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Abstract

Entropy regularization is an efficient tech-
nique for encouraging exploration and prevent-
ing a premature convergence of (vanilla) pol-
icy gradient methods in reinforcement learn-
ing (RL). However, the theoretical under-
standing of entropy regularized RL algorithms
has been limited. In this paper, we re-
visit the classical entropy regularized policy
gradient methods with the soft-max policy
parametrization, whose convergence has so
far only been established assuming access to
exact gradient oracles. To go beyond this
scenario, we propose the first set of (nearly)
unbiased stochastic policy gradient estimators
with trajectory-level entropy regularization,
with one being an unbiased visitation measure-
based estimator and the other one being a
nearly unbiased yet more practical trajectory-
based estimator. We prove that although
the estimators themselves are unbounded in
general due to the additional logarithmic pol-
icy rewards introduced by the entropy term,
the variances are uniformly bounded. This
enables the development of the first set of
convergence results for stochastic entropy reg-
ularized policy gradient methods to both sta-
tionary points and globally optimal policies.
We also develop some improved sample com-
plexity results under a good initialization.

1 Introduction

Entropy regularization is a popular technique to encour-
age exploration and prevent premature convergence for
reinforcement learning (RL) algorithms. It was origi-
nally proposed in Williams and Peng (1991) to improve
the performance of REINFORCE, a classical family of

1Work done prior to joining or outside of Amazon.

vanilla policy gradient methods widely used in practice.
Since then, the entropy regularization technique has
been applied to a large set of other RL algorithms in-
cluding actor-critic (Mnih et al., 2016; Haarnoja et al.,
2018), Q-learning (O’Donoghue et al., 2016; Haarnoja
et al., 2017) and trust-region policy optimization meth-
ods (Zang et al., 2020). It has also been demonstrated
to work well with deep learning approximations to
achieve an impressive empirical performance boost.
Nevertheless, the theoretical understanding of the con-
vergence of these algorithms has been rather limited
and mostly restricted to the exact gradient setting.

In this paper, we revisit the classical entropy regular-
ized (vanilla) policy gradient (PG) methods proposed in
the seminal work Williams and Peng (1991) under the
soft-max policy parametrization. We focus on the mod-
ern trajectory-level entropy regularization proposed in
Haarnoja et al. (2017), which is shown to improve over
the original one-step entropy regularization adopted
in Williams and Peng (1991); Mnih et al. (2016) and
O’Donoghue et al. (2016). The literature on the conver-
gence analysis of such algorithms is extremely limited.
The work Mei et al. (2020) has recently developed the
first set of global convergence results, which is focused
on the soft-max policy parametrization assuming access
to exact policy gradient evaluations. It remains open
whether convergence results can still be obtained in the
practical stochastic gradient setting with an arbitrary
initial point, for which there is a potentially unbounded
logarithmic policy reward component introduced by
the entropy term.

The remainder of the paper provides an affirmative
answer to the above question. We begin by proposing
two new entropy regularized stochastic policy gradi-
ent estimators. The first one is an unbiased visitation
measure-based estimator, whereas the second one is
a nearly unbiased yet more practical trajectory-based
estimator. These (nearly) unbiased stochastic policy
gradient estimators are the first estimators in the lit-
erature with a trajectory-level entropy regularization.
We show that although the estimators themselves are
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unbounded in general due to the entropy-induced log-
arithmic policy rewards, the variances indeed remain
uniformly bounded. This enables the development
of the first set of convergence results2 for stochastic
entropy-regularized policy gradient methods, both to
stationary points and to globally optimal policies. A
discussion about improved sample complexity results
with a good initialization is also provided.

Due to the space restriction, we leave the more detailed
literature review and notation to Sections 6 and 7 in
appendix.

2 Preliminaries

Markov decision processes. Reinforcement learn-
ing is generally modeled as a discounted Markov deci-
sion process (MDP) defined by a tuple (S,A,P, r, γ).
Here, S and A denote the finite state and action spaces;
P(s′∣s, a) is the probability that the agent transits from
the state s to the state s′ under the action a ∈ A; r(s, a)
is the reward function, i.e., the agent obtains the re-
ward r(sh, ah) after it takes the action ah at the state
sh at time h; γ ∈ (0, 1) is the discount factor. Without
loss of generality, we assume that r(s, a) ∈ [0, r̄] for
all s ∈ S and a ∈ A. The policy π(a∣s) at the state
s is usually represented by a conditional probability
distribution πθ(a∣s) associated to the parameter θ ∈ Rd.
Let τ = {s0, a0, s1, a1, . . .} denote the data of a sam-
pled trajectory under policy πθ with the probability
distribution over the trajectory as

p(τ ∣θ, ρ) ∶= ρ(s0)
∞

∏
h=1

P(sh+1∣sh, ah)πθ(ah∣sh), (1)

where ρ ∈ ∆(S) is the probability distribution of the
initial state s0. Here, ∆(X ) denotes the probability
simplex over a finite set X .

Value functions and Q-functions. Given a policy
π, one can define the state-action value function Qπ ∶
S ×A→ R as

Qπ(s, a) ∶= Eah∼π(⋅∣sh)
sh+1∼P(⋅∣sh,ah)

[
∞

∑
h=0

γhr(sh, ah)∣s0 = s, a0 = a] .

The state-value function V π ∶ S → R and the advantage
function Aπ ∶ S ×A→ R can be defined as

V π(s) ∶= Ea∼π(⋅∣s)[Q
π
(s, a)],

Aπ(s, a) ∶= Qπ(s, a) − V π(s).

The goal is to find an optimal policy in the underlying
policy class that maximizes the expected discounted

2Note that our main focus here is on studying global
convergence, instead of achieving tight sample complexity
results, which we leave as future work.

return, namely,

max
θ∈Rd

V πθ(ρ) ∶= Es0∼ρ[V
πθ(s0)]. (2)

For notional convenience, we will denote V πθ(ρ) by the
shorthand notation V θ(ρ).

Exploratory initial distribution. The discounted
state visitation distribution dπs0 is defined as

dπs0(s) ∶= (1 − γ)
∞

∑
h=0

γhP(sh = s∣s0, π), (3)

where P(sh = s∣s0, π) is the state visitation probability
that sh is equal to s under the policy π starting from
the state s0. The discounted state visitation distri-
bution under the initial distribution ρ is defined as
dπρ(s) ∶= Es0∼ρ[d

π
s0(s)]. Furthermore, the state-action

visitation distribution induced by π and the initial
state distribution ρ is defined as vπρ (s, a) ∶= d

π
ρ(s)π(a∣s),

which can also be written as

vπρ (s, a) ∶= (1 − γ)Es0∼ρ
∞

∑
h=0

γhP(sh = s, ah = a∣s0, π),

where P(sh = s, ah = a∣s0, π) is the state-action visita-
tion probability that sh = s and ah = a under π starting
from the state s0. To facilitate the presentation of the
main results of the paper, we assume that the state dis-
tribution ρ for the performance measure is exploratory
(Mei et al., 2020; Bhandari and Russo, 2019), i.e., ρ(⋅)
adequately covers the entire state distribution:

Assumption 2.1 The state distribution ρ satisfies
ρ(s) > 0 for all s ∈ S.

In practice, when the above assumption is not satis-
fied, we can optimize under another initial distribution
µ, i.e., the gradient is taken with respect to the opti-
mization measure µ, where µ is usually chosen as an
exploratory initial distribution that adequately cov-
ers the state distribution of some optimal policy. It
is shown in Agarwal et al. (2019) that the difficulty
of the exploration problem faced by policy gradient
algorithms can be captured through the distribution
mismatch coefficient defined as ∥

dπρ
µ
∥
∞
, where dπρ

µ
de-

notes component-wise division.

Soft-max policy parameterization. In this work,
we consider the soft-max parameterization – a widely
adopted scheme that naturally ensures that the policy
lies in the probability simplex. Specifically, for an
unconstrained parameter θ ∈ R∣S∣∣A∣, πθ(a∣s) is chosen
to be

exp (θs,a)

∑a′∈A exp (θs,a′)
.

The soft-max parameterization is generally used for
MDPs with finite state and action spaces. It is com-
plete in the sense that every stochastic policy can be
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represented by this class. For the soft-max parameteri-
zation, it can be shown that the gradient and Hessian
of the function logπθ(a∣s) are bounded, i.e., for all
θ ∈ R∣S∣∣A∣, s ∈ S and a ∈ A, we have:

∥∇ logπθ(a∣s)∥2 ≤ 2, ∥∇
2 logπθ(a∣s)∥2

≤ 1.

Reinforcement learning with entropy regular-
ization. Entropy is a commonly used regularization in
RL to promote exploration and discourage premature
convergence to suboptimal policies (Haarnoja et al.,
2017; Schulman et al., 2017; Eysenbach and Levine,
2019). It is far less aggressive in penalizing small proba-
bilities, in comparison to other common regularizations
such as log barrier functions (Agarwal et al., 2019). In
the entropy-regularized RL (also known as maximum
entropy RL), near-deterministic policies are penalized,
which is achieved by modifying the value function to

V πλ (ρ) = V π(ρ) + λH(ρ, π), (4)

where λ ≥ 0 determines the strength of the penalty and
H(ρ, π) stands for the discounted entropy defined as

H(ρ, π) ∶= Es0∼ρ,at∼π(⋅∣st)
st+1∼P(⋅∣st,at)

[
∞

∑
t=0

−γt logπ(at∣st)] .

Equivalently, V πλ (ρ) can be viewed as the weighted
value function of π by adjusting the instantaneous
reward to be policy-dependent regularized version as

rλ(s, a) ∶= r(s, a) − λ logπ(a∣s), ∀(s, a) ∈ S ×A.

We also define V πλ (s) analogously when the initial state
is fixed at a given state s ∈ S. The regularized Q-
function Qπλ of a policy π, also known as the soft Q-
function, is related to V πλ as (for every s ∈ S and a ∈ A)

Qπλ(s, a) = r(s, a) + γEs′∼P (⋅∣s,a) [V
π
λ (s′)] ,

V πλ (s) = Ea∼π(⋅∣s) [−λ logπ(a ∣ s) +Qπλ(s, a)] .

Bias due to entropy regularization. Due to the
presence of regularization, the optimal solution will be
biased with the bias disappearing as λ→ 0. More pre-
cisely, the optimal policy π∗λ of the entropy-regularized
problem could also be nearly optimal in terms of the
unregularized objective function, as long as the regu-
larization parameter λ is chosen to be small. Denote
by π∗ and π∗λ the policies that maximize the objective
function and the entropy-regularized objective function
with the regularization parameter λ, respectively. Let
V ∗ and V ∗

λ represent the resulting optimal objective
value function and the optimal regularized objective
value function. Cen et al. (2020) shows a simple but
crucial connection between π∗ and π∗λ via the following
sandwich bound:

V π
∗
λ(ρ) ≤ V π

∗
(ρ) ≤ V π

∗
λ(ρ) +

λ log ∣A∣

1 − γ
,

which holds for all initial distribution ρ.

3 Stochastic policy gradient methods
for entropy regularized RL

3.1 Review: Exact policy gradient methods

The policy gradient method (Algorithm 1) is one of the
most popular approaches for a direct policy search in
reinforcement learning (Sutton and Barto, 2018).

Algorithm 1 Exact policy gradient method
1: Inputs: {ηt}

T
t=1, θ1.

2: for t = 1,2, . . . , T − 1 do
3: θt+1 = θt + ηt∇V

θt
λ (ρ).

4: end for
5: Outputs: θT .

The uniform boundedness of the reward function r im-
plies that the absolute value of the entropy-regularized
state-value function and Q-value function are bounded.

Lemma 3.1 V θλ (s) ≤
r̄+λ log ∣A∣

1−γ
and Qπλ(s, a) ≤

r̄+λ log ∣A∣

1−γ
for all (s, a) ∈ S ×A and θ ∈ R∣S∣∣A∣.

Under the soft-max policy parameterization, one can
obtain the following expression for the gradient of
V πλ (s) with respect to the policy parameter θ:

Lemma 3.2 The entropy regularized policy gradient
with respect to θ is

∇V θλ (ρ) =
1

1 − γ
Es,a∼vπθρ [es,aA

θ
λ(s, a)] , (5)

where es,a ∈ R∣S∣∣A∣ has the value 1 at the entry corre-
sponding to the state s and action a and has 0 at all
other entries, and where Aθλ(s, a) is the soft advantage
function defined as

Aθλ(s, a) = Q
θ
λ(s, a) − λ logπθ(a ∣ s) − V θλ (s),

Qθλ(s, a) = r(s, a) + γ∑
s′

P (s′ ∣ s, a)V θλ (s′) .

Furthermore, the entropy regularized policy gradient
is bounded, i.e., ∥∇V θλ (ρ)∥ ≤ G for all ρ ∈ ∆(S) and
θ ∈ R∣S∣∣A∣, where G ∶=

2(r̄+λ log ∣A∣)

(1−γ)2
.

Furthermore, it is shown in Lemmas 7 and 14 of Mei
et al. (2020) that the policy gradient ∇V θλ (ρ) is Lips-
chitz continuous.

Lemma 3.3 (Lipschitz-Continuity of Policy Gradi-
ent). The policy gradient ∇V θλ (ρ) is Lipschitz con-
tinuous with some constant L > 0, i.e.,

∥∇V θ1λ (ρ) −∇V θ2λ (ρ)∥ ≤ L ⋅ ∥θ1
− θ2∥ ,

for all θ1, θ2 ∈ Rd, where the value of the Lipschitz
constant L is defined as L ∶=

8r̄+λ(4+8 log ∣A∣)

(1−γ)3
.
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The results in Lemmas 3.1-3.3 are adopted from Mei
et al. (2020).

Challenges for designing entropy regularized
policy gradient estimators. Existing works either
consider one-step entropy regularization (Williams,
1992; Mnih et al., 2016), KL divergence (Schulman
et al., 2017), or the re-parametrization technique
(Haarnoja et al., 2017, 2018) (which introduces approx-
imation errors that are difficult to quantify exactly).
In general, the regularized reward r − λ logπθ is policy-
dependent and unbounded even though the original
reward r is uniformly bounded. Hence, the existing esti-
mators for the un-regularized setting must be modified
to account for the policy-dependency and unbound-
edness while maintaining the essential properties of
(nearly) unbiasedness and bounded variances. In the
subsequent sections, we propose two (nearly) unbiased
estimators and show that although the estimators may
be unbounded due to unbounded regularized rewards,
the variances are indeed bounded. The proofs of the
results in this section can be found in Section 8 of the
appendix.

3.2 Sampling the unbiased policy gradient

It results from (5) that in order to obtain an unbiased
sample of ∇V θλ (ρ), we need to first draw a state-action
pair (s, a) from the distribution νπθρ (⋅, ⋅) and then ob-
tain an unbiased advantage function Aθλ(s, a)

For the standard discounted infinite-horizon RL setting
with bounded reward functions, Zhang et al. (2020) pro-
poses an unbiased estimate of the advantage-function
using the random horizon with a geometric distribu-
tion and the Monte-Carlo rollouts of finite horizons.
However, their result cannot be immediately applied to
the entropy-regularized RL setting since the entropy-
regularized instantaneous reward r(s, a) − λ logπ(a∣s)
could be unbounded when π(a∣s) → 0. Fortunately,
we can still show that an unbiased policy gradient
estimator with the bounded variance for the entropy
regularized RL can be obtained in a similar fashion as in
Zhang et al. (2020). In particular, we will use a random
horizon that follows a certain geometric distribution
in the sampling process. To ensure that the condition
(i) is satisfied, we will use the last sample (sH , aH)

of a finite sample trajectory (s0, a0, s1, a1, . . . , sH , aH)

to be the sample at which Aθλ(⋅, ⋅) is evaluated, where
the horizon H ∼ Geom(1 − γ). It can be shown that
(sH , aH) ∼ νπθρ (s, a). Moreover, given (sH , aH), we
will perform Monte-Carlo rollouts for two other tra-
jectories with horizons H ′,H ′′ ∼ Geom (1 − γ1/2) inde-
pendent of H, and estimate the advantage function
value Aθλ(s, a) along the trajectories (s′0, a

′
0, . . . , s

′
H′)

and (s′′0 , a
′′
0 , . . . , s

′′
H′′) as follows:

Âθλ(s, a) =Q̂
θ
λ(s, a) − λ logπθ(a∣s) − V̂

θ
λ (s), (6)

where

Q̂θλ(s, a) =r (s
′
0, a

′
0) +

H′

∑
t=1

γt/2 ⋅ (r (s′t, a
′
t) − λ logπθ(a

′
∣s′))

∣ s′0 = s, a
′
0 = a,

V̂ θλ (s) =
H′′

∑
t=0

γt/2 ⋅ (r (s′′t , a
′′
t ) − λ logπθ(a

′′
t ∣s

′′
t )) ∣ s′′0 = s.

The subroutines of sampling the pair (s, a) from
νπθρ (⋅, ⋅), estimating Q̂θλ(s, a) and estimating V̂ θλ (s) are
summarized as Sam-SA, Est-EntQ and Est-EntV
in Algorithms 4, 5 and 6 in Section 8.3, respectively.

Motivated by the form of policy gradient in (5), we
propose the following stochastic estimator:

∇̂V θλ (ρ) =
1

1 − γ
⋅ esH ,aH ⋅ Âθλ(sH , aH), (7)

where sH , aH ← Sam-SA(ρ, θ, γ) and Âθλ is defined in
(6). The following lemma shows that the stochastic
policy gradient (7) is an unbiased estimator of ∇V θλ (ρ).

Lemma 3.4 For ∇̂V θλ (ρ) defined in (7), we have
E[∇̂V θλ (ρ)] = ∇V θλ (ρ).

The next lemma shows that the proposed PG estimator
∇̂V θλ (ρ) has a bounded variance even if it is unbounded
when πθ approaches a deterministic policy.

Lemma 3.5 For ∇̂V θλ (ρ) defined in (7), we have
Var[∇̂V θλ (ρ)] ≤ σ2, where σ2 = 8

(1−γ)2
(
r̄2+(λ log ∣A∣)

2

(1−γ1/2)2 ).

3.3 Sampling the trajectory-based policy
gradient

Compared to the unbiased policy gradient with a ran-
dom horizon in (7), a more practical policy gradient
estimator is the trajectory-based policy gradient. To
derive the trajectory-based policy gradient for the
entropy-regularized RL, we first notice that the gradi-
ent ∇V θλ (ρ) can also be written as

∇V θλ (ρ) = λE [(
∞

∑
t=0

−γt∇ logπθ(at∣st))]+ (8)

λE [(
∞

∑
t=0

∇ logπθ(at∣st))(
∞

∑
t=0

−γt logπθ(at∣st))] (9)

+ E [(
∞

∑
t=0

∇ logπθ(at∣st))(
∞

∑
t=0

γtr(st, at))] , (10)

where all expectations are taken over the trajectory
distribution, i.e., τ ∼ p(τ ∣θ). The term (10) in the
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gradient ∇V θλ (ρ) is the gradient of the unregularized
RL objective and the terms in (8)-(9) are introduced
due to the entropy regularization.

Since the distribution p(τ ∣θ) is unknown, ∇V θλ (ρ) needs
to be estimated from samples. The trajectory-based
estimators include REINFORCE (Williams, 1992),
PGT (Sutton et al., 1999) and GPOMDP (Baxter
and Bartlett, 2001). In practice, the truncated versions
of these trajectory-based PG estimators are used to
approximate the infinite sum in the PG estimator. Let
τH = {s0, a0, s1, . . . , sH−1, aH−1, sH} denote the trunca-
tion of the full trajectory τ of length H. For example,
the commonly used truncated GPOMDP given by

g1(τ
H
∣θ, ρ) (11)

=
H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(aj ∣sj)
⎞

⎠
γhrh(sh, ah),

g2(τ
H
∣θ, ρ) (12)

=λ
H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(aj ∣sj)
⎞

⎠
(−γh logπθ(ah∣sh)) .

can be used to estimate the terms in (10) and (9) sepa-
rately. In addition, the term in (8) can be approximated
by the following estimator:

g3(τ
H
∣θ, ρ) = λ

H−1

∑
h=0

−γt∇ logπθ(ah, sh). (13)

Then, the truncated PG estimator for ∇V θλ can be
written as:

∇̂V θ,Hλ (ρ) = g1(τ
H
∣θ, ρ) + g2(τ

H
∣θ, ρ) + g3(τ

H
∣θ, ρ).

(14)

Due to the horizon truncation, the policy gradient
estimator (14) may no longer be unbiased, but its bias
can be very small with a large horizon H.

Lemma 3.6 For ∇̂V θ,Hλ (ρ) defined in (14), we have

∥E[∇̂V θ,Hλ (ρ)] −∇V θλ (ρ)∥
2

≤ 2λγH (
λ + (r̄ + λ log ∣A∣)H

1 − γ
+

(r̄ + λ log ∣A∣)

(1 − γ)2
) .

From Lemma 3.6, we can observe that the bias is
proportional to γH and thus can be controlled to be
arbitrarily small with a constant horizon up to some
logarithmic term. We then show that the truncated
PG estimator ∇̂V θ,H has a bounded variance even if it
may be unbounded when πθ approaches a deterministic
policy.

Lemma 3.7 For ∇̂V θ,Hλ (ρ) defined in (14), we have

Var(∇̂V θ,Hλ (ρ)) ≤
12λ

(1 − γ)2
+

12r̄2 + 24λ2(log ∣A∣)2

(1 − γ)4
.

3.4 Batched policy gradient algorithms

In practice, we can sample and compute a batch of in-
dependently and identically distributed policy gradient
estimators {∇̂V θ,iλ (ρ)}Bi=1 or {∇̂V θ,H,iλ (ρ)}Bi=1, where B
is the batch size, in order to reduce the estimation vari-
ance. To maximize the entropy-regularized objective
function (4), we can then update the policy parameter
θ by iteratively running gradient-ascent-based algo-
rithms, i.e., θt+1 = θt +

ηt
B ∑

B
i=1 ∇̂V

θ,i
λ (ρ), where ηt > 0

is the step size. The details of the unbiased policy
gradient algorithm with a random horizon (and the
trajectory-based policy gradient algorithm with the
horizon truncation) for the entropy-regularized RL are
summarized in Algorithm 2 (and Algorithm 3).

Algorithm 2 Ent-RPG: Random-horizon policy gra-
dient algorithm for Entropy-regularized RL
1: Inputs: ρ, λ, θ1,B, T,{ηt}

T
t=1.

2: for t = 1,2, . . . , T do
3: for i = 1,2, . . . ,B do
4: siHt , a

i
Ht
← SamSA(ρ, θt, γ).

5: Q̂θt,iλ ← Est-EntQ(siHt , a
i
Ht
, θt, γ, λ).

6: V̂ θt,iλ ← Est-EntV(siHt , θt, γ, λ).
7: Âθt,iλ ← Q̂θ,iλ − λ logπθt(s

i
Ht

∣ aiHt) − V̂
θ,i
λ .

8: end for
9: Perform policy gradient update: θt+1 ← θt +

ηt
(1−γ)B ∑

B
i=1 [esi

Ht
,ai
Ht
Âθt,iλ (siHt , a

i
Ht

)]

10: end for
11: Outputs: θT .

Algorithm 3 Stochastic PG for entropy regularized
RL
1: Inputs: ρ, λ, θ1,B, T,{ηt}

T
t=1.

2: for t = 1,2, . . . , T − 1 do
3: Sample B trajectories {τHi }Bi=1 from p(⋅∣θt, ρ);
4: Compute ut = 1

B ∑
B
i=1 ∇̂V

θ,H,i
λ (ρ) where

∇̂V θ,H,iλ (ρ) is given by (14);
5: Update θt+1 = θt + ηtut;
6: end for
7: Outputs: θT ;

4 Global convergence and sample
complexity

In this section, we first review some key results for
entropy-regularized RL with the exact policy gradient
and highlight the difficulty of generalizing these results
to the setting with stochastic policy gradients. Then,
we develop the counterparts of these key results when
the stochastic policy gradient estimator, time-varying
step-sizes and a large batch size are used. Due to space
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restrictions and in order to facilitate the presentation of
the main ideas, we will mainly focus on the analysis of
the unbiased policy gradient estimator in (7). Similar
results hold for the trajectory-based policy gradient
estimator in (14) since its bias is exponentially small
with respect to the horizon (see Lemma 3.6). We leave
the formal discussion of these results as future work.

4.1 Review: Linear convergence with exact
policy gradient

A key result from Lemma 15 of Mei et al. (2020) shows
that, under the soft-max parameterization, the entropy-
regularized value function V θλ (ρ) in (4) satisfies a non-
uniform Łojasiewicz inequality as follows:

Lemma 4.1 (Mei et al. (2020)) It holds that
∥∇V θλ (ρ)∥

2

2
≥ C(θ)(V θ

∗
λ (ρ) − V θλ (ρ)), where

C(θ) = 2λ
∣S∣

mins ρ(s)mins,a πθ(a∣s)
2 ∥

d
π∗
λ
ρ

ρ
∥

−1

∞

.

It is also shown in Theorem 1 of Cen et al. (2020) that
the optimal policy for the entropy-regularized RL prob-
lem 4 is unique. Furthermore, it is shown in Lemma 16
of Mei et al. (2020) that the action probabilities under
the soft-max parameterization are uniformly bounded
away from zero if the exact policy gradient is available.

Lemma 4.2 (Mei et al. (2020)) Using the exact
PG (Algorithm 1) with ηt ≤

2
L

for the entropy regu-
larized objective, it holds that inft≥1 mins,a πθt(a∣s) > 0.

With Lemmas 3.3, 4.1 and 4.2, it is shown in Theorem
6 of Mei et al. (2020) that the convergence rate for the
entropy regularized policy gradient in general MDPs is
O (e−t):

Lemma 4.3 (Mei et al. (2020)) Consider Algo-
rithm 1 with the entropy regularized objective and
soft-max parametrization and ηt =

1
L
. There exists

a problem-dependent constant C > 0 such that the
following inequality holds for all t ≥ 1:

Ṽ π
∗
τ (ρ) − Ṽ πθt (ρ) ≤ ∥

1

ρ
∥
∞

⋅
1 + λ log ∣A∣

(1 − γ)2
⋅ e−C(t−1).

It is shown in Mei et al. (2020) that the value of C
depends on inft≥1 mins,a πθt(a∣s) > 0, where {θt}

∞
t=1 is

generated by Algorithm 1. With a bad initialization θ1,
mins,a πθ1(a∣s) could be very small and result in a slow
convergence rate. When studying the stochastic policy
gradient, this issue of bad initialization will create
more severe challenges on the convergence, which we
will discuss in the following sections.

One main challenge is the boundedness of iterations
under the stochastic policy gradient. If the iterations

of Algorithm 2 remain in a bounded region, then the
results of Lemma 4.3 can be easily generalized to the
stochastic policy gradient setting. However, unfortu-
nately, the iterates of stochastic gradient methods may
indeed escape to infinity in general, rendering the en-
tire scheme useless (Benaïm, 1999; Borkar, 2009). In
particular, when using the stochastic truncated PG for
the entropy regularized RL, the key result of Lemma
4.2 may no longer hold true. This in turn results in the
loss of gradient domination condition in guaranteeing
the global convergence.

4.2 Landscape of a simple bandit example

To have a better understanding of the landscape of
the entropy-regularized value function, we visualize its
landscape in this section. For the simplicity of the
visualization, we use a simple bandit example (corre-
sponding to γ = 0) with 2 actions, 2 parameters (θ1, θ2),
the reward vector r = [2,1] and the regularization pa-
rameter λ = 1. Then, the entropy-regularized value
function can be written as π⊺θ (r − logπθ).

Figure 1: Landscape of π⊺θ (r − logπθ).

As shown in Figure 1, the entropy-regularized value
function is not coercive. When θ1 goes to positive (neg-
ative) infinity and θ2 goes to negative (positive) infinity,
the landscape will become highly flat. It can also be
seen that there is a line space for (θ1, θ2) at which the
entropy-regularized value function is maximum.

When the stochastic policy gradient is used, the search
direction may be dominated by the gradient estimation
noise at the region where the landscape is highly flat.
This may further lead to the failure of the convergence
for the stochastic policy gradient algorithm if the initial
point is at the flat region. However, in the next section,
we will show that the stochastic policy gradient can still
converge to the optimal policy from an arbitrary initial
point, given a sufficiently large number of samples.
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4.3 Global convergence with arbitrary
initialization

We will first show that the stochastic policy gradient
method proposed in Algorithm 2 asymptotically con-
verges to a region where the policy gradient vanishes
almost surely if a specific adaptive step-size sequence
is used.

Lemma 4.4 Suppose that the sequence {θt}
∞
t=1 is gen-

erated by Algorithm 2 for the entropy regularized objec-
tive with the step-sizes satisfying ∑∞

t=1 ηt =∞,∑
∞
t=1 η

2
t <

∞ and ηt ≤ 2
L

for all t = 1,2, . . .. It holds that
limt→∞ ∥∇V θtλ (ρ)∥

2
= 0 with probability 1.

This result follows from classic results for the Robbins-
Monro algorithm (Bertsekas and Tsitsiklis, 2000; Be-
naïm and Hirsch, 1996; Kushner and Clark, 2012) when
an unbiased policy gradient estimator with the bounded
variance, as in Algorithm 2, is used in the update rule.
No requirement on the batch size B is needed in Lemma
4.4. We refer the reader to the supplement in Section
9 for the details of the proof.

However, since the entropy-regularized value function
V θλ (ρ) is not coercive in θ and it may be the case that
the gradient ∇V θtλ (ρ) diminishing to 0 corresponds to
θt going to infinity instead of converging to a stationary
point. In addition, the existing results (Benaïm, 1999;
Benaïm and Hirsch, 1996; Kushner and Clark, 2012)
on the almost surely stationary point convergence rely
on the assumption that the trajectories of the process
are bounded, i.e.,

sup
t≥0

∥θt∥ <∞, almost surely.

This assumption is proven to hold when the function is
coercive (Mertikopoulos et al., 2020). However, when
the function is not coercive, as in our problem, it is very
challenging to characterize the trade-off between the
gradient information and the estimation error without
additional assumptions.

To overcome this challenge, we will use a large batch
size to control the estimation error. Then, with a small
estimation error, we can show that if the iterations with
the exact policy gradient are bounded, then the itera-
tions with the unbiased stochastic policy gradient will
remain bounded with high probability. This will fur-
ther imply that the unbiased stochastic policy gradient
will converge to the globally optimal policy with high
probability. Before presenting the theorem, we first
denote D(θt) = V

θ∗
λ (ρ) − V θtλ (ρ) as the sub-optimality

gap between V θ
∗

λ (ρ) and V θtλ (ρ).

Theorem 4.5 Consider arbitrary tolerance levels δ > 0
and ε > 0. For every initial point θ1, there exists a con-

stant C0
δ > 0 such that if θT is generated by Algorithm

2 with ηt = η ≤ min{
logT
TL

, 8
C0
δ

, 1
2L

} and

T = O((δε)−q), B = Õ (max{(δε)−1, T}) ,

where q = 8L
C0
δ

ln 2
, then we have P(D(θT ) ≤ ε) ≥ 1− δ. In

total, it requires Õ (max{(δε)−1−q, (δε)−2q}) samples
to obtain an ε-optimal policy with high probability.

The value of C0
δ depends on the problem parameters,

namely, ∣A∣, ∣S ∣, γ, λ, ρ, the initial point θ1 and the con-
stant δ. To facilitate the presentation, we hide the
dependency of T and B on the parameters such as
the initial sub-optimality gap D(θ1), the variance of
∇̂V θλ (ρ) defined in Lemma 3.5 and the boundedness
region of the iterations with the exact policy gradient.
The definition of C0

δ , the exact bound on the number
of iterations T and the batch size B can be found in
the proof of Theorem 4.5 in Section 10. We refer the
reader to the supplement in Section 10 for more details
and provide a short proof sketch below:

1. When {θt}
T
t=1 are bounded, we can use Lemma 4.1

to show that D(θt) is linearly convergent up to
some aggregated estimation error.

2. Since the iterations with the exact policy gradient
are bounded, we can show that the iterations with
the unbiased stochastic policy gradient remain
bounded with high probability. This is due to
using a large batch size to control the aggregated
policy gradient estimation error.

4.4 Faster convergence with good
initialization

Theorem 4.5 shows the asymptotic global convergence
of the unbiased stochastic policy gradient method for
the entropy-regularized RL problem, but its sample
complexity may be high if the initialization is not good.
In this section, we utilize the curvature information
around the optimal policy to obtain much better sam-
ple complexities under a good initialization. To this
end, we first show that, with the stochastic policy gradi-
ent, the action probabilities will still remain uniformly
bounded with high probability if the initial policy is
not too far away from the optimal one.

Lemma 4.6 Given a tolerance level δ > 0, let πθ∗ be
the optimal policy of V θλ (ρ). Assume further that Algo-
rithm 2 is run for T iterates with a step-size sequence
of the form ηt = 1/(t + t0) and a batch-size sequence
B ≥ 1

ηt
for all t = 1,2, . . . , T . If t0 > 0 is large enough,

then there exist a constant α ∈ (0, 1) and a neighborhood
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U0 of πθ∗ such that, if πθ1 ∈ U0, the event

Ωα,T = {min
s,a

πθt(a∣s) ≥ (1 − α)min
s,a

πθ∗(a∣s),

for all t = 1,2, . . . , T } (15)

occurs with probability at least 1 − δ.

The definition of the region U0 appears in the proof of
this lemma in the supplementary material. The proof
of Lemma 4.6 heavily relies on the fact that the entropy-
regularized value function V θλ (ρ) is lower-bounded by a
quadratic function around the optimal policy πθ∗ with
respect to πθ. It also involves a delicate combination
of non-standard techniques, some of which are built
on a range of ideas and techniques due to Hsieh et al.
(2019, 2020); Mei et al. (2021); Mertikopoulos and Zhou
(2019); Mertikopoulos et al. (2020). We refer the reader
to the supplement in Section 11 for more details and
provide a short sketch below:

1. We first characterize the maximum amount by
which D(θt) can grow at each step. This quantity
can be large for any given t but we show that,
with high probability, the aggregation of these
errors remains controllably small under the stated
conditions on the step-sizes and batch size.

2. As a result of the above result, if D(θ1) is not
too big, D(θt) cannot be too large at all times.
D(θ1) not being too big can be guaranteed by
the Lipschitz continuity of the entropy-regularized
value function V θλ (ρ) and the initial condition that
πθ1 is close to πθ∗ .

3. Finally, we show that the entropy-regularized value
function V θλ (ρ) is lower-bounded by a quadratic
function around the optimal policy πθ∗ with re-
spect to πθ. Thus, D(θt) not being too big also
implies that πθt remains close to πθ∗ at all times.

From Lemma 4.6, we know that, with a good initial-
ization, the policies {πθt}

T
t=1 will remain in the inte-

rior of the probability simplex with high probability.
We conclude our analysis of the stochastic PG for
entropy-regularized RL by establishing the algorithm’s
improved sample complexity when the initial policy is
not far away from the optimal policy, as stated below.

Theorem 4.7 Given some tolerance levels δ > 0 and
ε > 0, let πθ∗ be the optimal policy of V θλ (ρ). Assume
that Algorithm 2 is run for T iterations with a step-size
sequence of the form ηt = 1/(t + t0) and a batch-size B.
If t0 > 0 is large enough, then there exist a constant
α ∈ (0,1) and a neighborhood U0 of πθ∗ such that, if
πθ1 ∈ U0, it holds that

• Conditioned on Ωα,T defined in (15), we have

E[D(θt)∣Ωα,T ] ≤
t0D(θ1)

(T + t0)(1 − δ)
+
σ2 ln (T + t0)

B(1 − δ)Cα
,

• For every ε > 0, if

T ≥
t0D(θ1)

δε
− t0, B ≥

σ2 ln(T + t0)

Cαδε
.

then we have P(D(θT ) ≤ ε) ≥ 1 −O(δ). In total, it
takes Õ( 1

ε2
) samples to have D(θT ) ≤ ε with high

probability.

The constant Cα depends on the problem parameters,
namely, ∣A∣, ∣S ∣, γ, λ, ρ, which can be found in the proof
of the theorem in the supplement. For the first claim
of Theorem 4.7, by conditioning on the event Ωα,T , we
can obtain the result in Lemma 4.1, with C(θ) being
uniformly lower-bounded by a positive constant. Com-
bining with the smoothness, this leads to a recursion to
control the optimally gap D(θT ). The main challenge
here is that, after conditioning, the gradient estimation
is no longer unbiased, and therefore we need to adapt
our analysis to the new estimation error. Then, the
second claim follows from the first claim by applying
the law of total expectation and Markov inequality. We
refer the reader to the supplement in Section 12 for the
details.

5 Conclusion

In this work, we studied the global convergence and
the sample complexity of stochastic policy gradient
methods for the entropy-regularized RL with the soft-
max parameterization. We proposed two new (nearly)
unbiased policy gradient estimators for the entropy-
regularized RL and proved that they have a bounded
variance even though they could be unbounded. In ad-
dition, this work provided the first global convergence
result for stochastic policy gradient methods for the
entropy-regularized RL, although the sample complex-
ity could be high due to the loss of curvature for some
parameter space. Furthermore, with a good initializa-
tion, we showed that the policies {πθt}

T
t=1 remain in the

interior of the probability simplex with high probability
and, therefore, an improved sample complexity can be
guaranteed.
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Supplementary Materials

6 Related work

One line of theoretical research on entropy regularization focuses on its connection to other methodologies in
RL. O’Donoghue et al. (2016) shows that policy gradient and Q-learning are (approximately) equivalent when a
one-step entropy regularization is adopted. The exact equivalence between these algorithms is then established in
Schulman et al. (2017) under a trajectory-level KL regularization3 More recently, Eysenbach and Levine (2019,
2021) showed that entropy-regularized RL is equivalent to POMDPs, two-player games and robust RL.

Stochastic policy gradient estimators with the original one-step entropy regularization has been proposed and
adopted in Williams and Peng (1991); Mnih et al. (2016); O’Donoghue et al. (2016). For trajectory-level entropy
regularization, exact (visitation measure-based) policy gradient formula has been derived in Ahmed et al. (2019)
and later re-derived in the soft-max policy parametrization setting in Mei et al. (2020), while stochastic policy
gradient estimators have not been formally proposed or studied in the literature. The only exception is Schulman
et al. (2017), which provides stochastic policy gradient estimators with a related but different trajectory-level KL
regularization term.

The convergence analyses of entropy regularized RL algorithms have so far been focused on natural policy gradient
and trust-region policy optimization methods (Neu et al., 2017; Cen et al., 2020), with the only exception being
Mei et al. (2020) that studied the exact gradient setting. The prior literature lacks convergence results for
stochastic (vanilla) policy gradient methods with (trajectory-level) entropy regularization.

7 Notation

The set of real numbers is shown as R. u ∼ U means that u is a random vector sampled from the distribution
U . We use ∣X ∣ to denote the number of elements in a finite set X. The notions Eξ[⋅] and E[⋅] refer to the
expectation over the random variable ξ and over all of the randomness. The notion Var[⋅] refers to the variance.
For vectors x, y ∈ Rd, let ∥x∥1, ∥x∥2 and ∥x∥∞ denote the `1-norm, `2-norm and `∞-norm. We use ⟨x, y⟩ denote
the inner product. For a matrix A, A ≽ 0 means that A is positive semi-definite. Given a variable x, the notation
a = O(b(x)) means that a ≤ C ⋅ b(x) for some constant C > 0 that is independent of x. Similarly, a = Õ(b(x))
indicates that the previous inequality may also depend on the function log(x), where C > 0 is again independent
of x. We use Geom(x) to denote a geometric distribution with the parameter x.

3Note that this is related to but different from the widely-used trajectory-level entropy regularization later introduced
in Haarnoja et al. (2017).
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8 Properties of stochastic policy gradient

8.1 Proof of Lemma 3.1

Proof. We first show that the entropy-regularized state-value function is upper bounded:

V θλ (s) = Es0=s,at∼πθt(⋅∣st),st+1∼P(⋅∣st,at) [
∞

∑
t=0

γt (r (st, at) − λ logπθt (at ∣ st))]

=
1

1 − γ
∑
s

d
πθt
s (s) ⋅ [∑

a

πθt(a ∣ s) ⋅ (r(s, a) − λ logπθt(a ∣ s))]

≤
1

1 − γ
∑
s

d
πθt
s (s) ⋅ (r̄ + λ logA)

≤
r̄ + λ log ∣A∣

1 − γ
,

where the first inequality is due to −∑a π(a∣s) ⋅ logπ(a∣s) ≤ log ∣A∣. Then, by the definition of Qπλ(s, a), we have

Qπλ(s, a) = r(s, a) + γEs′∼P (⋅∣s,a) [V
π
λ (s′)]

≤
r̄

1 − γ
+
γ(λ log ∣A∣)

1 − γ

≤
r̄ + λ log ∣A∣

1 − γ
.

This completes the proof. ◻

8.2 Proof of Lemma 3.2

This result is similar to Lemma 10 in Mei et al. (2020) and Lemma S.2 in Ahmed et al. (2019). We provide a
proof here for completeness.

Proof. Since V θλ (ρ) = E
s∼ρ
∑a πθ(a ∣ s) ⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)], taking derivative with respect to θ rise to,

∂V θλ (ρ)

∂θ

= E
s∼ρ
∑
a

∂πθ(a ∣ s)

∂θ
⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)] + E

s∼ρ
∑
a

πθ(a ∣ s) ⋅ [
∂Qθλ(s, a)

∂θ
− λ ⋅

1

πθ(a ∣ s)
⋅
∂πθ(a ∣ s)

∂θ
] (16)

= E
s∼ρ
∑
a

∂πθ(a ∣ s)

∂θ
⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)] + E

s∼ρ
∑
a

πθ(a ∣ s) ⋅
∂Qθλ(s, a)

∂θ

= E
s∼ρ
∑
a

∂πθ(a ∣ s)

∂θ
⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)] + γ ⋅ E

s∼ρ
∑
a

πθ(a ∣ s)∑
s′

P (s′ ∣ s, a) ⋅
∂Ṽ πθ (s′)

∂θ

=
1

1 − γ
∑
s

dπθρ (s)∑
a

∂πθ(a ∣ s)

∂θ
⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)]

=
1

1 − γ
Es∼dπθρ ,a∼πθ(a∣s)

[∇logπθ(a ∣ s) ⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)]] . (17)

where the second equation is because of

∑
a

πθ(a ∣ s) ⋅ [
1

πθ(a ∣ s)
⋅
∂πθ(a ∣ s)

∂θ
] =∑

a

∂πθ(a ∣ s)

∂θ
=
∂

∂θ
∑
a

πθ(a ∣ s) =
∂1

∂θ
= 0.
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Due to s′ ≠ s, ∂πθ(a∣s)
∂θ(s′,⋅) = 0, we obtain

∂V θλ (ρ)

∂θ(s, ⋅)
=

1

1 − γ
⋅ dπθρ (s) ⋅ [∑

a

∂πθ(a ∣ s)

∂θ(s, ⋅)
⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)]]

=
1

1 − γ
⋅ dπθρ (s) ⋅ (

dπ(⋅ ∣ s)

dθ(s, ⋅)
)

⊺

[Qθλ(s, ⋅) − λ logπθ(⋅ ∣ s)] .

Since dπ(⋅∣s)
dθ(s,⋅)

= diag(π(⋅ ∣ s)) − π(⋅ ∣ s)π(⋅ ∣ s)⊺, where diag(x) denotes the diagonal matrix that has x on the
diagonal, we can write

∂V θλ (ρ)

∂θ(s, a)
=

1

1 − γ
⋅ dπθρ (s) ⋅ πθ(a ∣ s) ⋅ [Qθλ(s, a) − λ logπθ(a ∣ s) −∑

a

πθ(a ∣ s) ⋅ [Qθλ(s, a) − λ logπθ(a ∣ s)]]

=
1

1 − γ
⋅ dπθρ (s) ⋅ πθ(a ∣ s) ⋅ [Qθλ(s, a) − λ logπθ(a ∣ s) − V θλ (s)]

=
1

1 − γ
⋅ dπθρ (s) ⋅ πθ(a ∣ s) ⋅Aθλ(s, a), ∀a ∈ A.

By stacking all components s, a into a vector, we obtain

∂V θλ (ρ)

∂θ
=

1

1 − γ
⋅∑
s

dπθρ (s)∑
a

πθ(a ∣ s) ⋅ es,a ⋅A
θ
λ(s, a)

=
1

1 − γ
Es∼dπθρ ,a∼πθ(a∣s)

[es,aA
θ
λ(s, a)] .

Finally, from (17) and Jensen’s inequality, we have

∥
∂V θλ (ρ)

∂θ
∥ ≤

1

1 − γ
max
a,s

∥∇logπθ(a ∣ s)∥ ⋅max
s

∥∑
a

πθ(a ∣ s) [Qθλ(s, a) − λ logπθ(a ∣ s)]∥

=
1

1 − γ
max
a,s

∥∇logπθ(a ∣ s)∥ ⋅max
s

∥V θλ (s)∥

≤
2(r̄ + λ log ∣A∣)

(1 − γ)2
.

This completes the proof. ◻

8.3 Subroutines for Algorithm 2

The subroutines of sampling one pair (s, a) from νπθρ (⋅, ⋅), estimating Q̂θλ(s, a), and estimating V̂ θλ (s) are summa-
rized as Sam-SA, Est-EntQ and Est-EntV in Algorithms 4, 5 and 6, respectively.

Algorithm 4 Sam-SA: Sample for s, a ∼ νπθρ (⋅, ⋅)

1: Inputs: ρ, θ, γ.
2: Draw H ∼ Geom(1 − γ).
3: Draw s0 ∼ ρ and a0 ∼ πθ(⋅∣s0)

4: for h = 1,2, . . . ,H − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action ah+1 ∼ πθt(⋅∣sh+1).
6: end for
7: Outputs: sH , aH .
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Algorithm 5 Est-EntQ: Unbiasedly estimating entropy-regularized Q function
1: Inputs: s, a, γ, λ and θ.
2: Initialize s0 ← s, a0 ← a, Q̂← r(s0, a0).
3: Draw H ∼ Geom(1 − γ1/2).
4: for h = 0,1, . . . ,H − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action ah+1 ∼ πθ(⋅∣sh+1).
6: Collect the instantaneous reward r (sh+1, ah+1) − λ logπθ(ah+1∣sh+1) and add to the value Q̂: Q̂ ← Q̂ +

γ(h+1)/2 (r (sh+1, ah+1) − λ logπθ(ah+1∣sh+1)),
7: end for
8: Outputs: Q̂.

Algorithm 6 Est-EntV: Unbiasedly estimating entropy-regularized state-value function
1: Inputs: s, γ, λ and θ.
2: Initialize s0 ← s, draw a0 ∼ πθ(⋅∣s0) and let V̂ ← r (s0, a0) − λ logπθ(a0∣s0).
3: Draw H ∼ Geom(1 − γ1/2).
4: for h = 0,1, . . . ,H − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action ah+1 ∼ πθ(⋅∣sh+1).
6: Collect the instantaneous reward r (sh+1, ah+1) − λ logπθ(ah+1∣sh+1) and add to the value V̂ : V̂ ← V̂ +

γ(h+1)/2 (r (sh+1, ah+1) − λ logπθ(ah+1∣sh+1)),
7: end for
8: Outputs: V̂ .

8.4 Proof of Lemma 3.4

Proof. We first show the unbiasedness of the Q-estimate, i.e., E [Q̂θλ(s, a) ∣ θ, s, a] = Qθλ(s, a) for all (s, a) ∈ S ×A
and θ ∈ Rd. In particular, from the definition of Qθλ(s, a), we have

E [Q̂θλ(s, a) ∣ θ, s, a]

= E
⎡
⎢
⎢
⎢
⎢
⎣

r (s0, a0) +
H′

∑
h=1

γh/2 ⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a

⎤
⎥
⎥
⎥
⎥
⎦

= E [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a] ,

where we have replaced H ′ by ∞ since we use the indicator function 1 such that the summand for h ≥H ′ is null.
In addition, by the law of total expectation, we have

E [Q̂θλ(s, a) ∣ θ, s, a]

= EH′ [Eτ [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]] , (18)

where the trajectory τ equal to {s0, a0, s1, a1, . . .}. The inner expectation over τ can be written as

Eτ [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]

=∑
τ

[r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh))] ⋅ P(τ) ∣ θ, s0 = s, a0 = a,H
′

= r (s0, a0) +∑
τ

∞

∑
h=1

[1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh))] ⋅ P(τ) ∣ θ, s0 = s, a0 = a,H
′. (19)
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By the definition of the probability over the sample trajectory P(τ), for every h ∈ {0,1,2, . . .}, it holds that

∣(r (sh, ah) − λ logπθ(ah∣sh)) ⋅ P(τ)∣

= ∣(r (sh, ah) − λ logπθ(ah∣sh)) ⋅ πθ(ah∣sh) ⋅ P(s1∣s0, a0) ⋅ πθ(a1∣s1) . . .

⋅P(sh∣sh−1, ah−1) ⋅ P(sh+1∣sh, ah) . . .P(sH′ ∣sH′−1, aH′−1) ⋅ ⋅πθ(aH′ ∣sH′)∣

≤ r̄ +
λ

e
.

where the last inequality follows from P(s′∣s, a) ≤ 1, πθ(a∣s) ≤ 1 for all s, s′ ∈ S and a ∈ A together with ∣x logx∣ ≤ 1
e

for x ∈ [0,1]. Thus, for each trajectory τ and N > 0, we have

N

∑
h=1

[1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh))] ⋅ P(τ) ≤
1

1 − γ1/2
(r̄ +

λ

e
) . (20)

Since left-hand side of (20) is non-decreasing and the limit as N → ∞ exists, by the Monotone Convergence
Theorem, we can interchange the limit with the summation over the trajectory τ in (19) as follows:

Eτ [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]

= r (s0, a0) +
∞

∑
h=1

∑
τ

[1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh))] ⋅ P(τ) ∣ θ, s0 = s, a0 = a,H
′

= r (s0, a0) +
∞

∑
h=1

Eτ [1H′≥h≥0γ
h/2

(r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′] .

In addition, for every N > 0, we have

r (s0, a0) +
N

∑
h=1

Eτ [1H′≥h≥0γ
h/2

(r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′] (21)

≤ r (s0, a0) + γ
1/2

∞

∑
h=0

Eτ [γ
(h+1)/2

(r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′]

≤ r (s0, a0) + γ
1/2Es1 [V

θ
λ,γ/2(s1) ∣ s0, a0]

≤ r̄ +
γ/2(r̄ + λ log ∣A∣)

1 − γ/2

≤
r̄ + λ log ∣A∣

1 − γ/2
,

where the third inequality is due to the boundedness of the enrtopy-regularized value function in Lemma 3.1.
Furthermore, since (21) is non-decreasing and the limit as N →∞ exists, by the Monotone Convergence Theorem,
we can interchange the limit with the outer-expectation over H ′ in (18) as follows:

E [Q̂θλ(s, a) ∣ θ, s, a] (22)

= r (s0, a0) + lim
N→∞

EH′ [Eτ [
N

∑
h=1

1H′≥h≥0γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]] (23)

= r (s0, a0) + lim
N→∞

N

∑
h=1

[Eτ [EH′ [1H′≥h≥0]γ
h/2

⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a]] (24)

= r (s0, a0) + lim
N→∞

N

∑
h=1

[Eτ [γ
h
⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a]] (25)

= r (s0, a0) + Eτ [
∞

∑
h=1

[γh ⋅ (r (sh, ah) − λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a]] (26)

= Qθλ(s, a) (27)

where we have also used the fact that H ′ is drawn independently from the trajectory τ in the first equality, the
fact that H ′ ∼ Geom(1 − γ1/2) and thus EH′ [1H′≥h≥0] = γ

t/2 in the second equality, and the interchangeability
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between the limit and the summation over the trajectory τ in the third equality. This completes the proof of the
unbiasedness of Q̂θλ(s, a).

Similar logic allows us to establish that V̂ θλ (s) is an unbiased estimate of V θλ (s), i.e.,

E [V̂ θλ (s) ∣ θ, s] = V θλ (s), ∀s ∈ S, θ ∈ Rd,

where the expectation is taken along the trajectory as well as with respect to the random horizon H ′ ∼

Geom (1 − γ1/2). Therefore, if s′ ∼ P(⋅ ∣ s, a) and a′ ∼ πθ (⋅ ∣ s′), we have

E [Âθλ(s, a)] = E [Q̂θλ(s, a) − λ logπθ(s ∣ a) − V̂ θλ (s)] = Aθλ(s, a) (28)

That is, Âθλ(s, a) is an unbiased estimate of the advantage function Aθλ(s, a).

Now, we are ready to show unbiasedness of the stochastic gradients ∇̂V θλ (ρ). It follows from Lemma 3.2 that

E[∇̂V θλ (ρ) ∣ θ] = EH,(sH ,aH) {E
H′,(s′

1∶H′ ,a′1∶H′)
[∇̂V θλ (ρ) ∣ θ, s′0 = sH , a

′
0 = aH] ∣ θ}

= EH,(sH ,aH) (E
H′,(s′

1∶H′ ,a′1∶H′)
{

1

1 − γ
es′0,a′0 ⋅ Â

θ
λ (s′0, a

′
0) ⋅ ∣ θ, s

′
0 = sH , a

′
0 = aH ,} ∣ θ)

= EH,(sH ,aH) {
1

1 − γ
⋅ esH ,aH ⋅Aθλ (sH , aH) ∣ θ} .

where we have used (28) in the last equality. By using the identity function 1h=H , the above expression can be
further written as

E[∇̂V θλ (ρ) ∣ θ] =
1

1 − γ
⋅ EH,(sH ,aH) {

∞

∑
h=0

1h=H ⋅ esH ,aH ⋅Aθλ (sH , aH) ∣ θ} (29)

Since ∑Nh=0 1h=H ⋅ esH ,aH ⋅ Aθλ (sH , aH) is uniformly bounded by the boundedness of Aθλ for every N > 0 and
non-decreasing with respect to N , we can interchange the limit and the expectation in (29) by the Monotone
Convergence Theorem to obtain

E[∇̂V θλ (ρ) ∣ θ] =
∞

∑
h=0

P(H = h)

1 − γ
⋅ EH,(sH ,aH) {⋅esH ,aH ⋅Aθλ (sH , aH) ∣ θ}

=
∞

∑
h=0

γh ⋅ E(sh,ah) {esh,ah ⋅A
θ
λ (sh, ah) ∣ θ}

=
∞

∑
h=0

γh ∑
s∈S,a∈A

P(sh = s, ah = a∣s0 ∼ ρ, θ) ⋅ es,a ⋅A
θ
λ (s, a)

= ∑
s∈S,a∈A

es,a ⋅A
θ
λ (s, a) ⋅

∞

∑
h=0

γhP(sh = s, ah = a∣s0 ∼ ρ, θ)

=
1

1 − γ
Es∼dπθρ ,a∼πθ(⋅∣s)

[es,aA
θ
λ(s, a)] .

where the second equality is due to the fact that H ∼ Geom(1 − γ) and thus P(h =H) = (1 − γ)γh, and the forth
equality is due to the linearity of the integral and the finiteness of the state and action spaces. This completes
the proof of unbiasedness of ∇̂V θλ (ρ). ◻

8.5 Proof of Lemma 3.5

Proof. We first note that the policy gradient estimator ∇̂V θλ (ρ) can be decomposed as:

Âθλ(sH , aH) =
H′

∑
i=0

γi/2 (r(s′i, a
′
i) − λ logπθ(a

′
i∣s

′
i)) −

H′′

∑
j=0

γj/2 (r(s′′j , a
′′
j ) − λ logπθ(a

′′
j ∣s

′′
j )) (30)

=
H′

∑
i=0

γi/2r(s′i, a
′
i) −

H′

∑
i=0

γi/2λ logπθ(a
′
i∣s

′
i) −

H′′

∑
j=0

γj/2r(s′′j , a
′′
j ) +

H′′

∑
j=0

γj/2λ logπθ(a
′′
j ∣s

′′
j ) (31)
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where H ∼ Geom(1 − γ),H ′ ∼ Geom(1 − γ1/2),H ′′ ∼ Geom(1 − γ1/2), (sH , aH) ∼ νπθρ (s, a), s′0 = s
′′
0 = sH , a

′
0 = aH .

To streamline the presentation, we introduce the following notations:

g1(sH , aH) =
H′

∑
i=0

γi/2r(s′i, a
′
i), g2(sH) =

H′′

∑
j=0

γj/2r(s′′j , a
′′
j ), (32)

g3(sH , aH) =
H′

∑
i=0

γi/2λ logπθ(a
′
i∣s

′
i), g4(sH) =

H′′

∑
j=0

γj/2λ logπθ(a
′′
j ∣s

′′
j ). (33)

Then, the policy gradient estimator ∇̂V θλ (ρ) can be decomposed as:

∇̂V θλ (ρ) =
1

1 − γ
esH ,aH ⋅ (g1(sH , aH) − g2(sH) − g3(sH , aH) + g4(sH)) . (34)

By the definition of the variance and the Cauchy-Schwarz inequality, we have

Var(V θλ (ρ)) =
1

(1 − γ)2
Var (g1(sH , aH) − g2(sH) − g3(sH , aH) + g4(sH)) (35)

≤
4

(1 − γ)2
(Var (g1(sH , aH)) +Var (g2(sH)) (36)

+ Var (g3(sH , aH)) +Var (g4(sH))) . (37)

Since g1(s, a) and g2(s) are uniformly bounded, i.e., ∥g1(s, a)∥ ≤
r̄

1−γ1/2 and ∥g2(s)∥ ≤
r̄

1−γ1/2 for all s ∈ S, a ∈ A,
we must have

Var (g1(sH , aH)) ≤
r̄2

(1 − γ1/2)2
, Var (g2(sH)) ≤

r̄2

(1 − γ1/2)2
.

Then, it remains to prove the bounded variance of g3 and g4. Firstly, it can be seen that

∥g3∥
2
≤λ2 ⎛

⎝

H′

∑
i=0

γi/2 logπθ(a
′
i∣s

′
i)
⎞

⎠

2

=λ2 ⎛

⎝

H′

∑
i=0

γi/4γi/4 logπθ(a
′
i∣s

′
i))

⎞

⎠

2

≤λ2 ⎛

⎝

H′

∑
i=0

γi/2
⎞

⎠

⎛

⎝

H′

∑
i=0

γi/2 (logπθ(a
′
i∣s

′
i)))

2⎞

⎠

≤
λ2

1 − γ1/2

⎛

⎝

H′

∑
i=0

γi/2 (logπθ(a
′
i∣s

′
i)))

2⎞

⎠
,

where the second inequality is due to the Cauchy-Schwarz inequality. By fixing the state action pair (sH , aH)

and the horizon H ′ for now and taking expectation of g3 only over the sample trajectory τ ′ = {s′0, a
′
0, . . . , s

′
H , a

′
H},

it holds that

Eτ ′∼p(τ ′∣θ) [∥g3∥
2
] ≤

λ2

1 − γ1/2

H′

∑
i=0

γi/2Eτ ′∼p(τ ′∣θ) [(logπθ(a
′
i∣s

′
i))

2
] . (38)

Since the realizations of a′i and s
′
i do not depend on the randomness in s′i+1, a

′
i+1, . . . , s

′
H , we have

Eτ ′∼p(τ ′∣θ) [(logπθ(a
′
i∣s

′
i))

2
]

=Es′1∼p(⋅∣a′0,s′0)...a′H−1∼πθ(⋅∣s
′
H−1),s

′
H
∼p(⋅∣s′

H−1,a
′
H−1)

[(logπθ(a
′
i∣s

′
i))

2
]

=Es′1∼p(⋅∣a′0,s′0)...a′i∼πθ(⋅∣s′i) [(logπθ(a
′
i∣s

′
i))

2
]

=Es′1∼p(⋅∣a′0,s′0)...s′i∼p(⋅∣a′i−1,s′i−1)

⎡
⎢
⎢
⎢
⎢
⎣

∑
a′i∈A

πθ(a
′
i∣s

′
i) (logπθ(a

′
i∣s

′
i))

2
⎤
⎥
⎥
⎥
⎥
⎦

.
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By checking the optimality conditions for the optimization problem

max
n

∑
i=1

xi(logxi)
2 such that

n

∑
i=1

xi = 1, (39)

it can be concluded that the maximizer for the constrained problem (39) is x1 = x2 = . . . = xn = 1
n

and the

maximum solution is (logn)2. Thus, we have ∑ah∈A πθ(ah∣sh) (logπθ(a
i
h∣s

i
h))

2
≤ (log ∣A∣)2 and

Eτ ′∼p(τ ′∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

≤Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...sh∼p(⋅∣ah−1,sh−1) [(log ∣A∣)
2]

=(log ∣A∣)
2.

By substituting the above inequality into (38), we obtain that

Eτ ′∼p(τ ′∣θ) [∥g3∥
2
] ≤

λ2

1 − γ1/2

H′

∑
i=0

γi/2Eτ ′∼p(τ ′∣θ) [(logπθ(a
′
i∣s

′
i))

2
]

≤
(λ log ∣A∣)2

1 − γ1/2

H′

∑
i=0

γi/2

≤
(λ log ∣A∣)2

(1 − γ1/2)2
,

for every H ′ > 0. By taking expectation of g3 over the state action pair (sH , aH) and the horizon H ′, it yields
that

E [∥g3∥
2
] ≤

(λ log ∣A∣)2

(1 − γ1/2)2
,

which further implies that Var [∥g3∥
2
] ≤

(λ log ∣A∣)
2

(1−γ1/2)2 . Similarly, we can bound the variance of g4 as Var [∥g4∥
2
] ≤

(λ log ∣A∣)
2

(1−γ1/2)2 . Finally, through (35), we obtain

Var(V θλ (ρ)) ≤
8

(1 − γ)2
(
r̄2 + (λ log ∣A∣)2

(1 − γ1/2)2
) .

This completes the proof. ◻

8.6 Proof of Lemma 3.6

Proof. By definition, we have

E[∇̂V θ,Hλ (ρ)] −∇V θλ (ρ) =E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=0

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=h

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

−
H−1

∑
h=0

∇ logπθ(ah∣sh)
⎛

⎝

H−1

∑
j=h

γj (rh(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

+λ
∞

∑
h=H

−γt∇ logπθ(ah, sh)]

=E
⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

+
∞

∑
h=H

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=h

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

+λ
∞

∑
h=H

−γt∇ logπθ(ah, sh)]
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Then, by the Cauchy-Schwarz inequality and the triangle inequality, we obtain

∥E[∇̂V θ,Hλ (ρ)] −∇V θλ (ρ)∥
2
≤

XXXXXXXXXXXX

E
⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXX

+

XXXXXXXXXXXX

E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=h

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXX

+ ∥E [λ
∞

∑
h=H

−γt∇ logπθ(ah, sh)]∥

≤E
⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

∥∇ logπθ(ah∣sh)∥
⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

∥∇ logπθ(ah∣sh)∥
⎛

⎝

∞

∑
j=h

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ E [λ
∞

∑
h=H

γt ∥∇ logπθ(ah, sh)∥]

Since ∥∇ logπθ(a∣s)∥2 ≤ 2 for all θ ∈ R∣S∣∣A∣, it holds that

∥E[∇̂V θ,Hλ (ρ)] −∇V θλ (ρ)∥
2
≤2E

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(40)

+ 2E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

⎛

⎝

∞

∑
j=h

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(41)

+ 2E [λ
∞

∑
h=H

γt] . (42)

For the term in (40), we can rewrite it as

2Eτ

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=∑
τ

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⋅ P(τ)

Then, by following the arguments in (20) and the Monotone Convergence Theorem, we can interchange the limit
with the summation over the trajectory τ in (40) as follows:

2Eτ

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= 2
H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γjEτ [rj(sj , aj) − λ logπθ(aj ∣sj)]
⎞

⎠
.

Due to −∑a π(a∣s) ⋅ logπ(a∣s) ≤ log ∣A∣, the term in (40) can be upper bounded as

2Eτ

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2(r̄ + λ log ∣A∣)
H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj
⎞

⎠

≤
2(r̄ + λ log ∣A∣)HγH

1 − γ
.

Similarly, we can interchange the limit with the summation over the trajectory τ in (41) and upper bound it as

2E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

⎛

⎝

∞

∑
j=h

γj (rj(sj , aj) − λ logπθ(aj ∣sj))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤2(r̄ + λ log ∣A∣)
∞

∑
h=H

∞

∑
j=h

γj

≤
2(r̄ + λ log ∣A∣)γH

(1 − γ)2
.
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For the term in (42), it can be easily bounded as

2E [λ
∞

∑
h=H

γt] ≤
2λγH

1 − γ
.

This completes the proof. ◻

8.7 Proof of Lemma 3.7

Proof. By the definition of the variance and the Cauchy-Schwarz inequality, we have

Var(∇̂V θ,Hλ (ρ)) =E [(g1(τ
H
∣θ, ρ) + g2(τ

H
∣θ, ρ)) + g3(τ

H
∣θ, ρ))

−E[g1(τ
H
∣θ, ρ)] − E[g2(τ

H
∣θ, ρ)] − E[g3(τ

H
∣θ, ρ)])

2
]

≤3E[(g1(τ
H
∣θ, ρ) − E[g1(τ

H
∣θ, ρ)])2

] + 3E[(g2(τ
H
∣θ, ρ)) − E[g2(τ

H
∣θ, ρ))])2

]

+ 3E[(g3(τ
H
∣θ, ρ)) − E[g3(τ

H
∣θ, ρ))])2

]

=3 (Var(g1(τ
H
∣θ, ρ)) +Var(g2(τ

H
∣θ, ρ)) +Var(g3(τ

H
∣θ, ρ))) . (43)

As shown in Lemma 4.2 of Yuan et al. (2021), the fact that ∥∇ logπθ(a∣s)∥2 ≤ 2 for all θ ∈ R∣S∣∣A∣ directly implies
that Var(g1(τ

H ∣θ, ρ)) ≤ 4r̄2

(1−γ)4
for all θ ∈ R∣S∣∣A∣.

Similar, due to ∥∇ logπθ(a∣s)∥2 ≤ 2 for all θ ∈ R∣S∣∣A∣, it can be verified that Var(g3(τ
H ∣θ, ρ)) ≤ 4λ

(1−γ)2
for all

θ ∈ R∣S∣∣A∣.

Then, it remains to prove the bounded variance of g2. Firstly, it can be observed that

∥g2∥ =λ
XXXXXXXXXXX

H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(a
i
j ∣s

i
j)

⎞

⎠
(−γh logπθ(a

i
h∣s

i
h))

XXXXXXXXXXX

≤ − λ
H−1

∑
h=0

⎛

⎝

h

∑
j=0

∥∇ logπθ(a
i
j ∣s

i
j)∥

⎞

⎠
γh logπθ(a

i
h∣s

i
h)

≤ − 2λ
H−1

∑
h=0

(h + 1)γh logπθ(a
i
h∣s

i
h).

where the first inequality is due to the triangle inequality and the second inequality is due to ∥∇ logπθ(a
i
j ∣s

i
j)∥ ≤ 2.

Then, by taking the suqre of ∥g2∥, we obtain

∥g2∥
2
≤4λ2

(
H−1

∑
h=0

(h + 1)γh logπθ(a
i
h∣s

i
h))

2

=4λ2
(
H−1

∑
h=0

(h + 1)
√
γh

√
γh logπθ(a

i
h∣s

i
h))

2

≤4λ2
(
H−1

∑
h=0

(h + 1)2γh)(
H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

=4λ2
(
H−1

∑
h=0

(h2
+ 2h + 1)γh)(

H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

≤4λ2
(
γ2 + γ

(1 − γ)3
+

2γ

(1 − γ)2
+

1

1 − γ
)(

H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

=4λ2
(

γ + 1

(1 − γ)3
)(

H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

where the second inequality is due to the Cauchy-Schwarz inequality and the last inequality is due to ∑∞
h=0 h

2γh =
γ2
+γ

(1−γ)3
, ∑∞

h=0 hγ
h =

γ
(1−γ)2

and ∑∞
h=0 γ

h = 1
1−γ

.
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By taking expectation of g2 over the sample trajectory τ , it holds that

Eτ∼p(τ ∣θ) [∥g2∥
2
] ≤4λ2

(
γ + 1

(1 − γ)3
)
H−1

∑
h=0

γhEτ∼p(τ ∣θ) [(logπθ(a
i
h∣s

i
h))

2
] . (44)

Since the realizations of aih and sih do not depend on the randomness in sh+1, ah+1, . . . , sH , we have

Eτ∼p(τ ∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

=Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...aH−1∼πθ(⋅∣sH−1),sH∼p(⋅∣sH−1,aH−1) [(logπθ(a
i
h∣s

i
h))

2
]

=Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...ah∼πθ(⋅∣sh) [(logπθ(a
i
h∣s

i
h))

2
]

=Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...sh∼p(⋅∣ah−1,sh−1)
⎡
⎢
⎢
⎢
⎣
∑
ah∈A

πθ(ah∣sh) (logπθ(a
i
h∣s

i
h))

2
⎤
⎥
⎥
⎥
⎦
.

As proved earlier in Lemma 3.5, we know that the maximizer for the constrained problem (39) is x1 = x2 = ⋯ =

xn =
1
n
and the maximum solution is (logn)2. Thus, we have ∑ah∈A πθ(ah∣sh) (logπθ(a

i
h∣s

i
h))

2
≤ (log ∣A∣)2 and

Eτ∼p(τ ∣θ) [(logπθ(a
i
h∣s

i
h))

2
] ≤Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...sh∼p(⋅∣ah−1,sh−1) [(log ∣A∣)

2]

=(log ∣A∣)
2. (45)

By combining (44) and (45), we have

Var(g2) ≤Eτ∼p(τ ∣θ) [∥g2∥
2
]

≤4λ2
(

γ + 1

(1 − γ)3
)
H−1

∑
h=0

γhEτ∼p(τ ∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

≤4λ2
(

γ + 1

(1 − γ)3
)
H−1

∑
h=0

γh(log ∣A∣)
2

≤
8λ2(log ∣A∣)2

(1 − γ)4
.

Finally, by substituting Var(g1),Var(g2) and Var(g3) into (43), it holds that

Var(∇̂V θ,Hλ (ρ)) ≤
12λ

(1 − γ)2
+

12r̄2 + 24λ2(log ∣A∣)2

(1 − γ)4
.

This completes the proof. ◻

9 Proof of Lemma 4.4

We first introduce some useful results before proceeding with the proof. The following result describes the
asymptotic behavior of the true gradient when an unbiased gradient estimator with a bounded variance is used in
the update rule.

Proposition 9.1 (Proposition 3 in Bertsekas and Tsitsiklis (2000)) Consider the problem maxx∈Rd f(x),
where Rd denotes the d-dimensional Euclidean space. Let {xt}

∞
t=0 be a sequence generated by the iterative method

xt+1 = xt +ηt(ut +wt), where ηt is a deterministic positive step-size, ut is an update direction, and wt is a random
noise term. Let Ft be an increasing sequence of σ−fields. Assume that

1. f is a continuously differentiable function and there exists a constant L such that

∥∇f(x) −∇f(x̄)∥ ≤ L ∥x − x̄∥ , ∀x, x̄ ∈ Rd.
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2. xt and ut are Ft−measurable.

3. There exist positive scalars c1 and c2 such that

c1 ∥∇f(xt)∥
2
≤ ∇f(xt)

⊺ut, ∥ut∥ ≤ c2(1 + ∥∇f(xt)∥), ∀t ∈ {1,2, . . .}.

4. We have

E[wt∣Ft] = 0, E[∥wt∥
2
∣Ft] ≤ A(1 + ∥∇f(xt)∥

2
),

for all t ∈ {1,2, . . .} with probability 1, where A is a positive deterministic constant.

5. We have
∞

∑
t=1

ηt =∞,
∞

∑
t=1

η2
t <∞.

Then, either f(xt)→∞ or else f(xt) converges to a finite value and limt→∞∇f(xt) = 0 with probability 1.

9.1 Proof of Lemma 4.4

Proof.

To prove Lemma 4.4, it suffices to check the conditions in Proposition 9.1 for the objective function V θλ (ρ) and
the update rule θt+1 = θt + ηt(ut +wt), where ut = ∇V θtλ (ρ) and wt = ∇̂V θtλ (ρ) −∇V θtλ (ρ).

1. From Lemma 3.3, we know that Condition 1 in 9.1 is satisfied with L =
8r̄+λ(4+8 log ∣A∣)

(1−γ)3
.

2. Condition 1 in 9.1 is satisfied by the definition of θt and ∇V θλ (ρ).

3. Condition 1 in 9.1 is satisfied with c1 = 1 and c2 = 1.

4. From Lemma 3.4 and 3.5, we know that Condition 4 in 9.1 is satisfied with A = 8
(1−γ)2

(
r̄2+(λ log ∣A∣)

2

(1−γ1/2)2 ).

5. Condition 1 in 9.1 is satisfied by the definition of ηt.

In addition, it results from Lemma 3.1 wee know that the entropy-regularized value function V θλ (ρ) is bounded.
Thus, by Proposition 9.1, we must have limt→∞∇V θtλ (ρ) = 0 with probability 1. This completes the proof.

◻

10 Proof of Theorem 4.5

We begin by introducing some helpful definitions. Let {θ̄t}
T
t=1 denote the iterates of the algorithm with the exact

PG (Algorithm 1) with ηt ≤ 1
2L

starting from the initial point θ1. Let θ∗, which depends on the initial point θ1,
be the optimal solution that the Algorithm 1 will converge to. Then, by Lemma 4.2, there must exist a bounded
constant ∆̄ such that ∥θ̄t − θ

∗∥
2
≤ ∆̄ for all t = {1, 2, . . .}. Then, with a fair degree of hindsight and for some δ > 0,

we define the stopping time for the iterates {θt}
T
t=1 as

τ ∶= min{t∣ ∥θt − θ
∗
∥2 > (1 +

1

δ
) ∆̄} ,

which is the index of the first iterate that exits the bounded region

G
0
δ ∶= {θ ∶ ∥θ − θ∗∥2 ≤ (1 +

1

δ
) ∆̄} .

Furthermore, we define the constant
C0
δ = min

θ∈G0
δ

C(θ),

where C(θ) is defined in Lemma 4.1. Finally, we define D(θt) = ∥θt − θ
∗∥2.
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Lemma 10.1 Suppose that f(x) is L-smooth. Given 0 < ηt ≤
1

2L
for all t ≥ 1, let {xt}

T
t=1 be generated by a

general update of the form xt+1 = xt + ηtut and let et = ut −∇f(xt). We have

f(xt+1) ≥f(xt) +
ηt
4

∥ut∥
2
2 −

ηt
2

∥et∥
2
2 .

Proof. Since f(f) is L-smooth, one can write

f(xt+1) − f(xt) − ⟨ut, xt+1 − xt⟩

=f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩ + ⟨
√
ηt(∇f(xt) − ut),

1
√
ηt

(xt+1 − xt)⟩

≥ −
L

2
∥xt+1 − xt∥

2
−
bηt
2

∥∇f(xt) − ut∥
2
2 −

1

2bηt
∥xt+1 − xt∥

2
2

=(−
1

2bηt
−
L

2
) ∥xt+1 − xt∥

2
2 −

bηt
2

∥et∥
2
2 ,

where the constant b > 0 is to be determined later. By the above inequality and the definition of xt+1, we have

f(xt+1) ≥f(xt) + ⟨ut, xt+1 − xt⟩ − (
1

2bηt
+
L

2
) ∥xt+1 − xt∥

2
2 −

bηt
2

∥et∥
2
2

=f(xt) + ηt ∥ut∥
2
− (

ηt
2b

+
Lη2

t

2
) ∥ut∥

2
2 −

bηt
2

∥et∥
2
2

By choosing b = 1 and using the fact that 0 < ηt ≤
1

2L
, we have

f(xt+1) ≥f(xt) + (
ηt
2
−
Lη2

t

2
) ∥ut∥

2
2 −

ηt
2

∥et∥
2
2

≥f(xt) +
ηt
4

∥ut∥
2
2 −

ηt
2

∥et∥
2
2 .

This completes the proof. ◻

Lemma 10.2 Let et = ∇V θtλ (ρ) − ut, where ut = 1
B ∑

B
i=1 ∇̂V

θt,i
λ (ρ) and ∇̂V θt,iλ (ρ) is an unbiased estimator of

∇V θtλ (ρ). If ηt = η ≤ 1
2L

, then

E[D(θT )1τ>T ] ≤(1 −
ηC0

δ

8
)

T−1

D(θ1) +
5σ2

8C0
δB

.

Proof. Let Ft denote the sigma field generated by the randomness up to iteration t. We define Et ∶= E[⋅∣Ft] as the
expectation operator conditioned on the sigma field Ft. Since ∇V θλ (ρ) is L-smooth due to Lemma 3.3, it follows
from Lemma 10.1 that

Et[D(θt+1) −D(θt)]1τ>t =Et [V θtλ (ρ) − V θt+1λ (ρ)]1τ>t

≤Et [−
η

8
∥ut∥

2
2 +

3η

4
∥et∥

2
2]1τ>t

≤Et [−
η

8
∥ut −∇V

θt
λ (ρ) +∇V θtλ (ρ)∥

2

2
+

3η

4
∥et∥

2
2]1τ>t

=Et [−
η

8
∥ut −∇V

θt
λ (ρ)∥

2

2
−
η

8
∥∇V θtλ (ρ)∥

2

2
+

3η

4
∥et∥

2
2]1τ>t

=Et [−
η

8
∥∇V θtλ (ρ)∥

2

2
+

5η

8
∥et∥

2
2]1τ>t

≤Et [−
ηC(θt)

8
D(θt) +

5η

8
∥et∥

2
2]1τ>t,

for every η ≤ 1
2L

, where the second inequality uses the fact that ut is an unbiased estimator of ∇V θtλ (ρ) and the
last inequality is due to Lemma 4.1. We now consider two cases:
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• Case 1: Assume that τ > t, which implies that θt ∈ G0
δ and C(θt) ≥ C

0
δ . Then,

E[D(θt+1)∣Ft] ≤(1 −
ηC0

δ

8
)D(θt) +

5η

8
E [∥et∥

2
2 ∣Ft] .

• Case 2: Assume that τ ≤ t which leads to

E[D(θt+1)∣Ft]1τ>t = 0.

Now combining the above two cases yields the inequality

E[D(θt+1)∣Ft]1τ>t ≤{(1 −
ηC0

δ

8
)D(θt) +

5η

8
E [∥et∥

2
2 ∣Ft]}1τ>t

≤(1 −
ηC0

δ

8
)D(θt)1τ>t +

5η

8
E [∥et∥

2
2 ∣Ft] .

In addition, conditioning on Ft yields that

E[D(θt+1)1τ>t+1∣Ft] ≤ E[D(θt+1)1τ>t∣Ft] = E[D(θt+1)∣Ft]1τ>t,

where the last equality uses the fact that τ is a stopping time and the random variable 1τ>t is determined
completely by the sigma-field Ft. Taking the expectations over the sigma-field Ft and then arguing inductively
gives rise to

E[D(θt+1)1τ>t+1] ≤
t

∏
i=0

(1 −
ηC0

δ

8
)D(θ1) +

t

∑
i=0

(1 −
ηC0

δ

8
)

i
5η

8
E [∥ei∥

2
2]

≤(1 −
ηC0

δ

8
)

t

D(θ1) +
5σ2

C0
δB

.

By setting t + 1 = T , we obtain that

E[D(θT )1τ>T ] ≤(1 −
ηC0

δ

8
)

T−1

D(θ1) +
5σ2

C0
δB

.

This completes the proof. ◻

Lemma 10.3 Let et = ∇V θtλ (ρ) − ut, where ut = 1
B ∑

B
i=1 ∇̂V

θt,i
λ (ρ) and ∇̂V θt,iλ (ρ) is an unbiased estimator of

∇V θtλ (ρ). Then, it holds that

P(τ ≤ T ) ≤
δ ⋅ η ⋅ T ⋅ (1 + ηL)T−1 ⋅ σ

∆̄B
.

Proof. By the triangle inequality and the fact that the iterations of the algorithm with the exact policy gradient
are bounded by ∆̄, we have

D(θt) ≤ ∥θt − θ̄t∥2
+ ∥θ∗ − θ̄t∥2

= ∥θt − θ̄t∥2
+ ∆̄.

Using the update rule of the algorithm with the exact policy gradient ∇V θ̄iλ (ρ) and the stochastic policy gradient
ui =

1
B ∑

B
j=1 ∇̂V

θi,j
λ (ρ), one can write

D(θi) =∥(θ1 +
t−1

∑
i=1

ηiui) − (θ1 +
t−1

∑
i=1

ηi∇V
θ̄i
λ (ρ))∥

2

+ ∆̄

≤
t−1

∑
i=1

ηi ∥ui −∇V
θ̄i
λ (ρ)∥

2
+ ∆̄

=
t−1

∑
i=1

ηi ∥ui −∇V
θi
λ (ρ) +∇V θiλ (ρ) −∇V θ̄iλ (ρ)∥

2
+ ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 +
t−1

∑
i=1

ηiL ∥θi − θ̄i∥2
+ ∆̄.
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By expanding ∥θi − θ̄i∥2
recursively, it can be concluded that

D(θt) ≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L ∥θt−1 − θ̄t−1∥2
+
t−2

∑
i=1

ηiL ∥θi − θ̄i∥2
+ ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2 + ηt−1L
2
t−2

∑
i=1

ηi ∥θi − θ̄i∥2
+
t−2

∑
i=1

ηiL ∥θi − θ̄i∥2
+ ∆̄

=
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2 +
t−2

∑
i=1

(ηiL + ηt−1ηiL
2) ∥θi − θ̄i∥2

+ ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2 + (ηt−2L + ηt−1ηt−2L
2)

t−3

∑
i=1

ηi ∥ei∥2

+
t−3

∑
i=1

((ηt−2L + ηt−1ηt−2L
2)ηiL + (ηiL + ηt−1ηiL

2)) ∥θi − θ̄i∥2
+ ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2 + (ηt−2L + ηt−1ηt−2L
2)

t−3

∑
i=1

ηi ∥ei∥2

+
t−4

∑
i=1

((ηt−2L + ηt−1ηt−2L
2)ηt−3L + (ηt−3L + ηt−1ηt−3L

2)) ∥ei∥2

+
t−4

∑
i=1

((ηt−2ηt−3L
2
+ ηt−1ηt−2ηt−3L

3)ηiL + (ηt−3L + ηt−1ηt−3L
2)ηi) ∥θi − θ̄i∥2

+ ∆̄

=
t−1

∑
i=1

ηi
t−1

∏
j=i+1

(1 + ηjL) ∥ei∥2 + ∆̄.

Then, by the definition of τ and Markov inequality, we obtain

P(τ ≤ T ) =P( max
t∈{1,...,T}

D(θt) ≥ (1 +
1

δ
)∆̄)

≤P(
T−1

∑
i=1

ηi
T−1

∏
j=i+1

(1 + ηjL) ∥ei∥2 + ∆̄ ≥ (1 +
1

δ
)∆̄)

≤
∑
T−1
i=1 ηi∏

T−1
j=i+1(1 + ηjL)E[∥ei∥2]

1
δ
∆̄

≤
δ∑

T−1
i=1 ηi∏

T−1
j=1 (1 + ηjL)E[∥ei∥2]

∆̄

≤
δη(1 + ηL)T−1

∑
T−1
i=1 E[∥ei∥2]

∆̄
,

where we use the fact that ηt = η for all t ∈ {1,2, . . .}. Furthermore, since E[∥ei∥2] ≤

√

E[∥ei∥
2
2] ≤

σ
B
, we have

P(τ ≤ T ) ≤
δ ⋅ η ⋅ T ⋅ (1 + ηL)T−1 ⋅ σ

∆̄B
.

This completes the proof. ◻
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10.1 Proof of Theorem 4.5

Proof. By combining Lemmas 10.2 and 10.3, we obtain that

P(D(θt) ≥ ε) ≤P(τ > T ,D(θt) ≥ ε) + P(τ ≤ T ,D(θt) ≥ ε)

≤
E[1τ>TD(θt)]

ε
+ P(τ ≤ T )

≤(1 −
ηC0

δ

8
)

T−1
D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ η ⋅ T ⋅ (1 + ηL)T−1 ⋅ σ

∆̄B

≤(1 −
ηC0

δ

8
)

8

ηC0
δ

ηC0
δ
T

8 D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ η ⋅ T ⋅ (1 + ηL)T−1 ⋅ σ

∆̄B

≤
1

2

ηC0
δ
T

8 D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ η ⋅ T ⋅ (1 + ηL)T−1 ⋅ σ

∆̄B
,

where the second inequality holds due to the Markov inequality, and the last inequality holds because of
(1 − 1

m
)m ≤ 1

2
for all m ≥ 1 and 8

ηC0
δ

≥ 1. By taking η ≤ min{
logT
TL

, 8
C0
δ

, 1
2L

}, we obtain

P(D(θt) ≥ ε) ≤
1

2

C0
δ

logT

8L D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ logT ⋅ (1 + logT

T
)T−1 ⋅ σ

∆̄BL

≤
1

2

C0
δ

logT

8L D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ logT ⋅ (1 + logT

T
)

T
logT ⋅logT

⋅ σ

∆̄BL

≤
1

2

C0
δ

logT

8L D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ logT ⋅ T ⋅ σ

∆̄BL

≤
1

T
ln2C0

δ
8L

D(θ1)

ε
+

5σ2

C0
δBε

+
δ ⋅ logT ⋅ T ⋅ σ

∆̄BL
,

where we have used (1 + x)1/x ≤ e in the third inequality and aln b = blna in the last inequality. To guarantee
P(D(θt) ≥ ε) ≤ δ, it suffices to have

T = O
⎛

⎝
(

3D(θ1)

δε
)

8L

C0
δ

ln2 ⎞

⎠
and B = Õ (max{

15σ2

C0
δ εδ

,
3σ

∆̄L
⋅ T ⋅ logT}) .

It total, it takes

Õ(max{ε
8L

C0
δ

ln2
+1
, ε

16L

C0
δ

ln2 })

samples to have P(D(θt) ≥ ε) ≤ δ. ◻

11 Proof of Lemma 4.6

We first introduce some useful results before proceeding with the proof.

Lemma 11.1 The entropy-regularized value function V θλ (ρ) is locally quadratic around the optimal policy πθ∗ .
In particular, for every policy policy πθ, we have

D(θ) ≥
λmins ρ(s)

2 ln 2
∣πθ(a ∣ s) − πθ∗(a ∣ s)∣

2
, ∀s ∈ S, a ∈ A.
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Proof. It follows from the soft sub-optimality difference lemma (Lemma 26 in Mei et al. (2020)) that

V θ
∗

λ (ρ) − V θλ (ρ) =
1

1 − γ
∑
s

[dπθρ (s) ⋅ λ ⋅DKL (πθ(⋅ ∣ s)∥πθ∗(⋅ ∣ s))]

≥
1

1 − γ
∑
s

[dπθρ (s) ⋅ λ ⋅
1

2 ln 2
∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥

2
1]

≥
λ

2 ln 2
∑
s

[ρ(s) ⋅ ∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥
2
1]

≥
λ

2 ln 2
∑
s

[ρ(s) ⋅ ∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥
2
2]

≥
λ

2 ln 2
[ρ(s)∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥

2
2] ∀s ∈ S

≥
λmins ρ(s)

2 ln 2
∣πθ(a ∣ s) − πθ∗(a ∣ s)∣

2
, ∀s ∈ S, a ∈ A,

where the first inequality is due to Theorem 11.6 in Cover (1999) stating that

DKL [P (⋅) ∣ Q(⋅)] ≥
1

2 ln 2
∥P (⋅) −Q(⋅)∥

2
1

for every two discrete distributions P (⋅) and Q(⋅). Moreover, the second inequality is due to dπθρ (s) ≥ (1 − γ)ρ(s)
and the third inequality is due to the equivalence between `1-norm and `2-norm. This completes the proof. ◻

Lemma 11.2 Suppose that {θt} is generated by Algorithm 2 with 0 < ηt ≤
(1−γ)3

16r̄+λ(8+16 log ∣A∣)
for all t ≥ 1. We have

D(θt+1) ≤(1 −
ηtC(θt)

4
)D(θt) −

ηt
2
ξt +

ηt
4

∥et∥
2
2 , (46)

where ξt = ⟨et,∇V
θt
λ (ρ)⟩ and et = ∇̂V θtλ (ρ) −∇V θtλ (ρ).

Proof. Since ∇V θλ (ρ) is L-smooth in light of Lemma 3.3, it follows from Lemma 10.1 that

D(θt+1) −D(θt) ≤ −
ηt
4

∥∇̂V θλ (ρ)∥
2

2
+
ηt
2

∥et∥
2
2

≤ −
ηt
4

∥∇̂V θtλ (ρ) −∇V θtλ (ρ) +∇V θtλ (ρ)∥
2

2
+
ηt
2

∥et∥
2
2

= −
ηt
4

∥∇̂V θtλ (ρ) −∇V θtλ (ρ)∥
2

2
−
ηt
4

∥∇̂V θtλ (ρ)∥
2

2
−
ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
2

∥et∥
2
2

= −
ηt
4

∥∇V θtλ (ρ)∥
2

2
−
ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
4

∥et∥
2
2

≤ −
ηtC(θt)

4
D(θt) −

ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
4

∥et∥
2
2 ,

for every ηt ≤ 1
2L

, where the last inequality is due to Lemma 4.1. This completes the proof. ◻

We now encode the error terms in (46) as

Mn =
n

∑
t=1

ηtξt, (47)

and

Sn =
n

∑
t=1

ηt
4

∥et∥
2
2 . (48)

Since E [ξn] = 0, we have E [Mn] =Mn−1. Therefore, Mn is a zero-mean martingale; likewise, E [Sn] ≥ Sn−1, and
therefore Sn is a submartingale. The difficulty of controlling the errors in (47) and (48) lies in the fact that the
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estimation error en may be unbounded. Because of this, we need to take a less direct, step-by-step approach to
bound the total error increments conditioned on the event that D(θn) remains close to D(θ∗).

We begin by introducing the “cumulative mean square error”

Rn =M
2
n + Sn.

By construction, we have

Rn = (Mn−1 + ηnξn)
2
+ Sn−1 +

1

4
ηn ∥en∥

2

= Rn−1 + 2Mn−1ηnξn + η
2
nξ

2
n +

1

4
ηn ∥en∥

2

Hence,

E [Rn] = Rn−1 + 2Mn−1ηnE [ξn] + η
2
nE [ξ2

n] +
1

4
ηnE [∥en∥

2
] ≥ Rn−1,

i.e., Rn is a submartingale. With a fair degree of hindsight, we will choose ε > 0, and define U and U1 as:

U = {π ∈ ∆(A)
∣S∣
∶D(π) ≤ 2ε +

√
ε} . (49)

We also assume that πθ1 is initialized in a neighborhood U1 ⊆ U such that

U1 ⊆ {π ∈ ∆(A)
∣S∣
∶D(π) ≤ ε} . (50)

To condition it further, we also define the events

Ωn ≡ Ωn(ε) = {πθt ∈ U for all t = 1,2, . . . , n}

and
En ≡ En(ε) = {Rt ≤ ε for all t = 1,2, . . . , n}

By definition, we also have Ω0 = E0 = Ω (because the set-building index set for k is empty in this case, and
every statement is true for the elements of the empty set). These events will play a crucial role in the sequel as
indicators of whether πθt has escaped the vicinity of πθ∗ .

Let the notation 1A indicate the logical indicator of an event A ⊆ Ω, i.e., 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0
otherwise. For brevity, we write Fn = σ(θ1, . . . , θn) for the natural filtration of θn. Now, we are ready to state the
next lemma.

Lemma 11.3 Let πθ∗ be the optimal policy. Then, for all n ∈ {1,2, . . .}, the following statements hold:

1. Ωn+1 ⊆ Ωn and En+1 ⊆ En.

2. En−1 ⊆ Ωn.

3. Consider the “large noise” event

Ẽn ≡ En−1/En = En−1 ∩ {Rn > ε}

= {Rt ≤ ε for all t = 1,2, . . . , n − 1 and Rn > ε}

and let R̃n = Rn1En−1 denote the cumulative error subject to the noise being “small” until time n. Then,

E [R̃n] ≤ E [R̃n−1] +G
2σ2η2

n +
ηnσ

2

4B
− εP (Ẽn−1) . (51)

By convention, we write Ẽ0 = ∅ and R̃0 = 0.

Proof. Statement 1 is obviously true. For Statement 2, we proceed inductively:
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1. For the base case n = 1, we have Ω1 = {πθ1 ∈ U} ⊇ {πθ1 ∈ U1} = Ω because πθ1 is initialized in U1 ⊆ U . Since
E0 = Ω, our claim follows.

2. For the inductive step, assume that En−1 ⊆ Ωn for some n ≥ 1. To show that En ⊆ Ωn+1, we fix a realization
in En such that Rt ≤ ε for all t = 1,2, . . . , n. Since En ⊆ En−1, the inductive hypothesis posits that Ωn also
occurs, i.e., πθt ∈ U for all t = 1,2, . . . , n; hence, it suffices to show that πθn+1 ∈ U . To that end, given that
πθt ∈ U for all t = 1,2, . . . n, the distance estimate (46) readily gives

D(θt+1) ≤D(θt) + ηtξt +
ηt
4

∥et∥
2
2 , ∀t = 1,2, . . . , n.

Therefore, after telescoping, we obtain

D(θn+1) ≤D(θ1) +Mn + Sn ≤D(θ1) +
√
Rn +Rn ≤ ε +

√
ε + ε = 2ε +

√
ε

by the inductive hypothesis. This completes the induction.

For Statement 3, we decompose R̃n as

R̃n = Rn1En−1 = Rn−11En−1 + (Rn −Rn−1)1En−1
= Rn−11En−2 −Rn−11Ẽn−1 + (Rn −Rn−1)1En−1

= R̃n−1 + (Rn −Rn−1)1En−1 −Rn−11Ẽn−1

where we have used the fact that En−1 = En−2/Ẽn−1 so 1En−1 = 1En−2 − 1Ẽn−1 (recall that En−1 ⊆ En−2). Then, by
the definition of Rn, we have

Rn −Rn−1 = 2Mn−1ηnξn + η
2
nξ

2
n +

1

4
ηn ∥en∥

2

and therefore

E [(Rn −Rn−1)1En−1] = 2ηnE [Mn−1ξn1En−1] + η
2
nE [ξ2

n1En−1] +
1

4
ηnE [∥en∥

2 1En−1] . (52)

However, since En−1 and Mn−1 are both Fn-measurable, we have the following estimates:

• For the term in (52), by the unbiasedness of the gradient estimator shown in Lemma 3.4, we have:

E [Mn−1ξn1En−1] = E [Mn−11En−1E [ξn ∣ Fn]] = 0.

• The second term in (52) is where the conditioning on En−1 plays the most important role. It holds that:

E [ξ2
n1En−1] = E [1En−1E [⟨en,∇V

θn
λ (ρ)⟩

2
∣ Fn]]

≤ E [1En−1 ∥∇V
θn
λ (ρ)∥

2
E [∥en∥

2
∣ Fn]]

≤ E [1Ωn ∥∇V θnλ (ρ)∥
2

E [∥en∥
2
∣ Fn]]

≤ G2σ2

where the first inequality is due to the Cauchy-Schwarz inequality, the second inequality follows from
En−1 ⊆ Ωn and the last inequality results from Lemmas 3.2 and 3.5.

• Finally, for the third term in (52), we have:

ηn
4

E [∥en∥
2
2 1En−1] ≤

ηnσ
2

4B
. (53)

Thus, putting together all of the above, we obtain:

E [(Rn −Rn−1)1En−1] ≤ G
2σ2η2

n +
ηnσ

2

4B
.

Since Rn−1 > ε if Ẽn−1 occurs, we obtain

E [Rn−11Ẽn−1] ≥ εE [1Ẽn−1] = εP (Ẽn−1) .

This completes the proof of Statement 3. ◻



Stochastic policy gradient methods with entropy regularization

Lemma 11.4 Consider an arbitrary tolerance level δ > 0. If Algorithm 2 is run with a step-size schedule of the
form ηt = 1/(t + t0) for some sufficiently large m > 0 and a batch size schedule Bt ≥ 1

ηt
, we have

P (En) ≥ 1 − δ for all n = 1,2, . . .

Proof. We begin by bounding the probability of the “large noise” event Ẽn = En−1/En as follows:

P (Ẽn) = P (En−1/En) = P (En−1 ∩ {Rn > ε})

= E [1En−1 × 1{Rn>ε}]

≤ E [1En−1 × (Rn/ε)]

= E [R̃n] /ε

which is derived by using the fact that Rn ≥ 0 (so 1{Rn>ε} ≤ Rn/ε). Now, by summing up (51), we conclude that

E [R̃n] ≤ E [R̃0] +
σ2

4B

n

∑
t=1

ηt − ε
n

∑
t=1

P (Ẽt−1) .

Hence, combining the above results, we obtain the estimate

n

∑
t=1

P (Ẽk) ≤
σ2

4Bε

n

∑
t=1

ηt ≤
σ2

4ε

n

∑
t=1

η2
t ≤

σ2Γ

4ε
,

where Γ = ∑
∞
t=1 η

2
t = ∑

∞
t=1(t + t0)

−2, and we have used the relations that R̃0 = 0 and Ẽ0 = ∅ (by convention).

By choosing t0 to be sufficiently large, we ensure that σ2Γ
4ε

< δ; moreover, since the events Ẽt are disjoint for all
t = 1,2, . . ., we obtain

P(
n

⋃
t=1

Ẽt) =
n

∑
t=1

P (Ẽt) ≤ δ.

Hence,

P (En) = P(
n

⋂
t=1

Ẽc
t) ≥ 1 − δ

as claimed.

11.1 Proof of Lemma 4.6

Proof. To begin, define U and U1 as in (49) and (50). Moreover, with a fair degree of hindsight, we define U0 as

U0 = {π ∈ ∆(A)
∣S∣
∶ ∥π − πθ∗∥2 ≤

ε

Lπ
}

where ε ≤ min{(
λmins ρ(s)

6 ln 2
)

2
(αmins,a πθ∗(a∣s))

4
,1} and Lπ is the upper bound on the norm of the exact gradient

of V πλ (ρ) with respect to the policy π. The existence of such upper bound Lπ is warranted by Section 4 in
Agarwal et al. (2019) and the Lipschitz continuity of the discounted entropy H(ρ, π). Then, by construction, we
have

U0 ⊆ U1.

Since the sequence Ωn is decreasing and Ωn ⊇ En−1 (by the second part of Lemma 11.3), Lemma 11.4 yields that

P (ΩT ) ≥ inf
n

P (Ωn) ≥ inf
n

P (En−1) ≥ 1 − δ

provided that t0 is chosen large enough.

Now, it remains to show that ΩT ⊆ Ωα,T . We fix a realization in ΩT such that D(θt) ≤ 2ε+
√
ε for all t = 1, 2, . . . , T .
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By Lemma 11.1, we have

∣πθt(a ∣ s) − πθ∗(a ∣ s)∣ ≤

¿
Á
ÁÀ 2D(θt) ln 2

λmins ρ(s)

≤

¿
Á
ÁÀ2(2ε +

√
ε) ln 2

λmins ρ(s)

≤

¿
Á
ÁÀ 6

√
ε ln 2

λmins ρ(s)

≤αmin
s,a

πθ∗(a ∣ s),

where the second inequality is due to the condition that the event ΩT occurs, the third inequality is due to ε ≤
√
ε

when ε ≤ 1, and the last inequality is due to the definition of ε. Now, it can be easily verified that

πθt(a ∣ s) ≥ πθ∗(a ∣ s) − αmin
s,a

πθ∗(a ∣ s).

For every t ∈ {1,2, . . . , T}, let s̄, ā = argmins,a πθt(a ∣ s). One can write

min
s,a

πθt(a ∣ s) =πθt(ā ∣ s̄)

≥πθ∗(ā ∣ s̄) − αmin
s,a

πθ∗(a ∣ s)

≥(1 − α)min
s,a

πθ∗(ā ∣ s̄),

where the last inequality is due to π(a∣s) ≥ mins,a π(a∣s) for every s ∈ S and a ∈ A. Thus, we obtain

P (Ωα,T ) ≥ P (ΩT ) ≥ 1 − δ.

This completes the proof. ◻

12 Proof of Theorem 4.7

Proof. It follows from Lemma 11.2 that

D(θt+1)1Ωα,t ≤(1 −
ηtC(θt)

4
)D(θt)1Ωα,t −

ηt
2
ξt1Ωα,t +

ηt
4

∥et∥
2
2 1Ωα,t , (54)

where ξt = ⟨et,∇V
θt
λ (ρ)⟩. When the event Ωα,t occurs, we have C(θt) ≥ Cα, where

Cα ∶=
2λ

∣S ∣
min
s
ρ(s)(1 − α)2 min

s,a
πθ∗(a∣s)

2

XXXXXXXXXXXX

d
π∗λ
ρ

ρ

XXXXXXXXXXXX

−1

∞

> 0.

By taking the expectation, we can obtain

E [−
ηt
2
ξt1Ωα,t +

ηt
4

∥et∥
2
2 1Ωα,t] =E [1Ωα,tE [−

ηt
2
ξt +

ηt
4

∥et∥
2
2 ∣Ft]]

=E [1Ωα,tE [
ηt
4

∥et∥
2
2 ∣Ft]]

≤
ηtσ

2

4B
,

where the first equality is due to the fact that Ωα,t is deterministic conditioning on Ft, the second equality is due
to the unbiasedness of ξt conditioning on Ft, and the first inequality is due to (53). Therefore,

E[D(θt+1)1Ωα,t] ≤(1 −
ηtCα

4
)E [D(θt)1Ωα,t] +

ηtσ
2

4B
.
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Arguing inductively yields that

E[D(θt+1)1Ωα,t] ≤∏
i=1

(1 −
ηiCα

4
)∆1 +∑

i=1

(1 −
ηiCα

4
)

i ηiσ
2

4B

≤∏
i=1

(1 −
ηiCα

4
)∆1 +∑

i=1

ηiσ
2

4B
.

By setting t + 1 = T and taking ηi = 4
Cα(i+t0)

, we obtain that

E[D(θT )1Ωα,T−1] ≤
T−1

∏
i=1

(1 −
ηiCα

4
)∆1 +

T−1

∑
i=1

ηiσ
2

4B

≤
T

∏
i=1

(1 −
ηiCα

4
)∆1 +

T

∑
i=1

ηiσ
2

4B

=
T

∏
i=1

(
i + t0 − 1

i + t0
)∆1 +

σ2

CαB

T

∑
i=1

1

i + t0

≤
t0

T + t0
∆1 +

σ2 ln (T + t0)

BCα
.

Since Ωα,T ⊆ Ωα,t for all t = 1,2, . . . , T , it can be concluded that

E[D(θT )1Ωα,T ] ≤
t0

T + t0
∆1 +

σ2 ln (T + t0)

BCα
.

Then, the claim of the theorem follows by noting that

E[D(θT ) ∣ Ωα,T ] ≤
E[D(θT )1Ωα,T ]

P(Ωα,T )

≤
t0

(T + t0)(1 − δ)
∆1 +

σ2 ln (T + t0)

B(1 − δ)Cα
.

By the law of total probability and the Markov inequality, we obtain that

P(D(θT ) ≥ ε) =P(D(θT ) ≥ ε1Ωα,T ) + P(D(θT ) ≥ ε1
c
Ωα,T

)

=P(D(θT ) ≥ ε ∣ Ωα,T )P(Ωα,T ) + P(D(θT ) ≥ ε ∣ Ωcα,T )P(Ωcα,T )

≤
E[D(θT ) ∣ Ωα,T ]

ε
P(Ωα,T ) + P(D(θT ) ≥ ε1

c
Ωα,T

)P(Ωcα,T )

≤
E[D(θT )1Ωα,T ]

ε
+ δ

≤
t0

(T + t0)ε
∆1 +

σ2 ln (T + t0)

BCαε
+ δ.

To guarantee that P(D(θT ) ≥ ε) ≤ O(δ), it suffices to have

T ≥
t0∆1

δε
− t0, B ≥

σ2 ln(T + t0)

Cαδε
.

Thus, the total sample complexity is T ⋅B = Õ( 1
ε2
). This completes the proof. ◻


