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Abstract

State estimation plays a key role in guaranteeing
the safe and reliable operation of power systems. This
is a complex problem due to the noisy and unreliable
nature of the measurements that are obtained from
the power grid. Furthermore, the laws of physics
introduce nonconvexity, which makes the use of efficient
optimization-based techniques more challenging. In
this paper, we propose to use graph convolutional
neural networks (GCNNs) to learn state estimators
from data. The resulting estimators are distributed
and computationally efficient, making them robust to
cyber-attacks on the grid and capable of scaling to
large networks. We showcase the promise of GCNNs
in distributed state estimation of power systems in
numerical experiments on IEEE test cases.

1. Introduction

Power system state estimation aims to recover the
system’s current underlying voltage phasors, given
supervisory control and data acquisition (SCADA)
measurements, PMU measurements, and a system
model based on assumed parameters [1]. State
estimation not only helps prevent failures in the
power network, but also underpins every aspect of
real-time power system operation and control. The
major challenges of state estimation arise from the
fact that power system measurements are riddled with
noise and corrupt data, and subject to missing values
or cyber-attacks. Furthermore, due to the laws
of physics, the measurement values are nonconvex
functions of voltages, which limit the application of
traditional convex optimization techniques that enjoy
strong theoretical and performance guarantees. The
most commonly implemented and well-studied method
for state estimation is the weighted least squares (WLS)
method, which is robust against Gaussian measurement
noise. However, the performance of WLS deteriorates
significantly in the presence of gross measurement

errors or corrupt data. Moreover, efficient local-search
algorithms such as Newton’s method may not converge
to the true state due to the existence of spurious
local minima. In order to deal with gross errors,
several different methods based on least absolute value
minimization have been proposed [2–8]. To overcome
nonconvexity, a convex relaxation based on semidefinite
programming is proposed in [9] and [10]; and a method
for finding a region around the global minimum that
contains no spurious local minima is developed in [11].

Graph neural networks (GNNs) have emerged
as effective learning architectures in distributed
problems [12–14]. Consisting of a cascade of layers,
each of which applies a graph filter followed by
a nonlinear activation function, they have shown
promising performance in a myriad of tasks involving
robotics, distributed control, sensor networks and
communications. The success of GNNs in these tasks
can be traced back to their distributed nature and
their ability to exploit the underlying data structure.
More concretely, they have exhibited strong scalability
properties as well as robustness to changes in the
underlying graph support [15].

In this paper, we propose to use a specific type
of GNN, namely Graph Convolutional Neural Network
(GCNN), for power system state estimation based on
SCADA and PMU measurements. GCNNs leverage the
underlying graph structure of the power grid to compute
the estimates by exchanging information among buses
that share a line. This leads to a distributed architecture
that will be shown to be robust to cyber-attacks in the
power grid. In addition, GCNNs are computationally
efficient, resulting in estimators that scale up to larger
power networks. GCNNs can be trained in a supervised
manner by minimizing the mean square loss, and then
are shown to generalize well to unseen measurement
scenarios.

In this paper, we introduce a comprehensive
framework for utilizing learning architectures in the
problem of power system state estimation. This was first
done in [16] by using an EdgeNet [17]. EdgeNets have



the drawback of requiring too many parameters (scaling
with the size of power network), and thus demanding
very large training sets. Furthermore, in [16] only
one-hop information is considered on each layer. We
propose to use GCNNs based on finite impulse-response
(FIR) graph filters (graph convolutions) that scale better
and train faster. By using repeated communications
with one-hop neighbors, the proposed GCNN method is
also capable of including information from further away
neighbors, leading to better estimates. The contributions
of this paper can be summarized as follows:

• We use GCNNs to learn power system state estimators
from SCADA measurement and PMU measurements.

• We discuss how the properties of the GCNN make
them sensible learning architectures for this problem.
In particular, we focus on the distributed nature of
the architecture, its computational efficiency and its
scalability.

• Through extensive numerical experiments, we
showcase the satisfactory performance of state
estimators learned from GCNNs.

• We also show how the distributed nature of GCNNs
makes the resulting state estimators robust to
cyber-attacks.

2. State Estimation

Consider a power grid described by a graph G =
{B,L} where the set of nodes B = {b1, . . . , bN}
corresponds to N buses in the grid and the edge set
L = {c1, . . . , cM} ⊆ B × B corresponds to the lines
connecting the buses, i.e. (bi, bj) ∈ L if and only if there
is a line connecting bus bi with bus bj . The set of buses
connected to each bus bi is denoted by the neighborhood
set Ni = {bj ∈ B : (bj , bi) ∈ L}. It is noted that, given
the bidirectional nature of power lines, the resulting
graph G is undirected, i.e. (bi, bj) ∈ L ⇔ (bj , bi) ∈ L.
The connectivity of the network can also be captured by
the incidence matrix B ∈ RN×M , defined as

Bij =


−1 if cj = (i, k) for some k ∈ B
1 if cj = (k, i) for some k ∈ B
0 otherwise

The state of a power system is captured by the
complex-valued voltages at the network buses, which
can be characterized by their voltage magnitudes and
voltage angles at any given time. Denote by vi ∈ C
the complex voltage at bus bi ∈ B, with magnitude

|vi| ∈ R+ and angle ∡vi ∈ [−π, π). Analogously,
denote by si ∈ C the complex power injection into
node bi ∈ B, with the active power denoted as pi ∈ R
and the reactive power denoted by qi ∈ R, such that
si = pi + jqi, where j is the imaginary unit. Let
v, s ∈ CN and p,q ∈ RN denote the vectors of nodal
voltages, complex powers, active powers and reactive
powers, respectively. In a slight abuse of notation, the
vectors |v| ∈ RN and ∡v ∈ RN are defined in such a
way that [|v|]i = |vi| and [∡v]i = ∡vi.

The physical characteristics of the grid are captured
by an admittance matrix. More specifically, each bus
bi is accompanied by a nodal shunt admittance ŷi =
ŷRe
i + jŷImi , while each line (bi, bj) is represented by

a Π-model with a series admittance ỹij = ỹRe
ij + jỹImij

and the total shunt admittance y̌ij = y̌Re
ij + jy̌Imij . These

values can be conveniently captured in the admittance
matrix Y ∈ CN×N defined as

[Y]ij =


ŷi +

∑
k:bk∈Ni

(ỹik + y̌ik/2) if i = j,

−ỹij if (i, j) ∈ L,
0 otherwise.

The notation [M]ij denotes the (i, j) entry of a matrix
M. Note that the admittance matrix can be decomposed
into its real and imaginary parts Y = YRe + jYIm for
YRe ∈ RN×N and YIm ∈ RN×N .

The voltage and powers at each bus are related via
the power flow equations. More specifically, for each
bus bi ∈ B, we have

pi=

N∑
j=1

|vi||vj |
(
yRe
ij cos∡vij + yImij sin∡vij

)
(1a)

qi=
N∑
j=1

|vi||vj |
(
yRe
ij sin∡vij − yImij cos∡vij

)
(1b)

where yRe
ij = [YRe]ij and yImij = [YIm]ij are

the real and imaginary parts of the admittance matrix,
respectively.

The problem of state estimation in power grids
consists in obtaining a complete characterization
of the bus voltages v ∈ CN from noisy and
tainted measurements given a known system model.
To streamline the presentation and without loss of
generality, we begin by assuming that the measurements
are obtained from the SCADA system, and include

voltage magnitude |̂v|, active power p̂ and reactive
power q̂ at all buses, where the notation ·̂ is used to
indicate the potential inaccuracy in the measurement



values (see Section 4.5 for incomplete measurements,
PMU measurements as well as the case with line
measurements). In other words, the method to be
developed can handle any arbitrary measurement set
but to simplify the presentation we explain the ideas
for a canonical measurement set. Putting all available
measurements into a vector x̂, one can write

x̂ = mx(v) + η + ω (2)

where mx : CN → R3N is the measurement function,
which is based on the power flow equation (1) for
power measurements as well as an operator that outputs
the magnitude of a vector v for voltage magnitude
measurements. The term η ∈ R3N models the random
measurement noise and ω ∈ R3N models the sparse
gross errors (corrupt data) that can be potentially caused
by cyber-attacks. An estimator is then defined as a
function Φ : RN × RN × RN → RN × RN that takes
the measurements |̂v|, p̂ and q̂ and returns the estimates
of the voltage magnitudes |v| and voltage angles ∡v at
all buses. The performance of the estimator is evaluated
by the mean squared error (MSE).

In what follows, GCNNs are leveraged to
parametrize the estimator Φ. Available data can
then be used to train the GCNN (i.e. choose the
appropriate parameter values).

3. Graph Neural Networks

Given a graph G = {B,L}, a graph signal with
F features can be conveniently described by a matrix
X ∈ RN×F where the ith row corresponds to the feature
values at the ith node xi ∈ RF . Each column xf ∈ RN

collects the f th feature entry of the signal across all
nodes.

Describing the graph signal as a matrix X ∈ RN×F

is mathematically convenient, but loses track of the
connection between the signal values and the underlying
graph support, i.e. there is no information about the
graph in the matrix X. To recover this information, a
graph matrix description (GMD) S ∈ RN×N is used
[18]. This matrix must share the sparsity pattern of
the underlying graph, i.e. [S]ij = 0 if (bj , bi) /∈ L
for i ̸= j. Common choices for the GMD include the
Laplacian, Markov and adjacency matrices of the graph.
The GMD can be used to relate the graph signal X to
the underlying graph support, by defining the most basic
linear operation between graph signals, S : RN×F →
RN×F [18]. Namely, Z = S(X) = SX so that for each
(i, f) element of Z, we have

[Z]if =
∑

j:bj∈Ni∪{bi}

[S]ij [X]jf . (3)

The equality is given by the definition of matrix
multiplication. Note, however, that due to the sparsity
pattern of S, the summation is only over the buses
that share a connection with bus bi. This fact implies
that pre-multiplying a graph signal X by S leads to a
distributed operation, where each node can compute its
output by relying only on the information shared by their
one-hop neighbors. Thus, SX compactly represents
the linear, distributed operation of sharing information
between neighbors and linearly combining it.

The operation in (3) is the basic block for building
linear graph filters. In particular, a finite impulse
response (FIR) graph filter H : RN×F → RN×G is
defined as:

H(X;S,H) =

K∑
k=0

SkXHk (4)

where Hk ∈ RF×G are known as the filter coefficients
or filter taps. The set H = {Hk | k = 0, . . . ,K}
contains the (K + 1) filter taps that, together with the
GMD S, completely characterize the graph filter. This
filter is also known as a graph convolution due to its
sum-and-shift nature [12].

The graph filter in (4) is also a distributed operation.
Note that the pre-multiplication of X by Sk actually
entails k repeated exchanges with one-hop neighbors.
The post-multiplication by Hk, on the other hand, only
carries out a linear combination of the rows of X which
correspond to information contained by each node and
does not entail any exchanges between nodes. It is worth
emphasizing that equation (4) represents a compact
mathematical notation for describing the sharing of
information (and posterior linear combination) among
nodes, but it does not mean that the powers of S are
required to be able to compute the output. Furthermore,
the nodes do not even require complete knowledge of S,
since they only need to exchange information with their
immediate neighbors.

The graph filter in (4) is linear in the input X and,
therefore, it is only able to capture linear relationships
between input and output. Nonlinear relationships can
be captured by means of a GCNN Φ : RN×F → RN×G,
which is defined as a cascade of L layers (blocks),
each of which applies a graph filter (4) followed by a
nonlinear and pointwise activation function

Φ(X;S,H) = XL, Xℓ = σ
(
Hℓ(Xℓ−1;S,Hℓ)

)
(5)

for ℓ = 1, . . . , L and where, in an abuse of notation,
[σ(Z)]ij = σ([Z]ij) denotes the entrywise application
of a scalar activation function σ : R → R. Note that
X0 = X is the input and XL is the output, which



entails that F0 = F and FL = G. In (5), the set H =
{Hℓ | ℓ = 1, . . . , L} contains the filter taps of all layers
and, given the GMD S, it completely characterizes the
representation space of the GCNN.

The GCNN (5) inherits the distributed nature from
graph filters, since the point-wise activation functions
do not involve any operation on the GMD. GCNNs
of this form also exhibit the properties of permutation
invariance, Lipschitz continuity to changes in the GMD
S [19], and enhanced processing capabilities with
respect to linear graph filters [15]. These properties play
a key role in their ability to transfer to new scenarios and
scale up to larger graphs [12].

The number of layers L, the order Kℓ of the filters
and the number of features Fℓ at each layer, as well
as the pointwise activation function σ, are all design
choices and are commonly known as hyperparameters.
While several methods for selecting hyperparameters
are available, they largely remain a choice of the
practitioner. The specific filter taps H, on the other
hand, are usually learned from available data by a
procedure known as training. During training, a
proxy optimization problem is solved to find the set
of parameters (filter taps) that minimize some loss
function. Typically, this optimization problem is
solved by means of some algorithm based on stochastic
gradient descent (SGD), thus requiring that the loss
function be differentiable. Note that the total number of
parameters is

∑L
ℓ=1 KℓFℓFℓ−1, independent of the size

of the graph N .
Unlike traditional optimization problems, the goal

is not necessarily to find the minimum of the training
optimization problem, but rather to use it as a
guide in finding suitable parameters that will perform
adequately on new data, unobserved during training
(generalization) [20, Sec. 8.1]. Therefore, the
performance evaluation of the trained algorithm is not
determined by how low the value of the loss function
is, but rather how good the algorithm is at solving a
task (in this case, state estimation) on data that was not
observed during training. This implies that the training
of the algorithm is carried out in a centralized manner
(which is actually required, due to parameter sharing),
without necessary violating the distributed nature of the
algorithm at evaluation time.

4. GCNN for Power System State
Estimation

In this section, we will first analyze a simplified
version of state estimation that utilizes only nodal
measurements from the grid, and assumes that all of the
data are available. We propose a GCNN for this purpose

(called GCNN-nodal), explain the training process, and
study the performance of the trained neural network
in the presence of noise and cyber-attacks. Then, we
extend this framework to the full state estimation that
utilizes nodal, line and PMU measurements. For the
full state estimation, we examine two different GCNNs
that use different types of GMD for the line data
(GCNN-hodgeLap and GCNN-edgeLap).

4.1. GCNN for Nodal Measurements without
Missing values

The neural network that we design consists of three
graph convolutional layers and one simple linear filter.
The first graph signal, essentially the input to the neural
network X0 ∈ RN×3, consists of three features (F0 =
3), one for each type of nodal measurements. The
number of features for the output signal is two (F4 = 2)
to account for the estimate of voltage magnitudes and
voltage angles. The number of features for the other
graph signals in between the layers is a design choice.
The specific value of these numbers will be stated later
in the paper.

As mentioned earlier, common choices for the GMD
S include the Laplacian, Markov and adjacency matrices
of the underlying graph. These matrices are able to
capture the connectivity of the network but fail to
capture the admittance values of the lines which directly
affect the power system measurements. In the earlier
work [21], the authors used the Gaussian kernel of the
admittance matrix as the GMD. In this paper, instead of
having a single GMD, we propose using two GMDs: the
real and imaginary parts of Y.

S1 = Re(Y), S2 = Im(Y) (6)

By doing this, we eliminate the ambiguity caused by
the Gaussian kernel, i.e., two admittance matrices with
different real and imaginary parts can still have the same
Gaussian kernel.

Now, the graph convolutional layers of our proposed
GCNN will be updated from the form in (5) to the
following form which incorporates multiple GMDs or
multiple edge features

Xℓ = σ

(
2∑

e=1

K∑
k=0

Sk
eXℓ−1H

e
ℓk

)
ℓ = 1, 2, 3. (7)

Here, the choice of the nonlinear activation function
is the hyperbolic tangent. Also, the superscript k
on the GMD denotes the matrix power, whereas the
superscript e on the filter matrix denotes the additional
index accounting for multiple GMDs [17]. Finally, X3



is passed through a simple linear filter H4 ∈ RF3×2 in
order to output the state estimate X∗ ∈ RN×2:

X∗ = X3H4 (8)

4.2. Training of GCNN

We construct datasets based on the IEEE power
system test cases. Each dataset consists of multiple
samples of randomly generated voltage magnitudes and
angles (accounting for the true underlying state), and
nodal measurements at all buses. Voltage magnitudes
are sampled from a normal distribution with mean 1
and standard deviation 0.02, whereas voltage angles (in
degrees) are sampled from a normal distribution with
mean 0 and standard deviation 10. The measurement
values are computed by using the sampled voltages
as inputs to equation (1), which is then added with
Gaussian noise. This leads to a labeled dataset, of which
81% is used for training, 9% for validation and the rest
for testing.

During training, the objective is to minimize the
MSE loss function between the estimate and the true
voltages in the training set. The filter taps of the
GCNN are updated by taking steps in the gradient
descent direction using ADAM, an adaptive learning
rate optimization algorithm for training deep neural
networks [22]. The gradient is estimated using batches
of 20 samples, and the whole training procedure
is repeated for 40 epochs. Every 5 training steps
(parameter updates), a validation stage is run, where the
evaluation measure is computed over the validation set.
The results of the validation stage in Fig. 1 show that the
GCNN-based estimators are indeed learning, improving
their performance.

During testing, the performance of the trained
GCNN is measured by the RMSE, which is defined as
the following

1

ntest

ntest∑
i=1

1√
N

∥X∗
rec −Xtrue

rec ∥ (9)

where X∗
rec is the estimated state in rectangular

coordinates, Xtrue
rec is the true underlying state in

rectangular coordinates and ∥ · ∥ denotes the ℓ2 norm
of the vectorized argument.

4.3. Performance of GCNN for Noisy
Measurements

The performance of a state estimator can be
assessed by computing the root mean squared error
(RMSE) on the test dataset. In order to evaluate
the efficacy of GCNNs, we compare its performance

Figure 1: RMSE values in the validation stage. It is observed
that with the progression of training steps (parameter updates
through ADAM), the RMSE lowers, showing that the GCNNs
are indeed learning.

Table 1: The value of RMSE averaged over five data splits.
The GCNNs were trained using a dataset of 10,000 number
of samples. The following parameter values were used for
GCNN: K = 2, F1 = 100, F2 = 400, F3 = 200. The
following parameter values were used for GraphPrune: F1 =
20, F2 = 10.

Power network WLS GCNN GCNN+WLS GraphPrune
IEEE 39 0.3410 0.0304 0.0229 0.0799
IEEE 57 0.0243 0.0393 0.0238 0.0692
IEEE 118 0.0746 0.0293 0.0552 N/A

to three other methods. The first method is the
nonlinear weighted least squares (WLS) method where
the nominal point in power systems is used as an
initial point of the algorithm. The second method is
the GraphPrune method proposed in [16]. We design
the number of neurons in each layer so that the total
number of parameters matches that of the GCNN.
Finally, we also use the state estimate obtained from
GCNN as an initial point of the WLS method. This
can be viewed as combining neural networks with
optimization. Table 1 summarizes the result for the
numerical experiments. We observe that the proposed
GCNN method outperforms the GraphPrune method
and also provides a good initial point for the WLS
method. For the IEEE 39 system, the GCNN even
outperforms the WLS because in this case, the nominal
point turns out to be a bad initial point for a handful of
states that we wish to recover. For networks larger than
the 57 bus system, an effective neural network could
not be trained for the GraphPrune method using our
computational capacity of 12GB GPU. The observation
is that our method works as well as the traditional WLS
method in a normal scenario without outliers in the
data and that its training can be done much faster than
GraphPrune. One main benefit of our method over the
over methods will be demonstrated next in the case when
a subset of the data is grossly wrong.



(a) WLS method (b) GCNN method

Figure 2: The two plots above summarize the state estimation errors for the WLS method and the GCNN method on the IEEE 57
bus system. In this cyber-attack scenario, the measurement values on four buses (#2, #15, #16, #17) are distorted from the actual
values. The colors represent the log10 applied value of the state estimation error.

Table 2: The average absolute value of filter coefficients. This
particular GCNN was trained on the IEEE 39 bus system using
a datatset of 15,000 number of samples with the following
parameter values: K = 2, F1 = 128, F2 = 512, F3 = 256.

Average filter coeff. magnitudes ℓ = 1 ℓ = 2 ℓ = 3
k = 0 0.155 0.037 0.018
k = 1 1.100 0.040 0.026
k = 2 0.658 0.036 0.025

4.4. Performance of GCNN under
Cyber-attacks

In addition to the high-quality state estimation
under modest values of noise, we observe that the
proposed GCNN is resilient against cyber-attacks that
intentionally distort the measurement values in order
to sabotage the system. To be more specific, even if
a subset of the measurements is attacked, the negative
effect can be isolated in a small neighborhood of the
attacked region, which is not true for the other methods
mentioned above. From numerical experiments, we
observed that GraphPrune achieves some degree of
defense against cyber-attacks but is far less effective
than that of GCNN and has a high training complexity.
In Figure 2, we simulate a cyber-attack scenario by
distorting the measurement values at four buses in the
IEEE 57 bus network. The color of a node in the graph
represents the log10 value of the state estimation error at
that node. For the WLS method, we can observe that the
effect of the attack on four buses perpetrate throughout
the entire network and can potentially derail the system.
However, under the GCNN method, the effect of the
attack does not spread throughout the network and is
isolated around the few nodes that were attacked. This is

due to the distributed nature of GCNNs as discussed in
the previous sections. Furthermore, the GCNN is able to
learn that the signals coming from buses that are closer
to a certain bus have a stronger influence on that bus than
those coming from buses that are further away. This
result can be explained by the magnitudes of the filter
taps, as summarized in Table 2.

4.5. Extension to PMU and Line
Measurements

The GCNN architecture that we introduced
represents a canonical form that uses only nodal
SCADA measurements. For real power system data,
there are also PMU and line power flow measurements.
PMUs are useful devices that can directly measure the
voltage magnitude and phase at a given time. However,
due to their expensive costs, there is still a limited
number of PMUs installed across the grid. For each
node with a PMU measurement, the deviation of the
estimated state from the PMU measurement can be
added as a penalty in the loss function.

Power flows along lines are related to voltages via
the power flow equations below, where pij and qij
denote the active and reactive power flow from node i
to j, respectively.1 For each line, the power flow can be
measured from either side (from-node and to-node) of
the line, and therefore there are a total of four types of

1It is assumed that the shunt admittance values are zero



X0 σ
(∑2

e=1

∑K
k=0 S

k
eX0H

e
ℓk

)
. . . X3

Layer 1

X̄0 σ
(∑K

k=0 S̄
kX̄0H̄ℓk

)
. . . BX̄3

Layer 1

concatenate σ
(∑K

k=0 Ŝ
kX̂Ĥk

)
X̃H̃ X∗

X1

X̄1 X̄3

X̂ X̃

Figure 3: Flow-chart of the GCNN architecture with both node and line measurements. The dots in the chart account for the
multiple layers (layers 2 and 3) that exist before the concatentation step.

line measurements.

pij = −yRe
ij (|vi|2 − |vi||vj | cos(∡vij))

+ yImij |vi||vj | sin(∡vij) (10a)

qij = yImij (|vi|2 − |vi||vj | cos(∡vij))

+ yrealij |vi||vj | sin(∡vij) (10b)

Line power flow measurements are associated with
graph edges and therefore they cannot be incorporated
as nodal features. This issue can be circumvented
by introducing additional nodes to the graph whenever
we have line measurements. To illustrate this better,
consider a line measurement for an active power flowing
from node i to node j, namely pij . We introduce two
new nodes between i and j, named auxiliary nodes k
and m. We connect i to k, k to m, m to j, and then
delete the edge (i, j). The three new lines have the
same impedance values as the original line (i, j). Let
the voltage at node k be equal to vj and the voltage at
node m be equal to vi. Then, the line measurement pij
corresponds to the nodal measurement at the new node
k divided by 2. In other words, line features can be
transformed into nodal features for an expanded graph.
Although this provides a viable approach to include line
measurements, it clearly increases the network size and
therefore also increases the computational complexity
of the training and estimating process. Furthermore,
the topology of the network changes with the specific
set of line measurements at hand, which can make the
approach difficult to implement in practice.

Instead we train a GCNN for line signals, in parallel
to that of node signals, that will be combined with node
signals in the final step. Similar to the graph signal X
defined on nodes, describe the graph signal on lines as
a matrix X̄ ∈ RM×F̄ . The GMD accounting for line
interactions S̄ ∈ RM×M must share the sparsity pattern
of the underlying graph in terms of the edge space. In
this case, [S̄]ij = 0 if lines ci and cj do not share a node.
As indicated in [23], an enticing choice of GMD would

be the linegraph Laplacian, constructed by treating each
edge in the original graph as a node in the new graph
and treating the incidence between edges in the original
graph as an edge in the new graph. We denote this
Laplacian matrix by LLG. Another potential choice of
GMD is the Hodge Laplacian, which can be described
in terms of the graph incidence matrix B:

LHG = BTB (11)

Note that LLG and LHG share the same sparsity pattern.
The neural network for handling line measurements

again consists of three graph convolutional layers. The
first graph signal, essentially the input to the neural
network X̄0 ∈ RM×4, consists of four features (F̄0 =
4), one for each type of line measurements. The number
of features for the second and third layers are design
choices. Now, the graph convolutional layers of our
proposed GCNN will be of the form in (5)

X̄ℓ = σ

 K̄∑
k=0

S̄kX̄ℓ−1H̄ℓk

 ℓ = 1, 2, 3 (12)

where X̄ℓ ∈ RM×F̄ℓ denotes the edge graph signals
with F̄ℓ features and H̄ℓk ∈ RF̄ℓ−1×F̄ℓ denotes the
filter coefficients. As before, the superscript k on the
GMD, S̄, denotes the matrix power. Next, in order
to convert edge signals to node signals, we multiply
X̄3 by the incidence matrix B. Finally, the outputs of
the graph convolutional layers for nodes (i.e., X3) and
edges (i.e., BX̄3) are concatenated along columns and
passed through an additional graph convolutional layer
to produce X̃, which is then passed through a simple
linear filter H̃ ∈ R(F3+F̄3)×2 in order to output the state
estimate X∗ ∈ RN×2.

X∗ = X̃H̃ (13)

The process is summarized as a flow-chart in Figure 3.



(a) 100% nodal measurements

(b) 90% nodal measurements

(c) 80% nodal measurements

(d) 70% nodal measurements

Figure 4: This figure compares the performance of state
estimation for the IEEE 39 bus system between three methods:
GCNN with only nodal measurements (GCNN-nodal), GCNN
with line measurements using the hodge-Laplacian matrix
(GCNN-hodgeLap) and GCNN with line measurements using
the linegraph-Laplacian (GCNN-edgeLap). Each subfigure
plots the RMSE value for a different percentage level (ranging
from 100% to 70%) of available nodal measurements. Each
point in the subfigure denotes the value of RMSE averaged
over five data splits (i.e., five distinct training instances).

4.6. Numerical Simulations on Data with
Missing Values

In this subsection, we will compare the performance
of GCNN-nodal (GCNN with only nodal measurements
from subsection 4.1), GCNN-hodgeLap and
GCNN-edgeLap through numerical simulations on
the IEEE 39-bus system and the 57-bus system.
GCNN-hodgeLap refers to the GCNN with nodal
and line measurements from subsection 4.5 and uses
S̄ = LHG as the line GMD and GCNN-edgeLap refers
to the GCNN with nodal and line measurements from
the same section but uses S̄ = LLG as the line GMD. As
opposed to earlier simulation results, in this subsection,
we test the GCNNs under the scenario where we only
have a portion of the measurement data. Therefore,
missing values in the input data (i.e., X0 and X̄0) are
filled with zeros.

The training process is very similar to the one
described in subsection 4.2. The only difference is
that we now have line measurements and that the
partial measurement set is selected randomly for each
data point. For the partial measurement data, we
consider four levels (100%, 90%, 80%, 70%) for nodal
measurements and eight levels (100%, 90%, · · · , 30%)
for line measurements. The hyper-parameter values
are K = 2, F1 = 60, F2 = 240, F3 = 120
for GCNN-nodal and additionally K̄ = 2, F̄1 =
80, F̄2 = 320, F̄3 = 160 for GCNN-hodgeLap and
GCNN-edgeLap. The computational time for training
and testing with the IEEE 39-bus system is reported to
be less than 10 minutes for GCNN-nodal, and less than
20 minutes for GCNN-hodgeLap and GCNN-edgeLap.
The computational time with the IEEE 57-bus system is
reported to be less than 15 minutes for GCNN-nodal,
and less than 30 minutes for GCNN-hodgeLap and
GCNN-edgeLap.

Figure 4 summarizes the RMSE values for
these three different methods for the IEEE 39-bus
system. Each subfigure corresponds to a different
percentage-level (ranging from 100% to 70%) of
available nodal measurements and the x-axis of the
plot denotes the percentage-level of line measurements.
Each point in the subfigure denotes the value of
RMSE averaged over five data splits (i.e., five distinct
training instances). For GCNN-nodal, since it does
not use line measurements, the x-axis (percent of
line measurements) is irrelevant. Given a fixed level
of nodal measurement data, we can observe that
the additional line measurements always results in a
more accurate estimate of the system states. For
instance in Figure 4(a), we observe that the RMSE
values for GCNN-hodgeLap and GCNN-edgeLap are



Figure 5: This figure compares the performance of state
estimation for the IEEE 57 bus system between three methods:
GCNN-nodal, GCNN-hodgeLap and GCNN-edgeLap.

approximately 20 percent less than that of GCNN-nodal.
Generally, the level of available line measurements does
not seem to have a direct correlation to performance.
However, when there is an incomplete set of nodal
measurements (less than 100%), having a full set
of line measurements drastically performs better than
having a partial set of line measurements. This
phenomena can be observed in Figures 4(b)-(d). Also,
it is observed that there does not exist any significant
difference in performance between GCNN-hodgeLap
and GCNN-edgeLap.

Figure 5 summarizes the RMSE values for the three
different methods for a revised IEEE 57-bus system.
We revised the MATPOWER test case by keeping only
one line whenever there exists multiple lines between
two buses. Note that the RMSE for GCNN-nodal is
approximately 0.064, which is higher than the value
0.0393 reported in Table 1. This is due to the fact
that we are using a significantly smaller number of
parameters for the nodal part of the GCNN architecture.
Nevertheless, we observe that the estimation error is
small and comparable to optimization based methods.
In Figure 6, we also plot the absolute value of the
estimation error (for the real part of complex voltage)
across all the buses for a sample dataset. Even with an
incomplete measurement set, the state estimation errors
are small with a maximum error of approximately 0.03.

5. Conclusions

In this paper, we proposed a graph convolutional
neural network (GCNN) to learn power system state
estimators from SCADA and PMU measurement data.
We first presented a simple framework for the case of
complete nodal measurements. Then, the methodology
is expanded so that it is also capable of handling PMU
data and line measurements. We observed that even
with incomplete measurements, the GCNNs are capable

Figure 6: This figure plots the absolute value of the
estimation error for the real part of the complex voltages (when
using GCNN-hodgeLap and GCNN-edgeLap) with 90% nodal
measurements and 90% line measurements. The study is
performed on the IEEE 57 bus system and focuses on one
specific estimation result.

of producing a high-quality estimate of the underlying
voltages. The resulting estimators are distributed
and computationally efficient, making them robust to
cyber-attacks on the grid and capable of scaling to large
networks. Numerical experiments on IEEE test cases
verified the efficacy of the proposed method.
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