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Uniqueness of Power Flow Solutions Using Graph-theoretic Notions
Haixiang Zhang, SangWoo Park, Javad Lavaei and Ross Baldick

Abstract—This paper extends the uniqueness theory in [1]
and establishes general necessary and sufficient conditions for
the uniqueness of P -Θ power flow solutions in an AC power
system using some properties of the monotone regime and
the power network topology. We show that the necessary and
sufficient conditions can lead to tighter sufficient conditions
for the uniqueness in several special cases. Our results are
based on the existing notion of maximal girth and our new
notion of maximal eye. Moreover, we develop a series-parallel
reduction method and search-based algorithms for computing
the maximal eye and maximal girth, which are necessary for
the uniqueness analysis. Reduction to a single line using the
proposed reduction method is guaranteed for 2-vertex-connected
Series-Parallel graphs. The relations between the parameters
of the network before and after reduction are obtained. It is
verified on real-world networks that the computation of the
maximal eye can be reduced to the analysis of a much smaller
power network, while the maximal girth is computed during the
reduction process.

I. INTRODUCTION

The AC power flow problem plays a crucial role in var-
ious aspects of power systems, e.g., the daily operations
in contingency analysis and security-constrained dispatch of
electricity markets. black Hence, unexpected operating points
may appear for some system conditions and can jeopardize the
normal operations of power systems. Conditions that ensure
the existence of a unique “physically realizable” power flow
solution are important but not fully understood.

For a special case of the AC power flow problem, the
uniqueness property of the P -Θ power flow problem [2] has
been studied in [1]. In the P -Θ power flow problem, the
magnitude of the complex voltage at each node is given and
the objective is to find a set of voltage phases such that the
power flow equations are satisfied. The “physically realizable”
constraint requires that the angular difference across every
line lies within the stability limit of π/2 for lossless net-
works. Sufficient conditions (on the angular differences) that
depend on the topological properties of the power network
are established in [1]. Specifically, the authors proposed the
notion of monotone regime and an upper bound on the angular
differences based on the power network topology, which
together can ensure the uniqueness of solutions. However, due
to the nonlinear property of sinusoidal functions and the low-
rank structure of angular differences, it is unclear to what
extent the sufficient conditions given in [1] are necessary.
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The goal of this paper is to provide more general necessary
and sufficient conditions for the uniqueness, using the notion
of maximal eye defined in Section III and the notion of
maximal girth introduced in [1]. The paper also designs
algorithms to compute these graph-theoretic parameters.

A. Main results

In this paper, we extend the uniqueness theory of P -
Θ power flow problem proposed in [1]. We focus on the
uniqueness of the power flow problem in a stronger sense
and derive general necessary and sufficient conditions that
depend only on the choice of the monotone regime and network
topology. Under certain circumstances, the general conditions
can be simplified to obtain tighter sufficient conditions. In
addition, some algorithms for computing the maximal eye
and the maximal girth of undirected graphs are proposed. A
reduction method is designed to reduce the size of graphs and
accelerate the computation process. More specifically, the con-
tributions of this paper are three-fold: black In summary, this
paper constitutes a substantial generalization of the uniqueness
theory in [1]. A stronger notion of uniqueness is proposed
and general necessary and sufficient conditions are proposed.
These two combined provides a tool for analyzing large-scale
power networks and enables a deeper understanding of the
uniqueness of the P -Θ power flow problem.

B. Related work

The study of solutions to the power flow problem has a long
history dating back to [3], which gave an example showing
the general non-uniqueness of solutions for the power flow
problem. Then, the number of solutions of the power flow
problem was estimated in [4], which also characterized the
stability region for the power flow problem. However, these
early works only considered lossless transmission networks
consisting of PV buses.

black Under the assumption that resistive losses are neg-
ligible, conditions for the existence and uniqueness of both
real power-phase (P -Θ) problem, and reactive power-voltage
(Q-V ) problem were derived in [5], [2].

In another line of work, the topology structure of the power
network was also considered to derive stronger conditions for
the uniqueness. The number of solutions was estimated for
radial networks in [6], [7], and later for general networks.
Moreover, a more recent work [8] gave several algorithms to
compute the unique high-voltage solution. black In this paper,
we consider the P -Θ problem [2] for general lossy power
networks and utilize the topology information. We refer to [1]
for a more detailed review of the existing literature.

The fixed-point technique is often used for proving the
existence and uniqueness of equations. For the power flow
problem, the fixed-point technique was first utilized in [9]
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and was further developed by several works [10], [11], [12],
[13], [14], [15]. Another more recently applied approach is to
treat the P -Θ power flow problem as a rank-1 matrix sensing
problem and solve its convex relaxation counterpart [16],
[17]. The work [18] also considered the domain of voltages
over which the power flow operator is monotone. However,
the relation between the rank-1-constrained problem and its
convexification is not clear for general power networks.

black In [1], it was also shown that the solution of P -Θ
problem is unique under the assumption that angle differences
across the lines are bounded by some limit related to the
maximal girth of the network, which is defined in [19]. black

The existing algorithms in the literature cannot be directly
used to compute maximal eye (introduced in Section III) or
maximal girth. A related problem is computing the maximal
chordless cycle as an upper bound to these parameters. The
computation of maximal chordless cycles was proved to be
NP-complete in [20]. Efficient algorithms for enumerating
chordless cycles were proposed in [21], [22] and both take
linear time to enumerate a single chordless cycle. The algo-
rithms for enumerating maximal chordless cycles can be easily
modified to compute the minimal chordless cycle containing a
given edge. Series-parallel reduction method was introduced as
an alternative definition of Generalized Series-Parallel (GSP)
graphs in [23]. Under the assumption that the slack bus is the
last bus to be reduced, all GSP graphs can be reduced to a
single line [1]. However, whether the series-parallel reduction
method can still reduce GSP graphs without the assumption
on the slack bus is not known. In this paper, we show that
2-vertex-connected1 Series-Parallel graphs can be reduced to
a single line without the assumption.

C. Notations

We start with some mathematical notations. We use
N,Z,R,C to denote the set of all natural numbers, integers,
real numbers and complex numbers, respectively. We denote
[n] := {1, . . . , n} for any n ∈ N. The symbol j denotes the
unit imaginary number. The notations (·)T and (·)H denote the
transpose and Hermitian transpose of a matrix, respectively.
For a complex number z, |z| denotes its magnitude and for
a set X , the symbol |X| denotes its cardinality. <(·) denotes
the real part of a given scalar or matrix.

For an undirected graph, the set of vertices and the set
of edges are denoted as V and E, respectively. black For a
directed graph (V,E, A), the matrix A ∈ R|V|×|V| gives the
orientation of each line, black The undirected edge connecting
two vertices k and ` is denoted by a set notation {k, `},
whereas (k, `) denotes a directed edge coming out of vertex
k and going into `. For parallel edges, we use {k, `, i} to
represent different edges connecting k and `, where i ∈ Z+ is
the index of each parallel edge.

A power network G = (V,E, Y ) consists of two parts: the
underlying undirected graph (V,E) and the complex admit-
tance matrix Y ∈ Cn×n, where n is the number of vertices
in the underlying graph. The underlying graph is assumed
to be a simple and connected graph. The set of vertices V

1A graph is called 2-vertex-connected if it is connected after the deletion
of any single vertex.

and the set of edges E correspond to the set of buses and
the set of lines of the power network. The series element
of the equivalent Π-model of each line {k, `} is modeled by
admittance Yk` = Gk` − jBk`, where Gk`, Bk` ≥ 0.

We denote v ∈ Cn as the vector of complex bus voltages.
The complex voltage at bus k can be written in the polar form
using its magnitude and phase angle vk = |vk|ejΘk for all k ∈
[n], where |vk|∈ R and Θk ∈ R denote the voltage magnitude
and phase angle, respectively. We denote Θk` := Θk − Θ` ∈
[−π, π) as the phase difference modulus by 2π for all {k, `} ∈
E. In the rest of the paper, we use the corresponding values
in [−π, π) for phase differences.

D. Paper organization

The remainder of this paper is organized as follows. Sec-
tion II gives the necessary background knowledge about the P -
Θ power flow problem and the existing uniqueness theory for
the P -Θ problem. The notions of strong uniqueness and weak
uniqueness are also introduced. In Section III, we propose
the general analysis framework of the uniqueness theory that
only depends on the monotone regime and the topological
structure. We show that necessary and sufficient conditions
can be fully characterized by a feasibility problem, which has
fewer variables than the P -Θ problem. Sufficient conditions
for uniqueness are derived and it is shown that the uniqueness
conditions in [1] follow as a natural corollary. Then, we
consider three special cases in Section IV by assuming specific
topological structures for the underlying graph or a specific
monotone regime. In these special cases, the necessary and
sufficient conditions are simplified and the intricate sinusoidal
functions are avoided in the verification of those conditions.
Furthermore, the sufficient conditions proposed in Section
III are proved to be tight when no information beyond the
monotone regime and the topological structure is available.
Finally, a reduction method and search-based algorithms for
computing the maximal girth and maximal eye are given
in Section V. black Proofs are delineated in the technical
report [24].

II. PRELIMINARIES

A. P -Θ problem formulation

As mentioned in the introduction, we focus our attention to
the P -Θ problem, which describes the relationship between
the voltage phasor angles and the real power injections. We
first make the following assumptions. black Recall that the
following injection operator describes the P -Θ problem, where
the shunt elements are assumed to be purely reactive.

Definition 1. black define P̂k : {0} × Rn−1 → R as the map
from the vector of phasor angles to the real power injection
at bus k:

P̂k(Θ) := <{(Y v)Hk vk}, ∀Θ ∈ {0} × Rn−1.

Moreover, define the injection operator P̂ : {0} × Rn−1 →
Rn−1 as

P̂ (Θ) := [P̂2(Θ), . . . , P̂n(Θ)].
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The goal of the P -Θ problem is, given P ∈ Rn−1, to find
the voltage phasor angles Θ ∈ {0} × Rn−1 such that

P̂ (Θ) = P. (1)

B. Monotone regime and allowable sets

We are interested in the uniqueness property of the solution
to problem (1). In general, the number of solutions to problem
(1) is hard to estimate because of the periodic behavior of
sinusoidal functions, especially when there is no symmetrical
structure in the power network. Thus, we limit the phase angle
vectors to the monotone regime, within which the real power
flow from bus k to bus ` increases monotonically with respect
to the phase difference Θk` for each line {k, `} ∈ E. The
monotone regime is defined in [1] as follows.

Definition 2. The monotone regime of a power network
(V,E, Y ) is the set

{Θ ∈ Rn | Θ1 = 0,Θk` ∈ [−γk`, γk`],∀{k, `} ∈ E},

where γk` := tan−1(Bk`/Gk`) ∈ [0, π/2] for all {k, `} ∈ E.

blackThe constraint that the angular difference across every
line lies within the stability limit of [−γk`, γk`] is equivalent
to the steady-state stability limit if each line is considered
individually. As shown in [1], the phase angle vectors of leaf
buses except the slack bus are uniquely determined by the
phase angle vectors of non-leaf buses in the monotone regime.
Hence, we assume that all vertices in the underlying graph
except vertex 1 have degree at least 2.

Assumption 1. The graph (V,E) is connected. All vertices
except vertex 1 in the graph (V,E) have degree at least 2.

We focus on finding a neighborhood of a solution in
which there is no other solution to the P -Θ problem. The
neighborhood is defined as follows.

Definition 3. The set of allowable perturbations is defined as

W := {ωk` ≥ 0 | ∀{k, `} ∈ E}.

Suppose that Θ is a solution to the P -Θ problem in the
monotone regime. Then, the set of neighboring phases is
defined as

N (G,Θ,W) := {Θ̃ ∈ Rn | Θ̃1 = 0,

Θ̃k` ∈ [−γk`, γk`] ∩ [Θk` − ωk`,Θk` + ωk`],∀{k, `} ∈ E}.

We note that Θ̃k` refers to the value of Θ̃k − Θ̃` modulo 2π.

black It is desirable to analyze the uniqueness of the
solution in the neighborhood N (G,Θ,W). In [1], the authors
considered the set of allowable angles, which is defined as

{Θ̃ ∈ Rn|Θ̃1 = 0, Θ̃k` ∈ [−ωk`/2, ωk`/2],∀{k, `} ∈ E}.

Note that the set of allowable angles is a special case of the
set of allowable perturbations, since any two phase vectors in
the set of allowable angles are in the corresponding sets of
neighboring phases of each other. In this paper, we use the
set of allowable perturbations but the sufficient conditions we
derive can be naturally applied to using the set of allowable
angles.

C. Notions of weak and strong uniqueness

Informally, we say that the P -Θ problem (1) has a unique
solution Θ under the allowable perturbation set W , if there
exists at most one solution in the set N (G,Θ,W). We give
two different definitions of uniqueness. Firstly, we introduce
the uniqueness in the weak sense.

Definition 4. We say that a solution Θ to the P -Θ problem (1)
is weakly unique with the given set of allowable perturbations
W , if for any solution Θ̃ ∈ N (G,Θ,W), there exists a line
{k, `} ∈ E such that Θk` = Θ̃k`.

In other words, two solutions are different according to Def-
inition 4 if and only if they have different phase differences for
every line. Next, we extend the definition of weak uniqueness
to a stronger sense that is also more useful and usual.

Definition 5. We say that a solution Θ to the P -Θ problem
(1) is strongly unique with the given set of allowable per-
turbations W , if for any solution Θ̃ ∈ N (G,Θ,W) and any
{k, `} ∈ E, we have Θk` = Θ̃k`.

In other words, two solutions are different according to
Definition 5 if and only if the phase differences are different
on at least one line.

III. UNIQUENESS THEORY FOR GENERAL GRAPHS

In this section, we derive necessary and sufficient condi-
tions on the set of allowable perturbations W such that the
solution to problem (1) becomes strongly or weakly unique.
In particular, we aim to analyze the impact of the power
system topology and the size of the monotone regime on the
uniqueness property. Namely, given the topological structure
and the monotone regime, we aim to find conditions on
W such that the uniqueness of solutions holds. To achieve
this, we need to derive conditions under which all power
networks with the same topological structure and monotone
regime have unique solutions. To formalize the problem, we
fix the underlying graph (V,E) and the angles specifying the
monotone regime Γ := {γk` ∈ (0, π/2] | {k, `} ∈ E}. We
define the set of possible admittances with the same monotone
regime as

S(γ) := {(C cos(γ), C sin(γ)) | C > 0}, , ∀γ ∈ [0, π/2].

The set of complex admittance matrices with the same mono-
tone regime is defined as

Y(V,E,Γ) := {Y is an admittance matrix |
Yk` = Gk` − jBk`, (Gk`, Bk`) ∈ S(γk`), {k, `} ∈ E}.

Then, we define the set of power networks with the same
topological structure and same monotone regime as

G(V,E,Γ) := {G = (V,E, Y ) | Y ∈ Y(V,E,Γ)},

or simply G if there is no confusion about V, E and Γ. Hence,
the problem under study in this paper can be stated as follows:
• What are the necessary conditions and sufficient con-

ditions on the allowable perturbations W such that the
solution to problem (1) is unique within the set of
allowable perturbations for any power network G ∈ G?
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The necessary conditions and the sufficient conditions provide
two sides on the uniqueness theory. The sufficient conditions
give a guarantee for the uniqueness of solutions for any
single power network with the given topological structure and
monotone regime, while the necessary conditions bound the
optimal conditions we can derive only using the knowledge of
topological structure and monotone regime. We first give an
equivalent characterization of strong and weak uniqueness.

Lemma 1. (Necessary and Sufficient Conditions for Unique-
ness) Given the set of power networks G(V,E,Γ) and the set
of allowable perturbations W , the following two statements
are equivalent:

1) For any power network G ∈ G(V,E,Γ) and any power
injection P ∈ R|V|−1 such that problem (1) is feasible in
the monotone regime, the solution to problem (1) in the
monotone regime is strongly unique in N (G,Θ,W).

2) For any power network G ∈ G(V,E,Γ) and any two
phase angle vectors Θ1,Θ2 in the monotone regime with
the property Θ2 ∈ N (G,Θ1,W), there exists a vector
y ∈ R|V| such that y1 = 0 and

sin(γk` + Θ1
k`/2 + Θ2

k`/2) · yk (2)

≥ sin(γk` −Θ1
k`/2−Θ2

k`/2) · y`,
∀{k, `} ∈ E s.t. Θ1

k` −Θ2
k` > 0,

where at least one of the inequalities above is strict.
The equivalence between statements 1 and 2 still holds true
even after replacing strong uniqueness with weak uniqueness
in statement 1, provided that the phase angle vector Θ2 in
statement 2 is required to satisfy Θ1

k` 6= Θ2
k` for all {k, `} ∈ E.

Intuitively, the above lemma studies the uniqueness of solu-
tions through its dual form. black The dual form is preferred
since the dual problem has fewer variables and its solution is
easier to construct. We then derive several sufficient conditions
using Lemma 1. We first show that we only need to verify
statement 2 in Lemma 1 for two phase angle vectors Θ1 and
Θ2 that induce a (weakly) feasible orientation, which we will
define below. We define the orientation induced by two phase
angle vectors.

Definition 6. Suppose that Θ1 and Θ2 are two phase angle
vectors of the graph. Then, we define the induced orientation
of ∆ := Θ1 − Θ2 as Ak` := sign(∆k`) for all {k, `} ∈ E,
where the sign function sign(·) is defined as

sign(x) :=


+1 if x > 0

0 if x = 0

−1 if x < 0

.

In the definition of induced orientations, we assign one of
the three directions +1,−1, 0 to each edge. The first two
directions are “normal” directions for directed graphs. An edge
with direction +1 or −1 is called a normal edge. Edges with
direction 0 are viewed as an undirected edge and reachable
in both directions. In addition, edges with direction 0 are not
considered when computing the in-degree and the out-degree.
We only need to consider orientations induced by two different
phase angle vectors Θ1,Θ2 such that P̂ (Θ1) = P̂ (Θ2).

However, a precise characterization of those orientations is
difficult and we consider a larger set that contains those
orientations.

Definition 7. An orientation assigned to an undirected graph
is called a feasible orientation if all edges are normal and
each vertex except vertex 1 has nonzero in-degree and out-
degree.

According to the analysis in [1], the induced orientation
of two solutions Θ1 and Θ2 in the monotone regime that
are different according to Definition 4 must be a feasible
orientation. Then, we give the definition of weakly feasible
orientations as the counterpart for strong uniqueness.

Definition 8. An orientation assigned to an undirected graph
is called a weakly feasible orientation if two properties are
satisfied: (i) there exists at least one normal edge, and (ii) the
in-degree and the out-degree of any vertex except vertex 1 are
both zero or both nonzero.

Edges with direction 0 are lines with the same angular
difference for the two phase angle vectors Θ1 and Θ2. By
the same discussion as in Section II, we can view a weakly
feasible orientation as a feasible orientation for the sub-graph
that only has normal edges. The next lemma shows that we
only need to consider weakly feasible orientations or feasible
orientations when checking the conditions in statement 2 of
Lemma 1.

Lemma 2. If two different phase angle vectors Θ1−Θ2 in the
monotone regime satisfy Θ2 ∈ N (G,Θ1,W) and the induced
orientation of Θ1−Θ2 is not weakly feasible, then there exists
a vector y ∈ R|V| such that statement 2 of Lemma 1 holds.
The result holds true for the weak uniqueness property as
well, provided that the induced orientation of Θ1,Θ2 is not a
feasible orientation.

Combining Lemmas 1 and 2, we obtain sufficient conditions
for strong uniqueness and weak uniqueness.

Theorem 3. (Sufficient Conditions for Uniqueness) Given the
set of allowable perturbations W , suppose that for any two
different phase angle vectors Θ1 and Θ2 in the monotone
regime satisfying Θ2 ∈ N (G,Θ1,W), the induced orientation
of Θ1 − Θ2 is not a weakly feasible orientation. Then, the
solution to problem (1) is strongly unique for all power
networks in G. The result holds true for the weak uniqueness
as well, provided that the induced orientation of Θ1 − Θ2 is
not a feasible orientation.

The sufficient condition given above is a generalization of
Theorem 4 in [1], which ensures the weak uniqueness of
solutions in the set of allowable phases. Using Theorem 3,
we can derive a corollary similar to Theorem 4 in [1].

Corollary 4. Consider an arbitrary set of allowable perturba-
tions W . The solution to problem (1) in the monotone regime
is strongly unique for any power network G ∈ G if for any
weakly feasible orientation of the underlying graph (V,E),
there exists a directed cycle (k1, . . . , kt) containing at least
one normal edge such that the allowable perturbations satisfy
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the inequality ∑
{ki,ki+1} is normal

ωkiki+1
< 2π,

where kt+1 := k1. The same result holds true for the weak
uniqueness if we substitute weakly feasible orientations with
feasible orientations.

Now, we consider a special case where all constants ωk` in
the set of allowable perturbations are equal, i.e., there exists a
constant ω ≥ 0 such that the set of allowable perturbation is

Wω := {ωk` = ω,∀{k, `} ∈ E}.

The problem we consider in this case is:
• What is the sufficient condition on ω such that the

solution to problem (1) is unique with the allowable
perturbation set Wω?

We derive an upper bound on the constant ω to guarantee the
uniqueness. We first define the maximal eye and the maximal
girth of an undirected graph.

Definition 9. Consider an undirected graph (V,E). For any
weakly feasible orientation assigned to the graph (V,E), we
define the minimal length of directed cycles that contain at
least one normal edge as the size of eye of this orientation,
where edges with direction 0 are considered as bi-directional
edges. We define the maximal eye of the graph (V,E) as the
maximum of the size of eye over all possible weakly feasible
orientations. We denote the maximal eyes of the graph (V,E),
a power network G and a group of power networks G as
e(V,E), e(G) and e(G), respectively.

Remark 1. There always exists a directed cycle containing
normal edges when the underlying graph is under a weakly
feasible orientation. To understand this, we first choose an
arbitrary normal edge (k1, k2) ∈ E. Since the vertex k2 has
nonzero in-degree, it also has nonzero out-degree. Hence, there
exists another vertex k3 such that (k2, k3) ∈ E. Continuing
this procedure will result in the existence of a vertex kt such
that vt = ks for some s < t. This generates a directed cycle
(ks, ks+1, . . . , kt−1) containing only normal edges. Hence, the
size of eye is well-defined.

The counterpart of the maximal eye, known as the maximal
girth, is defined in [1] and we restate the definition below.

Definition 10. Consider an undirected graph (V,E). For any
feasible orientation assigned to the underlying graph (V,E),
we define the minimal size of directed cycles as the girth
of this feasible orientation. We define the maximal girth
of the graph (V,E) as the maximum of the girth over all
feasible orientations. We denote the maximal girths of the
graph (V,E), a power network G and a group of power
networks G as g(V,E), g(G) and g(G), respectively.

Remark 2. Similar to the discussion in Remark 1, there exists
at least one directed cycle when the graph is under a feasible
orientation. The maximal eye can be equivalently defined as
the maximum of the maximal girth over all sub-graphs that
do not have degree-1 vertices.

We provide an upper bound for ω using the maximal eye
and the maximal girth, which follows from Corollary 4.

Corollary 5. If the inequality

ωk` <
2π

e(G)
, ∀{k, `} ∈ E, (3)

is satisfied, then the solution to problem (1) in the monotone
regime is strongly unique for any power network G ∈ G. The
same result holds true for weak uniqueness, provided that e(G)
in (3) is substituted by g(G).

In Section V, we design search-based algorithms to calculate
the maximal eye and the maximal girth. However, computing
the maximal eye or the maximal girth is challenging for graphs
with more than 100 nodes. Hence, we seek upper bounds and
lower bounds for the maximal eye and the maximal girth.
In this paper, we obtain a simple upper bound for both the
maximal girth and the maximal eye. We define κ(G) and κ(G)
as the sizes of the longest chordless cycles of the underlying
graph of the power network G and any power network in the
power network class G, respectively. The upper bound on the
maximal girth and eye will be provided below.

Theorem 6. For any power network G, it holds that

g(G) ≤ e(G) ≤ κ(G) (4)

and that g(G) ≤ e(G) ≤ κ(G).

We note that although computing the longest chordless cycle
isNP-complete [20], the computation of the longest chordless
cycle is faster than the computation of the maximal eye and
the maximal girth in practice.

IV. UNIQUENESS THEORY FOR THREE SPECIAL CASES

In this section, we consider three special cases. For each
case, the power network either has a special topological
structure or a special monotone regime. In the first two cases,
the underlying graph of the power network is a single cycle
or a 2-vertex-connected Series-Parallel (SP) graph. When the
underlying graph is a single cycle, the sufficient conditions
in Corollary 4 are also necessary. If the underlying graph is
a 2-vertex-connected SP graph, we prove that the sufficient
conditions for the weak uniqueness in Corollary 5 also ensure
the strong uniqueness. In the last case, the power network
is assumed to be lossless. In this case, the monotone regime
of each line reaches the maximum possible size [−π/2, π/2].
Sinusoidal functions can then be avoided in statement 2 of
Lemma 1, and therefore the verification of conditions is easier.

A. Single cycles

We first consider the case when the underlying graph (V,E)
is a single cycle. We first show that the weak uniqueness is
equivalent to the strong uniqueness in this case.

Lemma 7. Suppose that the underlying graph is a single cycle
with the edges (1, 2), (2, 3), . . . , (n, 1). Then, given the set of
allowable perturbations W , the solution to problem (1) in the
monotone regime is weakly unique if and only if it is strongly
unique.
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Next, we prove that the sufficient conditions derived in
Corollary 4 are also necessary for a single cycle with non-
trivial monotone regime.

Theorem 8. Suppose that the underlying graph is a single
cycle with the edges (1, 2), (2, 3), . . . , (n, 1), and that the set
of allowable perturbations satisfies 0 < ωi,i+1 ≤ γi,i+1 for
all i ∈ [n], where γn,n+1 := γn,1 and ωn,n+1 := ωn,1. The
solution to problem (1) in the monotone regime is strongly
unique for any power network G ∈ G(V,E,Γ) and any power
injection P ∈ Rn−1 that makes problem (1) feasible if and
only if the set of allowable perturbations W satisfies

n∑
i=1

ωi,i+1 < 2π,

where ωn,n+1 := ωn,1.

In contrast to requiring ωi,i+1 > 0 in the above theorem, the
condition that ωi,i+1 = 0 for some i is sufficient but not nec-
essary for the uniqueness of solutions. Under this condition,
two solutions Θ1 and Θ2 in the monotone regime such that
Θ2 ∈ N (G,Θ1,W) must satisfy Θ1

i,i+1 = Θ2
i,i+1. Hence,

any solution is strongly unique with this set of allowable
perturbations. However, by Theorem 8, this condition is not
necessary for the uniqueness of solutions.

B. Series-Parallel graphs

In this subsection, we consider another special class of
graphs, namely, the 2-vertex-connected SP graphs. The objec-
tive is to find an upper bound on the constant ω to guarantee
that the solution to problem (1) is unique. Corollary 5 shows
that the solution is strongly unique if ω < 2π/e(G) and is
weakly unique if ω < 2π/g(G). However, for a 2-vertex-
connected SP graph, we can prove a stronger theorem. We
first prove that the maximal eye is equal to the maximal girth
for a 2-vertex-connected SP graph. The main tool is the ear
decomposition of an undirected graph [25].

Definition 11. An ear of an undirected graph (V,E) is a
simple path or a single cycle. An ear decomposition of an
undirected graph (V,E), denoted as D := (L0, . . . , Lr−1),
is a partition of E into an ordered sequence of ears such
that one or two endpoints of each ear Lk are contained in
an earlier ear, i.e., an ear L` with ` < k, and the internal
vertices of each ear do not belong to any earlier ear. We call
D a proper ear decomposition if each ear Lk is a simple
path for all k = 1, . . . , r − 1. A tree ear decomposition is
a proper ear decomposition in which the first ear is a single
edge and for each subsequent ear Lk, there is a single ear
L` with ` < k, such that both endpoints of Lk lie on L`. A
nested ear decomposition is a tree ear decomposition such
that, within each ear L`, the set of pairs of endpoints of other
ears Lk that lie within L` forms a set of nested intervals.

The following theorem in [26] provides an equivalent char-
acterization of 2-vertex-connected SP graphs through the ear
decomposition.

Theorem 9. A 2-vertex-connected graph is series-parallel if
and only if it has a nested ear decomposition.

With the help of the nested ear decomposition, we will prove
that the maximal girth is equal to the maximal eye for 2-vertex-
connected SP graphs. The intuition behind the proof is that
we first choose two vertices as the “source” and the “sink”
for the power flow network. black This step ensures that the
first inequality in (4) holds as equality.

Lemma 10. Suppose that (V,E) is a 2-vertex-connected SP
graph. Then, the following equality holds true:

g(V,E) = e(V,E).

Therefore, combining the above lemma with Corollary 5, we
obtain a stronger sufficient condition for 2-vertex-connected
SP graphs. This result implies that the sufficient conditions
for the weak uniqueness in Corollary 5 also guarantee the
strong uniqueness.

Theorem 11. Suppose that the underlying graph (V,E) is a
2-vertex-connected SP graph. The solution to problem (1) is
strongly unique for any power network G ∈ G in the monotone
regime if

ω <
2π

g(G)
.

C. Lossless networks

Finally, we consider the case when the power network
is lossless, namely, when γk` = π/2 for all {k, `} ∈ E.
In this case, we prove that the strong uniqueness holds if
and only if there does not exist another solution in the set
of neighboring phases such that the induced orientation has
strictly more strongly connected components than weakly
connected components. This results makes it possible to avoid
nonlinear sinusoidal functions in statement 2 of Lemma 1,
and therefore the uniqueness of solutions becomes easier to
verify. We first define the sub-graph induced by two phase
angle vectors.

Definition 12. Suppose that Θ1 and Θ2 are two different
phase angle vectors, and that the orientation A is the induced
orientation of Θ1 − Θ2. Then, the induced sub-graph of
Θ1 −Θ2 is constructed as a directed sub-graph of (V,E, A)
by first deleting all edges with direction 0 and then deleting
all degree-1 vertices.

In what follows, we establish a necessary and sufficient
condition for the uniqueness of the solution that does not
contain sinusoidal functions.

Theorem 12. Consider a that the set of allowable perturba-
tions W . If the monotone regime satisfies γk` = π/2 for all
{k, `} ∈ E, then the following two statements are equivalent:

1) For any power network G ∈ G(V,E,Γ) and any power
injection P ∈ R|V|−1 such that problem (1) is feasible,
the solution to problem (1) in the monotone regime is
strongly unique in N (G,Θ,W).

2) For any power network G ∈ G(V,E,Γ) and any two
phase angle vectors Θ1 and Θ2 in the monotone regime
with the property Θ2 ∈ N (G,Θ1,W), the induced sub-
graph of Θ1 − Θ2 has strictly more strongly connected
components than weakly connected components.
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The equivalence between statements 1 and 2 still holds true
even after replacing strong uniqueness with weak uniqueness
in statement 1, provided that the phase angle vectors Θ2 in
statement 2 is required to satisfy Θ1

k` 6= Θ2
k` for all {k, `} ∈ E.

The result of the above theorem is stronger than the suffi-
cient conditions in Theorem 3. This is because any (weakly)
infeasible orientation has strictly more strongly connected
components than weakly connected components. Hence, the
sufficient conditions in Theorem 3 ensure that all induced
orientations are (weakly) infeasible. Then, statement 2 of this
theorem holds true and the solution becomes strongly (weakly)
unique.

V. ITERATIVE SERIES-PARALLEL REDUCTION

In the preceding sections, we have shown that the maximal
eye and the maximal girth play important roles in the unique-
ness theory. However, computing the maximal eye or maximal
girth is cumbersome for large graphs. Hence, we develop an
iterative reduction method to design a reduced graph, and
then prove the relationship between the maximal eye or the
maximal girth of the original graph and those of the reduced
graph. Next, we test the performance of those algorithms on
real-world problems. Search-based algorithms for computing
the maximal eye and the maximal girth are given in [24].

A. Iterative Series-Parallel Reduction method

In this subsection, we propose an iterative reduction method,
named as the Iterative Series-Parallel Reduction (black)
method, that can reduce the size of the underlying graph for
computing the maximal eye and maximal girth. The black
method is different from the Series-Parallel Reduction (SPR)
method introduced in [1] in two aspects. First, the purpose
of the black method is to accelerate the computation of
the maximal eye and the maximal girth, while the focus of
SPR method is to facilitate the verification of uniqueness
conditions. Second, we prove that all 2-vertex-connected SP
graphs can be reduced to a single edge (K2) without the
assumption in [1] that the slack bus is the last to be reduced.

Before introducing the black method, we extend the defi-
nition of the maximal eye and the maximal girth to weighted
graphs with “multiple slack buses”. This generalized class of
graphs appear during the reduction process. By defining the
length of a cycle as the sum of the weights of the edges
on the cycle, the maximal eye and the maximal girth can
be generalized to weighted graphs. Next, we define (weakly)
feasible orientations for graphs with “multiple slack buses”,
namely, the slack nodes.

Definition 13. For a weighted undirected graph (V,E,W ), a
subset of vertices Vs ⊆ V is called the set of slack nodes.
An orientation A assigned to the graph is called a weakly
feasible orientation if each edge has one of the directions
{+1,−1, 0} and each vertex not in Vs either has nonzero in-
degree and nonzero out-degree, or has zero in-degree and zero
out-degree. An orientation A assigned to the graph is called
a feasible orientation if each edge has one of the directions
{+1,−1} and each vertex not in Vs has nonzero in-degree
and nonzero out-degree.

Algorithm 1 Iterative Series-Parallel Reduction method

Input: Undirected unweighted graph (V,E), slack bus k
Output: Reduced undirected weighted graph (VR,ER,WR),

two constants α1, α2 defined in Theorems 14 and 16, set of
slack nodes Vs

Set the initial weight for each edge to be 1.
Set the initial set of slack nodes as Vs ← {k}.
while at least one operation is implementable do

if Type I Operations are implementable then
Implement Type I Operation.
Update values α1, α2 according to their definitions

in Theorems 14 and 16.
continue

end if
if Type II Operations are implementable then

Implement Type II Operation.
continue

end if
if Type III Operations are implementable then

Implement Type III Operation.
Update values α1, α2 according to their definitions

in Theorems 14 and 16.
Update the set of slack nodes Vs.
continue

end if
end while
Return reduced graph (VR,ER,WR), set of slack nodes Vs

and values α1, α2.

Now, we can define the maximal eye for graphs with slack
nodes by taking the maximum of the size of eye over weakly
feasible orientations. The maximal girth can be defined in
a similar way. For power networks, the only slack node is
the slack bus of the power network. Hence, the extended
definitions of the maximal eye and the maximal girth are
consistent with their original definitions. The black method
is based on three types of operations:

• Type I Operation. Replacement of a set of parallel edges
with a single edge that connects their common endpoints.
The weight of the new single edge is the minimum over
the weights of the deleted parallel edges.

• Type II Operation. Replacement of the two edges in-
cident to a degree-2 vertex with a single edge, if the
vertex has exactly two neighboring vertices and is not
a slack node. The weight of the new edge is the sum of
the weights of the two deleted edges.

• Type III Operation. Deletion of a vertex that has only a
single neighboring vertex. If the deleted vertex is a slack
node, or if the deleted vertex has degree at least 2 for the
problem of computing the maximal girth, then we define
its neighboring vertex as a slack node.

The update scheme of weights and slack nodes is designed
to control the change of the maximal eye or the maximal
girth. The black method successively reduces the size of the
graph by applying Type I-III Operations; the pseudo-code of
the black method is given in Algorithm 1. We note that after
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the reduction process, there is no parallel edge or pendant
(degree-1) vertex in the reduced graph. Ignoring the weights
of the edges and the set of the slack nodes, the operations
in the black method can cover the operations in the classical
series-parallel reduction [23], which are defined as
• Type I’ Operation. Replacement of parallel edges with

a single edge that connects their common endpoints.
• Type II’ Operation. Replacement of the two edges

incident to a degree-2 vertex with a single edge.
• Type III’ Operation. Deletion of a pendant vertex.

Hence, the black method can be viewed as a generalization
of the classical series-parallel reduction. We first consider the
change of the maximal eye after each operation.

Lemma 13. Given a weighted undirected graph (V,E,W ),
let e denote its maximal eye. Assume that one of Type I-III
Operations is implemented on the graph. By denoting the new
graph and its maximal eye as (Ṽ, Ẽ, W̃ ) and ẽ, the following
statements hold:
• If Type I Operation is implemented, then

ẽ ≤ e ≤ max{ẽ,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal
weights of the deleted parallel edges, respectively.

• If Type II Operation is implemented, then e = ẽ.
• If Type III Operation is implemented and the deleted

vertex has degree 1, then e = ẽ.
• If Type III Operation is implemented and the deleted

vertex has degree larger than 1, then

e = max{ẽ,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal
weights of the deleted parallel edges, respectively.

Using the above lemma, we have the following theorem.

Theorem 14. Given a power network with the underlying
graph (V,E), let e denote the maximal eye of the graph.
Denote the graph after reduction and its maximal eye as
(VR,ER,WR) and eR, respectively. Then, we have

max{eR, α2} ≤ e ≤ max{eR, α1, α2},

where α1 and α2 are the maximum of Wmax+Wmin over Type
I and Type III Operations, respectively. Here, Wmax,Wmin

are defined in Lemma 13. If Type I or Type III Operations is
never implemented, then we set α1 or α2 to 0.

Similarly, we can prove the relation between the maximal
girth of the original graph and that of the reduced graph. We
first show the change of the maximal girth after each operation.

Lemma 15. Given a weighted undirected graph (V,E,W ),
let g denote its maximal girth. Assume that one of Type I-III
Operations is implemented on the graph. By denoting the new
graph and its maximal girth of new graph as (Ṽ, Ẽ, W̃ ) and
g̃, the following statements hold:
• If Type I Operation is implemented, then

g̃ ≤ g ≤ max{g̃,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal
weights of the deleted parallel edges, respectively.

• If Type II Operation is implemented, then g = g̃.
• If Type III Operation is implemented and the deleted

vertex has degree 1, then g = g̃.
• If Type III Operation is implemented, the deleted vertex

is a slack node and has degree larger than 1, then

g̃ ≤ g ≤ max{g̃,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal
weights of the deleted parallel edges, respectively.

• If Type III Operation is implemented, the deleted vertex
is not a slack node and has degree larger than 1, then

g = min{g̃,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal
weights of the deleted parallel edges, respectively.

By the above lemma, the relationship between the maximal
girth of the original graph and that of the reduced graph will
be discovered below.

Theorem 16. Given a power network with the underlying
graph (V,E), let g denote its the maximal girth. By de-
noting the graph after reduction and its maximal girth as
(VR,ER,WR) and gR, we have

min{gR, α2} ≤ g ≤ min{max{gR, α1}, α2},

where α1 is the maximum of Wmax + Wmin over Type I
Operations and the second case of Type III Operations, and α2

is the minimum of Wmax +Wmin over the third case of Type
III Operations. Here, Wmax,Wmin are defined in Lemma 13.
If operations for computing α1 or α2 are never implemented,
then we set α1 to 0 or α2 to +∞.

Based on the numerical results in Tables I and II in [24] for
large power networks, the values of α1 and α2 in Theorems
14 and 16 are usually smaller than eR and gR. Hence, we have
the approximation

e ≈ eR, g ≈ α2. (5)

The above relations imply that for large power networks,
computing the maximal eye is equivalent to computing the
maximal eye of a reduced graph, while the maximal girth is
already computed during the reduction process. Finally, we
prove that 2-vertex-connected SP graphs can be reduced to a
single edge by the black method.

Theorem 17. If the underlying graph (V,E) of a power
network is a 2-vertex-connected SP graph, then the black
method reduces the underlying graph to a single edge.

For an undirected graph without slack nodes, the classical
series-parallel reduction (Type I’-III’ Operations) can reduce
the graph to a single edge if and only if the graph is a
Generalized Series-Parallel (GSP) graph [23]. We note that 2-
vertex-connected SP graphs are a special class of GSP graphs
and it is unclear whether the reduction guarantee for theblack
method can be extended to any GSP graphs in the presence
of slack nodes.
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VI. NUMERICAL RESULTS

In this section, we verify the theoretical results of this work
and test the performance of the proposed algorithms. First,
we show that, using the black method, the computation of
the maximal eye can be reduced to a smaller graph, while
the computation of the maximal girth is finished during the
process of reduction. Then, we show that Corollary 5 gives a
valid sufficient condition for strong uniqueness. We use IEEE
power networks in MATPOWER [27] to perform experiments.
black

A. Computation of the maximal eye and the maximal girth

We first consider the computation of the maximal eye. The
results are listed in Table I. Here, we use ‘-’ to denote the
case when this value does not exist, and use ‘TLE’ (Time Limit
Exceeded) to denote the case when the algorithm does not find
any leaf node in two days. The lower bounds for the maximal
eye are derived by stopping the algorithm before it terminates.
It can be observed that the black method can largely reduce
the size of the graph, and therefore can accelerate the com-
puting process. Moreover, the values of α1 and α2 are small
compared to the maximal eye of the reduced graph. Hence, the
approximation in equation (5) holds and the maximal eye of
the original graph is equal to the maximal eye of the reduced
graph. Although the algorithm achieves acceleration compared
to the brute-force search method, we are only able to compute
the maximal eye for graphs with up to 118 vertices. Note that
since graph problems have exponential complexities, solving
them for graphs having as low as 200 nodes is still beyond
the current computational capabilities. However, this does not
undermine the usefulness of the introduced graph parameters,
since it is shown in this work that those parameters accurately
decide whether the power flow problem has a unique solution.

Next, we consider the computation of the maximal girth.
We use the same algorithms and the results are listed in the
technical report [24]. In this case, it can be observed that
α2 is equal to 3 for large power networks. This is because
the underlying graphs of large power networks considered
in the table have “pendant triangles”. Pendant triangles are
triangles that have only one vertex connected to the rest of
the graph. Furthermore, the approximation in Theorem 16
holds and the maximal girth of the original graph is equal
to α2 = 3. Hence, the maximal girth can be computed during
the reduction process. This shows that the conditions for the
weak uniqueness is significantly loose and requiring ωk` to be
at most 2π/3 for all edges {k, `} is enough. However, for 2-
vertex-connected SP graphs, we have shown that the maximal
girth is equal to the maximal eye and the requirement for the
weak uniqueness is the same as that for the strong uniqueness.

black
black

VII. CONCLUSION

In this paper, we extend the uniqueness theory of P -Θ
power flow solutions developed in [1] for an AC power system.
The notion of strong uniqueness is introduced to characterize
the uniqueness in the common sense. We propose a general
necessary and sufficient condition for the uniqueness of the
solution, which depends only on the monotone regime and the

Power Network Original Size Reduced Size α1 α2 eR
Case 14 (14,20) (2,1) 6 3 0
Case 30 (30,41) (8,13) 4 3 8
Case 39 (39,46) (8,12) 4 5 8
Case 57 (57,78) (22,39) 4 - 23

Case 118 (118,179) (44,83) 5 - 13
Case 300 (300,409) (109,196) 8 4 ≥10
Case 1354 (1354,1710) (263,500) 9 8 TLE
Case 2383 (2383,2886) (499,949) 11 5 TLE

TABLE I: Number of vertices and edges before and after the black
method for maximal eye along with values computed during the
reduction process.

network topology. These conditions can be greatly simplified
in certain scenarios. When the underlying graph of the power
network is a single cycle, sufficient conditions in [1] are proved
to be necessary. For 2-vertex-connected SP graphs, we show
that the maximal eye is equal to the maximal girth, which
means that the sufficient condition for the weak uniqueness
also implies the strong uniqueness. When the power network
is lossless, we derive a necessary and sufficient condition that
does not contain sinusoidal functions and its sufficient part
is stronger than the general sufficient conditions. A reduction
method, named the black method, is proposed to reduce the
size of power network and accelerate the computation of the
maximal eye and the maximal girth. The black method is
proved to reduce a 2-vertex-connected SP graph to a single
edge and the relation between the graphs before and after
the reduction is analyzed. Some algorithms based on the DFS
method with pruning are designed to compute the maximal
eye and maximal girth.
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APPENDIX

A. Algorithms for computing maximal eye and maximal girth

In the appendix, we propose search-based algorithms for
computing the maximal eye and the maximal girth. Our
approach is based on the Depth-First Search (DFS) method
and utilized the pruning technique to accelerate the computing
process. We first describe a common sub-procedure that will
be used in both algorithms. The sub-procedure computes the
minimal directed chordless cycle containing a given edge.
Given a truncation length T ≥ 1, the sub-procedure returns the
truncation length if there does not exist a directed chordless
cycle that contains the given edge and has length at most
T . The sub-procedure is also based on the DFS method
with pruning and borrows the idea of blocking from [28] to
accelerate the searching process. The pseudo-code of the sub-
procedure is listed black

Next, we propose the algorithms for computing the maximal
eye and the maximal girth. Since the algorithm of maximal
girth is similar to the algorithm for maximal eye, we only
present the algorithm for computing the maximal eye and
offer the other one in [24]. The algorithm is also based on the
DFS method with pruning, and the pseudo-code is provided
black We first order all edges and gradually assign one of the
directions {0,−1,+1} to each edge following the ordering of
the edges. The search space consists of the orientations for the
first several edges (intermediate states) and the orientations
for the entire graph (final states). One can verify that all
intermediate states and final states form a trinomial2 tree,
since each orientation for the first k < |E| edges leads to
three different orientations for the first k + 1 edges. Then,
the algorithm for computing the maximal eye searches in the
same way as the classical DFS method on a directed tree.
For each node, we consider the sub-graph consisting of those
edges that have been assigned a direction. We compute the
length of the minimal directed chordless cycle in the sub-
graph, which contains the last edge in the sub-graph, using
the sub-procedure. The truncation length can be decided as
follows. Since a DFS method is implemented on a trinomial
tree, there exists a directed path from the root node of the
trinomial tree to the current node. The truncation length can
be chosen as the minimal length computed on the preceding
nodes of the path. When the search reaches a leaf node, we
obtain an orientation for the entire graph, and the size of the
eye becomes the minimal length on the path to the root node.
By searching over all leaf nodes, we find the maximal eye.
Similarly, one can use the pruning technique to reduce the
search space. The current node is pruned if it can not be
extended to a weakly feasible orientation for the entire graph,
or the size of the eye of the sub-graph is smaller than the
known maximal size of the eye.
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APPENDIX

A. Proof of Lemma 1

Proof. We only prove the strong uniqueness part since the
proof for weak uniqueness is similar. For a given power net-
work, we define the real power flow along the line {k, `} ∈ E
from bus k in the direction of bus ` as

p̃k`(Θ) := −Gk`|vk||v`|cos(Θk`) +Bk`|vk||v`|sin(Θk`).

By definition, it follows that

P̂k(Θ) =
∑

`:{k,`}∈E

p̃k`(Θ), ∀k ∈ V.

a) Proof of sufficiency: We first show by contradiction
that statement 2 of the lemma is sufficient for statement 1.
In particular, suppose that statement 2 holds, but the solution
is not strongly unique for some graph G ∈ G and some real
power injection P while problem (1) is feasible. Then, there
exist two different phase angle vectors Θ1,Θ2 such that Θ2 ∈
N (G,Θ1,W) and P̂ (Θ1) = P̂ (Θ2). For each line {k, `} ∈ E,
there exists a constant Ck` > 0 such that

Bk` = Ck` sin(γk`), Gk` = Ck` cos(γk`).

We calculate the change of power flow from k to ` as

p̃k`(Θ
1)− p̃k`(Θ2)

= −Gk`|vk||v`|[cos(Θ1
k`)− cos(Θ2

k`)]

+Bk`|vk||v`|[sin(Θ1
k`)− sin(Θ2

k`)]

= −Ck` cos(γk`)|vk||v`|[cos(Θ1
k`)− cos(Θ2

k`)]

+ Ck` sin(γk`)|vk||v`|[sin(Θ1
k`)− sin(Θ2

k`)]

= (− cos(γk`)[cos(Θ1
k`)− cos(Θ2

k`)]

+ sin(γk`)[sin(Θ1
k`)− sin(Θ2

k`)]) · |vk||v`|Ck`

= 2[cos(γk`) sin(Θ1
k`/2 + Θ2

k`/2)

+ sin(γk`) cos(Θ1
k`/2 + Θ2

k`/2)]

· sin(∆k`/2)|vk||v`|Ck`

= 2 sin(γk` + Θ1
k`/2 + Θ2

k`/2) · sign(sin(∆k`/2))

· |sin(∆k`/2)||vk||v`|Ck`

:= δk` · |sin(∆k`/2)vkv`|Ck`,

where

∆k` := Θ1
k` −Θ2

k`, (6)

δk` := 2 sin(γk` + Θ1
k`/2 + Θ2

k`/2)sign(sin(∆k`/2)).

Note that the third equality in (6) is due to the following
triangular identities:

cos(η)− cos(ϕ) = −2 sin[(η − ϕ)/2] sin[(η + ϕ)/2],

sin(η)− sin(ϕ) = 2 sin[(η − ϕ)/2] cos[(η + ϕ)/2].

Since P̂k(Θ1) = P̂k(Θ2) for all k 6= 1, we obtain

P̂k(Θ1)− P̂k(Θ2) =
∑

`:{k,`}∈E

[
p̃k`(Θ

1)− p̃k`(Θ2)
]

=
∑

`:{k,`}∈E

δk` · |sin(∆k`/2)vkv`|Ck` = 0

for all k 6= 1. Let the set E0 be the subset of edges such that
∆k` 6= 0 for all {k, `} ∈ E0; we assign an order to elements in
E0. Define the matrix M ∈ R|V|×|E0| and the vector g ∈ R|E0|

as

Mki := δk`, M`i := δ`k, gi := |sin(∆k`/2)vkv`|Ck`,

where {k, `} is the i-th edge in the set E0. Since ∆k` 6= 0 for
all {k, `} ∈ E0 and ∆k` ≤ 2γk` ≤ π, it holds that

|sin(∆k`/2)|> 0, ∀{k, `} ∈ E0.

Then, the vector g is a solution to the linear feasibility problem

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x > 0.

where (y)i:j := (yi, yi+1, . . . , yj) includes the i-th to the j-th
entries of the vector y and inequality x > 0 means that xk > 0
holds for all entries of the vector x. The notation x ≥ 1 is
defined in the same way. The above feasibility problem is
equivalent to

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x ≥ 1.

Then, by Farka’s Lemma, the dual feasibility problem

find y ∈ R|V| s.t. MTy ≥ 0, 1TMTy > 0, y1 = 0

is infeasible. However, the conditions in the dual problem are
the same as the conditions in statement 2 of Lemma 1. This
contradicts the claim in statement 2 that there exists a vector y
satisfying these conditions. Thus, statement 1 must hold true.

b) Proof of necessity: Next, we again show by contradic-
tion that statement 2 of the lemma is necessary for statement
1. Assume that statement 1 holds true, and that there exist two
different phase angle vectors Θ1,Θ2 in the monotone regime
such that Θ2 ∈ N (G,Θ1,W) while there does not exist y
satisfying the conditions in statement 2. We define E0 as the
set of edges such that ∆k` 6= 0, where ∆k` := Θ1

k` −Θ2
k` for

all {k, `} ∈ E0. We construct the matrix M ∈ R|V|×|E0| as

Mki := δk`, M`i := δ`k,

where {k, `} is the i-th edge in the set E0 and

δk` := sin(γk` + Θ1
k`/2 + Θ2

k`/2)sign(sin(∆k`/2)).

By the same analysis, the conditions in statement 2 turn out to
be equivalent to the feasibility of the linear feasibility problem

find y ∈ R|V| s.t. MTy ≥ 0, 1TMTy > 0, y1 = 0.

By our assumption, the above problem is infeasible. By Farka’s
Lemma, there exists a solution g ∈ R|E0| to the feasibility
problem

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x ≥ 1

and also to the feasibility problem

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x > 0.

We define the matrix C ∈ R|V|×|V| as

Ck` := |sin(∆k`/2)vkv`|−1gi, ∀{k, `} ∈ E0,

where {k, `} is the i-th edge in the set E0, and

Ck` := 1, ∀{k, `} ∈ E\E0, Ck` := 0, ∀{k, `} /∈ E.
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By the definition, it follows that Ck` > 0 for all {k, `} ∈ E.
We construct a graph G with the complex admittance matrix

Yk` := Ck` cos(γk`)− jCk` sin(γk`), ∀{k, `} ∈ E.

Then, for all k 6= 1, we have

P̂k(Θ1)− P̂k(Θ2) =
∑

`:{k,`}∈E

[
p̃k`(Θ

1)− p̃k`(Θ2)
]

=
∑

`:{k,`}∈E

δk` · |sin(∆k`/2)vkv`|Ck` = (Mg)k = 0.

This implies that Θ1 and Θ2 are both solutions to problem (1)
in the monotone regime when the real power injection is

P := P̂ (Θ1).

This contradicts statement 1 that the solution is strongly unique
for any real power injection. Hence, the conditions in statement
2 must be satisfied.

B. Proof of Lemma 2

Proof. We only prove the strong uniqueness part since the
proof for weak uniqueness is similar. Since the induced
orientation A is not a weakly feasible orientation, there exists
a vertex i 6= 1 such that it has nonzero out-degree and zero
in-degree, or it has nonzero in-degree and zero out-degree.
Without loss of generality, assume that the vertex i has nonzero
out-degree and zero in-degree. We prove that the i-th unit
vector y := ei satisfies the conditions in statement 1 of
Lemma 1. It is straightforward that y1 = 0. We only need
to show that the inequalities in (2) hold and at least one of
them is strict. We consider any edge (k, `) such that ∆k` > 0.
First, if k 6= i and ` 6= i, then both sides of the inequality (2)
are zero. Next, if k 6= i and ` = i, then the condition ∆ki > 0
implies that Aki = +1, which contradicts the assumption that
i has zero in-degree. Finally, if k = i and ` 6= i, the goal is
to prove that

sin(γi` + Θ1
i`/2 + Θ2

i`/2) · yi
> sin(γi` −Θ1

i`/2−Θ2
i`/2) · y`.

Since yi = 1 and y` = 0, the above inequality is equivalent to

sin(γi` + Θ1
i`/2 + Θ2

i`/2) > 0.

Recalling the assumption that Θ1
i` and Θ2

i` are in the monotone
regime [−γi`, γi`], one can write

γi` + Θ1
i`/2 + Θ2

i`/2 ∈ [0, 2γi`] ⊂ [0, π].

Hence, it is enough to show that

γi` + Θ1
i`/2 + Θ2

i`/2 ∈ (0, 2γk`) ⊂ (0, π).

If γi` + Θ1
i`/2 + Θ2

i`/2 = 0, then it holds that

Θ1
i` = Θ2

i` = −γi`.

This contradicts the inequality ∆i` = Θ1
i` −Θ2

i` > 0. If γi` +
Θ1

i`/2 + Θ2
i`/2 = 2γk`, then it holds that

Θ1
i` = Θ2

i` = γi`,

which also contradicts the inequality ∆i` > 0. Combining the
two cases, we obtain that sin(γi` + Θ1

i`/2 + Θ2
i`/2) > 0 and

the inequality

sin(γi` + Θ1
i`/2 + Θ2

i`/2) · yi
> sin(γi` −Θ1

i`/2−Θ2
i`/2) · y`.

holds strictly. It follows that y = ei satisfies the conditions in
statement 2 of Lemma 1.

black

C. Proof of Corollary 4

Proof. We only prove the strong uniqueness part since the
proof for weak uniqueness is similar. Suppose that Θ1 and
Θ2 are two solutions to problem (1) in the monotone regime
such that Θ2 ∈ N (G,Θ1,W). Using the results of Theorem
3, we only need to show that the induced orientation of
Θ1 − Θ2 is not weakly feasible. Assume conversely that
the induced orientation A is a weakly feasible orientation.
Then, by hypothesis, there exists a directed cycle (k1, . . . , kt)
containing at least one normal edge such that∑

kiki+1 is normal

ωkiki+1
< 2π, (7)

where kt+1 := k1. We denote ∆k` := Θ1
k`−Θ2

k` and it follows
that

0 < ∆kiki+1
≤ ωkiki+1

∀i s.t. {ki, ki+1} is normal, (8)
∆kiki+1

= 0 ∀i s.t. {ki, ki+1} is not normal,

where the right part of the first inequality is because Θ2 ∈
N (G,Θ1,W). Combining inequalities (7) and (8) yields that

0 <

t∑
i=1

∆kiki+1 =
∑

kiki+1 is normal

∆kiki+1 (9)

≤
∑

kiki+1 is normal

ωkiki+1
< 2π.

However, by the definition of ∆k` and Θk`, one can write

t∑
i=1

∆kiki+1 =

t∑
i=1

Θ1
kiki+1

−
t∑

i=1

Θ2
kiki+1

=

t∑
i=1

[
Θ1

ki
−Θ1

ki+1

]
−

t∑
i=1

[
Θ2

ki
−Θ2

ki+1

]
= 0,

where the second last equality is the congruence relation
module 2π and the last equality is because (k1, . . . , kt) is
a cycle. This contradicts equation (9). Thus, the induced
orientation is not a weakly feasible orientation and the strong
uniqueness holds.

black



13

D. Proof of Theorem 6
Proof. To prove the first inequality, we only need to notice that
any feasible orientation is also a weakly feasible orientation
and the size of eye is equal to the girth when all edges are
normal.

Then, we consider the second inequality. Assume conversely
that the maximal eye is attained by a directed cycle with
chords in the weakly feasible orientation A. Without loss of
generality, assume that the directed cycle (1, . . . , t) attains
the maximal eye with fewest chords, where t ≥ e(G) and
{1, i} ∈ E is a chord for some i ∈ {3, . . . , t−1}. We consider
four different cases:

1. A1,i = 0: Consider the directed cycle

(1, i, i+ 1, . . . , t),

which has at most e(G) normal edges and strictly fewer
chords than (1, . . . , t). This contradicts the assumption
that the cycle (1, . . . , t) is a directed cycle that attains
the size of eye with fewest chords.

2. A1,i = +1: and there exists at least one normal edge
among {1, 2}, . . . , {i− 1, i}: The directed cycle

(1, i, i+ 1, . . . , t)

has at most e(G) normal edges and strictly fewer chords
than (1, . . . , t). This also contradicts the assumption on
(1, . . . , t).

3. A1,i = +1 and edges {1, 2}, . . . , {i−1, i} are not normal:
Consider the directed cycle

(1, i, i− 1, . . . , 2),

which has exactly one normal edge and strictly fewer
chords. By the definition of the maximal eye, we know
e(G) ≥ 1 and the cycle (1, i, i − 1, . . . , 2) has at most
e(G) ≥ 1 normal edges. Hence, this contradicts the
assumption on (1, . . . , t).

4. A1,i = −1: Consider the orientation Ã defined as

Ãk` := −Ak`, ∀{k, `} ∈ E

and use the discussion in the first three cases.
Combining the above four cases concludes that the maximal
eye of the power network G must be attained by a chordless
cycle. Hence, the maximal eye is upper bounded by the longest
chordless cycle.

E. Proof of Lemma 7
Proof. By the definition of strong uniqueness and weak
uniqueness, if a solution to problem (1) is strongly unique,
than it is also weakly unique. We only need to consider
the other direction. Assume conversely that there exists a
solution Θ1 in the monotone regime that is weakly unique
but not strongly unique. Then, there exists another solution
Θ2 ∈ N (G,Θ1,W) that is different from Θ1 according
to Definition 5. Then, the phase difference of some line is
different for the two solutions. Considering the power injection
balance at each bus, we know that the phase difference is
different at all lines. This means that the two solutions Θ1 and
Θ2 are different according to Definition 4, which contradicts
the assumption that Θ1 is weakly unique.

F. Proof of Theorem 8

Proof. The sufficient part is proved in Corollary 4 and we only
prove the necessary part. In this proof, bus n + 1 is defined
as bus 1. We assume that

n∑
i=1

ωi,i+1 ≥ 2π

We construct a power network G ∈ G and power injection
P such that there exist two different solutions Θ1,Θ2 in the
monotone regime and Θ2 ∈ N (G,Θ1,W). Without loss of
generality, assume that

n∑
i=1

ωi,i+1 = 2π.

This is because the construction for

W̃ :=

{
2π∑n

j=1 ωj,j+1
· ωi,i+1 : i ∈ [n]

}
.

also works for the original W = {ωi,i+1 : i ∈ [n]} if∑n
j=1 ωj,j+1 ≥ 2π. We define two phase angle vectors as

Θ1
1 := 0, Θ1

i :=

i∑
j=2

ωj,j+1, ∀i ∈ {2, . . . , n},

Θ2
i := 0, ∀i ∈ [n].

Then, it follows that

Θ1
i,i+1 = ωi,i+1, Θ2

i,i+1 = 0, ∀i ∈ [n],

which means that Θ1 and Θ2 are both in the monotone regime.
Since ωi,i+1, γi,i+1 ∈ (0, π/2], we know that γi,i+1 +ωi,i+1 ∈
(0, π] and therefore, by the monotonicity of cos(·) in [0, π],
we have

cos(γi,i+1 + ωi,i+1) < cos(γi,i+1).

For each line {i, i+ 1}, we define the positive constant

Ci,i+1 := |vivi+1|−1[− cos(γi,i+1 + ωi,i+1) + cos(γi,i+1)]
−1

and the complex admittance

Bi,i+1 := sin(γi,i+1)Ci,i+1, Gi,i+1 := cos(γi,i+1)Ci,i+1.

We use p̃i,i+1(Θ) to denote the real power flow from bus i
to bus i + 1 given the phase angle vectors Θ. Then, we can
calculate that

p̃i,i+1(Θ1)− p̃i,i+1(Θ2)

= −Gi,i+1|vivi+1|[cos(Θ1
i,i+1)− cos(Θ2

i,i+1)]

+Bk`|vivi+1|[sin(Θ1
i,i+1)− sin(Θ2

i,i+1)]

= − cos(γi,i+1)Ci,i+1|vivi+1|[cos(ωi,i+1)− 1]

+ sin(γi,i+1)Ci,i+1|vivi+1|sin(ωi,i+1)

= Ci,i+1|vivi+1|·[− cos(γi,i+1 + ωi,i+1) + cos(γi,i+1)]

= 1.

It follows that

P̂i(Θ
1)− P̂i(Θ

2)

=
[
p̃i−1,i(Θ

1)− p̃i−1,i(Θ
2)
]
−
[
p̃i,i+1(Θ1)− p̃i,i+1(Θ2)

]
=1− 1 = 0.
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If we choose P := P̂ (Θ1), then Θ1 and Θ2 are two different
solutions to problem (1) in the monotone regime such that
Θ2 ∈ N (G,Θ1,W) and that the strong uniqueness does not
hold.

G. Proof of Lemma 10

Proof. For the notational simplicity, we denote the maximal
eye and the maximal girth of the graph (V,E,W ) as e and
g, respectively. Since the graph is 2-vertex-connected, there
does not exist a degree-1 vertex. By Lemmas 13 and 15,
Type II Operations do not change the maximal eye and the
maximal girth of the graph. Moreover, the graph has a nested
ear decomposition {L0, L1, . . . , Lr−1} by Theorem 9. Hence,
we can assume that there is no degree-2 vertex except the slack
bus. Assume conversely that graph (V,E,W ) is the 2-vertex-
connected SP graph with minimal number of ears such that
e > g. We will show that there must exist another graph with
fewer ears in the ear decomposition and e > g. This will lead
to a contradiction with our assumption that this graph has the
minimal number of ears. If the graph has at most two ears,
then the graph is a single line of a cycle and we know e = g.
Hence, there exist at least three ears in the graph (V,E,W ).

a) Step 1: In this step, we prove that the graph has a
pair of parallel edges that contains a leaf ear, which we will
define below. Since a nested ear decomposition is also a tree
decomposition, we can assign a directed tree structure to ears
in the decomposition. Here, we call an ear Lk a descendant
ear of L` if Lk is a descendant node of L` on the directed
tree, or equivalently, both endpoints of ear Lk are on L` and
at least one of them is different from the endpoints of L`. We
also call ear L` the precedent ear of Lk. For any ear L`,
we say that ear Lk is a smallest descendant ear of L` if
Lk is a descendant ear of L` and there does not exist another
ear Li such that Li is also a descendant ear of L` and the
interval formed by the endpoints of Li on L` is a strict subset
of the interval formed by the endpoints of Lk. We note that
each ear may have multiple smallest descendant ears. We say
that an ear is a leaf ear if it is the smallest descendant ear
of some ear and has no descendant ear. We denote the set of
leaf ears as L. Considering the directed tree structure of the
ear decomposition, we know that the set L is not empty.

Suppose that Lk is a leaf ear with the endpoints k1, k2 and
that L` is the precedent ear of Lk. Since we have deleted
all degree-2 vertices except the slack bus, ear Lk is either
a single line {k1, k2} or two edges {k1, k3} and {k2, k3}
connecting the endpoints to the slack bus k3. Similarly, the
path connecting the two endpoints of Lk on the precedent
ear L`, which we denote as Pk, is either a single line or
contains the slack bus. Considering the ear Lk and the path
Pk, there are two cases: two parallel edges with endpoints
{k1, k2}, or one is a single line and the other is two edges
with the slack bus. If the first case occurs, we have a pair
of parallel edges containing a leaf ear. Now, we consider the
second case. If we exchange the two paths, i.e., let Pk be a leaf
ear and Lk be a path on the precedent ear, then the structure of
nested ear decomposition is not changed. Hence, without loss

of generality, assume that Lk is a single line and Pk contains
the slack bus. If there exists an ear Lj different from L` that
also contains leaf ears, then by the uniqueness of slack bus,
the first case occurs for leaf ears on ear Lj .

Hence, we simply need to consider the case when L` is the
only ear that contains leaf ears. We consider the root ear L0.
By the definition of tree ear decomposition, we know that L0

is a single line; let `1, `2 be the two endpoints of L0. Since
all vertices except the slack bus have degree at least 3 and
the slack bus is not an endpoint of ears, both `1 and `2 have
degree at least 3. This implies that the root ear L0 has at least 2
descendant ears and all descendant ears have endpoints `1, `2.
Let Lk1

, Lk2
, . . . , Lkm

be the descendant ears of L0. For each
Lki , we define a sub-graph of (V,E,W ) consisting of ear L0

and ears that are descendant nodes of Lki in the directed tree
of ears. We can verify that each sub-graph also has a nested
ear decomposition and therefore contains at least one leaf ear,
which implies that ear L` belongs to all sub-graphs. On the
other hand, due to the tree structure, the intersection of two
different sub-graphs is ear L0 and is not a leaf ear. Hence, the
leaf ears in different sub-graphs are different and L` = L0. It
follows that all descendant ears of L0 are leaf ears and they
form at least a pair of parallel edges containing a leaf ear.

b) Step 2: In this step, we construct a nested ear decom-
position of the graph (V,E,W ) such that there exists a pair
of parallel edges that contains the root ear L0 and that all
edges are ears in the ear decomposition. According to Step 1,
there exists a pair of parallel edges that contains a leaf ear.
We denote the leaf ear in the pair of parallel edges as Lk. We
consider the (undirected) cycle containing L0 and Lk. Suppose
that the cycle has a non-empty edge intersection with ears
Lk0

, . . . , Lkt
, where k0 = 0, kt = k and Lks+1

is a descendant
ear of Lks

for s = 0, 1, . . . , t − 1. Notice that the endpoints
of each ear Lks are on the cycle. Now, we construct a new
nested ear decomposition L̃0, . . . , L̃m−1 such that Lk = L̃0

is the root ear. We define L̃0 := Lk and L̃k as the remaining
part of the cycle. For ears Lks

with 1 ≤ s ≤ t− 1, we define
L̃ks

as the ear Lks
with edges on the cycle deleted. For ears

that do not intersect with the cycle, we define L̃i := Li. It is
desirable to show that with the new set of ears still forms a
nested ear decomposition. To this end, we analyze three cases:

• Case I. First, it can be verified that ears L̃k1
, . . . , L̃kt−1

are nested ears on L̃kt . Hence, ears L̃k0 , . . . , L̃kt still
form a nesting structure.

• Case II. Next, we consider an ear L̃i = Li that is not
changed and has both endpoints on Lks

for some s ∈
{0, 1, . . . , t−1}. Since Lks+1

is a descendant ear on Lks
,

by the definition of nested ear decomposition, we know
that the endpoints of L̃i are either both on L̃ks or both
on L̃kt . For the first case, Li is an ear on L̃ks and ears
on L̃ks

have the same nesting structure as Lks
. For the

second case, both endpoints of Lk locate on L̃kt
and are

nested between the endpoints of L̃ks
and L̃ks−1

. We note
that for the case when s = 0, both endpoints are equal to
the endpoints of L0 and they form the smallest possible
interval on L̃kt

. Hence, ears on L̃kt
also have a nested

structure.
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• Case III. Finally, we consider ears that are not changed
and do not have endpoints on Lks for any s = 0, . . . , t.
These ears still form a nested structure on the original
precedent ear and the nested ear decomposition structure
is not changed.

Combining the above three cases concludes that the new set
of ears is also a nested ear decomposition. Moreover, the
topological structure of the graph is not changed. Hence, in
the new ear decomposition, the root ear L̃0 = Lk has parallel
edges. Finally, we observe that the parallel edges of the root
ear are also ears in the ear decomposition.

c) Step 3: Suppose that the maximal eye is achieved by
the weakly feasible orientation A. In this step, we show that we
can modify A such that each edge with direction 0 is incident
to a degree-0 vertex and the size of eye is not changed. Here,
the degree is calculated for the directed graph with orientation
A and all edges with orientation 0 are not counted towards
the degree. We define a partition of vertices as

V1 := {k ∈ V | deg(k) > 0 or k is the slack bus},
V2 := {k ∈ V | deg(k) = 0 and k is not the slack bus}

and a partition of edges as

E1 := {{k, `} ∈ E | Ak` ∈ {+1,−1}},
E2 := {{k, `} ∈ E | Ak` = 0, k ∈ V1 and ` ∈ V1},
E3 := {{k, `} ∈ E | Ak` = 0, k ∈ V2 or ` ∈ V2}.

Then, the objective is to show that there exists a weakly
feasible orientation such that the size of eye is still e and the
set E2 is empty. For any edge {k, `} ∈ E2, we can arbitrarily
assign direction +1 or −1 to the edge and the orientation is
still weakly feasible. This is because for vertices in V1, the
requirement on in-degree and out-degree is satisfied by other
edges. More specifically, if the degree of k or ` is nonzero,
then by the definition of weakly feasible orientation, the vertex
already has nonzero in-degree and out-degree. Otherwise, if k
or ` is the slack bus, then the in-degree and out-degree can
be arbitrary. Thus, we can arbitrarily assign directions +1 or
−1 to all edges in E2 and the new orientation is still weakly
feasible. We define a new orientation as

Ãk` :=

{
+1 if k > `

−1 otherwise
, ∀{k, `} ∈ E2,

Ãk` := Ak`, ∀{k, `} ∈ E1 ∪ E3.

We prove that with orientation Ã, the size of eye is not
changed. Let (k1, . . . , kt) be a directed cycle in the graph
with orientation Ã. If some edges of this cycle are in E1∪E3,
then this cycle also exists in the graph with A. By assigning
directions ±1 to edges with direction 0, the lengths of the cy-
cles are not decreased and therefore the length of (k1, . . . , kt)
is at least e under the orientation Ã. If all edges of this cycle
are in E2, then we choose the minimal index in {k1, . . . , kt},
which is assumed to be k1 without loss of generality. By the
definition of Ã, the edge {k1, k2} has orientation Ãk1k2 = −1,
which contradicts the fact that (k1, . . . , kt) is a directed cycle
with Ã. Combining the above two cases, it can be inferred that
the size of eye with orientation Ã is at least e. On the other

hand, e is defined to be the maximal eye. Hence, the size of
eye with orientation Ã is equal to e.

d) Step 4: In this step, we prove that the maximal eye is
equal to the maximal girth. Suppose that the maximal eye is
achieved by the weakly feasible orientation A and orientation
A satisfies the conditions in Steps 2-3. We consider the set
of parallel edges containing the root ear, which we denote
as {k, `, 1}, . . . , {k, `, t} for some t ≥ 2. We analyze two
different cases:
• Case I. If there exists at least one parallel edge having

direction 0, then by the conditions in Step 3, we know
that at least one of the endpoints k, ` has degree 0.
This means that all parallel edges have direction 0. We
construct another graph (Ṽ, Ẽ, W̃ ), where the parallel
edges {k, `, 1}, . . . , {k, `, t} are substituted by a single
edge {k, `} and the weight of the new edge is the minimal
weight among all parallel edges, i.e.,

W̃k` := min
s∈[t]

Wk,`,s.

Other edges are the same as those in the original graph.
We construct a weakly feasible orientation Ã for the new
graph. For the edge {k, `}, we define

Ãk` := 0.

For other edges, we define

Ãk1`1 := Ak1`1

∀{k1, `1} ∈ E\{{k, `, 1}, . . . , {k, `, t}}.

Since the orientations Ã and A have the same degree at
each node, Ã also becomes weakly feasible. Moreover,
the size of eye of the graph with Ã is also equal to e,
which implies that the maximal eye of the new graph ẽ is
at least e. Since the new graph (Ṽ, Ẽ, W̃ ) has t−1 fewer
ears, the induction assumption implies that the maximal
girth of the new graph g̃ satisfies

g̃ = ẽ ≥ e.

Hence, we can choose a feasible orientation Ãg such
that the girth is equal to g̃. Now, we extend the feasible
orientation Ãg to be a feasible orientation of the original
graph (V,E,W ). We define

Ag
k1`1

:= Ãg
k1`1

∀{k1, `1} ∈ E\{{k, `, 1}, . . . , {k, `, t}}

and
Ag

k,`,s := Ãg
k`, ∀s ∈ [t].

Since the in-degree and out-degree at points k, ` are
still nonzero for the orientation Ag , it can be concluded
that Ag is a feasible orientation for the original graph.
Moreover, the girth of the original graph with orientation
Ag is equal to g̃. It follows that the maximal girth g is at
least g̃ ≥ e. This contradicts the assumption that e > g.

• Case II. Next, we consider the case when all parallel
edges {k, `, 1}, . . . , {k, `, t} are normal edges. In this
case, the goals is to construct a feasible orientation with
the same size of eye by assigning directions to edges
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with direction 0. We first construct a feasible orientation
Ã. Assume that L0 = {k, `, 1} is the root ear, and define

Ãk,`,1 := Ak,`,1,

Ãk,`,s := −Ak,`,1, ∀s ∈ {2, . . . , t}.

Then, we inductively define the directions of other ears
using the directed tree structure of ears. For any ear
Lk that has been assigned a direction, we assign its
descendant ear L` with the parallel direction as the
path formed by the endpoints of L` on Lk. In this
way, the orientation Ã is defined for all ears and the
definition is unique because of the directed tree structure.
Considering the structure of the nested ear decomposition,
we also know that all directed cycles in orientation Ã
must contain the root ear. In addition, the orientation
Ã is feasible. This is because all internal vertices of
ears have nonzero in-degree and nonzero out-degree. The
only vertices that are not internal vertices of ears are the
endpoints of the root ear. For the endpoints of the root
ear, they also have nonzero in-degree nonzero and out-
degree by the definition of directions on parallel edges.
Hence, the constructed orientation Ã is feasible.
We then define an orientation that combines orientations
A and Ã as follows:

Ag
k` :=

{
Ak` if Ak` ∈ {+1,−1}
Ãk,` if Ak` = 0,

, ∀{k, `} ∈ E.

We prove that Ag is a feasible orientation and the girth
of orientation Ag is at least e. For any vertex k that
has a nonzero degree in orientation A, the vertex k has
nonzero in-degree and out-degree by the definition of
weakly feasible orientation. Hence, the vertex k also has
nonzero in-degree and out-degree in the new orientation.
If the vertex has degree 0 in the orientation A, then all
edges incident to the vertex k has the same direction
as in Ã. Since the orientation Ã is feasible, the vertex
k has nonzero in-degree and nonzero out-degree in the
new orientation Ag . Combining the two cases, it can be
concluded that the orientation Ag is feasible. Now, we
estimate the girth of orientation Ag . We consider any
directed cycle C in Ag . If the cycle C has normal edges
in the original orientation A, then the length of cycle C
is not decreased in the new orientation and therefore is
at least e. If the cycle C does not have normal edges in
the original orientation A, then all edges of C have the
same direction as in Ã and therefore is also a cycle in in
Ã. This implies that the root ear L0 is on the cycle C.
However, the root ear is a normal edge in orientation Ã
and this contradicts the assumption that none of the edges
of the cycle C are normal. Thus, the girth of Ag is at least
e. On the other hand, the girth of a feasible orientation
is bounded by the maximal girth g. This contradicts the
assumption that e > g.

Combining the above two cases and using the induction
method, it can be concluded that the maximal eye of a 2-
vertex-connected SP graph is equal to its maximal girth.

H. Proof of Theorem 12

Proof. We only prove the strong uniqueness part since the
proof for the weak uniqueness is similar. We only need to
show that statement 2 of this theorem holds if and only if
statement 2 of Lemma 1 holds.

a) Proof of sufficiency: We assume conversely that there
exist two sets of phase angle vectors Θ1 and Θ2 satisfying
statement 2 of Lemma 1 such that the induced sub-graph of
Θ1 − Θ2 denoted as (V0,E0, A0) has the same number of
strongly connected components and weakly connected compo-
nents. Let y be a vector that satisfies conditions in statement
2 of Lemma 1. We prove that if vertices k and ` are in the
same connected component, then yk = y`. By the definition
of strongly connected components, there exist directed paths
from k to ` and from ` to k. We first consider the directed path
from k to `, which we denote as (k, k1, . . . , kt, `). Considering
the edge {k, k1} and inequality (2), one can write

sin(π/2 + Θ1
k,k1

/2 + Θ2
k,k1

/2) · yk (10)

≥ sin(π/2−Θ1
k,k1

/2−Θ2
k,k1

/2) · yk1 .

By the same analysis in Lemma 2, the condition ∆k,k1 > 0
implies that Θ1

k,k1
/2 + Θ2

k,k1
/2 ∈ (−π/2, π/2), which leads

to

sin(π/2 + Θ1
k,k1

/2 + Θ2
k,k1

/2) (11)

= sin(π/2−Θ1
k,k1

/2−Θ2
k,k1

/2) > 0.

Combining the relations in (10) and (11), we obtain yk ≥ yk1
.

Considering edges {k1, k2}, . . . , {kn, `} and using the same
analysis, we have

yk ≥ yk1
≥ yk2

≥ · · · ≥ ykt
≥ y`,

and therefore yk ≥ y`. Similarly, the existence of a directed
path from y` to yk implies that y` ≥ yk. Combining the
two directions, we obtain yk = y`. If we further assume
{k, `} ∈ E0 and ∆k` > 0, then the relation in (11) implies that
inequality (2) holds with equality for {k, `}. By the definition
of weakly connected components, there does not exist any
edge in E0 connecting different connected components. Hence,
the endpoints of all edges in E0 are in the same connected
component and therefore inequality (2) holds with equality for
all {k, `} ∈ E0 such that ∆k` > 0. Finally, by the definition of
induced sub-graph, E0 contains all edges {k, `} ∈ E such that
∆k` > 0. It follows that inequality (2) holds with equality for
all {k, `} ∈ E such that ∆k` > 0. This contradicts statement
2 of Lemma 1 that there exists at least one strict inequality in
the set of inequalities (2). Hence, statement 2 of this theorem
holds.

b) Proof of necessity: Assume that the conditions in
statement 2 of this theorem hold. We denote the strongly
connected components as C1, . . . , Cm. Now, we define a tree
structure for the set {C1, . . . , Cm}. For two different strongly
connected components Cs and Ct, if there exists a directed
path from Cs to Ct, we define a directed edge from Ct to
Cs. Considering all strongly connected components pairs, we
obtain a directed graph with the vertex set {C1, . . . , Cm}. By
the definition of strongly connected components, we know
that there does not exist directed cycle in this directed graph
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and therefore this directed graph is a directed tree. Using
the directed tree structure, we can choose m real numbers
c1, . . . , cm such that if there exists a directed path from Ct to
Cs, then it holds that ct > cs. Moreover, if vertex 1 belongs to
some strongly connected component Cs, then we can shift ct
for all t ∈ [m] such that cs = 0 and the relation between all
ct’s is not changed. If vertex 1 does not belong to any strongly
connected component, we do not change the value of ct.

We construct a vector y ∈ R|V| by

yk :=

{
cs if k is in Cs
0 if k ∈ V\V0.

Note that the set of strongly connected components gives a
disjoint partition of the set V0. Hence, the vector y is well-
defined. By the choice of {c1, . . . , cm}, the vector y satisfies
y1 = 0. Suppose that the edge {k, `} belongs to E and ∆k` >
0. We verify that inequality (2) holds for {k, `}, namely,

sin(π/2 + Θ1
k`/2 + Θ2

k`/2) · yk
≥ sin(π/2−Θ1

k`/2−Θ2
k`/2) · y`.

Recalling that the relation (11) holds for all {k, `} such that
∆k` > 0, we only need to verify

yk ≥ y`, ∀{k, `} ∈ E0 s.t. ∆k` > 0. (12)

By the definition of induced sub-graph, the condition ∆k` > 0
implies that {k, `} ∈ E0. Thus, vertices k and ` must belong
to certain strongly connected components. If k and ` belong to
the same strongly connected component Cs, then yk = y` = cs
and inequality (12) holds. Otherwise, we assume that k and
` belong to two different strongly connected components Cs
and Ct, respectively. Since (k, `) is a directed path from Cs to
Ct, one can write

yk = cs > ct = y`

and inequality (12) holds strictly. By the assumption that there
are strictly more strongly connected components than weakly
connected components, there exists at least one edge {k, `} ∈
E0 such that k and ` belong to different strongly connected
components. Without loss of generality, assume that ∆k` > 0.
Then, the inequality (12), or equivalently the inequality (2),
holds strictly for {k, `}. This shows that y is a vector that
satisfies conditions in statement 2 of Lemma 1.

I. Proof of Lemma 13

Proof. We prove the four claims separately.
a) Type I Operation: We first consider the inequality

on the right. We denote the two endpoints as k, ` and the
parallel edges connecting them as {k, `, 1}, . . . , {k, `, t} for
some t ≥ 2. Without loss of generality, assume that the
weights of parallel edges satisfy

Wmin = Wk,`,1 ≤ · · · ≤Wk,`,t = Wmax.

Suppose that the maximal eye of graph (V,E,W ) is achieved
by the weakly feasible orientation A. If there exist different
directions among these parallel edges when orientation A is

assigned, then we choose the first edge {k, `, 1} and another
edge {k, `, s} such that the direction of {k, `, s} is different
from the direction of {k, `, 1}. Hence, {k, `, 1} and {k, `, s}
form a directed cycle and two edges have different directions.
Then, at least one edge is a normal edge, i.e., an edge with
direction +1 or −1. The weight of the cycle is bounded by
Wk,`,1 + Wk,`,s ≤ Wmax + Wmin. Thus, it holds that e ≤
Wmax+Wmin in this case. Otherwise, assume that all parallel
edges have the same direction when orientation A is assigned.
Considering a directed cycle that contains the edge {k, `, s}
for some s ∈ {2, . . . , t}, we can substitute the edge {k, `, s}
with edge {k, `, 1} and the length of the directed cycle is not
increased. Hence, if we delete edges {k, `, 2}, . . . , {k, `, t},
the size of eye is not changed. On the other hand, the deletion
of edges {k, `, 2}, . . . , {k, `, t} is equivalent to the Type I
Operation on the set of parallel edges {k, `, 1}, . . . , {k, `, t}.
Hence, we obtain e = ẽ in this case. Combining the two cases,
it follows that e ≤ max{ẽ,Wmax +Wmin}.

We now prove the inequality on the left. Suppose that the
maximal eye of the new graph (Ṽ, Ẽ, W̃ ) is achieved by the
weakly feasible orientation Ã. By the definition of Type I
Operations, the weight W̃k,` is equal to the weight Wk,`,1. We
consider the inverse operation of Type I Operation. Namely,
we add parallel edges {k, `, s} with weight Wk,`,s to the
new graph and define the direction Ãk,`,s := Ãk,`,1 for all
s ∈ {2, . . . , t}. Then, the orientation Ã becomes a weakly
feasible orientation for the original graph. By the discussion
for the inequality on the right, the inverse operation will not
change the size of eye. Therefore, we have a weakly feasible
orientation for (V,E,W ) and the size of eye is ẽ, which
implies that e ≥ ẽ.

b) Type II Operation: We consider the case when a
Type II Operation is implemented. We denote the deleted
degree-2 vertex as k. By the definition of Type II Operations,
vertex k has two neighbouring vertices and we denote the two
neighbouring vertices as `1 6= `2. If A is a weakly feasible
orientation for (V,E,W ), then the direction A`1,k must be
equal to the direction Ak,`2 . Hence, treating the two edges
{`1, k} and {k, `2} as a single edge with weight W`1,k+Wk,`2

will not change the size of eye. Noticing that the claim is true
for any weakly feasible orientation A, we know that e = ẽ.

c) Type III Operation with a pendant vertex: Removing
a pendant vertex will not affect the maximal eye, since any
directed cycle does not contain pendant vertices. Thus, we
conclude that e = ẽ.

d) Type III Operation with a non-pendant vertex: Finally,
we consider the case when the deleted vertex has degree at
least 2. We denote the deleted vertex as k and denote the
only neighbouring vertex as `. The parallel edges connecting
k and ` are denoted as {k, `, 1}, . . . , {k, `, t} for some t ≥ 2.
Similar to the Type I Operation case, assume that the weights
of parallel edges satisfy

Wmin = Wk,`,1 ≤ · · · ≤Wk,`,t = Wmax.

We can split the deletion of vertex k into two operations.
We first substitute parallel edges {k, `, 1}, . . . , {k, `, t} with
a single edge {k, `} with weight Wk,`,1. Then, we delete the
pendant vertex k. The two operations can be viewed as Type I
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and Type III Operations, respectively. Using the results in the
first case and the third case, one can write

ẽ ≤ e ≤ max{ẽ,Wmax +Wmin}.

Hence, it remains to prove that e ≥Wmax +Wmin. We can
construct a weakly feasible orientation such that size of eye
is Wmax +Wmin. Specifically, we define

Ak,`,s := +1, ∀s ∈ {1, . . . , t− 1}, Ak,`,t := −1

and all other edges are assigned the direction 0. Then, ver-
tices k and ` have nonzero in-degree and out-degree, while
other vertices have zero in-degree and out-degree. Hence
the orientation A is weakly feasible. Now, consider directed
cycles with at least one normal edge. Since parallel edges
{k, `, 1}, . . . , {k, `, t} are the only normal edges, the directed
cycle must contain at least one of these parallel edges. Using
the facts that ` is the only neighbouring vertex of k and
directed cycles do not have repeated vertices, vertices k and
` are the only two vertices of the directed cycle. Hence, the
size of eye should be the the minimal length of such directed
cycles, which is Wk,`,1 + Wk,`,t = Wmax + Wmin. Thus, it
follows that e ≥Wmax +Wmin.

Combining the two parts yields that e = max{ẽ,Wmax +
Wmin}.

black

J. Proof of Lemma 15

Proof. The first three claims can be proved in the same way
as Lemma 13 and we only prove the last two claims. We
denote the deleted vertex as k and its only neighboring vertex
as `. The parallel edges connecting k and ` are denoted
as {k, `, 1}, . . . , {k, `, t} for some t ≥ 2. Without loss of
generality, assume that the weights of parallel edges satisfy

Wmin = Wk,`,1 ≤ · · · ≤Wk,`,t = Wmax.

a) Type III Operation for slack node: We first consider
the case when the deleted vertex is a slack node. By discussing
whether parallel edges {k, `, 1}, . . . , {k, `, t} have the same
direction as in the first claim in Lemma 13, it holds that g ≤
max{g̃,Wmax +Wmin}.

We prove the other inequality g̃ ≤ g by constructing a
feasible orientation A such that the girth is g̃. Suppose that
the maximal girth of the new graph (Ṽ, Ẽ, W̃ ) is achieved by
the feasible orientation Ã. We define directions for deleted
parallel edge such that the orientation Ã becomes a feasible
orientation of the original graph (V,E,W ). We note that, by
the definition of Type III Operations, the vertex ` is a slack
node in the new graph and it may not satisfy the condition
on in-degree and out-degree. If the vertex ` in the new graph
with orientation Ã has nonzero in-degree, then we define

Ãk,`,s := −1, ∀s ∈ {1, . . . , t}.

Then, the vertex ` has both nonzero in-degree and nonzero out-
degree. Since the vertex k is a slack node, the orientation Ã be-
comes a feasible orientation for the original graph (V,E,W ).
By the construction of Ã, the vertex k only has nonzero in-
degree and therefore there does not exist any directed cycle

containing parallel edges {k, `, 1}, . . . , {k, `, t}. It follows that
the girth is not changed and is equal to g̃. If the vertex ` in
the new graph with orientation Ã has nonzero out-degree, then
we can similarly define

Ãk,`,s := +1, ∀s ∈ {1, . . . , t}.

The orientation Ã also becomes a feasible orientation for the
original graph and the girth is g̃. Combining the two cases
concludes that e ≥ g̃.

b) Type III Operation for non-slack node: We then
consider the case when the deleted vertex is not a slack
node. Suppose that the maximal girth of the original graph
(V,E,W ) is achieved by the feasible orientation A. Since
the vertex k has nonzero in-degree and nonzero out-degree,
there must exist different directions among parallel edges
{k, `, 1}, . . . , {k, `, t}. Hence, by the same analysis as the
first claim in Lemma 13, it holds that g ≤ Wmax + Wmin.
Now, we consider restricting the orientation A to the new
graph(Ṽ, Ẽ, W̃ ). Since the vertex ` is a slack node in the new
graph and the orientation A is not changed for other vertices,
the orientation A becomes a feasible orientation for the new
graph. Then, by the definition of the maximal girth, there exists
a directed cycle in the new graph with length at most g̃. Hence,
we conclude that g ≤ g̃. Combining the two inequalities, it
follows that g ≤ min{g̃,Wmax +Wmin}.

Now, it remains to prove g ≥ min{g̃,Wmax + Wmin}.
Suppose that the maximal girth of the new graph (Ṽ, Ẽ, W̃ )
is achieved by the feasible orientation Ã. We extend the
orientation Ã to be an orientation for the original graph by
defining

Ak,`,s := +1, ∀s ∈ {1, . . . , t− 1}, Ak,`,t = −1.

Since both vertices k, ` have nonzero in-degree and nonzero
out-degree and the orientation at other vertices is not changed,
the orientation A becomes a feasible orientation for the
original graph. Now, we calculate the girth of the original
graph. For any directed cycle that does not contain parallel
edges {k, `, 1}, . . . , {k, `, t}, it is also a directed cycle in
the new graph and has length at least g̃. For any directed
cycle that contains at least one of those parallel edges,
vertices k and ` are the only two vertices of the directed
cycle, since there does not exist repeated vertices on directed
cycles. Hence, the length of the directed cycle is at least
Wk,`,1 + Wk,`,t = Wmax + Wmin. Combining the two cases
yields that the girth is at least min{g̃,Wmax + Wmin} and
therefore g ≥ min{g̃,Wmax +Wmin}.

black

K. Proof of Theorem 17

Proof. We prove that Type I-II Operations are enough for
reducing a 2-vertex-connected SP graph to a single edge. Since
Type I-II Operations do not introduce new slack nodes, there
exists at most one slack node in the graph throughout the
reduction process. By the assumption that the graph is a 2-
vertex-connected SP graph, Theorem 9 implies that there exists
a nested ear decomposition (L0, . . . , Lr−1) of the graph. We
use the induction method on the number of ears in the ear
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decomposition. If there are only one ear or two ears in the ear
decomposition, then the result holds trivially. We assume that
any 2-vertex connected SP graphs with at most r − 1 ears in
the ear decomposition can be reduced to a single edge with
Type I-II Operations.

Now, we consider the case when there are r ears in the
ear decomposition. We first implement Type II Operations
until there is no degree-2 vertices except the slack bus.
Since Type II Operations will not change the structure of the
nested ear decomposition, the new graph still has a nested ear
decomposition with at most r ears in the decomposition. By
the first step in the proof of Theorem 10, there exists a set of
parallel edges containing the root ear or a leaf ear. We analyze
two different cases:

a) Case I: Assume that there exists a set of parallel edges
containing a leaf ear. We denote the leaf ear as Ls = {k, `}.
Let Lt be the precedent ear of Lt. Then, then set of parallel
ears consists of the segment k` on ear Lt and leaf ears on
Lt. We can apply a Type I Operation to substitute the set of
parallel edges with a single edge. We can view the new edge
as the segment k` on ear Lt. Then, at least leaf ear is deleted
and the new graph has a nested ear decomposition with at
most r − 1 ears. By the induction assumption, the new graph
can be reduced to a single edge with Type I-II Operations.
Thus, the original graph can be reduced to a single edge with
Type I-II Operations.

b) Case II: Assume that there exists a set of parallel
edges containing the root ear. Then by the same construction
in the second step in the proof of Theorem 10, we can change
the root ear to a leaf ear. Hence, we obtain a set of parallel
edges containing a leaf ear and we can apply the discussion
in Case I.

Combining the two cases, it follows that the result is true
when there are r ears in the ear decomposition. By the
induction method, the result is true for any r ≥ 1 and the
black method can reduce a 2-vertex-connected SP graph to a
single edge.

L. Numerical results of black method for computing the max-
imal girth

Power Network Original Size Reduced Size α1 α2 gR
Case 14 (14,20) (2,1) 6 3 0
Case 30 (30,41) (9,14) 4 3 3
Case 39 (39,46) (10,14) 4 3 3
Case 57 (57,78) (22,39) 4 - 23
Case 118 (118,179) (44,83) 5 - 4
Case 300 (300,409) (110,197) 8 3 ≥7

Case 1354 (1354,1710) (271,509) 9 3 ≥3
Case 2383 (2383,2886) (500,950) 11 3 ≥3

TABLE II: Number of vertices and edges before and after the black
method for maximal girth along with values computed during the
reduction process.

M. Algorithms for Computing the Maximal Girth and Eye

In the appendix, we propose search-based algorithms for
computing the maximal eye and the maximal girth. Our
approach is based on the Depth-First Search (DFS) method
and utilized the pruning technique to accelerate the computing
process. We first describe a common sub-procedure that will
be used in both algorithms. The sub-procedure computes the
minimal directed chordless cycle containing a given edge.
Given a truncation length T ≥ 1, the sub-procedure returns the
truncation length if there does not exist a directed chordless
cycle that contains the given edge and has length at most
T . The sub-procedure is also based on the DFS method
with pruning and borrows the idea of blocking from [28] to
accelerate the searching process. The pseudo-code of the sub-
procedure is listed in Algorithm 2.

The search space of the sub-procedure is the set of directed
chordless paths with length at most T . When the current
directed chordless path is a directed chordless cycle, the length
of the cycle is recorded and the minimal length of known
directed chordless cycles is updated. By searching over all
chordless paths, we find the length of the minimal directed
chordless cycle. The DFS method is initialized with the given
edge, denoted as (k, `), and extends the directed chordless path
by adding a neighbouring vertex of the end point other than
k to the path. The pruning technique becomes effective and
delete the end point other than k from the path if one of the
following cases occurs:
• The length of the directed chordless path is larger than T

or the known minimal length of directed chordless cycles;
• All neighbouring vertices have been searched or will

introduce a chord if added to the path.
Using the idea of blocking, one can efficiently check whether
adding a vertex to the path will introduce a chord. This
approach is based on the following observation: if the path
(k1, . . . , kt) is chordless, then any vertex ks can only be in
the neighborhood of ks−1, ks+1. We construct an array and,
for each vertex, we record the number of vertices on the path
that are in the neighborhood of the vertex. The array is updated
whenever the path is updated. If there are at least two vertices
on the path in the neighbourhood of a vertex not on the path,
then adding the vertex to the path will introduce a chord.
Hence, the cost of checking this condition for each potential
vertex not on the path is a single evaluation of an array.

Next, we propose the algorithms for computing the maximal
eye and the maximal girth. Since the algorithm of maximal
girth is similar to the algorithm for maximal eye, we only
discuss the algorithm for computing the maximal eye. The
algorithm is also based on the DFS method with pruning, and
the pseudo-code is provided in Algorithm 4. We first order all
edges and gradually assign one of the directions {0,−1,+1}
to each edge following the ordering of the edges. The search
space consists of the orientations for the first several edges
(intermediate states) and the orientations for the entire graph
(final states). One can verify that all intermediate states and
final states form a trinomial3 tree, since each orientation for

3A directed tree is called a trinomial tree if there is a root node and each
non-leaf node has exactly three descendant nodes.
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the first k < |E| edges leads to three different orientations for
the first k + 1 edges. Then, the algorithm for computing the
maximal eye searches in the same way as the classical DFS
method on a directed tree. For each node, we consider the
sub-graph consisting of those edges that have been assigned
a direction. We compute the length of the minimal directed
chordless cycle in the sub-graph, which contains the last edge
in the sub-graph, using the sub-procedure (Algorithm 2). The
truncation length can be decided as follows. Since a DFS
method is implemented on a trinomial tree, there exists a
directed path from the root node of the trinomial tree to
the current node. The truncation length can be chosen as the
minimal length computed on the preceding nodes of the path.
When the search reaches a leaf node, we obtain an orientation
for the entire graph, and the size of the eye becomes the
minimal length on the path to the root node. By searching
over all leaf nodes, we find the maximal eye. Similarly, one
can use the pruning technique to reduce the search space. The
current node is pruned if it can not be extended to a weakly
feasible orientation for the entire graph, or the size of the eye
of the sub-graph is smaller than the known maximal size of
the eye.

Algorithm 2 Truncated Minimal Chordless Cycle

Input: Directed weighted graph (V,E,W ), selected edge
(k, `), truncation length T

Output: Length of minimal chordless cycle c
Construct the neighbourhood of each vertex N : V 7→ 2V.
Initialize blocked array block[i]← 0 for all vertices i ∈ V.
Set the length of minimal cycle recorded c← T .
Set current length Lcur ←Wk`.
Set the path P ← [k, `].
Set block[k]← 1, block[`]← 1.
if Lcur ≥ T then . Already longer than truncation length

return c
end if
while the length of P is at least 2 do

Get the endpoint i← P [−1].
Increase block for vertices in N [j] by 1.
Get the minimal vertex j ∈ N [i] such that block[j] ≤ 1

and Lcur +WP [−1]j < v.
if no such vertex j exists then

. Recursion: no next unblocked vertex
Find the maximal index h such that P [h] /∈ {k, `, i}

and P [h+ 1] is not the maximal vertex in N [P [h]].
if no such h exists then . Search finished

break
else

Remove P [h+ 1], . . . , P [−1] from path P .
Decrease block of N [P [h]], . . . , N [P [−1]] by 1.
Add the next smallest vertex in N [P [h]] to P .
Update Lcur to be the length of path P .
continue

end if
else . Add a new vertex

Add vertex j to P and update Lcur.
if k ∈ N [j] then . find a cycle

Calculate length ccur ← Lcur +Wjk.
if ccur > 0 then

Update c← min{c, ccur}.
end if
Recursion similarly as above.

else
continue

end if
end if

end while
return c

N. Algorithm for Computing The Maximal Girth
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Algorithm 3 Algorithm for computing the maximal girth

Input: Undirected weighted graph (V,E,W ), slack bus k
Output: Maximal girth g

Set the maximal girth g← 0.
Assign an order to the set of edges E and denote edges as

{k1, `1}, . . . , {km, `m}.

Initialize the set of edges E0 ← {{k1, `1}}.
Initialize the set of orientations Ak1,`1 ← −1.

loop
Check the feasibility with current orientation.
if feasibility fails then

. Recursion
Get the maximal index j such that Akj ,`j 6= 1.
if no such j exists then . Terminate the algorithm

break
else

Remove {kj+1, `j+1}, . . . , {km, `m} from E0.
Change orientation Akj ,`j ← −Akj ,`j .
continue

end if
end if
Compute the girth gcur under E0 and A using Algorithm

2. The truncation length is set to be the girth of the precedent
state.

if gcur < g then . Smaller than known girth
Recursion in the same way.

end if
Get the next edge {ki, `i} that is not in E0.
if no such edge then . Leaf node reached

Update g← max{g, gcur}.
Recursion in the same way.

else
Add the next edge {ki, `i} that is not in E0.
Assign Akj ,`j ← −1.
continue

end if
end loop
return g

Algorithm 4 Algorithm for Computing The Maximal Eye

Input: Undirected weighted graph (V,E,W ), slack bus k
Output: Maximal eye e

Set the maximal eye e← 0.
Assign an order to the set of edges E and denote edges as

{k1, `1}, . . . , {km, `m}.

Initialize the set of edges E0 ← {{k1, `1}}.
Initialize the set of orientations Ak1,`1 ← −1.
loop

Check the weak feasibility with current orientation.
if weak feasibility fails then . Recursion

Get the maximal index j such that Akj ,`j 6= 1.
if no such j exists then . Terminate the loop

break
else

Remove {kj+1, `j+1}, . . . , {km, `m} from E0.
Change orientation Akj ,`j ← Akj ,`j + 1.
continue

end if
end if
Compute the size of eye ecur under E0 and A using

Algorithm 2. The truncation length is set to be the size of
eye of the precedent state.

if ecur < e then . Smaller than known size of eye
Recursion in the same way.

end if
Get the next edge {ki, `i} that is not in E0.
if no such edge then . Leaf node reached

Update e← max{e, ecur}.
Recursion in the same way.

else
Add the next edge {ki, `i} that is not in E0.
Assign Akj ,`j ← −1.
continue

end if
end loop
return e


	Introduction
	Main results
	Related work
	Notations
	Paper organization

	Preliminaries
	P- problem formulation
	Monotone regime and allowable sets
	Notions of weak and strong uniqueness

	Uniqueness Theory for General Graphs
	Uniqueness Theory for Three Special Cases
	Single cycles
	Series-Parallel graphs
	Lossless networks

	Iterative Series-Parallel Reduction
	Iterative Series-Parallel Reduction method

	Numerical results
	Computation of the maximal eye and the maximal girth

	Conclusion
	References
	Appendix
	Algorithms for computing maximal eye and maximal girth

	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Corollary 4
	Proof of Theorem 6
	Proof of Lemma 7
	Proof of Theorem 8
	Proof of Lemma 10
	Proof of Theorem 12
	Proof of Lemma 13
	Proof of Lemma 15
	Proof of Theorem 17
	Numerical results of black method for computing the maximal girth
	Algorithms for Computing the Maximal Girth and Eye
	Algorithm for Computing The Maximal Girth


