus, by the lower eigenvalue condition and definition of Q◦
Mbi

=
[
A◦ I◦�

Mbi

]
and ĥ =[

ĥ
�
Msf∪Mbo

ĥ
�
Mbi

]�
, we can solve (106), (108) and (109):

Δ :=

[
x◦
� − x̂◦

b̃Mbi
− b̂Mbi

]

= −(Q◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
� + nmλ(Q◦�

Mbi
Q◦

Mbi
)−1

[
A◦�

Msf∪Mbo
ĥMsf∪Mbo

+A◦�
Mbi

ĥMbi

ĥMbi

]

= −(Q◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
� + nmλ(Q◦�

Mbi
Q◦

Mbi
)−1Q◦�

Mbi
ĥ, (110)

Let Ix and Ib denote the matrices that consist of the first |Xsf |+ |Xbd| rows and the last |Mbi| rows of the

identity matrix of size |Xsf | + |Xbd| + |Mbi|, respectively. Then, we can bound the estimation error Δ in

(90). First, we bound the infinity norm of b̃Mbi
− b̂Mbi

= IbΔ. By triangle inequality,

‖IbΔ‖∞ ≤ ‖Ib(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖∞ + nmλ‖Ib(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖∞. (111)

Since the second term is deterministic, we will bound the first term similar to Theorem 12. This concludes

the proof

Part 3): Now, we bound the �2 norm of the signal error x◦
� − x̂◦ = IxΔ,

‖IxΔ‖2 ≤ ‖Ix(Q
◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

w◦
�‖2 + nmλ‖Ix(Q

◦�
Mbi

Q◦
Mbi

)−1Q◦�
Mbi

‖∞,2. (112)

For the first term, we can apply standard sub-gaussian concentration. The second term is deterministic.

Combining them together yields the results.
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