
Local Analysis of Entropy-Regularized Stochastic Soft-Max Policy
Gradient Methods

Yuhao Ding1, Junzi Zhang2 and Javad Lavaei1

Abstract— Entropy regularization is an efficient technique
for encouraging exploration and preventing a premature
convergence of (vanilla) policy gradient methods in reinforcement
learning (RL). However, the theoretical understanding of entropy-
regularized RL algorithms has been limited by the assumption of
exact gradient oracles. To go beyond this limitation, we study the
convergence of stochastic soft-max vanilla policy gradient with
entropy regularization and prove how to utilize the curvature
information around the optimal policy to guarantee that the
action probabilities will still remain uniformly bounded with high
probability. Moreover, we develop the “last iterate” convergence
and sample complexity result for the proposed algorithm given
a good initialization.

I. INTRODUCTION

Entropy regularization is a popular technique to encourage
exploration and prevent premature convergence for reinforce-
ment learning (RL) algorithms. The idea was originally
proposed in [1] to improve the performance of REINFORCE,
a classical family of vanilla policy gradient (PG) methods
widely used in practice. Since then, the entropy regularization
technique has been applied to a large set of other RL
algorithms including actor-critic [2], [3], Q-learning [4], [5]
and trust-region policy optimization methods [6]. It has also
been demonstrated to work well with deep learning approx-
imations to achieve an impressive empirical performance
boost. Nevertheless, the theoretical understanding of the
convergence of these algorithms has been rather limited and
mostly restricted to the exact gradient setting.

The theoretical understanding of policy-based methods has
received considerable attention recently [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. Several techniques
have been developed to improve standard PG and achieve a
linear convergence rate, such as adding entropy regularization
[10], [7], [8], [11], exploiting natural geometries based on
Bregman divergences leading to NPG or policy mirror descent
[9], [8], [11], and using a geometry-aware normalized PG
(GNPG) approach to exploit the non-uniformity of the value
function [20]. However, these advantages have mostly been
established for the true gradient setting and it is not fully
understood whether any geometric property can be exploited
to accelerate convergence to global optimality in inexact
gradient settings. For the stochastic policy optimization, the
existing results have mostly focused on policy mirror ascent
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methods with the goal of reducing the stochastic analysis
to the estimation of the Q-value function [11], [8], as well
as incorporating variance reduction techniques to improve
the sample complexity of the vanilla PG [21], [22]. In
particular, it is proven in [11] that the NPG with the entropy
regularization has a sample complexity of Õ( 1

ϵ2
) where the

inexactness of the gradient can be reduced to the inexactness
of the state-action value functions. For NPG without any
regularization, it has been shown that the noise introduced
by stochastic gradients will incur a positive probability of
failure as empirically observed in [23] and later proved in
[24]. However, the literature on the optimality convergence
and the sample complexity of the most fundamental PG,
namely REINFORCE and its variants with regularizations, is
still limited, despite its simplicity and popularity in practice.
It remains open whether a local optimality convergence result
and a low sample complexity can be obtained for the PG
with entropy regularization in the practical stochastic gradient
setting.

In this paper, we provide an affirmative answer to the
above question. In particular, we revisit the classical entropy
regularized (vanilla) policy gradient method proposed in the
seminal work [1] under the soft-max policy parametrization.
We focus on the modern trajectory-level entropy regularization
proposed in [5], which is shown to improve over the original
one-step entropy regularization adopted in [1], [2] and [4].
In particular, we begin by proposing an unbiased estimator
for the new entropy regularized stochastic PG. It is the
first likelihood-ratio-based estimators in the literature with a
trajectory-level entropy regularization. We show that although
the estimator itself is unbounded in general due to the entropy-
induced logarithmic policy rewards, the variances indeed
remain uniformly bounded. We then establish that with a
good initial policy, stochastic entropy-regularized vanilla PG
method enjoys a sample complexity of Õ( 1

ϵ2
) for the local

optimality convergence under the softmax parameterization.
We also stress here that this is a “last iterate” convergence
guarantee; neither ergodic, nor of a mean-squared gradient
norm type. This is crucial for real-world applications because,
in practice, stochastic PG training is based on the last
generated point.

A. Notation

The set of real numbers is shown as R. u ∼ U means
that u is a random vector sampled from the distribution
U . We use ∣X ∣ to denote the cardinality of a finite set X .
The notions Eξ[⋅] and E[⋅] refer to the expectation over the
random variable ξ and over all of the randomness. The notion



Var[⋅] refers to the variance. ∆(X ) denotes the probability
simplex over a finite set X . For vectors x, y ∈ Rd, let ∥x∥1,
∥x∥2 and ∥x∥∞ denote the ℓ1-norm, ℓ2-norm and ℓ∞-norm.
We use ⟨x, y⟩ to denote the inner product. For a matrix A,
the notation A ≽ 0 means that A is positive semi-definite.
Given a variable x, the notation a = O(b(x)) means that
a ≤ C ⋅b(x) for some constant C > 0 that is independent of x.
Similarly, a = Õ(b(x)) indicates that the previous inequality
may also depend on the function log(x), where C > 0 is again
independent of x. We use Geom(x) to denote a geometric
distribution with the parameter x.

II. PRELIMINARIES

Markov decision processes. RL is generally modeled as
a discounted Markov decision process (MDP) defined by a
tuple (S,A,P, r, γ). Here, S and A denote the finite state
and action spaces; P(s′∣s, a) is the probability that the agent
transits from the state s to the state s′ under the action a ∈ A;
r(s, a) is the reward function, i.e., the agent obtains the
reward r(sh, ah) after it takes the action ah at the state sh
at time h; γ ∈ (0,1) is the discount factor. Without loss of
generality, we assume that r(s, a) ∈ [0, r̄] for all s ∈ S and
a ∈ A. The policy π(a∣s) at the state s is usually represented
by a conditional probability distribution πθ(a∣s) associated
to the parameter θ ∈ Rd. Let τ = {s0, a0, s1, a1, . . .} denote
the data of a sampled trajectory under policy πθ with the
probability distribution over the trajectory as p(τ ∣θ, ρ) ∶=
ρ(s0)∏

∞
h=1 P(sh+1∣sh, ah)πθ(ah∣sh), where ρ ∈∆(S) is the

probability distribution of the initial state s0.
Value functions and Q-functions. Given a policy π, one

can define the state-action value function Qπ ∶ S ×A→ R as

Qπ
(s, a) ∶= Eah∼π(⋅∣sh)

sh+1∼P(⋅∣sh,ah)
[
∞
∑
h=0

γhr(sh, ah)∣s0 = s, a0 = a] .

The state-value function V π ∶ S → R and the advantage
function Aπ ∶ S × A → R can be defined as V π(s) ∶=
Ea∼π(⋅∣s)[Q

π(s, a)], Aπ(s, a) ∶= Qπ(s, a) − V π(s). The
goal is to find an optimal policy in the underlying policy
class that maximizes the expected discounted return, namely,
maxθ∈Rd V πθ(ρ) ∶= Es0∼ρ[V

πθ(s0)]. For the notional conve-
nience, we will denote V πθ(ρ) by the shorthand notation
V θ(ρ).

Exploratory initial distribution. The discounted state
visitation distribution dπs0 is defined as dπs0(s) ∶= (1 −
γ)∑

∞
h=0 γ

hP(sh = s∣s0, π), where P(sh = s∣s0, π) is the
state visitation probability that sh is equal to s under the
policy π starting from the state s0. The discounted state
visitation distribution under the initial distribution ρ is defined
as dπρ(s) ∶= Es0∼ρ[d

π
s0(s)]. Furthermore, the state-action

visitation distribution induced by π and the initial state
distribution ρ is defined as vπρ (s, a) ∶= d

π
ρ(s)π(a∣s), which

can also be written as vπρ (s, a) ∶= (1−γ)Es0∼ρ∑
∞
h=0 γ

hP(sh =
s, ah = a∣s0, π), where P(sh = s, ah = a∣s0, π) is the state-
action visitation probability that sh = s and ah = a under π
starting from the state s0. To facilitate the presentation of the
main results of the paper, we assume that the state distribution

ρ for the performance measure is exploratory [10], [13], i.e.,
ρ(⋅) adequately covers the entire state distribution:

Assumption 1: The state distribution ρ satisfies ρ(s) > 0
for all s ∈ S.

In practice, when the above assumption is not satisfied,
we can optimize under another initial distribution µ, i.e., the
gradient is taken with respect to the optimization measure µ,
where µ is usually chosen as an exploratory initial distribution
that adequately covers the state distribution of some optimal
policy. It is shown in [7] that the difficulty of the exploration
problem faced by PG algorithms can be captured through the
distribution mismatch coefficient defined as ∥

dπ
ρ

µ
∥
∞

, where
dπ
ρ

µ
denotes component-wise division.

Soft-max policy parameterization. In this work, we
consider the soft-max parameterization – a widely adopted
scheme that naturally ensures that the policy lies in the
probability simplex. Specifically, for an unconstrained pa-
rameter θ ∈ R∣S∣∣A∣, πθ(a∣s) is chosen to be exp (θs,a)

∑a′∈A exp (θs,a′)
.

The soft-max parameterization is generally used for MDPs
with finite state and action spaces. It is complete in the
sense that every stochastic policy can be represented by this
class. For the soft-max parameterization, it can be shown
that the gradient and Hessian of the function logπθ(a∣s) are
bounded, i.e., for all θ ∈ R∣S∣∣A∣, s ∈ S and a ∈ A, we have:
∥∇ logπθ(a∣s)∥2 ≤ 2, ∥∇

2 logπθ(a∣s)∥2 ≤ 1.
RL with entropy regularization. Entropy is a commonly

used regularization in RL to promote exploration and discour-
age premature convergence to suboptimal policies [5], [25],
[26]. In the entropy-regularized RL (also known as maximum
entropy RL), near-deterministic policies are penalized, which
is achieved by modifying the value function to

V π
λ (ρ) = V

π
(ρ) + λH(ρ, π), (1)

where λ ≥ 0 determines the strength of the penalty and
H(ρ, π) stands for the discounted entropy defined as

H(ρ, π) ∶= Es0∼ρ,at∼π(⋅∣st)
st+1∼P(⋅∣st,at)

[
∞
∑
t=0
−γt logπ(at∣st)] .

Equivalently, V π
λ (ρ) can be viewed as the weighted value

function of π by adjusting the instantaneous reward to be
policy-dependent regularized version as rλ(s, a) ∶= r(s, a) −
λ logπ(a∣s), for all (s, a) ∈ S ×A. We also define V π

λ (s)
analogously when the initial state is fixed at a given state
s ∈ S. The regularized Q-function Qπ

λ of a policy π, also
known as the soft Q-function, is related to V π

λ as (for every
s ∈ S and a ∈ A)

Qπ
λ(s, a) = r(s, a) + γEs′∼P (⋅∣s,a) [V

π
λ (s

′
)] ,

V π
λ (s) = Ea∼π(⋅∣s) [−λ logπ(a ∣ s) +Q

π
λ(s, a)] .

Bias due to entropy regularization. Due to the presence
of regularization, the optimal solution will be biased with the
bias disappearing as λ→ 0. More precisely, the optimal policy
π∗λ of the entropy-regularized problem could also be nearly
optimal in terms of the unregularized objective function, as
long as the regularization parameter λ is chosen to be small.
Denote by π∗ and π∗λ the policies that maximize the objective



function and the entropy-regularized objective function with
the regularization parameter λ, respectively. Let V ∗ and V ∗λ
represent the resulting optimal objective value function and
the optimal regularized objective value function. [11] shows
a simple but crucial connection between π∗ and π∗λ via the
following sandwich bound:

V π∗λ(ρ) ≤ V π∗
(ρ) ≤ V π∗λ(ρ) +

λ log ∣A∣

1 − γ
,

which holds for all initial distribution ρ.

III. STOCHASTIC PG ESTIMATORS

The PG method is one of the most popular approaches for
a direct policy search in RL [27]. The uniform boundedness
of the reward function r implies that the absolute value of the
entropy-regularized state-value function and Q-value function
are bounded.

Lemma 1 ([10]): V θ
λ (s) ≤

r̄+λ log ∣A∣
1−γ and Qπ

λ(s, a) ≤
r̄+λ log ∣A∣

1−γ for all (s, a) ∈ S ×A and θ ∈ R∣S∣∣A∣.
Under the soft-max policy parameterization, one can obtain

the following expression for the gradient of V π
λ (s) with

respect to the policy parameter θ:
Lemma 2 (Proposition 2 in [28]): The entropy regular-

ized PG with respect to θ is

∇V θ
λ (ρ) = (2)
1

1 − γ
Es,a∼vπθ

ρ
[∇θ logπθ(a∣s) (Q

θ
λ(s, a) − λ logπθ(a ∣ s))] ,

where

∂ logπθ(a∣s)

∂θs′,a′
=

⎧⎪⎪
⎨
⎪⎪⎩

−πθ(a
′∣s′)πθ(a∣s), (s′, a′) ≠ (s, a),

πθ(a∣s) − πθ(a∣s)πθ(a∣s), (s
′, a′) = (s, a).

Furthermore, the entropy regularized PG is bounded, i.e.,
∥∇V θ

λ (ρ)∥ ≤ G for all ρ ∈ ∆(S) and θ ∈ R∣S∣∣A∣, where
G ∶= 2(r̄+λ log ∣A∣)

(1−γ)2 .
In order to obtain an unbiased sample of ∇V θ

λ (ρ), we
need to first draw a state-action pair (s, a) from the dis-
tribution νπθ

ρ (⋅, ⋅) and then obtain an unbiased estimate
of the action-value function Qθ

λ(s, a). For the standard
discounted infinite-horizon RL setting with bounded reward
functions, [29] proposes an unbiased estimate of the PG
using the random horizon with a geometric distribution
and the Monte-Carlo rollouts of finite horizons. However,
their result cannot be immediately applied to the entropy-
regularized RL setting since the entropy-regularized instan-
taneous reward r(s, a) − λ logπ(a∣s) could be unbounded
when π(a∣s) → 0. Fortunately, we can still show that an
unbiased PG estimator with the bounded variance for the
entropy regularized RL can be obtained in a similar fashion
as in [29]. In particular, we will use a random horizon
that follows a certain geometric distribution in the sampling
process. To ensure that the condition (i) is satisfied, we will
use the last sample (sH , aH) of a finite sample trajectory
(s0, a0, s1, a1, . . . , sH , aH) to be the sample at which Qθ

λ(⋅, ⋅)
is evaluated, where the horizon H ∼ Geom(1 − γ). It can be
shown that (sH , aH) ∼ ν

πθ
ρ (s, a). Moreover, given (sH , aH),

we will perform Monte-Carlo rollouts for another trajectory
with the horizon H ′ ∼ Geom (1 − γ1/2) independent of H ,
and estimate the advantage function value Qθ

λ(s, a) along the
trajectory (s′0, a

′
0, . . . , s

′
H′) with s′0 = s, a

′
0 = a as follows:

Q̂θ
λ(s, a) =r (s

′
0, a

′
0) +

H′

∑
t=1

γt/2
⋅ (r (s′t, a

′
t) − λ logπθ(a

′
∣s′)) .

(3)

The subroutines of sampling one pair (s, a) from νπθ
ρ (⋅, ⋅),

estimating Q̂θ
λ(s, a), and estimating V̂ θ

λ (s) are summarized
as Sam-SA and Est-EntQ in Algorithms 1 and 2, respectively.

Algorithm 1 Sam-SA: Sample for s, a ∼ νπθ
ρ (⋅, ⋅)

1: Inputs: ρ, θ, γ.
2: Draw H ∼ Geom(1 − γ).
3: Draw s0 ∼ ρ and a0 ∼ πθ(⋅∣s0)
4: for h = 1,2, . . . ,H − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action

ah+1 ∼ πθt(⋅∣sh+1).
6: end for
7: Outputs: sH , aH .

Algorithm 2 Est-EntQ: Unbiasedly estimating entropy-
regularized Q function

1: Inputs: s, a, γ, λ and θ.
2: Initialize s0 ← s, a0 ← a, Q̂← r(s0, a0).
3: Draw H ∼ Geom(1 − γ1/2).
4: for h = 0,1, . . . ,H − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action

ah+1 ∼ πθ(⋅∣sh+1).
6: Collect the instantaneous reward r (sh+1, ah+1) −

λ logπθ(ah+1∣sh+1) and add to the value Q̂: Q̂ ←
Q̂ + γ(h+1)/2 (r (sh+1, ah+1) − λ logπθ(ah+1∣sh+1)),

7: end for
8: Outputs: Q̂.

We then propose the following stochastic estimator:

∇̂V θ
λ (ρ) = (4)
1

1 − γ
∇θ logπθ(aH ∣sH) (Q̂

θ
λ(sH , aH) − λ logπθ(aH ∣ sH)) ,

where sH , aH ← Sam-SA(ρ, θ, γ) and Q̂θ
λ is defined in (3).

The following lemma shows that the stochastic PG (4) is an
unbiased estimator of ∇V θ

λ (ρ).
Lemma 3: For ∇̂V θ

λ (ρ) defined in (4), we have
E[∇̂V θ

λ (ρ)] = ∇V
θ
λ (ρ).

The next lemma shows that the proposed PG estimator
∇̂V θ

λ (ρ) has a bounded variance even if it is unbounded when
πθ approaches a deterministic policy.

Lemma 4: For ∇̂V θ
λ (ρ) defined in (4), we have

Var[∇̂V θ
λ (ρ)] ≤ σ

2, where σ2 = 8
(1−γ)2 (

r̄2+(λ log ∣A∣)2
(1−γ1/2)2 ).

In practice, we can sample and compute a batch of
independently and identically distributed PG estimators
{∇̂V θ,i

λ (ρ)}
B
i=1 where B is the batch size, in order to



reduce the estimation variance. To maximize the entropy-
regularized objective function (1), we can then update the
policy parameter θ by iteratively running gradient-ascent-
based algorithms, i.e., θt+1 = θt +

ηt

B ∑
B
i=1 ∇̂V

θ,i
λ (ρ), where

ηt > 0 is the step size. The details of the unbiased PG
algorithm with a random horizon for the entropy-regularized
RL are provided in Algorithm 3.

Algorithm 3 Ent-RPG: Random-horizon PG for Entropy-
regularized RL

1: Inputs: ρ, λ, θ1,B, T,{ηt}
T
t=1.

2: for t = 1,2, . . . , T do
3: for i = 1,2, . . . ,B do
4: siHt

, aiHt
← SamSA(ρ, θt, γ).

5: Q̂θt,i
λ ← Est-EntQ(siHt

, aiHt
, θt, γ, λ).

6: end for
7: θt+1 ← θt +

ηt

(1−γ)B ∑
B
i=1 [∇θ logπθt(a

i
Ht
∣siHt
)

(Q̂θt,i
λ − λ logπθt(s

i
Ht
∣ aiHt

))]

8: end for
9: Outputs: θT .

IV. REVIEW: LINEAR CONVERGENCE WITH EXACT PG
A key result from [10] shows that, under the soft-max pa-

rameterization, the entropy-regularized value function V θ
λ (ρ)

in (1) satisfies a non-uniform Łojasiewicz inequality as
follows:

Lemma 5 (Lemma 15 in [10]): It holds that

∥∇V θ
λ (ρ)∥

2

2
≥ C(θ)(V θ∗

λ (ρ) − V
θ
λ (ρ)),

where

C(θ) =
2λ

∣S ∣
min
s

ρ(s)min
s,a

πθ(a∣s)
2

XXXXXXXXXXXX

d
π∗λ
ρ

ρ

XXXXXXXXXXXX

−1

∞

.

Furthermore, it is shown in [10] that the action probabilities
under the soft-max parameterization are uniformly bounded
away from zero if the exact PG is available.

Lemma 6 (Lemma 16 in [10]): Using the exact PG with
the learning rate ηt= η ≤

2
L

for the entropy regularized
objective, it holds that inft≥1mins,a πθt(a∣s) > 0.

Remark 1: Note that with the exact PG ,
inft≥1mins,a πθt(a∣s) is only dependent on the initialization
θ1 and step-size η (apart from problem dependent constants).
Hence hereafter we denote cθ1,η = inft≥1mins,a πθt(a∣s).

With Lemmas 5 and 6, it is shown in Theorem 6
of [10] that the convergence rate for the entropy regu-
larized PG is O (e−Ct), where the value of C depends
on inft≥1mins,a πθt(a∣s) > 0 and {θt}∞t=1 is generated
by the exact PG method. With a bad initialization θ1,
mins,a πθ1(a∣s) could be very small and result in a slow
convergence rate. When studying the stochastic PG, this issue
of bad initialization will create more severe challenges on
the convergence and finding a good initial policy becomes
critical. However, even with a good initial policy, it remains
unknown whether the stochastic policy gradient with the
entropy regularization will guarantee the convergence and
how to characterize the region for the good initial policy.

V. UNIFORMLY BOUNDED ACTION PROBABILITIES GIVEN
A GOOD INITIALIZATION

In this section, we will show how to utilize the curvature
information around the optimal policy to guarantee that the
action probabilities will still remain uniformly bounded with
high probability. We denote D(θt) = V

θ∗
λ (ρ)−V

θt
λ (ρ) as the

sub-optimality gap between V θ∗
λ (ρ) and V θt

λ (ρ).
Lemma 7: Given a tolerance level δ > 0, let π∗λ be the

optimal policy of V θ
λ (ρ). Assume further that Algorithm 3

is run for T iterates with a step-size sequence of the form
ηt = 1/(t + t0) and a batch-size sequence B ≥ 1

ηt
for all

t = 1,2, . . . , T . If t0 ≥
√

3σ2

2δϵ0
, and πθ1 is initialized in a

neighborhood U1 such that

U1 = {π ∈∆(A)
∣S∣
∶D(π) ≤ ϵ0} , (5)

where ϵ0 = min{(λmins ρ(s)
6 ln2

)
2
(α exp( −r̄

(1−γ)λ))
4
,1} and

the constant α ∈ (0,1), then the event

ΩT
α,1 = {min

s,a
πθt(a∣s) ≥ (1 − α)min

s,a
π∗λ(a∣s),∀t = 1,2, . . . , T }

(6)

occurs with probability at least 1 − δ/6.

A. Helpful lemmas

Since the optimal policy of (1) is unique [11], there must
exist a continuum of optimal solutions

Θ∗ ∶= {θ∗ ∈ R∣S∣∣A∣ ∶
exp(θ∗s,a)

∑a′ exp(θ
∗
s,a′)

= π∗λ(a ∣ s),∀s ∈ S, a ∈ A}.

In addition, we use πθ⋆ and π⋆λ interchangeably to denote
the optimal policy of the entropy-regularized RL.

Lemma 8: Suppose that f(x) is L-smooth. Given 0 < ηt ≤
1
2L

for all t ≥ 1, let {xt}
T
t=1 be generated by a general update

of the form xt+1 = xt + ηtut and let et = ut − ∇f(xt). We
have

f(xt+1) ≥f(xt) +
ηt
4
∥ut∥

2
2 −

ηt
2
∥et∥

2
2 .

Proof. Since f(f) is L-smooth, one can write

f(xt+1) − f(xt) − ⟨ut, xt+1 − xt⟩

=f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩

+ ⟨
√
ηt(∇f(xt) − ut),

1
√
ηt
(xt+1 − xt)⟩

≥ −
L

2
∥xt+1 − xt∥

2
−
bηt
2
∥∇f(xt) − ut∥

2
2 −

1

2bηt
∥xt+1 − xt∥

2
2

=(−
1

2bηt
−
L

2
) ∥xt+1 − xt∥

2
2 −

bηt
2
∥et∥

2
2 ,

where the constant b > 0 is to be determined later. By the
above inequality and the definition of xt+1, we have

f(xt+1)

≥f(xt) + ⟨ut, xt+1 − xt⟩ − (
1

2bηt
+
L

2
) ∥xt+1 − xt∥

2
2 −

bηt
2
∥et∥

2
2

=f(xt) + ηt ∥ut∥
2
− (

ηt
2b
+
Lη2t
2
) ∥ut∥

2
2 −

bηt
2
∥et∥

2
2 .



By choosing b = 1 and using the fact that 0 < ηt ≤ 1
2L

, we
have

f(xt+1) ≥f(xt) + (
ηt
2
−
Lη2t
2
) ∥ut∥

2
2 −

ηt
2
∥et∥

2
2

≥f(xt) +
ηt
4
∥ut∥

2
2 −

ηt
2
∥et∥

2
2 .

This completes the proof. ◻

To prove Lemma 7, we first characterize the maximum
amount by which D(θt) can grow at each step.

Lemma 9: Suppose that {θt} is generated by Algorithm 3
with 0 < ηt ≤

(1−γ)3
16r̄+λ(8+16 log ∣A∣) for all t ≥ 1. We have

D(θt+1) ≤(1 −
ηtC(θt)

4
)D(θt) −

ηt
2
ξt +

ηt
4
∥et∥

2
2 , (7)

where ξt = ⟨et,∇V
θt
λ (ρ)⟩ and et = ∇̂V

θt
λ (ρ) −∇V

θt
λ (ρ).

Proof. Since ∇V θ
λ (ρ) is L-smooth in light of Lemmas 7 and

14 in [10], it follows from Lemma 8 that

D(θt+1) −D(θt)

≤ −
ηt
4
∥∇̂V θ

λ (ρ)∥
2

2
+
ηt
2
∥et∥

2
2

≤ −
ηt
4
∥∇̂V θt

λ (ρ) −∇V
θt
λ (ρ) +∇V

θt
λ (ρ)∥

2

2
+
ηt
2
∥et∥

2
2

= −
ηt
4
∥∇̂V θt

λ (ρ) −∇V
θt
λ (ρ)∥

2

2
−
ηt
4
∥∇̂V θt

λ (ρ)∥
2

2

−
ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
2
∥et∥

2
2

= −
ηt
4
∥∇V θt

λ (ρ)∥
2

2
−
ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
4
∥et∥

2
2

≤ −
ηtC(θt)

4
D(θt) −

ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
4
∥et∥

2
2 ,

for every ηt ≤
1
2L

, where the last inequality is due to Lemma
5. ◻

The quantity by which D(θt) can grow at each step
can be large for any given t but we will show that, with
high probability, the aggregation of these errors remains
controllably small under the stated conditions on the step-
sizes and batch size. The difficulty of controlling the errors in
D(θt) lies in the fact that C(θt) may be close to 0. Because
of this, we need to take a less direct, step-by-step approach to
bound the total error increments conditioned on the event that
D(θn) remains close to D(θ∗). Similar as the techniques
used in [30], [31], [20], [32], [33], we now encode the error
terms in (7) as Mn = ∑

n
t=1 ηtξt and Sn = ∑

n
t=1

ηt

4
∥et∥

2
2 . Since

E [ξn] = 0, we have E [Mn] =Mn−1. Therefore, Mn is a zero-
mean martingale; likewise, E [Sn] ≥ Sn−1, and therefore Sn

is a submartingale. We begin by introducing the “cumulative
mean square error” Rn =M

2
n +Sn. By construction, we have

Rn = (Mn−1 + ηnξn)
2
+ Sn−1 +

1

4
ηn ∥en∥

2

= Rn−1 + 2Mn−1ηnξn + η
2
nξ

2
n +

1

4
ηn ∥en∥

2
.

Hence, E [Rn] = Rn−1 + 2Mn−1ηnE [ξn] + η2nE [ξ2n] +
1
4
ηnE [∥en∥

2
] ≥ Rn−1, i.e., Rn is a submartingale. With a

fair degree of hindsight, we define U as:

U = {π ∈∆(A)∣S∣ ∶D(π) ≤ 2ϵ0 +
√
ϵ0} . (8)

To condition it further, we also define the events

Ωn ≡ Ωn(ϵ0) = {πθt ∈ U for all t = 1,2, . . . , n}
En ≡ En(ϵ0) = {Rt ≤ ϵ0 for all t = 1,2, . . . , n}

By definition, we also have Ω0 = E0 = Ω (because the set-
building index set for k is empty in this case, and every
statement is true for the elements of the empty set). These
events will play a crucial role in the sequel as indicators of
whether πθt has escaped the vicinity of π⋆λ.

Let the notation 1A indicate the logical indicator of an
event A ⊆ Ω, i.e., 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0
otherwise. For brevity, we write Fn = σ(θ1, . . . , θn) for the
natural filtration of θn. Now, we are ready to state the next
lemma.

Lemma 10: Let π∗λ be the optimal policy. Then, for all
n ∈ {1,2, . . .}, the following statements hold:

1) Ωn+1 ⊆ Ωn and En+1 ⊆ En.
2) En−1 ⊆ Ωn.
3) Consider the “large noise” event

Ẽn ≡ En−1/En = En−1 ∩ {Rn > ϵ0}

= {Rt ≤ ϵ0 for all t = 1,2, . . . , n − 1 and Rn > ϵ0}

and let R̃n = Rn1En−1 denote the cumulative error
subject to the noise being “small” until time n. Then,

E [R̃n] ≤ E [R̃n−1] +G
2σ2η2n +

ηnσ
2

4B
− ϵ0P (Ẽn−1) .

(9)

By convention, we write Ẽ0 = ∅ and R̃0 = 0.
Proof. Statement 1 is obviously true. For Statement 2, we
proceed inductively:

● For the base case n = 1, we have Ω1 = {πθ1 ∈ U} ⊇

{πθ1 ∈ U1} = Ω because πθ1 is initialized in U1 ⊆ U .
Since E0 = Ω, our claim follows.

● For the inductive step, assume that En−1 ⊆ Ωn for some
n ≥ 1. To show that En ⊆ Ωn+1, we fix a realization
in En such that Rt ≤ ε for all t = 1,2, . . . , n. Since
En ⊆ En−1, the inductive hypothesis posits that Ωn also
occurs, i.e., πθt ∈ U for all t = 1,2, . . . , n; hence, it
suffices to show that πθn+1 ∈ U . To that end, given that
πθt ∈ U for all t = 1,2, . . . n, the distance estimate (7)
readily gives D(θt+1) ≤ D(θt) + ηtξt +

ηt

4
∥et∥

2
2 for all

t = 1,2, . . . , n. Therefore, after telescoping, we obtain

D(θn+1) ≤D(θ1) +Mn + Sn ≤D(θ1) +
√
Rn +Rn

≤ε +
√
ε + ε

=2ε +
√
ε

by the inductive hypothesis. This completes the induc-
tion.



For Statement 3, we decompose R̃n as

R̃n = Rn1En−1

= Rn−11En−1 + (Rn −Rn−1)1En−1

= Rn−11En−2 −Rn−11Ẽn−1 + (Rn −Rn−1)1En−1

= R̃n−1 + (Rn −Rn−1)1En−1 −Rn−11Ẽn−1

where we have used the fact that En−1 = En−2/Ẽn−1 so
1En−1 = 1En−2 − 1Ẽn−1 (recall that En−1 ⊆ En−2). Then, by
the definition of Rn, we have

Rn −Rn−1 = 2Mn−1ηnξn + η
2
nξ

2
n +

1

4
ηn ∥en∥

2

and therefore

E [(Rn −Rn−1)1En−1] = (10)

2ηnE [Mn−1ξn1En−1] + η
2
nE [ξ2n1En−1] +

1

4
ηnE [∥en∥

2 1En−1] .

However, since En−1 and Mn−1 are both Fn-measurable,
we have the following estimates:
● For the term in (10), by the unbiasedness of the

gradient estimator shown in Lemma 3, we have:
E [Mn−1ξn1En−1] = E [Mn−11En−1E [ξn ∣ Fn]] = 0.

● The second term in (10) is where the conditioning on
En−1 plays the most important role. It holds that:

E [ξ2n1En−1] = E [1En−1E [⟨en,∇V
θn
λ (ρ)⟩

2
∣ Fn]]

≤ E [1En−1 ∥∇V
θn
λ (ρ)∥

2
E [∥en∥

2
∣ Fn]]

≤ E [1Ωn
∥∇V θn

λ (ρ)∥
2

E [∥en∥
2
∣ Fn]]

≤ G2σ2

where the first inequality is due to the Cauchy-Schwarz
inequality, the second inequality follows from En−1 ⊆
Ωn and the last inequality results from Lemmas 2 and
4.

● Finally, for the third term in (10), we have:

ηn
4

E [∥en∥
2
2 1En−1] ≤

ηnσ
2

4B
. (11)

Thus, putting together all of the above, we obtain
E [(Rn −Rn−1)1En−1] ≤ G2σ2η2n +

ηnσ
2

4B
. Since Rn−1 > ε

if Ẽn−1 occurs, we obtain E [Rn−11Ẽn−1] ≥ εE [1Ẽn−1] =

εP (Ẽn−1) . This completes the proof of Statement 3. ◻

With the above results, we can show that the cumulative
mean square error Rn is small with high probability at all
times.

Lemma 11: Consider an arbitrary tolerance level δ > 0. If
Algorithm 3 is run with a step-size schedule of the form
ηt = 1/(t + t0) where t0 ≥

√
3σ2

2δϵ0
and a batch size schedule

Bt ≥
1
ηt

, we have P (En) ≥ 1 − δ/6, for all n = 1,2, . . .
Proof. We begin by bounding the probability of the “large
noise” event Ẽn = En−1/En as follows:

P (Ẽn) = P (En−1/En) = P (En−1 ∩ {Rn > ε})

= E [1En−1 × 1{Rn>ε}]

≤ E [1En−1 × (Rn/ε)] = E [R̃n] /ε,

which is derived by using the fact that Rn ≥ 0 (so
1{Rn>ε} ≤ Rn/ε). Now, by summing up (9), we conclude
that E [R̃n] ≤ E [R̃0]+

σ2

4B ∑
n
t=1 ηt − ε∑

n
t=1 P (Ẽt−1) . Hence,

combining the above results, we obtain the estimate

n

∑
t=1

P (Ẽk) ≤
σ2

4Bϵ0

n

∑
t=1

ηt ≤
σ2

4ϵ0

n

∑
t=1

η2t ≤
σ2Γ

4ϵ0
,

where Γ = ∑
∞
t=1 η

2
t = ∑

∞
t=1(t + t0)

−2, and we have used
the relations that R̃0 = 0 and Ẽ0 = ∅ (by convention). By
choosing t0 ≥

√
3σ2

2δϵ0
, we ensure that σ2Γ

4ϵ0
< δ/6; moreover,

since the events Ẽt are disjoint for all t = 1,2, . . ., we
obtain P (⋃n

t=1 Ẽt) = ∑
n
t=1 P (Ẽt) ≤ δ/6. Hence, P (En) =

P (⋂n
t=1 Ẽ

c
t ) ≥ 1 − δ/6 as claimed. ◻

Furthermore, we can show that the entropy-regularized
value function V θ

λ (ρ) is locally quadratic around the optimal
policy πθ∗ .

Lemma 12: For every policy πθ, we have

D(θ) ≥
λmins ρ(s)

2 ln 2
∣πθ(a ∣ s) − πθ∗(a ∣ s)∣

2
, ∀s ∈ S, a ∈ A.

Proof. It follows from the soft sub-optimality difference
lemma (Lemma 26 in [34]) that

V θ∗
λ (ρ) − V

θ
λ (ρ)

=
1

1 − γ
∑
s

[dπθ
ρ (s) ⋅ λ ⋅DKL (πθ(⋅ ∣ s)∥πθ∗(⋅ ∣ s))]

≥
1

1 − γ
∑
s

[dπθ
ρ (s) ⋅ λ ⋅

1

2 ln 2
∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥

2
1]

≥
λ

2 ln 2
∑
s

[ρ(s) ⋅ ∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥
2
1]

≥
λ

2 ln 2
∑
s

[ρ(s) ⋅ ∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥
2
2]

≥
λ

2 ln 2
[ρ(s)∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥

2
2] ∀s ∈ S

≥
λmins ρ(s)

2 ln 2
∣πθ(a ∣ s) − πθ∗(a ∣ s)∣

2
, ∀s ∈ S, a ∈ A,

where the first inequality is due to Theorem 11.6 in [35]
stating that

DKL [P (⋅) ∣ Q(⋅)] ≥
1

2 ln 2
∥P (⋅) −Q(⋅)∥21

for every two discrete distributions P (⋅) and Q(⋅). Moreover,
the second inequality is due to dπθ

ρ (s) ≥ (1− γ)ρ(s) and the
third inequality is due to the equivalence between ℓ1-norm
and ℓ2-norm. This completes the proof. ◻

B. Proof of Lemma 7

Since the sequence Ωn is decreasing and Ωn ⊇ En−1 (by the
second part of Lemma 10), Lemma 11 yields that P (ΩT ) ≥

infn P (Ωn) ≥ infn P (En−1) ≥ 1 − δ/6 provided that t0 is
chosen large enough.

Now, it remains to show that ΩT ⊆ ΩT
α,1. We fix a

realization in ΩT such that D(θt) ≤ 2ϵ0 +
√
ϵ0 for all



t = 1,2, . . . , T . By Lemma 12, we have

∣πθt(a ∣ s) − πθ∗(a ∣ s)∣

≤

¿
Á
ÁÀ 2D(θt) ln 2

λmins ρ(s)
≤

¿
Á
ÁÀ2(2ϵ0 +

√
ϵ0) ln 2

λmins ρ(s)

≤

¿
Á
ÁÀ 6

√
ϵ0 ln 2

λmins ρ(s)
≤ α exp(

−r̄

(1 − γ)λ
) ≤ αmin

s,a
πθ∗(a ∣ s),

where the second inequality is due to the condition that the
event ΩT occurs, the third inequality is due to ϵ0 ≤

√
ϵ0

when ϵ0 ≤ 1, the forth inequality is due to the definition
of ϵ0, and the last inequality is due to Theorem 1 in [36]
where it holds that logπ∗λ(a ∣ s) =

1
λ
(Qπ∗λ(s, a) − V π∗λ(s)) ≥

−r̄
(1−γ)λ , ∀(s, a) ∈ S ×A.

Now, it can be easily verified that πθt(a ∣ s) ≥ πθ∗(a ∣
s)−αmins,a πθ∗(a ∣ s). For every t ∈ {1,2, . . . , T}, let s̄, ā =
argmins,a πθt(a ∣ s). One can write

min
s,a

πθt(a ∣ s) =πθt(ā ∣ s̄) ≥ πθ∗(ā ∣ s̄) − αmin
s,a

πθ∗(a ∣ s)

≥(1 − α)min
s,a

πθ∗(ā ∣ s̄),

where the last inequality is due to π(a∣s) ≥mins,a π(a∣s) for
every s ∈ S and a ∈ A. Thus, we obtain P (ΩT

α,1) ≥ P (ΩT ) ≥

1 − δ/6. This completes the proof.

VI. LAST ITERATE CONVERGENCE

From Lemma 7, we know that, with a good initialization,
the policies will remain in the interior of the probability
simplex with high probability. We are now ready to prove
the “last iterate” convergence and the sample complexity of
the stochastic PG for entropy-regularized RL when a good
initilization is given.

Theorem 1: Consider an arbitrary tolerance level δ > 0
and a small enough tolerance level ϵ > 0. For initial point θ1
satisfying the condition (5), if θT+1 is generated by Algorithm
3 with

T ≥
t0ϵ0
6δϵ
− t0, B ≥

σ2 ln(T + t0)

6Cαδϵ
, ηt =

1

t + t0
,

where

ϵ0 =min

⎧⎪⎪
⎨
⎪⎪⎩

(
λmins ρ(s)

6 ln 2
)

2

(α exp(
−r̄

(1 − γ)λ
))

4

,1

⎫⎪⎪
⎬
⎪⎪⎭

, (12)

t0 ≥

√
3σ2

2δϵ0
, (13)

Cα =
2λ

∣S ∣
min
s

ρ(s)(1 − α)2min
s,a

πθ∗(a∣s)
2

XXXXXXXXXXXX

d
π∗λ
ρ

ρ

XXXXXXXXXXXX

−1

∞

> 0,

(14)

then we have P(D(θT+1) ≤ ϵ) ≥ 1 − δ. In total, it requires
Õ (ϵ−2) samples to obtain an ϵ-optimal policy with high
probability.
Proof. When D(θ1) ≤ ϵ0, it follows from Lemma 9 that

D(θt+1) ≤ (1 −
ηtC(θt)

4
)D(θt) −

ηt
2
ξt +

ηt
4
∥et∥

2
2 ,

for all t ≥ T1, where ξt = ⟨et,∇V
θt
λ (ρ)⟩. When D(θ1) ≤ ϵ0,

from Lemma 7 we know that the event Ωt
α,1 defined in (6)

occurs and C(θt) ≥ Cα, with high probability, where Cα is
defined in (14). By taking the expectation, we have

E [−
ηt
2
ξt1Ωt

α,1
+
ηt
4
∥et∥

2
2 1Ωt

α,1
]

=E [1Ωt
α,1

E [−
ηt
2
ξt +

ηt
4
∥et∥

2
2 ∣Ft]]

=E [1Ωt
α,1

E [
ηt
4
∥et∥

2
2 ∣Ft]] ≤

ηtσ
2

4B
,

where the first equality is because Ωt
α,1 is deterministic condi-

tioning on Ft, the second equality is due to the unbiasedness
of ξt conditioning on Ft, and the first inequality is due to (11).
Therefore, E[D(θt+1)1Ωt

α,1
] ≤ (1 − ηtCα

4
)E [D(θt)1Ωt

α,1
] +

ηtσ
2

4B
. Arguing inductively yields that

E[D(θT+1)1ΩT
α,1
]

≤
T

∏
i=1
(1 −

ηiCα

4
)D(θ1) +

T

∑
i=1
(1 −

ηiCα

4
)

i ηiσ
2

4B

≤
T

∏
i=1
(1 −

ηiCα

4
)D(θ1) +

T

∑
i=1

ηiσ
2

4B
.

By taking ηi =
4

Cα(i+t0) , we obtain that

E[D(θT+1)1ΩT
α,1
] ≤

T

∏
i=1
(
i + t0 − 1

i + t0
)D(θT ) +

σ2

CαB

T

∑
i=1

1

i + t0

≤
t0

T + t0
D(θ1) +

σ2 ln (T + t0)

BCα
.

By the law of total probability and the Markov inequality,
we obtain that

P(D(θT+1) ≥ ϵ)

=P(D(θT+1) ≥ ϵ,Ω
T
α,1) + P(D(θT+1) ≥ ϵ, (Ω

T
α,1)

c
)

=P(D(θT+1) ≥ ϵ ∣ Ω
T
α,1)P(Ω

T
α,1)

+ P(D(θT+1) ≥ ϵ ∣ (Ω
T
α,1)

c
)P((ΩT

α,1)
c
)

≤
E[D(θT+1) ∣ ΩT

α,1]

ϵ
P(ΩT

α,1)

+ P(D(θT+1) ≥ ϵ1
c
ΩT

α,1
)P((ΩT

α,1)
c
)

≤
E[D(θT+1)1ΩT

α,1]

ϵ
+ δ/6

≤
t0

(T + t0)ϵ
D(θ1) +

σ2 ln (T + t0)

BCαϵ
+ δ/6,

where the second inequality follows from Lemma 7. To
guarantee P(D(θT+1) ≥ ϵ) ≤ δ

2
, it suffices to have T =

t0D(θ1)
6δϵ

− t0,B =
σ2 ln(T+t0)

6Cαδϵ
. This completes the proof. ◻

VII. CONCLUSION

In this work, we studied the convergence and the sam-
ple complexity of stochastic PG methods for the entropy-
regularized RL with the soft-max parameterization when a
good initial policy is given. We proposed a new unbiased PG
estimator for the entropy-regularized RL and proved that it



has a bounded variance even though it could be unbounded. In
addition, this work provided the first “last iterate” convergence
result for stochastic PG methods for the entropy-regularized
RL and obtained the sample complexity of Õ( 1

ϵ2
), where ϵ

is the optimality threshold. This work paves the way for a
deeper understanding of other stochastic PG methods with
entropy-related regularization, including those with trajectory-
level KL regularization and policy reparameterization. The
future direction includes proving the global convergence of
the stochastic PG methods for the entropy-regularized RL
with an arbitrary initial policy.
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