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Abstract—This paper is concerned with the generalized
network flow (GNF) problem, which aims to find a minimum-
cost solution for a generalized flow network. The objective is
to determine the optimal injections at the nodes as well as
optimal flows over the lines of the network. In this problem,
each line is associated with two flows in opposite directions that
are related to each other via a given nonlinear function. Under
some monotonicity and convexity assumptions, we have shown
in our recent work that a convexified generalized network flow
(CGNF) problem always finds optimal injections for GNF, but
may fail to find optimal flows. In this paper, we develop three
results to explore the possibility of obtaining optimal flows.
First, we show that CGNF yields optimal flows for GNF if the
optimal injection vector is a Pareto point. Second, we show that
if CGNF fails to find an optimal flow vector, then the graph can
be decomposed into two subgraphs, where the lines between
the subgraphs are congested at optimality and CGNF finds
correct optimal flows over the lines of one of these subgraphs.
Third, we fully characterize the set of all optimal flow vectors.
In particular, we show that this non-convex set is a subset of
the boundary of a convex set, and may include an exponential
number of disconnected components.

I. INTRODUCTION

The “network flow” problem is of significant importance

in computer science, operation research, and engineering

[1]–[3]. This problem has immediate applications in commu-

nication networks, power and commodity distribution, finan-

cial budgeting, and production scheduling and assignment,

among other fields. Since 1962, network flow problems have

been extensively studied [3]–[18]. The minimum-cost flow

problem aims to find optimal flows in a given network such

that the overall cost of production and/or transportation is

minimized. In this problem, the network is used to carry

some commodity of interest between pre-specified sources

and destinations.

To formalize a flow network, consider a graph consisting

of nodes and lines. There is an injection of some commodity

at every node, and there are two flows over each line. One

flow enters the line from an endpoint and the second flow

leaves from the other endpoint. Depending on the sign of

its injection, each node can be considered as a supplier or

consumer. This problem was developed and solved in [3] for

lossless networks. Although the algorithm proposed in [3]

is efficient, it does not apply to certain real-world networks

because the line losses are ignored. More precisely, the flow

entering a line may not be equal to the outgoing flow in
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practice. Driven by this practical consideration, the lossy net-

work flow problem has drawn much attention. The paper [2]

proposes a generalized network (also known as network

with gain) in which each outgoing flow is proportionally

related to the entering flow via a constant gain. This type

of network flow problem has been studied extensively [19],

[20]. Assuming that the cost functions are convex, this type

of lossy network can be solved in polynomial time (up to a

given accuracy) because of the convex nature of its objective

and constraints [21].

Recently, [22] has introduced a more general network flow

problem, referred to as Generalized Network Flow (GNF). In

GNF, the output flow over each line is a nonlinear function

of the input flow. This is motivated by the fact that the line

losses are nonlinear in certain real-world networks, such as

electrical power networks [23]. Assume that the cost and

flow functions are all monotonic and convex, which is a

fairly reasonable assumption in practice. The GNF problem

is highly non-convex due to its nonlinear equality constraints.

However, relaxing the equality constraints into convex in-

equality leads to a convex relaxation of the problem, named

convexified generalized network flow (CGNF). The work

[22] has proved that this relaxation is exact for the optimal

injections but may not yield feasible (optimal) flows for GNF.

Since the optimal injections for GNF can systematically

be found using CGNF, the main objective of this paper is to

study the possibility of finding optimal flows. First, we prove

that if the optimal injection vector is a Pareto point in its

feasible region, CGNF finds optimal flows for GNF. Second,

we substantiate that the flow network can be divided into two

sub-networks such that: (i) CGNF obtains optimal flows over

one sub-network, (ii) the lines between the two sub-networks

are all congested at optimality and CGNF correctly identifies

these lines. In other words, we relate the possible failure of

CGNF in finding optimal flows for the whole network to

certain congested lines. Moreover, we fully characterize the

set of all optimal flow vectors. In particular, we show that

this set may be infinite, non-convex, and disconnected, but

belongs to the boundary of a convex set.

A. Notations

The following notations will be used throughout this

paper:

• R denotes the set of real numbers.

• Given two vectors x and y, the inequality x ≤ y means

that x is less than or equal to y element-wise.



• Given a set T , its cardinality is shown as |T |.
• Lowercase and bold lowercase are used for scalars and

vectors, respectively.

• A nonconvex optimization has two types of solutions:

local and global. We simply use the term “solution” for

“global solution” henceforth (because local solutions

are not of interest in this work).

II. PROBLEM STATEMENT

Consider an undirected, connected graph (network) G with

the set of vertices/nodes N := {1, 2, ..., m} and the set of

edges/lines E ⊆ N ×N . Assume that every edge (i, j) ∈ E
is associated with two unknown flows pij and pji belonging

to R. The parameters pij and pji can be regarded as the

flows entering the edge (i, j) from the endpoints i and j,

respectively. The parameter pi defined as

pi =
∑

j∈N(i)

pij, ∀i ∈ N (1)

is called “injection at node i”, where N (i) ⊆ N denotes the

set of neighbors of node i in the graph G. The injection pi

is equal to the sum of flows leaving node i. Given an edge

(i, j) ∈ E , assume that pji and pij are related to one another.

To specify this relationship, we give an arbitrary orientation

to every edge of the graph G and denote the resulting graph

as ~G. Denote also the directed edge set of ~G as ~E . If an edge

(i, j) ∈ E belongs to ~E, we then express pji in terms of pij

by a function fij(·).

Definition 1: Define the vectors pn, pe and pd as

pn = {pi | ∀i ∈ N} (2a)

pe = {pij | ∀(i, j) ∈ E} (2b)

pd = {pij | ∀(i, j) ∈ ~E} (2c)

The symbols pn, pe, and pd are referred to as injection

vector, flow vector, and semi-flow vector, respectively.

Note that pe contains two flows per line, whereas pd

includes one flow per line.

Definition 2: Given two arbitrary points x, y ∈ R
n, the

box B(x, y) is defined as

B(x, y) = {z ∈ R
n |x ≤ z ≤ y} (3)

Assume that each injection pi and each flow pij

must be within the pre-specified intervals [pmin
i , pmax

i ] and

[pmin
ij , pmax

ij ], respectively, for every i ∈ N and (i, j) ∈ ~E. We

use the shorthand notation B for the box B(pn
min, pn

max),
where pn

min and pn
max are the vectors of the lower bounds

pmin
i ’s and the upper bounds pmax

i ’s, respectively. This paper

is concerned with the problem to be introduced below.

Generalized network flow (GNF): This optimization is

defined as

minimize
pn ∈ R

|N|

pe ∈ R
|E|

∑

i∈N

fi(pi) (4a)

subject to pi =
∑

j∈N(i)

pij ∀i ∈ N (4b)

pji = fij(pij) ∀(i, j) ∈ ~E (4c)

pmin
ij ≤ pij ≤ pmax

ij ∀(i, j) ∈ ~E (4d)

pmin
i ≤ pi ≤ pmax

i ∀i ∈ N (4e)

where

1) fi(·) is convex and monotonically increasing for every

i ∈ N .

2) fij(·) is convex and monotonically decreasing for every

(i, j) ∈ ~E.

3) The limits pmin
ij and pmax

ij are given for every (i, j) ∈ ~E .

4) The limits pmin
i and pmax

i are given for every i ∈ N .

In the case where fij(pji) is equal to −pij for every

(i, j) ∈ ~E , the GNF problem reduces to the lossless network

flow problem. A few remarks can be made here:

• Given an edge (i, j) ∈ ~E, there is no explicit limit

on pji in the formulation of the GNF problem because

restricting pji is equivalent to limiting pij .

• Given a node i ∈ N , the assumption of fi(pi) being

monotonically increasing is motivated by the fact that

increasing the injection pi normally elevates the cost in

practice.

• Given an edge (i, j) ∈ ~E , pij and −pji can be regarded

as the input and output flows of the line (i, j) traveling

in the same direction. The assumption of fij(pij) being

monotonically decreasing is motivated by the fact that

increasing the input flow normally makes the output

flow higher in practice (note that −pji = −fij(pij)).

The GNF problem is non-convex and hard to solve in

general. However, it has been shown in [22] that the

globally optimal injection vector is unique and can be found

efficiently using a convex relaxation, named convexified

generalized network flow. This problem is stated below.

Convexified generalized network flow (CGNF): This op-

timization is defined as

minimize
pn ∈ R

|N|

pe ∈ R
|E|

∑

i∈N

fi(pi) (5a)

subject to pi =
∑

j∈N(i)

pij ∀i ∈ N (5b)

pji ≥ fij(pij) ∀(i, j) ∈ ~E (5c)

pmin
ij ≤ pij ≤ pmax

ij ∀(i, j) ∈ E (5d)

pmin
i ≤ pi ≤ pmax

i ∀i ∈ N (5e)

where (pmin
ji , pmax

ji ) is equal to (fij(p
max
ij ), fij(p

min
ij )) for

every (i, j) ∈ ~E .



Note that CGNF is a convex optimization problem, which

is obtained from GNF through two operations: (i) the equality

constraint (4c) is relaxed to a convex inequality, (ii) upper

and lower bounds are added to pji for every (i, j) ∈ ~E .

Throughout this paper, we make the mild assumptions that

GNF is feasible and that strong duality holds for CGNF. This

paper is build upon the following result from [22].

Lemma 1: Let (p∗
n, p∗

d) and (p̂∗
n, p̂∗

d) denote arbitrary

globally optimal solutions of GNF and CGNF problems,

respectively. The relation p∗
n = p̂∗

n holds. �

Lemma 1 from [22] proves that the relaxation from GNF

to CGNF is exact in terms of the optimal cost and also

returns a correct optimal injection vector. However, it is

straightforward to contrive examples for which the relaxation

produces infeasible flow vectors. More precisely, it can be

verified that although the optimal injection vector p∗
n is

unique (due to the strong convexity of the objective function),

there may exist an infinite, non-convex set of solutions for the

optimal flow vector. This contributes to the possible failure

of CGNF in finding an optimal flow vector for GNF.

Definition 3: It is said that CGNF is equivalent to GNF

if every arbitrary global solution (p̂∗
n, p̂∗

d) of CGNF is a

solution of GNF and vice versa.

Let (p∗
n, p∗

d) and (p̂∗
n, p̂∗

d) denote arbitrary optimal solu-

tions of GNF and CGNF problems, respectively. It can be

deduced from Lemma 1 that (p∗
n, p∗

d) is a solution of CGNF,

but (p̂∗
n, p̂∗

d) may not be a solution of GNF. Note that GNF

and CGNF are equivalent if every flow vector returned by

CGNF is feasible for GNF. The main objective of this paper

is twofold: (i) studying the equivalence of GNF and CGNF,

(ii) characterizing the set of all optimal flow solutions.

III. SUFFICIENT CONDITION: PARETO POINTS

In this section, the objective is to derive a sufficient con-

dition under which CGNF and GNF are equivalent. Define

P as the set of all vectors pn for which there exists a vector

pe satisfying (4b), (4c), and (4d). The set P and P ∩ B
are referred to as injection region and box-constrained

injection region, respectively.

Definition 4: Consider an arbitrary set S ∈ R
n together

with a point x ∈ S. The point x is called Pareto if there does

not exist another point y ∈ S that is less than or equal to x

entry-wise. x ∈ S is called an interior point if S constrains

a ball around this point. x ∈ S is called a boundary point

if it is not an interior point.

It is easy to show that a Pareto point is a boundary

point, but the converse statement is not always true. In what

follows, we will prove that the equivalence of GNF and

CGNF can be related to the Pareto points of the injection

region.

Theorem 1: Let p∗
n denote the unique optimal injection

vector for GNF (or CGNF). If p∗
n is a Pareto point of the

injection region P, then CGNF is equivalent to GNF.

Proof: To prove by contradiction, assume that p̂∗
e is an

optimal flow vector for CGNF that is not feasible for GNF.

Define a new flow vector p̂c
e as follows:

p̂c
ij = p̂∗ij, ∀(i, j) ∈ ~E (6a)

p̂c
ji = fij(p̂

∗
ij), ∀(i, j) ∈ ~E (6b)

Let p̂c
n denote the injection vector corresponding to p̂c

e. Since

p̂∗ji = fij(p̂
∗
ij) for every (i, j) ∈ ~E , it can be concluded that

p̂c
n ≤ p∗

n. On the other hand, we have p̂c
n 6= p∗

n because p∗
e

was assumed not to be feasible for GNF. Since p̂c
n belongs

to P by design, the point p∗
n cannot be a Pareto point of P

due to the relation p̂c
n ≤ p∗

n. This contradiction completes

the proof.

Two examples will be provided below to elaborate on

the result of Theorem 1. For simplicity in developing the

technical results and with no loss of generality, it is assumed

throughout the paper that there is at most one edge between

every two nodes. But the examples offered here consider

multiple edges between two nodes.

Example 1: Consider the 2-node graph G depicted in Fig-

ure 1(a). Let (p
(1)
12 , p

(1)
21 ) and (p

(2)
12 , p

(2)
21 ) denote the flows

associated with the first and second edges of the graph,

respectively. Consider the GNF problem

minimize f1(p1) + f2(p2) (7a)

subject to p
(i)
21 =

(

p
(i)
12 − 1

)2

− 1 i = 1, 2 (7b)

− 0.5 ≤ p
(1)
12 ≤ 0.5 (7c)

− 1 ≤ p
(2)
12 ≤ 1, (7d)

p1 = p
(1)
12 + p

(2)
12 (7e)

p2 = p
(1)
21 + p

(2)
21 (7f)

with the variables p1, p2, p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 , where f1(·)

and f2(·) are both convex and monotonically increasing.

The CGNF problem corresponding to this problem can be

obtained by relaxing (7b) to p
(i)
21 ≥ (p

(i)
12 − 1)2 − 1 and

adding the bounds p
(1)
21 ≤ 1.52 − 1 and p

(2)
21 ≤ 22 − 1.

The injection regions of GNF and CGNF problems (without

the box constraint pn ∈ B) are drawn in Figure 1(b). The

green area is the injection region P of the GNF problem,

and the union of the green and blue areas is the injection

region of the CGNF problem. It can be observed that every

point on the lower curvy boundary of the feasible set is a

Pareto point. Therefore, if the box B induced by the lower

and upper constraints on p1 and p2 intersects with any part

of the lower boundary of the green area, CGNF always finds

optimal flow vectors for GNF, leading to the equivalence

of GNF and CGNF (see Figures 3(a) and (b) for possible

scenarios).

Example 2: Theorem 1 states that CGNF and GNF are

equivalent if the optimal injection vector is Pareto. As stated

before, a Pareto point lies on the boundary of the injection

region. A question arises as to whether the condition “Pareto

point” can be replaced by “boundary point” in Theorem 1.
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Fig. 1: (a) The 2-node graph G studied in Example 1; (b): injection region P for the 2-node graph G in Example 1.
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Fig. 2: The 4-node graph G studied in Example 2.
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Fig. 3: (a) Injection region of the subgraph G1 in Example 2; (b): injection region of the subgraph G2 in Example 2.

We will provide an example here to show that the opti-

mal injection being a boundary point does not necessarily

guarantee the equivalence of GNF and CGNF. To this end,

consider the 4-node graph G given in Figure 2. This graph

can be decomposed into two subgraphs G1 and G2, where

each subgraph has the same topology as the 2-node graph

studied in Example 1. Assume that the flow over the line

(2, 3) is restricted to zero, by imposing the constraints

pmin
23 = pmax

23 = pmin
32 = pmax

32 = 0. This implies that the link

(2, 3) is redundant, whose removal splits the graph G into

two disjoint subgraphs G1 and G2. Accordingly, the vector

p∗
n can be broken down into two parts as

p
∗
n = [p∗

n(G1)T p
∗
n(G2)T]T (8)

where p∗
n(G1) and p∗

n(G2) denote the optimal values of the

sub-vectors [p1 p2]
T and [p3 p4]

T , respectively. Let P(G1) ∈
R

2 and P(G2) ∈ R
2 denote the injection regions associated

with the subgraphs G1 and G2, respectively. Note that P(G1)
and P(G2) could both resemble the green area in Figure 1(b).

We make two assumptions here:

• Assumption 1: As demonstrated in Figure 3(a), the box

constraints on p1 and p2 are such that p∗
n(G1) becomes

a Pareto point located on the lower boundary of P(G1).
In this case, it is guaranteed from Theorem 1 that if

CGNF is solved just over G1, it always finds feasible

flows for this subgraph.

• Assumption 2: As demonstrated in Figure 3(b), the box

constraints on p3 and p4 are such that p∗
n(G2) becomes

an interior point of P(G2), corresponding to the lower

left corner of the box. In this case, assume that if CGNF

is solved just over G2, it cannot always find feasible

flows for this subgraph (see [22] for such an example).

Since the link (2, 3) is not allowed to carry any flow, it is easy

to show that CGNF solved over G finds feasible flows for the

lines between nodes 1 and 2, but may result in wrong flows

for the lines between nodes 3 and 4. Hence, CGNF and GNF

are not equivalent. On the other hand, it is straightforward

to inspect that P is the product of two regions as

P = P(G1) ×P(G2) (9)



Now, since p∗
n(G1) is on the boundary of P(G1) but p∗

n(G2)
is in the interior of P(G2), it can be deduced that

• p∗
n is on the boundary of the injection region P.

• p∗
n is not a Pareto point of the injection region P.

In summary, although p∗
n is a boundary point for G, CGNF

is not equivalent to GNF. This is due to the connection of a

well-behaved subgraph G1 to a problematic subgraph G2 via

a redundant link with no flow. It will be shown in the next

section that whenever CGNF fails to work for an arbitrary

graph G, the network can be decomposed into two subgraphs

G1 and G2 such that the flows over G1 are all feasible.

IV. NETWORK DECOMPOSITION

So far, we have shown that if the optimal injection vector

is a Pareto point, GNF is equivalent to CGNF. In this section,

we consider the case where the optimal injection vector is not

necessarily Pareto but lies on the boundary of the injection

region. The objective is to prove that the network G can

be decomposed into two subgraphs G1 and G2 such that:

(i) the flows obtained from CGNF are optimal (feasible) for

GNF for those lines in G1 and between G1 and G2, (ii) the

flows over the lines between G1 and G2 all hit their limits at

optimality.

Since fi(pi) can be approximated by a differentiable

function arbitrarily precisely, with no loss of generality,

assume that fi(pi) is differentiable with a nonzero derivative

for every i ∈ N . Let p∗
n denote the unique optimal injection

vector for both GNF and CGNF. Moreover, let λ∗
i and λ̄∗

i

denote any optimal Lagrange multipliers corresponding to

the constraints pmin
i ≤ pi and pi ≤ pmax

i in the convex CGNF

problem. Define

λ∗
i = f ′

i (p
∗
i ) − λ∗

i + λ̄∗
i , ∀i ∈ N (10)

Definition 5: Define N1 as the set of all vertices i ∈ N
such that λ∗

i > 0, and N2 as the complement of N1 in the

set N . Also, define G1 and G2 as the subgraphs of G induced

by the vertex subsets N1 and N2, respectively. Let E1 and

E2 denote the edge sets of G1 and G2.

Theorem 2: Let (p∗
n, p∗

d) and (p∗
n, p̂∗

d) denote arbitrary

globally optimal solutions of GNF and CGNF problems,

respectively. The following relations hold:

p∗ij = p̂∗ij , ∀(i, j) ∈ E1 (11a)

p∗ji = p̂∗ji = pmax
ji , ∀(i, j) ∈ (N1 ×N2) ∩ E (11b)

Proof: Since every solution of GNF is a solution of

CGNF as well, (p∗
n, p∗

d) and (p∗
n, p̂∗

d) are both solutions

of CGNF. Now, it follows from the duality theorem that

(p∗
n, p∗

d) and (p∗
n, p̂∗

d) are both minimizers of the optimiza-

tion problem

minimize
pn,pe

∑

i∈N

λ∗
i pi (12a)

subject to pi =
∑

j∈N(i)

pij ∀i ∈ N (12b)

fij(pij) ≤ pji ∀(i, j) ∈ ~E (12c)

pmin
ij ≤ pij ≤ pmax

ij ∀(i, j) ∈ E (12d)

Substituting (12b) into (12a) yields that (p∗ij, p
∗
ji) and

(p̂∗ij, p̂
∗
ji) are both optimal solutions of the 2-variable op-

timization problem

minimize
(pij ,pji)∈R2

λ∗
i pij + λ∗

jpji (13a)

subject to fij(pij) ≤ pji (13b)

pmin
ij ≤ pij ≤ pmax

ij (13c)

pmin
ji ≤ pji ≤ pmax

ji (13d)

for every (i, j) ∈ ~E . Since the objective function of the above

optimization problem is linear, two observations can be made

here:

• The inequality (13b) must be binding at optimality as

long as λ∗
i > 0 or λ∗

j > 0.

• (pij , pji) becomes equal to (pmin
ij , pmax

ji ) at optimality

if λ∗
i > 0 and λ∗

j ≤ 0.

• (pij , pji) becomes equal to (pmax
ij , pmin

ji ) at optimality

if λ∗
j > 0 and λ∗

i ≤ 0.

The proof follows immediately from the above properties.

Theorem 2 states that CGNF finds correct values for the

flows of those lines inside G1 and between G1 and G2. In

addition, the flows over the lines between G1 and G2 all hit

their limits at optimality.

Corollary 1: Let (p∗
n, p∗

d) and (p∗
n, p̂∗

d) denote arbitrary

globally optimal solutions of GNF and CGNF problems,

respectively. If there exists a vertex i ∈ N such that p̂∗i >

pmin
i , then p∗

d and p̂∗
d must be identical in at least one entry.

Proof: Consider a vertex i ∈ N such that p̂∗i > pmin
i .

It follows from (10) that λ∗
i is positive. Now, Definition 5

yields that the subgraph G1 is nonempty. The proof is an

immediate consequence of Theorem 2.

Definition 6: A line (i, j) ∈ E of the network G is called

congested if the GNF problem has a solution (p∗
n, p∗

d) such

that p∗ij is equal to pmax
ij or p∗ji is equal to pmax

ji .

Corollary 2: Assume that there exists a vertex i ∈ N such

that p̂∗i > pmin
i . If the network G has no congested line, then

GNF and CGNF are equivalent.

Proof: Due to the proof of Corollary 1, the set N1

is nonempty. On the other hand, since the network G has

no congested line by assumption, it can be concluded from

Theorem 2 that (N1 ×N2) ∩ E is an empty set. Therefore,

N1 must be equal to N , which implies the equivalence of

GNF and CGNF due to Theorem 2.

Corollary 2 states that whenever CGNF fails to find

feasible flows for all lines of the network, some lines must

be congested at optimality.

V. CHARACTERIZATION OF FLOW VECTORS

In this section, we aim to find the set of all optimal flow

vectors for GNF. We fully characterize this set and show that

it may be nonconvex and disconnected.



Definition 7: Define fji(pji) = f−1
ij (pji) for every

(i, j) ∈ ~E . This makes the flow constraint (4c) equivalent to

pji = fij(pij), ∀(i, j) ∈ E (14)

where fij(·) is convex and monotonically decreasing.

Before presenting our next result in its full generality, we

illustrate the key ideas in two examples below.

Example 3: Consider the graph G given in Figure 4(a), which

consists of one cycle and four nodes. Assume that CGNF

and GNF may not be equivalent. Let (p∗
n, p∗

e) denote an

arbitrary solution of GNF, where p∗
n is obtained from CGNF

and p∗
e is to be found. The objective of this example is to

demonstrate that all optimal flows in the network can be

uniquely characterized in terms of a single flow. Consider

the unknown flow p∗12. One can write:

p∗23 = p∗2 − f12(p
∗
12) (15a)

p∗34 = p∗3 − f23 (p∗2 − f12(p
∗
12)) (15b)

p∗41 = p∗4 − f34 (p∗3 − f23 (p∗2 − f12(p
∗
12))) (15c)

It follows from the above equations that all flows in the net-

work can be cast as functions of p∗12, and in addition p12 =
p∗12 is a solution to the level-set problem F (p12, p

∗
2, p

∗
3, p

∗
4) =

p∗1, where F (p12, p2, p3, p4) is defined as

p12 + f41 (p4 − f34 (p3 − f23 (p2 − f12(p12)))) (16)

It can be verified that

• Due to (15), each of the flows p∗23, p
∗
34, p

∗
41 is a concave,

increasing function of p∗12. Hence, the flow constraints

pmin
ij ≤ p∗ij ≤ pmax

ij , (i, j) ∈ ~E , can all be equivalently

translated into a single constraint p̃min
12 ≤ p∗12 ≤ p̃max

12 ,

for some constants p̃min
12 and p̃max

12 .

• The function F (p12, p2, p3, p4) is convex (but not nec-

essarily monotonic) with respect to its argument p12.

As illustrated in Figure 4(b), the level-set problem

F (p12, p
∗
2, p

∗
3, p

∗
4) = p∗1 has up to two disjoint solutions,

and each or both of them could be optimal flows for GNF,

depending on which one of the level-set solutions satisfies

the constraint p̃min
12 ≤ p∗12 ≤ p̃max

12 .

Example 4: Consider the graph G given in Figure 5(a), which

consists of two cycles and four nodes. Let (p∗
n, p∗

e) denote

an arbitrary solution of GNF, where p∗
n is obtained from

CGNF and p∗
e is to be found. The objective of this example

is to demonstrate that all optimal flows in the network can

be uniquely characterized in terms of two flows. Consider

the unknown flows p∗12 and p∗13. One can write

p∗24 = p∗2 − f12(p
∗
12) (17a)

p∗34 = p∗3 − f13(p
∗
13) (17b)

p∗14 = p∗1 − p∗12 − p∗13 (17c)

It follows from the above equations that all flows in the

network can be cast as functions of (p∗12, p
∗
13), and in addition

(p12, p13) = (p∗12, p
∗
13) is a solution to the level-set problem

F (p12, p13, p
∗
1, p

∗
2, p

∗
3) = p∗4, where

F (p12, p13, p1, p2, p3) = f24 (p2 − f12(p12))

+ f34 (p3 − f13(p13))

+ f14 (p1 − p12 − p13)

(18)

is a convex function with respect to (p12, p13) but not

necessarily monotonic. On the other hand, the equations

in (17) can be used to translate the box constraints on all

flows to certain constraints only on p∗12 and p∗13:

p̃min
12 ≤ p∗12 ≤ p̃max

12 (19a)

p̃min
13 ≤ p∗13 ≤ p̃max

13 (19b)

pmin
14 ≤ p∗1 − p∗12 − p∗13 ≤ pmax

14 (19c)

for some numbers p̃min
12 , p̃max

12 , p̃min
13 , p̃max

13 . Let C1 and C2

denote the sets of all points (p∗12, p
∗
13) satisfying the level-set

problem F (p∗12, p
∗
13, p

∗
1, p

∗
2, p

∗
3) = p∗4 and the reformulated

flow constraints (19), respectively. The set of all optimal flow

solutions (p∗12, p
∗
13) can be expressed as C1 ∩ C2, where C1

is the boundary of a convex set (corresponding to F (·)) and

C2 is a polytope. As illustrated in Figure 5(b), C1 is the

boundary of a convex set, and therefore its intersection with

a polytope (e.g., a box) could form up to 4 disconnected

components. In summary, the optimal flow vectors for GNF

may constitute a nonconvex infinite set, consisting of as high

as 4 disconnected components.

A. Algebraic Characterization of Flows

It is straightforward to show that if the graph G is a

tree, the optimal flow vector is unique and can be easily

obtained from the optimal injection vector p∗
n. Hence, the

main challenge is to deal with mesh flow networks. To this

end, consider an arbitrary spanning tree of the m-node graph

G, denoted as Gt. Let pdt denote a sub-vector of the semi-

flow vector pd associated with those edges of G that do not

exist in Gt.

Lemma 2: There exist convex or convex monotonic func-

tions Fij : R
|E| → R, for every (i, j) ∈ E , for which the

following statements hold:

1) Given every arbitrary feasible solution (pn, pe) of the

GNF problem, the relations

pij = Fij(pdt, p1, p2, ..., pm−1), (i, j) ∈ E (20)

are satisfied.

2) The function F (pdt, p1, p2, ..., pm−1) defined as
∑

j∈N(m)

Fmj(pdt, p1, p2, ..., pm−1) (21)

is convex.

Proof: The proof is in line with the technique used in

Examples 3 and 4. The details are omitted for brevity.

Definition 8: Define C1 as the set of all vectors pdt

satisfying the level-set problem F (pdt, p
∗
1, p

∗
2, ..., p

∗
m−1) =



1 2

34

p1 p2

p3p4

p
∗

12

p
∗

23

p
∗

34

p
∗

41
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∗
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F (p12, p
∗

2
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3
, p∗

4
)

(b)

Fig. 4: (a) The 1-cycle graph studied in Example 3; (b): visualization of the level-set problem used to find optimal flows

for Example 3.
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Fig. 5: (a) The 2-cycle graph studied in Example 4; (b): visualization of the level-set problem used to find optimal flows

for Example 4.

p∗m. Also, define C2 as the set of all vectors pdt satisfying

the inequalities

pmin
ij ≤ Fij(pdt, p

∗
1, p

∗
2, ..., p

∗
m−1) ≤ pmax

ij , (i, j) ∈ E
(22)

Theorem 3: A flow vector p∗
e is optimal for GNF if and

only if

p
∗
dt ∈ C1 ∩ C2 (23a)

p∗ij = Fij(p
∗
dt, p

∗
1, p

∗
2, ..., p

∗
m−1), (i, j) ∈ E (23b)

Proof: The proof is based on Lemma 2 and the

technique used in Examples 3 and 4. The details are omitted

for brevity.

Theorem 3 states that: (i) the set of optimal flow vectors

can be characterized in terms of the unique optimal injection

vector as well as the flow sub-vector pdt, (ii) the set of

optimal flow sub-vectors p∗
dt is the collection of all points in

the intersection of C1 and C2. Moreover, in light of Lemma 2,

C1 is the boundary of a convex set. Although C2 was shown

to be a polytope in Examples 3 and 4, it is non-convex in

general. The problem of finding a sufficient condition on G to

guarantee the convexity of C2 is left for future work. Since C1

is the boundary of a convex set, it occurs that the intersection

of C2 with C1 may lead to as high as 2|E|−|N|+1 disconnected

components, all lying on the boundary of a convex set (note

that |E| − |N | + 1 is the size of the vector pdt).

VI. CONCLUSIONS

The network flow problem appears in many real-world

applications and plays a key role in engineering, computer

science, operation research, and sociology, among others. In

this paper, we consider a nonlinear version of the classical

network flow problem, referred to as generalized network

flow (GNF), where there is an injection at each node, leading

to two incoming and outgoing flows over each line. We

assume that the flows over each line are related to one

another via a nonlinear function. Under the assumptions of

convexity and monotonicity of cost and flow functions, we

have shown in our recent work that although GNF is highly

nonconvex, optimal injections (not necessarily optimal flows)

can be found by means of a convexified generalized network

flow (CGNF) problem. The current paper investigates how

optimal flows may be obtained, by developing three results.

First, we show that CGNF produces optimal flows for GNF,

as long as the optimal injection vector is a Pareto point.

Second, we prove that if CGNF returns a wrong (infeasible)

flow vector for GNF, then the network can be decomposed

into two subgraphs such that: (i) the flows found by CGNF

for one of the subgraphs are all correct, and (ii) the flows

obtained by CGNF for the lines between the subgraphs are

all correct and at their limits. Third, we characterize the set of

all optimal flow vectors. In particular, we show that this set

may be infinite, non-convex, and disconnected, but belongs

to the boundary of a convex set.
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