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Convexification of Generalized Network Flow
Problem

Somayeh Sojoudi · Salar Fattahi · Javad
Lavaei

Abstract This paper is concerned with the minimum-cost flow problem over
an arbitrary flow network. In this problem, each node is associated with some
possibly unknown injection and each line has two unknown flows at its ends
that are related to each other via a nonlinear function. Moreover, all injections
and flows must satisfy certain box constraints. This problem, named general-
ized network flow (GNF), is highly non-convex due to its nonlinear equality
constraints. Under the assumption of monotonicity and convexity of the flow
and cost functions, a convex relaxation is proposed, which is shown to always
obtain globally optimal injections. This relaxation may fail to find optimal
flows because the mapping from injections to flows is not unique in general.
We show that the proposed relaxation, named convexified GNF (CGNF), ob-
tains a globally optimal flow vector if the optimal injection vector is a Pareto
point. More generally, the network can be decomposed into two subgraphs
such that the lines between the subgraphs are congested at optimality and
that CGNF finds correct optimal flows over all lines of one of these subgraphs.
We also fully characterize the set of all globally optimal flow vectors, based
on the optimal injection vector found via CGNF. In particular, we show that
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this solution set is a subset of the boundary of a convex set, and may include
an exponential number of disconnected components. A primary application of
this work is in optimization over electrical power networks.

Keywords Network flow · Lossy networks · Convex optimization · Convex
relaxation · Electrical power networks · Optimal power flow

1 Introduction

The area of “network flows” plays a central role in operations research, com-
puter science and engineering [1,2]. This area is motivated by many real-word
applications in assignment, transportation, communication networks, electri-
cal power distribution, production scheduling, financial budgeting, and aircraft
routing, to name only a few. Network flow problems have been studied exten-
sively since 1962 [3–12]. The minimum-cost flow problem aims to optimize the
flows over a flow network that is used to carry some commodity from suppli-
ers to consumers. In a flow network, there is an injection of some commodity
at every node, which leads to two flows over each line at its endpoints. The
injection—depending on being positive or negative, corresponds to supply or
demand at the node. The minimum-cost flow problem has been studied thor-
oughly for a lossless network, where the amount of flow entering a line equals
the amount of flow leaving the line. However, since real-world flow networks
could be lossy, the minimum-cost flow problem has also attracted much at-
tention for generalized networks, also known as networks with gain [2, 13,14].
In this type of network, each line is associated with a constant gain relating
the two flows of the line through a linear function. From the optimization
perspective, network flow problems are convex and can be solved efficiently,
unless there are discrete variables involved [15].

There are important real-world flow networks that are lossy, where the loss
is a nonlinear function of the flows. An example is electrical power networks
for which the loss over each line (under fixed voltage magnitudes at both ends)
is given by a parabolic function due to Kirchhoff’s circuit laws [16]. The loss
function could be much more complicated depending on the power electronic
devices installed on the transmission line. To the best of our knowledge, there
is no theoretical result in the literature on the design of efficient algorithms
for network flow problems with nonlinear flow functions, except in very special
cases. This paper is concerned with this general problem, named Generalized
Network Flow (GNF). Note that the term “GNF” has already been used in
the literature for networks with linear losses, but it corresponds to arbitrary
lossy networks in this work.

GNF aims to optimize the nodal injections subject to flow constraints for
each line and box constraints for both injections and flows. A flow constraint is
a nonlinear equation that relates the flows at both ends of a line. To solve GNF,
this paper makes the practical assumption that the cost and flow functions are
all monotonic and convex. The GNF problem is still highly non-convex due
to its equality constraints. However, a question arises as to whether there
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is an efficient algorithm for finding globally optimal injections and flows for
GNF under the assumption that the GNF problem is feasible. In this work,
we prove that the answer to this question is affirmative for optimal injections
(and optimal total cost), but not necessarily optimal flows. More specifically,
we provide a convex relaxation of GNF that yields globally optimal injections.

Observe that relaxing the nonlinear line flow equalities to convex inequali-
ties gives rise to a convex relaxation of GNF. It can be easily seen that solving
the relaxed problem may lead to a solution for which the new inequality flow
constraints are not binding. One may speculate that this observation implies
that the convex relaxation is not tight. However, the objective of this work is
to show that as long as GNF is feasible, the convex relaxation is tight. We also
generalize the above results to the case where, other than local constraints over
a line or at a node, there are global constraints relating the flows of different
lines or injections of different nodes.

Although the proposed convex relaxation always finds the optimal injec-
tions (and hence the optimal objective value), it may produce wrong flows
leading to non-binding inequalities. The reason behind the failure of the con-
vex relaxation in finding globally optimal flows is that the mapping from flows
to injections is not invertible. For example, it is known in the context of power
systems that the power flow equations may not have a unique solution [17].
Having found the globally optimal injection vector through the proposed con-
vex relaxation, we also study the possibility of finding optimal flows from
the optimal injections. First, we prove that if the optimal injection vector is
a Pareto point in its feasible region, the convex relaxation of GNF obtains
globally optimal flows for GNF. Second, we show that whenever the optimal
injection vector lies on the boundary of its feasible region, the flow network can
be divided into two sub-networks such that: (i) the convex relaxation obtains
optimal flows over one sub-network, (ii) the lines between the two sub-networks
are all congested at optimality and the convex relaxation correctly identifies
these lines. In other words, we relate the possible failure of the convex relax-
ation in finding optimal flows for the whole network to certain congested lines.
Moreover, we fully characterize the set of all optimal flow vectors. In particu-
lar, we show that this set may be infinite, non-convex, and disconnected, but
belongs to the boundary of a convex set.

1.1 Application of GNF in Power Systems

The operation of a power network depends heavily on various large-scale op-
timization problems such as state estimation, optimal power flow (OPF),
security-constrained OPF, unit commitment, sizing of capacitor banks and
network reconfiguration. These problems are highly non-convex due to the
nonlinearities imposed by laws of physics [18, 19]. For example, each of the
above problems has the power flow equations embedded in it, which are non-
linear equality constraints. The nonlinearity of OPF, as the most fundamental
optimization problem for power systems, has been studied since 1962, leading
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to various heuristic and local-search algorithms [20–28]. These algorithms suf-
fer from sensitivity and convergence issues, and more importantly they may
converge to a local optimum that is noticeably far from a global solution.

Recently, it has been shown in [29–31] that the semidefinite programming
(SDP) relaxation is able to find a global or near-global solution of the OPF
problem under a sufficient condition, which is satisfied for IEEE benchmark
systems, Polish Grid with more than 3000 nodes, and many randomly gener-
ated power networks. The papers [32] and [19] prove that the satisfaction of this
condition is due to the passivity of transmission lines and transformers. In par-
ticular, [19] shows that in the case where this condition is not satisfied (see [33]
for counterexamples), OPF can always be solved globally in polynomial time
(up to any finite precision) after two approximations: (i) relaxing angle con-
straints by adding a sufficient number of actual/virtual phase shifters to the
network, (ii) relaxing power balance equalities to inequality constraints. OPF
under Approximation (ii) was also studied in [34–36] for distribution networks.
The paper [37] studies the optimization of active power flows over distribution
networks under fixed voltage magnitudes and shows that the SDP relaxation
works without having to use Approximation (ii) as long as a practical angle
condition is satisfied.

The idea of convex relaxation developed in [38] and [29] can be applied to
many other power problems, such as voltage regulation [39], energy storage
[40], state estimation [41, 42], sensor placement [43], calculation of voltage
stability margin [44], charging of electric vehicles [45], security constrained
OPF with possibly variable tap-changers and capacitor banks [31,46], dynamic
energy management [16] and electricity market [47]. In the same vein, [48]
and [49] combine a convex relaxation of the power flow equations with iterative
approaches to reduce the complexity of the semidefinite programming and to
address certain problems in power systems that include discrete variables, such
as unit commitment and optimal transmission switching problems [50, 51].
Although the SDP relaxation has been shown to be exact in several real-world
examples, [33] demonstrates that this relaxation may fail in some instances. To
improve upon the SDP relaxation for such cases, [52] and [53] use a hierarchy
of semidefinite relaxations, known as Lasserre hierarchy [54], which obtain
global minima of the OPF problem at the expense of a higher computational
complexity. The paper [55] proves that in the case where the SDP relaxation
is not exact, it still has a low-rank solution whose rank is upper bounded by
the treewidth of the power system plus one.

Energy-related optimization problems with embedded power flow equations
can be regarded as nonlinear network flow problems, which are analogous to
GNF. The results derived in this work for a general GNF problem lead to
the generalization of the result of [36] to networks with virtual phase shifters.
This proves that in order to use SDP relaxations for OPF over an arbitrary
power network, it is not needed to approximate power balance equalities with
inequality constraints (under a practical angle assumption).
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1.2 Notations

The following notations will be used throughout this paper:

– R and R+ denote the sets of real numbers and nonnegative numbers, re-
spectively.

– Given two matrices M and N , the inequality M ≤ N means that M is less
than or equal to N element-wise.

– Given a set T , its cardinality is shown as |T |.
– Lowercase, bold lowercase and uppercase letters are used for scalars, vectors

and matrices (e.g., x, x and X). The ith entry of a vector x is shown as
xi. Likewise, the (i, j)th entry of a matrix X is denoted as Xij .

– Given a nonconvex optimization problem, the term “solution” is short for
“globally optimal solution” henceforth (because local minima are not
of interest in this work).

2 Problem Statement and Contributions

Consider an undirected graph (network) G with the vertex setN := {1, 2, ...,m}
and the edge set E ⊆ N ×N . For every i ∈ N , let N (i) denote the set of the
neighboring vertices of node i. Assume that every edge (i, j) ∈ E is associated
with two unknown flows pij and pji belonging to R. The parameters pij and
pji can be regarded as the flows entering the edge (i, j) from the endpoints i
and j, respectively. Define

pi =
∑

j∈N (i)

pij , ∀i ∈ N (1)

The parameter pi is called “nodal injection at vertex i” or simply “injection”,
which is equal to the sum of the flows leaving vertex i through the edges
connected to this vertex. Given an edge (i, j) ∈ E , we assume that the flows
pij and pji are related to each other via a function fij(·) to be introduced later.
To specify which of the flows pij and pji is a function of the other, we give
an arbitrary orientation to every edge of the graph G and denote the resulting

graph as
−→G . Denote the directed edge (arc) set of

−→G as
−→E . If an edge (i, j) ∈ E

belongs to
−→E , we then express pji as a function of pij .

Definition 1 Define the vectors pn, pe and pd as follows:

pn = {pi | ∀i ∈ N} (2a)

pe = {pij | ∀(i, j) ∈ E} (2b)

pd = {pij | ∀(i, j) ∈
−→E } (2c)

(the subscripts “n”, “e” and “d” stand for nodes, edges and directed edges).
The terms pn, pe and pd are referred to as injection vector, flow vector and
semi-flow vector, respectively (note that pe contains two flows per each line,
whereas pd includes only one flow per line).
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Definition 2 Given two arbitrary points x,y ∈ Rn, the box B(x,y) is defined
as follows:

B(x,y) = {z ∈ Rn |x ≤ z ≤ y} (3)

(note that B(x,y) is non-empty only if x ≤ y).

Assume that each injection pi and each flow pij must be within the pre-
specified intervals [pmin

i , pmax
i ] and [pmin

ij , pmax
ij ], respectively, for every i ∈ N

and (i, j) ∈ −→E . We use the shorthand notation B for the box B(pmin
n ,pmax

n ),
where pmin

n and pmax
n are the vectors of the lower bounds pmin

i ’s and the upper
bounds pmax

i ’s, respectively.
This paper is concerned with the following problem.

Generalized network flow (GNF) Problem:

min
pn∈B,pe∈R|E|

∑
i∈N

fi(pi) (4a)

subject to pi =
∑

j∈N (i)

pij , ∀i ∈ N (4b)

pji = fij(pij), ∀(i, j) ∈ −→E (4c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ −→E (4d)

where

1) fi(·) is convex and strictly increasing for every i ∈ N .

2) fij(·) is convex and strictly decreasing for every (i, j) ∈ −→E .

3) The limits pmin
ij and pmax

ij are given for every (i, j) ∈ −→E .

In the case where fij(pij) is equal to −pij for all (i, j) ∈ −→E , the GNF
problem reduces to the network flow problem for which every line is lossless.
A few remarks can be made here:

– Given an edge (i, j) ∈ −→E , there is no explicit limit on pji in the above formu-
lation of the GNF problem because any such constraint can be equivalently
imposed on pij .

– Given a node i ∈ N , the assumption of fi(pi) being monotonically in-
creasing is motivated by the fact that increasing the injection pi normally
elevates the cost in practice.

– Given an edge (i, j) ∈ −→E , pij and −pji can be regarded as the input
and output flows of the line (i, j) traveling in the same direction. The
assumption of fij(pij) being monotonically decreasing is motivated by the
fact that increasing the input flow normally makes the output flow higher
in practice (note that −pji = −fij(pij)).

Definition 3 Define P as the set of all vectors pn for which there exists a
vector pe such that (pn,pe) satisfies equations (4b), (4c) and (4d). The set
P and P ∩B are referred to as injection region and box-constrained injection
region, respectively.
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Fig. 1: The graph G studied in Section 3.1.

(a) (b)

Fig. 2: (a) Injection region P for the GNF problem given in (8); (b): the set
Pc corresponding to the GNF problem given in (8).

Regarding Definition 3, the box-constrained injection region is indeed the
projection of the feasible set of GNF onto the space for the injection vector
pn. We express GNF geometrically as follows:

Geometric GNF : min
pn∈P∩B

∑
i∈N

fi(pi) (5)

Note that pe has been eliminated in Geometric GNF. It is hard to solve
this problem directly because the injection region P is non-convex in general.
This non-convexity can be observed in Figure 2(a), which shows P for the
two-node graph drawn in Figure 1. To address this non-convexity issue, the
GNF problem will be convexified next.

Convexified generalized network flow (CGNF) Problem:

min
Pn∈B,Pe∈R|E|

∑
i∈N

fi(pi) (6a)

subject to pi =
∑

j∈N (i)

pij , ∀i ∈ N (6b)

pji ≥ fij(pij), ∀(i, j) ∈ −→E (6c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ E (6d)

where (pmin
ij , pmax

ij ) is defined as (fji(p
max
ji ), fji(p

min
ji )) for every (i, j) ∈ E such

that (j, i) ∈ −→E .
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CGNF has been obtained from GNF by relaxing equality (4c) to inequal-

ity (6c) and adding limits to pij for every (j, i) ∈ −→E . One can write:

Geometric CGNF : min
pn∈Pc∩B

∑
i∈N

fi(pi) (7)

where Pc denotes the set of all vectors pn for which there exists a vector pe
such that (pn,pe) satisfies equations (6b), (6c) and (6d). Two main results to
be proved in this paper are:

– Geometry of injection region: Given any two points pn and p̃n in the
injection region, the box B(pn, p̃n) is entirely contained in the injection
region. A similar result holds true for the box-constrained injection region.

– Relationship between GNF and CGNF: Using the above result on
the geometry of the injection region, we show that if (p∗n,p

∗
e) and (p̄∗n, p̄

∗
e)

denote two arbitrary solutions of GNF and CGNF, then p∗n = p̄∗n. Hence,
CGNF always finds the correct optimal injection vector for GNF. Moreover,
(p̄∗n, p̄

∗
e) is a solution of GNF as well if p∗n is a Pareto point in P. More

generally, if p∗n resides on the boundary of P, but is not necessarily a Pareto
point, CGNF finds the correct optimal flows for a non-empty subgraph of G.

Furthermore, the above results are generalized to an extended GNF prob-
lem, where there are global constraints coupling the flows or injections of dif-
ferent parts of the network. In particular, it is proved that the technique devel-
oped for the GNF problem works for the extended GNF problem as well, pro-
vided that the coupling constraints are convex and preserve a box-preserving
property. Note that this work implicitly assumes that every two nodes of G
are connected via at most one edge. However, the results to be derived later
are all valid in the presence of multiple edges between two nodes. To avoid
complicated notations, the proof will not be provided for this case. However,
Section 3.1 will analyze a simple example with parallel lines.

3 Main Results

In this section, we first provide a detailed illustrative example to clarify the
non-convexity issue and highlight some of the contributions of this paper. The
main results for GNF and CGNF problems are developed in Subsections 3.2
and 3.3, respectively. The set of all optimal flow vectors is charaterized in
Subsection 3.4. The generalization to the extended GNF problem is provided
in Subsection 3.5. Finally, the application of the developed methodology in
power systems is discussed in Subsection 3.6.

3.1 Illustrative Example

In this subsection, we study the particular graph G depicted in Figure 1. This

graph has two vertices and two parallel edges. Let (p
(1)
12 , p

(1)
21 ) and (p

(2)
12 , p

(2)
21 )
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denote the flows associated with the first and second edges of the graph, re-
spectively. Consider the GNF problem

min f1(p1) + f2(p2) (8a)

s.t. p
(i)
21 =

(
p

(i)
12 − 1

)2

− 1, ∀i ∈ {1, 2} (8b)

−0.5 ≤ p(1)
12 ≤ 0.5, −1 ≤ p(2)

12 ≤ 1, (8c)

p1 = p
(1)
12 + p

(2)
12 , p2 = p

(1)
21 + p

(2)
21 (8d)

with the variables p1, p2, p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 , where f1(·) and f2(·) are arbi-

trary convex and monotonically increasing functions. The CGNF problem

corresponding to this problem can be obtained by replacing (8b) with p
(i)
21 ≥

(p
(i)
12 − 1)2− 1 and adding the limits p

(1)
21 ≤ 1.52− 1 and p

(2)
21 ≤ 22− 1. One can

write:

Geometric GNF: min
(p1,p2)∈P

f1(p1) + f2(p2) (9a)

Geometric CGNF: min
(p1,p2)∈Pc

f1(p1) + f2(p2) (9b)

where P and Pc are indeed the projections of the feasible sets of GNF and
CGNF over the injection space for (p1, p2) (note that there is no box constraint
on (p1, p2) at this point). The green area in Figure 2(a) shows the injection
region P. As expected, this set is non-convex. In contrast, the set Pc is a
convex set containing P. This set is shown in Figure 2(b), which includes two
parts: (i) the green area that is the same as P, (ii) the blue area that is the
part of Pc that does not exist in P. Thus, the transition from GNF to CGNF
extends the injection region P to a convex set by adding the blue area. Notice
that Pc has three boundaries: (i) a straight line on the top, (ii) a straight line
on the right side, (iii) a lower curvy boundary. Since f1(·) and f2(·) are both
monotonically increasing, the unique solution of Geometric CGNF must lie
on the lower curvy boundary of Pc. Since this lower boundary is in the green
area, it is contained in P. As a result, the unique solution of Geometric CGNF
is a feasible point of P and therefore it is a solution of Geometric GNF. This
means that CGNF finds the optimal injection vector for GNF.

To make the problem more interesting, we add the box constraint (p1, p2) ∈
B to GNF (and correspondingly to CGNF), where B is an arbitrary rectangular
convex set in R2. The effect of this box constraint will be investigated in four
different scenarios:

– Assume that B corresponds to Box 1 (including its interior) in Figure 3(a).
In this case, P ∩ B = Pc ∩ B = φ, implying that Geometric GNF and
Geometric CGNF are both infeasible.

– Assume that B corresponds to Box 2 (including its interior) in Figure 3(a).
In this case, the solution of Geometric CGNF lies on the lower boundary
of Pc and therefore it is also a solution of Geometric GNF.
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(a) (b)

Fig. 3: (a): This figure shows the set Pc corresponding to the GNF problem
given in (8) together with a box constraint (p1, p2) ∈ B for four different
positions of B; (b) this figure shows the injection region P for the GNF problem
given in (8) but after changing (8b) to (10).

– Assume that B corresponds to Box 3 (including its interior) in Figure 3(a).
In this case, the solutions of Geometric GNF and Geometric CGNF are
identical and both correspond to the lower left corner of the box B.

– Assume that B corresponds to Box 4 (including its interior) in Figure 3(a).
In this case, P∩B = φ but Pc∩B 6= φ. Hence, Geometric GNF is infeasible
while Geometric CGNF has an optimal solution.

In summary, it can be argued that, independent of the position of the box B
in R2, CGNF finds the optimal injection vector for GNF as long as GNF is
feasible.

Now, suppose that the relationship between p
(i)
21 and p

(i)
12 is governed by

p
(i)
21 =

(
p

(i)
12

)2

− 1, ∀i ∈ {1, 2} (10)

instead of (8b). The injection region P in the case is depicted in Figure 3(b).
As before, we impose a box constraint (p1, p2) ∈ B on GNF, where B is shown
as “Box” in the figure. It is easy to show that the lower left corner of this box
belongs to Pc and hence it is a solution of Geometric CGNF. However, this
corner point does not belong to Geometric GNF. More precisely, Geometric
GNF is feasible in this case, while its solution does not coincide with that
of Geometric CGNF. Hence, Geometric GNF and Geometric CGNF are no
longer equivalent after changing (8b) to (10). This is a consequence of the fact
that the function (p− 1)2 − 1 is decreasing in p over the interval [−1, 1] while
the function p2−1 is not. This explains the necessity of the assumption of the
monotonicity of fij(·) made earlier in the paper.

3.2 Geometry of Injection Region

In order to study the relationship between GNF and CGNF, it is beneficial
to explore the geometry of the feasible set of GNF. Hence, we investigate the
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geometry of the injection region P and the box-constrained injection region
P ∩ B in this part.

Theorem 1 Consider two arbitrary points p̂n and p̃n in the injection region
P. The box B(p̂n, p̃n) is contained in P. �

The proof of this theorem is based on four lemmas, and will be provided
later in this subsection. To understand this theorem, consider the injection
region P depicted in Figure 2(a) corresponding to the illustrative example
given in Section 3.1. If any arbitrary box is drawn in R2 in such a way that
its upper right corner and lower left corner both lie in the green area, then
the entire box must lie in the green area completely. This can be easily proved
in this special case and is true in general due to Theorem 1. However, this
result does not hold for the injection region given in Figure 3(b) because the
assumption of monotonicity of fij(·)’s is violated in this case. The result of
Theorem 1 can be generalized to the box-constrained injection region, as stated
below.

Corollary 1 Consider two arbitrary points p̂n and p̃n belonging to the box-
constrained injection region P ∩ B. The box B(p̂n, p̃n) is contained in P ∩ B.

Proof: The proof follows immediately from Theorem 1. �
The rest of this subsection is dedicated to the proof of Theorem 1, which

is based on a series of definitions and lemmas.

Definition 4 Define Bd as the box containing all vectors pd introduced in (2c)

that satisfy the condition pij ∈ [pmin
ij , pmax

ij ] for every (i, j) ∈ −→E .

Definition 5 It is said that pd is associated with pn, or vice versa, if (pn,pd)
is feasible for the GNF problem. Likewise, pe is associated with pn if (pn,pe)
is feasible for the CGNF problem.

Definition 6 Given two arbitrary points p̄d, p̃d ∈ Bd, define M(p̄d, p̃d) ac-
cording to the following procedure:

– Let M(p̄d, p̃d) be a matrix with |N | rows indexed by the vertices of G and

with |−→E | columns indexed by the edges in
−→E .

– For every vertex k ∈ N and edge (i, j) ∈ −→E , set the (k, (i, j))th entry of
M(p̄d, p̃d) (the one in the intersection of row k and column (i, j)) as

1 if k = i
fij(p̄ij)−fij(p̃ij)

p̄ij−p̃ij if k = j and p̄ij 6= p̃ij
f ′ij(p̄ij) if k = j and p̄ij = p̃ij

0 otherwise

(11)

where f ′ij(p̄ij) denotes the right derivative of fij(p̄ij) if p̄ij < pmax
ij and the left

derivative of fij(p̄ij) if p̄ij = pmax
ij .
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Fig. 4: (a) A particular graph G; (b) the matrix M(p̄d, p̃d) corresponding to
the graph G in Figure 4(a); (c): the (j, (i, j))th entry of M(p̄d, p̃d) (shown
as “*”) is equal to the slope of the line connecting the points (p̄ij , p̄ji) and
(p̃ij , p̃ji).

To illustrate Definition 6, consider the three-node graph
−→G depicted in

Figure 4(a). The matrixM(p̄d, p̃d) associated with this graph has the structure
shown in Figure 4(b), where the “*” entries depend on the specific values of

p̄d and p̃d. Consider an edge (i, j) ∈ −→E . The (j, (i, j))th entry of M(p̄d, p̃d) is
equal to

fij(p̄ij)− fij(p̃ij)
p̄ij − p̃ij

, (12)

provided p̄ij 6= p̃ij . As can be seen in Figure 4(c), this is equal to the slope of the
line connecting the point (p̄ij , p̄ji) to the point (p̃ij , p̃ji) on the parameterized
curve (pij , pji), where pji = fij(pij). Moreover, f ′ij(p̄ij) is the limit of this slope
as the point (p̃ij , p̃ji) approaches (p̄ij , p̄ji). It is also interesting to note that
M(p̄d, p̃d) has one positive entry, one negative entry and m−2 zero entries in
each column (note that the slope of the line connecting (p̄ij , p̄ji) to (p̃ij , p̃ji)
is always negative). The next lemma explains how the matrix M(p̄d, p̃d) can
be used to relate the semi-flow vector to the injection vector.
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Lemma 1 Consider two arbitrary injection vectors p̄n and p̃n in P, associ-
ated with the semi-flow vectors p̄d and p̃d (defined in (2)). The relation

p̄n − p̃n = M(p̄d, p̃d)× (p̄d − p̃d) (13)

holds.

Proof: One can write

p̄i − p̃i =
∑

j∈N (i)

(p̄ij − p̃ij), ∀i ∈ N (14)

By using the relations

p̄ji = fij(p̄ij), p̃ji = fij(p̃ij), ∀(i, j) ∈ −→E (15)

it is straightforward to verify that (13) and (14) are equivalent. �
Lemma 1 can be regarded as a generalization of the conventional node-

edge adjacency matrix used to describe the topology of the graph, which re-
lates semi-flow vectors to injection vectors. The next lemma investigates an
important property of the matrix M(p̄d, p̃d).

Lemma 2 Given two arbitrary points p̄d, p̃d ∈ Bd, assume that there exists
a nonzero vector x ∈ Rm such that xTM(p̄d, p̃d) ≥ 0. If x has at least one
strictly positive entry, then there exists a nonzero vector y ∈ Rm+ such that
yTM(p̄d, p̃d) ≥ 0.

Proof: Consider an index i0 ∈ N such that xi0 > 0. Define V(i0) as the
set of all vertices i ∈ N from which there exists a directed path to vertex i0
in the graph

−→G . Note that V(i0) includes vertex i0 itself. The first goal is to
show that

xi ≥ 0, ∀i ∈ V(i0) (16)

To this end, consider an arbitrary set of vertices i1, ..., ik in V(i0) such that

{i0, i1..., ik} forms a direct path in
−→G as

ik → ik−1 → · · · i1 → i0 (17)

To prove (16), it suffices to show that xi1 , ..., xik ≥ 0. For this purpose, one
can expand the product xTM(p̄d, p̃d) and use the fact that each column of
M(p̄d, p̃d) has m− 2 zero entries to conclude that

xi1 +
fi1i0(p̄i1i0)− fi1i0(p̃i1i0)

p̄i1i0 − p̃i1i0
xi0 ≥ 0 (18)

Since xi0 is positive and fi1i0(·) is a decreasing function, xi1 turns out to be
positive. Now, repeating the above argument for i1 instead of i0 yields that
xi2 ≥ 0. Continuing this reasoning leads to xi1 , ..., xik ≥ 0. Hence, inequal-
ity (16) holds. Now, define y as

yi =

{
xi if i ∈ V(i0)
0 otherwise

, ∀i ∈ N (19)
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In light of (16), y is a nonzero vector in Rm+ . To complete the proof, it suffices
to show that yTM(p̄d, p̃d) ≥ 0. Similar to the indexing procedure used for the

columns of the matrix M(p̄d, p̃d), we index the entries of the |−→E | dimensional

vector yTM(p̄d, p̃d) according to the edges of
−→G . Now, given an arbitrary edge

(α, β) ∈ −→E , the following statements hold true:

– If α, β ∈ V(i0), then the (α, β)th entries of yTM(p̄d, p̃d) and xTM(p̄d, p̃d)
(i.e., the entries corresponding to the edge (α, β)) are identical.

– If α ∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of yTM(p̄d, p̃d) is equal
to yα.

– If α 6∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of yTM(p̄d, p̃d) is equal
to zero.

Note that the case α 6∈ V(i0) and β ∈ V(i0) cannot happen, because if β ∈
V(i0) and (α, β) ∈ −→E , then α ∈ V(i0) by the definition of V(i0). It follows from
the above results and the inequality xTM(p̄d, p̃d) ≥ 0 that yTM(p̄d, p̃d) ≥
0. �

Definition 7 Consider the graph G and an arbitrary flow vector pe. Given a
subgraph Gs of the graph G, define pe(Gs) as the flow vector associated with the
edges of Gs that has been induced by pe. Define pd(Gs), pn(Gs) and pi(Gs) as
the semi-flow vector, injection vector and injection at node i ∈ Gs correspond-
ing to pe(Gs), respectively. Define also P(Gs) as the injection region associated
with Gs.

The next lemma studies the injection region P in the case where fij(·)’s
are all piecewise linear.

Lemma 3 Assume that the function fij(·) is piecewise linear for every (i, j) ∈−→E . Consider two arbitrary points p̂n, p̄n ∈ P and a vector ∆p̄n ∈ Rm satisfy-
ing the relations

p̂n ≤ p̄n −∆p̄n ≤ p̄n (20)

There exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P, ∀ε ∈ [0, εmax] (21)

Proof: In light of (20), we have ∆p̄n ≥ 0. If ∆p̄n = 0, then the lemma
becomes trivial as ε can take any arbitrary value. So, assume that ∆p̄n 6= 0.
Let p̂e and p̄e denote two flow vectors associated with the injection vectors p̂n
and p̄n, respectively. Denote the corresponding semi-flow vectors as p̂d and

p̄d. Given an edge (i, j) ∈ −→E , the curve{
(pij , fij(pij)) | pij ∈ [pmin

ij , pmax
ij ]

}
(22)

is a Pareto set in R2 due to fij(·) being monotonically decreasing. Since
(p̂ij , p̂ji) and (p̄ij , p̄ji) both lie on the above curve, one of the following cases
occurs:

– Case 1: p̂ij ≥ p̄ij and p̂ji ≤ p̄ji.
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– Case 2: p̂ij ≤ p̄ij and p̂ji ≥ p̄ji.
(this fact can be observed in Figure 4(c) for the points (p̄ij , p̄ji) and (p̃ij , p̃ji)
instead of (p̂ij , p̂ji) and (p̄ij , p̄ji)). With no loss of generality, assume that
Case 1 occurs. Indeed, if Case 2 happens, it suffices to make two changes:

– Change the orientation of the edge (i, j) in the graph
−→G so that (j, i) ∈ −→E

instead of (i, j) ∈ −→E .
– Replace the constraint pji = fij(pij) in (4c) with pij = f−1

ij (pji), where

the existence, monotonicity and convexity of the inverse function f−1
ij (·) is

guaranteed by the convexity and decreasing property of fij(·).
Therefore, suppose that

p̂ij ≥ p̄ij , p̂ji ≤ p̄ji, ∀(i, j) ∈ −→E (23)

or

p̂d ≥ p̄d (24)

First, consider the case p̂d > p̄d. In light of Lemma 1, the assumption p̂n ≤ p̄n
can be expressed as

M(p̂d, p̄d)× (p̂d − p̄d) = p̂n − p̄n ≤ 0 (25)

In order to guarantee the relation p̄n − ε∆p̄n ∈ P, it suffices to seek a vector

∆p̄d ∈ R|
−→E | satisfying the equations

p̄d − ε∆p̄d ∈ Bd (26)

and

M(p̄d, p̄d − ε∆p̄d)× (p̄d−(p̄d − ε∆p̄d)) = p̄n − (p̄n − ε∆p̄n) (27)

(see the proof of Lemma 1), or equivalently

p̄d − ε∆p̄d ∈ Bd (28a)

M(p̄d, p̄d − ε∆p̄d)×∆p̄d = ∆p̄n (28b)

Consider an arbitrary vector ∆p̄d ∈ R|
−→E | with all negative entries. In light

of Definition 6, the inequality p̂d > p̄d and the piecewise linear property of
fij(·)’s, there exists a positive number εmax such that

p̄d − ε∆p̄d ∈ Bd (29a)

M(p̄d, p̄d − ε∆p̄d) = M(p̄d, p̄d) (29b)

for every ε ∈ [0, εmax]. To prove the lemma, it follows from (28) and (29) that
it is enough to show the existence of a negative vector ∆p̄d satisfying the
relation

M(p̄d, p̄d)×∆p̄d = ∆p̄n (30)
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in which ε does not appear. Notice that since (30) is independent of ε, it can be
chosen sufficiently small so that (29a) is satisfied automatically. To prove this
by contradiction, assume that the above equation does not have a solution.
By Farkas’ Lemma, there exists a vector x ∈ Rm such that

xTM(p̄d, p̄d) ≥ 0, xT∆p̄n > 0 (31)

Since ∆p̄n is nonnegative, the inequality xT∆p̄n > 0 does not hold unless x
has at least one strictly positive entry. Now, it follows from xTM(p̄d, p̄d) ≥ 0
and Lemma 2 that there exists a nonzero vector y ∈ Rm such that

yTM(p̄d, p̄d) ≥ 0, y ≥ 0 (32)

On the other hand, given an edge (i, j) ∈ −→E , since p̂ij ≥ p̄ij (due to (23)), the
slope of the line connecting the points (p̂ij , p̂ji) and (p̄ij , p̄ji) is more than or
equal to f ′ij(p̄ij) (this is implied by the fact that fij(·) is convex). This yields
that

M(p̄d, p̄d) ≤M(p̂d, p̄d) (33)

Now, it follows from (24), (25), (32) and (33) that

0 ≥ yTM(p̂d, p̄d)× (p̂d − p̄d) ≥ yTM(p̄d, p̄d)× (p̂d − p̄d) ≥ 0 (34)

Thus,
0 = yTM(p̂d, p̄d)× (p̂d − p̄d) = yT (p̂n − p̄n) (35)

This is a contradiction because p̂n − p̄n is strictly negative and the nonzero
vector y is positive.

So far, the lemma has been proven in the case when p̂d > p̄d. To extend
the proof to the case p̂d ≥ p̄d, define Er as the set of every edge (i, j) ∈ E such
that

p̂ij 6= p̄ij (36)

(note that p̂ij = p̄ij if and only if p̂ji = p̄ji). Define also Gr as the unique
subgraph of G induced by the edge set Er. Let Nr denote the vertex set of Gr,
which may be different from N . It is easy to verify that

p̂d(Gr) > p̄d(Gr), (37a)

p̂n(Gr) ≤ p̄n(Gr)−∆p̄n(Gr) ≤ p̄n(Gr) (37b)

p̄i − p̂i = p̄i(Gr)− p̂i(Gr), ∀i ∈ Nr (37c)

Based on (37c), the relationship between ∆p̄n and the new vector ∆p̄n(Gr) is
as follows:

∆p̄i =

{
∆p̄i(Gr) if i ∈ Nr

0 otherwise
, ∀i ∈ N (38)

In light of (37a) and (37b), one can adopt the proof given earlier for the case
p̂d > p̄d to conclude the existence of a positive number εmax with the property

p̄n(Gr)− ε∆p̄n(Gr) ∈ P(Gr), ∀ε ∈ [0, εmax] (39)



Convexification of Generalized Network Flow Problem 17

Given an arbitrary number ε ∈ [0, εmax], we use the shorthand notation pn(Gr)
and pn for p̄n(Gr) − ε∆p̄n(Gr) and p̄n − ε∆p̄n, respectively. Let pe(Gr) and
pe denote a flow vector corresponding to the injection vectors pn(Gr) and pn,
respectively. One can expand the vector pe(Gr) into pe for the graph G as
follows:

– For every (i, j) ∈ Er, the (i, j)th entries of pe and pe(Gr) (the ones corre-
sponding to the edge (i, j)) are identical.

– For every (i, j) ∈ E\Er, the (i, j)th entry of pe is equal to p̄ij (or p̂ij).

It is straightforward to observe that pn is associated with the designed vector
pe and, therefore, the feasibility of pe implies that pn belongs to P. This
completes the proof. �

The next lemma uses Lemma 3 to prove Theorem 1 in the case where
fij(·)’s are all piecewise linear.

Lemma 4 Assume that the function fij(·) is piecewise linear for every (i, j) ∈−→E . Given any two arbitrary points p̂n, p̃n ∈ P, the box B(p̂n, p̃n) is a subset
of the injection region P.

Proof: With no loss of generality, assume that p̂n ≤ p̃n (because otherwise
B(p̂n, p̃n) is empty). To prove the lemma by contradiction, suppose that there
exists a point pn ∈ B(p̂n, p̃n) such that pn 6∈ P. Consider the set{

γ

∣∣∣∣ γ ∈ [0, 1], p̃n + γ(pn − p̃n) ∈ P
}

(40)

Note that p̂n ≤ pn ≤ p̃n, and that (40) describes the set of all γ’s for which
p̃n + γ(pn − p̃n) belongs to the segment between pn and p̃n. Denote the
maximum of all those γ as γmax. The existence of this number is guaranteed
because of two reasons: (1) when γ is equal to 0, the point p̃n + γ(pn− p̃n) is
equal to p̃n and belongs to P, (2) P is closed and compact. Furthermore, notice
that p̃n + γ(pn − p̃n) is equal to pn at γ = 1. Since pn 6∈ P by assumption,
we have γmax < 1. Denote p̃n + γmax(pn − p̃n) as p̄n. Hence, p̄n ∈ P and
p̂n ≤ pn ≤ p̄n (recall that γmax < 1). Define ∆p̄n as p̄n −pn. One can write:

p̂n ≤ p̄n −∆p̄n ≤ p̄n, p̂n, p̄n ∈ P (41)

By Lemma 3, there exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P, ∀ε ∈ [0, εmax] (42)

or equivalently

p̃n + (γmax + ε(1− γmax))(pn − p̃n) ∈ P, ∀ε ∈ [0, εmax] (43)

Notice that
γmax + ε(1− γmax) > γmax, ∀ε > 0 (44)

Due to (43), this violates the assumption that γmax is the maximum of the set
given in (40). �
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Lemma 4 will be deployed next to prove Theorem 1 in the general case.
Proof of Theorem 1: Consider an arbitrary approximation of fij(·) by a

piecewise linear function for every (i, j) ∈ E . As a counterpart of P, let Ps
denote the injection region in the piecewise-linear case. By Lemma 4, we have

B(p̂n, p̃n) ⊆ Ps (45)

Since the piecewise linear approximation can be made in such a way that the
sets P and Ps become arbitrarily close to each other, the above relation implies
that the interior of B(p̂n, p̃n) is a subset of P. On the other hand, P is a closed
set. Hence, the box B(p̂n, p̃n) must entirely belong to P. �

3.3 Relationship Between GNF and CGNF

Using Theorem 1 developed in the preceding subsection, we study the rela-
tionship between GNF and CGNF below.

Definition 8 Consider an arbitrary set S ∈ Rn together with a point x ∈ S.
The point x is called “Pareto” if there does not exist another point y ∈ S that
is less than or equal to x entry-wise. x ∈ S is called an “interior point” if S
contains a ball around this point. x ∈ S is called a “boundary point” if it is
not an interior point.

To proceed with the paper, the following mild assumption is required.

Assumption 1 There exists a feasible point (pn,pe) for the CGNF problem

such that pij > pmin
ij for every (i, j) ∈ −→E and pi < pmax

i for every i ∈ N .

Theorem 2 Assume that the GNF problem is feasible. Let (p∗n,p
∗
e) and (p̄∗n, p̄

∗
e)

denote arbitrary globally optimal solutions of GNF and CGNF, respectively.
The following relations hold:

1) p∗n = p̄∗n
2) (p̄∗n, p̄

∗
e) is a solution of GNF, provided that p∗n is a Pareto point in P.

�

In what follows, we first prove Part 2 of Theorem 2 and illustrate it in some
examples before proving Part 1.

Proof of Part 2 of Theorem 2: Define a new flow vector p̂e as

p̂ij = p̄∗ij , ∀(i, j) ∈ −→E (46a)

p̂ji = fij(p̄
∗
ij), ∀(i, j) ∈ −→E (46b)

Let p̂n denote the injection vector corresponding to p̂e. Since p̂ji = fij(p̄
∗
ij)

for every (i, j) ∈ −→E , it can be concluded that p̂n ≤ p̄∗n = p∗n (the last equality
follows from Part 1 of the theorem). Since p∗n is assumed to be a Pareto point
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Fig. 5: The 4-node graph G studied in Example 2.
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Fig. 6: (a) Injection region of the subgraph G1 in Example 2; (b): injection
region of the subgraph G2 in Example 2.

in P, we must have p̂n = p̄∗n and therefore p̂e = p̄∗e. This implies that (p̄∗n, p̄
∗
e)

is a feasible point for GNF and yet a global solution for CGNF. As a result,
(p̄∗n, p̄

∗
e) is a solution of GNF. �

Theorem 2 states that CGNF finds the optimal injections but not neces-
sarily optimal flows for GNF. Note that Part 1 of the theorem implies that
the globally optimal injection vector is unique. Two examples will be provided
below to elaborate on Part 2 of Theorem 2.

Example 1: Consider the illustrative example explained in Section 3.1. It
can be observed in Figure 2(b) that every point on the lower curvy boundary
of the feasible set is a Pareto point. Therefore, if the box B defined by the
lower and upper bound constraints on p1 and p2 intersects with any part of
the lower boundary of the green area, CGNF always finds optimal flow vectors
for GNF, leading to the equivalence of GNF and CGNF. �

Example 2: As stated before, a Pareto point lies on the boundary of
the injection region. A question arises as to whether the condition “Pareto
point” can be replaced by “boundary point” in Theorem 2. We will provide
an example here to show that the optimal injection being a boundary point
does not necessarily guarantee the equivalence of GNF and CGNF. To this
end, consider the 4-node graph G depicted in Figure 5. This graph can be
decomposed into two subgraphs G1 and G2, where each subgraph has the same



20 Somayeh Sojoudi et al.

topology as the 2-node graph studied in Example 1. Assume that the flow
over the line (2, 3) is restricted to zero, by imposing the constraints pmin

23 =
pmax

23 = pmin
32 = pmax

32 = 0. This implies that (2, 3) is redundant, whose removal
splits the graph G into two disjoint subgraphs G1 and G2. Let (p∗n,p

∗
e) be an

arbitrary solution of GNF. The vector p∗n can be broken down into two parts
as

p∗n = [p∗n(G1)T p∗n(G2)T ]T (47)

where p∗n(G1) and p∗n(G2) denote the optimal values of the sub-vectors [p1 p2]T

and [p3 p4]T , respectively. Note that P(G1) and P(G2) could both resemble
the green area in Figure 2(b). We make two assumptions here:

– Assumption 1: As demonstrated in Figure 6(a), the box constraints on p1

and p2 are such that p∗n(G1) becomes a Pareto point located on the lower
boundary of P(G1). In this case, it is guaranteed from Theorem 2 that if
CGNF is solved just over G1, it finds feasible flows for this subgraph.

– Assumption 2: As demonstrated in Figure 6(b), the box constraints on p3

and p4 are such that p∗n(G2) becomes an interior point of P(G2), corre-
sponding to the lower left corner of the box. In this case, assume that if
CGNF is solved just over G2, it may not always find feasible flows for this
subgraph (we will show it later in the paper).

Since (2, 3) is not allowed to carry any flow, it is easy to show that CGNF
solved over G finds feasible flows for the lines between nodes 1 and 2, but may
result in wrong flows for the lines between nodes 3 and 4. Hence, CGNF and
GNF are not equivalent. On the other hand, it is straightforward to inspect
that P is the product of two regions as

P = P(G1)× P(G2) (48)

Now, since p∗n(G1) is on the boundary of P(G1) but p∗n(G2) is in the interior
of P(G2), it can be deduced that

– p∗n is on the boundary of the injection region P.
– p∗n is not a Pareto point of the injection region P.

In summary, although p∗n is a boundary point for G, CGNF is not equivalent
to GNF. This is due to the connection of a well-behaved subgraph G1 to a
problematic subgraph G2 via a redundant link with no flow. It will be shown
in Corollary 2 that whenever p∗n is on the boundary of its injection region,
there exists a non-empty subgraph of G for which the correct (feasible and
optimal) flows can be found via CGNF. �

Before presenting the proof of Part 1 of Theorem 2 in the general case, one
special case will be studied for which the proof is less involved. Observe that
since (p̄∗n, p̄

∗
e) is a feasible point of CGNF, one can write

p̄∗i ≥ pmin
i , ∀i ∈ N (49)

The proof of Part 1 of Theorem 2 will be first derived in the special case

p̄∗i = pmin
i , ∀i ∈ N (50)
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Proof of Part 1 of Theorem 2 under Condition (50): (p∗n,p
∗
e) being a fea-

sible point of GNF implies that

p∗i ≥ pmin
i , ∀i ∈ N (51)

Equations (50) and (51) lead to

p̄∗n ≤ p∗n (52)

Define the vector p̃n as

p̃i =
∑

(i,j)∈−→E

p̄∗ij +
∑

(j,i)∈−→E

fij(p̄
∗
ij), ∀i ∈ N (53)

Notice that p̃n belongs to P, although it may not belong to B. It can be
inferred from the definition of CGNF that

p̃n ≤ p̄∗n (54)

Since p̃n,p
∗
n ∈ P, it follows from Theorem 1, (52) and (54) that p̄∗n ∈ P. On

the other hand, p̄∗n ∈ B. Therefore, p̄∗n ∈ P ∩B, implying that p̄∗n is a feasible
point of Geometric GNF. Since the feasible set of Geometric CGNF includes
that of Geometric GNF, p̄∗n must be a solution of Geometric GNF as well.
The proof follows from equation (52) and the fact that p∗n is another solution
of Geometric GNF (recall that the objective function of this optimization
problem is strictly increasing). �

Before proving Part 1 of Theorem 2 in the general case, some ideas need
to be developed. Since fi(pi) can be approximated by a differentiable function
arbitrarily precisely, with no loss of generality, assume that fi(pi) is differen-
tiable for every i ∈ N . Since CGNF is convex, one can take its Lagrangian
dual.

Lemma 5 Strong duality holds for the CGNF problem.

Proof: To prove the lemma, it suffices to show that Slater’s condition is sat-
isfied or, alternatively, there exists a feasible solution for the CGNF problem
satisfying (6c) with strict inequality. To this end, consider the feasible solution
(pn,pe) introduced in Assumption 1. It is easy to verify that there exists a
strictly positive number ε such that (p̄n, p̄e) is feasible for the CGNF with

strict inequality in (6c), where p̄ij = pij and p̄ji = pji + ε for every (i, j) ∈ −→E
and p̄n is associated with p̄e. �

Let λmin
i and λmax

i denote optimal Lagrange multipliers corresponding to
the constraints pmin

i ≤ pi and pi ≤ pmax
i . Assume that (p̄∗n, p̄

∗
e) is an optimal

solution of the GNF problem. Using the duality theorem, it can be shown that
changing the objective function to∑

i∈N
fi(pi)− λmin

i (pi − pmin
i ) + λmax

i (pi − pmax
i ) (55)
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would not affect the optimal solution [15]. Furthermore, it follows from the
first-order optimality conditions that

(p̄∗n, p̄
∗
e) = arg min

pn∈Rm,pe∈Be

∑
i∈N

λipi (56a)

subject to pi =
∑

j∈N (i)

pij , ∀i ∈ N (56b)

fij(pij) ≤ pji, ∀(i, j) ∈ −→E (56c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ E (56d)

where

λi = f ′i(p̄
∗
i )− λmin

i + λmax
i , ∀i ∈ N (57)

Hence,

(p̄∗ij , p̄
∗
ji) = arg min

(pij ,pji)∈R2

λipij + λjpji (58a)

subject to fij(pij) ≤ pji, (58b)

pij ∈ [pmin
ij , pmax

ij ], (58c)

pji ∈ [pmin
ji , pmax

ji ] (58d)

for every (i, j) ∈ −→E .

Definition 9 Define V as the set of all indices i ∈ N for which λi ≤ 0. Define
V̄ as the set of all indices i ∈ N\V for which there exists a vertex j ∈ V such
that (i, j) ∈ G (i.e., V̄ denotes the set of the neighbors of V in the graph G).

Since the objective function of the optimization problem (58) is linear, it
is straightforward to verify that fij(p̄

∗
ij) = p̄∗ji as long as λi > 0 or λj > 0. In

particular,

fij(p̄
∗
ij) = p̄∗ji, ∀(i, j) ∈ −→E , {i, j} 6⊆ V (59a)

p̄∗ij = pmin
ij , ∀(i, j) ∈ E , i ∈ V̄, j ∈ V (59b)

If fij(p̄
∗
ij) were equal to p̄∗ji for every (i, j) ∈ −→E , then the proof of Part 1 of

Theorem 2 was complete. However, the relation fij(p̄
∗
ij) < p̄∗ji might hold in

theory if (i, j) ∈ −→E and {i, j} ⊆ V. Hence, is important to study this scenario.

Proof of Part 1 of Theorem 2 in the general case: For every given index
i ∈ V, the term λi is nonpositive by definition. On the other hand, f ′i(·) is
strictly positive (since fi(·) is monotonically increasing), and λmin

i and λmax
i

are both nonnegative (since they are the Lagrange multipliers for inequality
constraints). Therefore, it follows from (57) that λmin

i > 0, implying that

p̄∗i = pmin
i , ∀i ∈ V (60)
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Thus,
p∗i ≥ pmin

i = p̄∗i , ∀i ∈ V (61)

Let Gs denote a subgraph of G with the vertex set V ∪ V̄ that includes those
edges (i, j) ∈ E satisfying either of the following conditions:

– {i, j} ⊆ V
– i ∈ V and j ∈ V̄.

Note that Gs includes all edges of G within the vertex subset V and those
between the sets V and V̄, but this subgraph contains no edge between the
vertices in V̄. The first objective is to show that

p∗i (Gs) ≥ p̄∗i (Gs), ∀i ∈ V ∪ V̄ (62)

To this end, two possibilities will be investigated:

– Case 1) Consider a vertex i ∈ V. Given each edge (i, j) ∈ E , vertex j must
belong to V ∪ V̄, due to Definition 9. Hence, p∗i (Gs) = p∗i and p̄∗i (Gs) = p̄∗i .
Combining these equalities with (61) gives rise to p∗i (Gs) ≥ p̄∗i (Gs).

– Case 2) Consider a vertex i ∈ V̄. Based on (59b), One can write:

p̄∗i (Gs) =
∑

j∈V∩N (i)

p̄∗ij =
∑

j∈V∩N (i)

pmin
ij (63)

Similarly,

p∗i (Gs) =
∑

j∈V∩N (i)

p∗ij ≥
∑

j∈V∩N (i)

pmin
ij (64)

Thus, p∗i (Gs) ≥ p̄∗i (Gs).
So far, inequality (62) has been proven. Consider p̃n introduced in (53). Similar
to (54), it is straightforward to show that p̃i(Gs) ≤ p̄∗i (Gs) for every i ∈ V ∪ V̄.
Hence,

p̃n(Gs) ≤ p̄∗n(Gs) ≤ p∗n(Gs) (65)

On the other hand, p̃n(Gs) and p∗n(Gs) are both in P(Gs). Using (65) and The-
orem 1 (but for Gs as opposed to G), it can be concluded that p̄∗n(Gs) ∈ P(Gs).
Hence, there exists a flow vector p̂e(Gs) associated with p̄∗n(Gs), meaning that

p̄∗i (Gs) =
∑

j∈N (i)∩(V∪V̄)

p̂ij(Gs), ∀i ∈ V (66a)

p̄∗i (Gs) =
∑

j∈N (i)∩V
p̂ij(Gs), ∀i ∈ V̄ (66b)

p̂ji(Gs) = fij(p̂ij(Gs)), ∀(i, j) ∈ −→G s (66c)

Now, one can expand p̂e(Gs) to p̂e as

p̂jk =

{
p̂jk(Gs) if (j, k) ∈ Gs
p̄∗jk otherwise

, ∀(j, k) ∈ E (67)

Let p̂n denote the injection vector associated with the flow vector p̂e. Two
observations can be made:
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Fig. 7: Figures (a) and (b) show the feasible sets T (1)
c and T (2)

c for Example 3,
respectively. Figure (c) is aimed to show that CGNF may have an infinite
number of solutions (all points in the yellow area may be the solutions of
GNF).

1) p̂n is equal to p̄∗n.
2) Due to (59a), (66c) and (67), (p̂n, p̂e) is a feasible point of GNF.

This means that p̄∗n is the unique optimal solution of Geometric CGNF and
yet a feasible point of Geometric GNF. The rest of the proof is the same as
the proof of Theorem 2 under Condition (50) (given earlier). �

Next example is provided to understand the reason why CGNF may fail
to obtain a correct flow vector associated with the optimal injection vector.

Example 3: Consider again the illustrative example studied in Section 3.1,
corresponding to the graph G depicted in Figure 1. Let T denote the projec-
tion of the feasible set of the GNF problem given in (8) over the flow space

associated with the vector (p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 ). It is easy to verify that T can

be decomposed as the product of T (1) and T (2), where

T (1) =

{
(p

(1)
12 , p

(1)
21 )

∣∣∣∣ p(1)
12 ∈ [−0.5, 0.5], p

(1)
21 =

(
p

(1)
12 − 1

)2

− 1

}
and

T (2) =

{
(p

(2)
12 , p

(2)
21 )

∣∣∣∣ p(2)
12 ∈ [−1, 1], p

(2)
21 =

(
p

(2)
12 − 1

)2

− 1

}
Likewise, define Tc as the projection of the feasible set of the CGNF problem

over its flow space. As before, Tc can be written as T (1)
c × T (2)

c , where T (i)
c is

obtained from T (i) by changing its equality

p
(i)
21 =

(
p

(i)
12 − 1

)2

− 1 (68)

to the inequality

p
(i)
21 ≥

(
p

(i)
12 − 1

)2

− 1 (69)

for i = 1, 2, and adding the limits p
(1)
21 ≤ 1.52 − 1 and p

(2)
21 ≤ 22 − 1. The sets

T (1)
c and T (2)

c are drawn in Figures 7(a) and 7(b). Given i ∈ {1, 2}, note that
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T (i)
c has two flat boundaries and one curvy (lower) boundary that is the same

as T (i). Consider the flow vector (p̄
(1)
12 , p̄

(1)
21 , p̄

(2)
12 , p̄

(2)
21 ) ∈ Tc defined as(

p̄
(1)
12 , p̄

(1)
21

)
=
(
0.5, (0.5− 1)2 − 1

)
,(

p̄
(2)
12 , p̄

(2)
21

)
=
(
−0.5, (−0.5− 1)2 − 1

) (70)

Define p̄1 = p̄
(1)
12 +p̄

(2)
12 and p̄2 = p̄

(1)
21 +p̄

(2)
21 . It can be verified that for every point

(p̃
(1)
12 , p̃

(1)
21 ) in the green area of Figure 7(c), there exists a vector (p̃

(2)
12 , p̃

(2)
21 ) ∈

T (2)
c such that

p̄1 = p̃
(1)
12 + p̃

(2)
12 , p̄2 = p̃

(1)
21 + p̃

(2)
21 (71)

This means that if (p̄1, p̄2, p̄
(1)
12 , p̄

(1)
21 , p̄

(2)
12 , p̄

(2)
21 ) turns out to be an optimal so-

lution of CGNF, then (p̄1, p̄2, p̃
(1)
12 , p̃

(1)
21 , p̃

(2)
12 , p̃

(2)
21 ) becomes another solution of

CGNF. As a result, although Geometric CGNF has a unique solution (opti-
mal injection vector), CGNF may have an infinite number of solutions whose
corresponding flow vectors do not necessarily satisfy the constraints of GNF. �

So far, we have shown that CGNF always finds the optimal injection vector
and optimal objective value for the GNF problem. In addition, it finds the
optimal flow vector if the injection vector is a Pareto point. Now, we consider
the case where the optimal injection vector is not necessarily Pareto but lies
on the boundary of the injection region. The objective is to prove that the
network G can be decomposed into two subgraphs G1 and G2 such that: (i)
the flows obtained from CGNF are optimal (feasible) for GNF for those lines
inside G1 or between G1 and G2, (ii) the flows over the lines between G1 and
G2 all hit their limits at optimality.

Definition 10 Define G1 and G2 as the subgraphs of G induced by the vertex
subsets N\V and V, respectively.

Theorem 3 Assume that fi(·) is strictly convex for every i ∈ N . Let (p∗n,p
∗
d)

and (p∗n, p̄
∗
d) denote arbitrary globally optimal solutions of the GNF and CGNF

problems, respectively. The following relations hold:

p∗ij = p̄∗ij , ∀(i, j) ∈ N\V (72a)

p∗ji = p̄∗ji = pmax
ji , ∀(i, j) ∈ (N\V × V) ∩ E (72b)

Proof: Since every solution of GNF is a solution of CGNF as well (due
to Theorem 2), the points (p∗n,p

∗
d) and (p∗n, p̄

∗
d) are both solutions of CGNF.

Now, it follows from the duality theorem that (p∗n,p
∗
d) and (p∗n, p̄

∗
d) are both

minimizers of (56) and (58). Since the objective of (58) is linear and fi(·) is
strictly convex, it can be concluded that:

– The optimization problem (58) has a unique solution as long as λ∗i > 0 or
λ∗j > 0.

– (pij , pji) becomes equal to (pmin
ij , pmax

ji ) at optimality if λ∗i > 0 and λ∗j ≤ 0.
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– (pij , pji) becomes equal to (pmax
ij , pmin

ji ) at optimality if λ∗j > 0 and λ∗i ≤ 0.

Equations (72a) and (72b) follow immediately from the above properties. �

Corollary 2 Let (p∗n,p
∗
d) and (p∗n, p̄

∗
d) denote arbitrary globally optimal so-

lutions of the GNF and CGNF problems, respectively. If there exists a vertex
i ∈ N such that p̄∗i > pmin

i , then p∗d and p̄∗d must be identical in at least one
entry.

Proof: Consider a vertex i ∈ N such that p̄∗i > pmin
i . It follows from (57)

that λ∗i is positive. Now, Definition 10 yields that the subgraph G1 is nonempty.
The proof is an immediate consequence of Theorem 3. �

Definition 11 Consider a solution (p∗n,p
∗
d) of GNF. A line (i, j) ∈ E of the

network G is called “congested” if p∗ij is equal to pmax
ij or p∗ji is equal to pmax

ji .

Corollary 3 Let (p∗n,p
∗
d) and (p∗n, p̄

∗
d) denote arbitrary globally optimal solu-

tions of the GNF and CGNF problems, respectively. Assume that there exists
a vertex i ∈ N such that p̄∗i > pmin

i . If the network G has no congested line,
then GNF and CGNF are equivalent, i.e., (p∗n,p

∗
d) = (p∗n, p̄

∗
d).

Proof: Due to the proof of Corollary 2, the set N\V is nonempty. On the
other hand, since the network G has no congested line by assumption, it can
be concluded from Theorem 3 that (N\V ×V)∩E is an empty set. Therefore,
V must be empty, which implies the equivalence of GNF and CGNF due to
Theorem 3. �

3.4 Characterization of Optimal Flow Vectors

In this section, we aim to characterize the set of all optimal flow vectors for
GNF, based on the optimal injection vector found using CGNF. In particu-
lar, we will show that this set could be nonconvex and disconnected. Before
presenting the results, it is helpful to illustrate the key ideas in an example.

Example 4: Consider the graph G depicted in Figure 8(a), which consists of
two cycles and four nodes. Let (p∗n,p

∗
e) denote an arbitrary solution of GNF,

where p∗n is obtained from CGNF and p∗e is to be found. The objective of
this example is to demonstrate that all optimal flows in the network can be
uniquely characterized in terms of two flows. Consider the unknown flows p∗12

and p∗13. One can write

p∗24 = p∗2 − f12(p∗12) (73a)

p∗34 = p∗3 − f13(p∗13) (73b)

p∗14 = p∗1 − p∗12 − p∗13 (73c)

It follows from the above equations that all flows in the network can be cast
as functions of (p∗12, p

∗
13), and in addition (p12, p13) = (p∗12, p

∗
13) is a solution
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Fig. 8: (a) The 2-cycle graph studied in Example 5; (b): visualization of the
level-set problem used to find optimal flows for Example 5.

to the level-set problem F (p12, p13, p
∗
1, p
∗
2, p
∗
3) = p∗4, where

F (p12, p13, p1, p2, p3) = f24 (p2 − f12(p12))

+ f34 (p3 − f13(p13))

+ f14 (p1 − p12 − p13)

(74)

is a convex function with respect to (p12, p13) but not necessarily monotonic.
On the other hand, the equations in (73) can be used to translate the box
constraints on all flows to certain constraints only on p∗12 and p∗13:

p̃min
12 ≤ p∗12 ≤ p̃max

12 (75a)

p̃min
13 ≤ p∗13 ≤ p̃max

13 (75b)

pmin
14 ≤ p∗1 − p∗12 − p∗13 ≤ pmax

14 (75c)

for some numbers p̃min
12 , p̃max

12 , p̃min
13 , p̃max

13 . Let C1 and C2 denote the sets of all
points (p∗12, p

∗
13) satisfying the level-set problem F (p∗12, p

∗
13, p

∗
1, p
∗
2, p
∗
3) = p∗4 and

the reformulated flow constraints (75), respectively. The set of all optimal flow
solutions (p∗12, p

∗
13) can be expressed as C1 ∩ C2, where C1 is the boundary of

a convex set (corresponding to F (·)) and C2 is a polytope. As illustrated in
Figure 8(b), C1 is the boundary of a convex set, and therefore its intersection
with a polytope (e.g., a box) could form up to 4 disconnected components.
In summary, the optimal flow vectors for GNF may constitute a nonconvex
infinite set, consisting of as high as 4 disconnected components. �

By following the argument used in Example 5, it is straightforward to show
that if the graph G is a tree, the optimal flow vector is unique and can be easily
obtained from the optimal injection vector p∗n. Hence, the main challenge is
to deal with mesh flow networks. To this end, consider an arbitrary spanning
tree of the m-node graph G, denoted as Gt. Let pdt denote a sub-vector of the
semi-flow vector pd associated with those edges of G that do not exist in Gt.
Recall that

−→G was obtained through an arbitrary orientation of the edges of
the graph G. With no loss of generality, one can consider Gt as a rooted tree

with node m as its root, where all arcs of
−→G are directed toward the root.
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Lemma 6 There exist convex functions Fij : R|E| → R for all (i, j) ∈ −→E such
that the following statements hold:

1) Given every arbitrary feasible solution (pn,pe) of the GNF problem, the
relations

pji = Fij(pdt, p1, p2, ..., pm−1), ∀(i, j) ∈ −→E (76)

are satisfied.
2) The function F (pdt, p1, p2, ..., pm−1) defined as

∑
j∈N (m)

Fjm(pdt, p1, p2, ..., pm−1) (77)

is convex.

Proof: The proof is in line with the technique used in Example 4. The
details are omitted for brevity. �

Definition 12 Define C1 as the set of all vectors pdt satisfying the level-set
problem F (pdt, p

∗
1, p
∗
2, ..., p

∗
m−1) = p∗m. Also, define C2 as the set of all vectors

pdt satisfying the inequalities

pmin
ji ≤ Fij(pdt, p∗1, p∗2, ..., p∗m−1) ≤ pmax

ji , ∀(i, j) ∈ −→E (78)

Theorem 4 A flow vector p∗e is globally optimal for GNF if and only if

p∗dt ∈ C1 ∩ C2 (79a)

p∗ji = Fij(p
∗
dt, p

∗
1, p
∗
2, ..., p

∗
m−1), ∀(i, j) ∈ −→E (79b)

p∗ij = fji(p
∗
ji), ∀(i, j) ∈ −→E (79c)

Proof: The proof is based on Lemma 6 and the technique used in Example 4.
The details are omitted for brevity. �

Theorem 4 states that: (i) the set of optimal flow vectors can be char-
acterized in terms of the unique optimal injection vector as well as the flow
sub-vector pdt, (ii) the set of optimal flow sub-vectors p∗dt is the collection of
all points in the intersection of C1 and C2. Moreover, in light of Lemma 6, C1
is the boundary of a convex set. Although C2 was shown to be a polytope in
Examples 4 and 5, it is non-convex in general. Since C1 is the boundary of a
convex set, it occurs that the intersection of C2 with C1 may lead to as high
as 2|E|−|N|+1 disconnected components, all lying on the boundary of a convex
set (note that |E| − |N |+ 1 is the size of the vector pdt).
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3.5 Extended GNF Problem

In this subsection, we generalize the results developed for the GNF problem
to the case where there are global convex constraints coupling the flows and/or
injections of different parts of the network, in addition to the local constraints
over individual lines and at separate nodes.

Definition 13 Consider a set of convex constraints gi(pn,pe) ≤ 0 for i =
1, 2, ..., k, which are called coupling constraints. The extended GNF problem
is defined as (4) subject to this set of coupling constraints. Denote Pe as the
set of all vectors pn for which there exists a vector pe such that (pn,pe) is
feasible for the extended GNF problem. The above set of coupling constraints
is referred to as box-preserving if its addition to the GNF problem preserves
the box property of the injection region, meaning that the box B(pn, p̃n) is
contained in Pe for every two points pn and p̃n in Pe.
Theorem 5 Consider the extended GNF problem with the coupling constraints
gi(pn,pe) ≤ 0 for every i ∈ {1, 2, ..., k}. This set of constraints is guaranteed
to be box-preserving if either of the following conditions is satisfied:

1) G is a tree and the function gi(pn,pe) is non-decreasing with respect to all
entries of pn and pe, for every i ∈ {1, 2, ..., k}.

2) The function gi(pn,pe) does not depend on pe and is non-decreasing with
respect to all entries of pn, for every i ∈ {1, 2, ..., k}.

Proof: The box-preserving property under Condition 2 follows from the fact
that whenever the coupling constraints are non-decreasing functions of the
injection vector, if pn satisfies the constraints, any other injection vector p̃n
with the property p̃n ≤ pn also satisfies the constraints.

To prove the box-preserving property under Condition 1, it suffices to show
that if G is a tree, every flow pij can be written as a non-decreasing function
of pn (then the proof follows from Condition 2 of the theorem). Consider G as

a rooted tree with an arbitrary node at the root. Recall that
−→G was obtained

through an arbitrary orientation of the edges of G. Without loss of generality,
assume that the directions of all edges are toward the root. Define h as the
depth of G (maximum distance of every leaf from the root). Assume that a
node with the distance t from the root is identified by it. First, we use induction
to show that the flows going toward the root can be written as non-decreasing
functions of the injection vector. We start with the farthest nodes from the
root. For each node ih, one can write pihih−1

= pih , which is non-decreasing in
terms of the injection vector. Now, for every flow pitit−1 with 0 ≤ t ≤ h − 1,
one can write

pitit−1
= pit −

∑
(jt+1,it)∈E

fjt+1,it(pjt+1it) (80)

By the induction hypothesis, pjt+1it can be written as a non-decreasing func-
tion of the injection vector. Therefore, (80) implies that the same statement
holds for pitit−1

.



30 Somayeh Sojoudi et al.

Now, we use another inductive argument to show that each flow going
toward the leaves can be written as a non-decreasing function of the injection
vector. We start from the root node. For every flow pi0i1 , one can write

pi0i1 = pi0 −
∑

(j1,i0)∈E
j1 6=i1

fj1,i0(pj1i0) (81)

which implies that pi0i1 is a non-decreasing function of the injection vector
(note that this property holds for pj1i0). For every flow pit−1it with 2 ≤ t ≤ h,
one can verify that

pit−1it = pit−1 − f−1
it−1it−2

(pit−2it−1)−
∑

(j1,i0)∈E
jt 6=it

fjt,it−1(pjtit−1) (82)

The proof is completed by observing that

– f−1
it−1it−2

(·) is a decreasing function.
– pit−2it−1 is a non-decreasing function of the injection vector due to the

induction hypothesis.
– pjtit−1

is a non-decreasing function of the injection vector since its direction
is toward the root. �

In the rest of this subsection, we assume that the set of coupling constraints
in the extended GNF problem is box-preserving.

Corollary 4 Consider two arbitrary points p̂n and p̃n belonging to the box-
constrained injection region Pe∩B. The box B(p̂n, p̃n) is contained in Pe∩B.

Proof: The proof follows immediately from the definition of Pe and Defi-
nition 13. �

Define the extended CGNF problem as CGNF subject to the additional
constraints gi(pn,pe) ≤ 0 for i = 1, 2, ..., k. Note that this problem is convex.

Theorem 6 Assume that the extended GNF problem is feasible. Let (p∗n,p
∗
e)

and (p̄∗n, p̄
∗
e) denote arbitrary globally optimal solutions of the extended GNF

and extended CGNF problems, respectively. The following relations hold:

1) p∗n = p̄∗n
2) (p̄∗n, p̄

∗
e) is a solution of the extended GNF problem, provided that p∗n is a

Pareto point in Pe. �

Proof: The argument made in the proof of Theorem 2 can be adopted to
prove this theorem. The details are omitted for brevity. �

3.6 Optimal Power Flow in Electrical Power Networks

In this subsection, the results derived earlier for the GNF and extended GNF
problems will be applied to power networks. Consider a group of generators



Convexification of Generalized Network Flow Problem 31

min max
p

jip

),(

)~

v1 v2

v4 v3

Generator

Generator

Load

Load

g12-b12 i

g34-b34 i

g
2
3 -b

2
3
i

g
1
4 -b

1
4
i

Fig. 9: An example of electrical power network.

)2(

)1( )1(

)2(

p p

min max

p

)

)~

*

kjp

jkp

p

p

(a)

min max
p

p

),(

)~

ù*

kjp

jkp

(b)

Fig. 10: (a) Feasible set for (pjk, pkj); (b) feasible set for (pjk, pkj) after im-
posing lower and upper bounds on θjk.

(sources of energy), which are connected to a group of electrical loads (con-
sumers) via an electrical power network (grid). This network comprises a set
of lines connecting various nodes to each other (e.g., a generator to a load).
Figure 9 exemplifies a four-node power network with two generators and two
loads. Each load requests certain amount of energy, and the question of inter-
est is to find the most economical power dispatch by the generators such that
the demand and network constraints are satisfied. To formulate the problem,
let G denote the flow network corresponding to the electrical power network,
where

– The injection pj at node j ∈ N represents either the active power produced
by a generator and injected to the network or the active power absorbed
from the network by an electrical load.

– The flow pjk over each line (j, k) ∈ E represents the active power entering
the line (j, k) from its j endpoint.

The problem of optimizing the flows in a power network is called “optimal
power flow (OPF)”.

Let vi denote the complex (phasor) voltage at node i ∈ N of the power
network. Denote the phase of vi as θi. Given an edge (j, k) ∈ G, we denote the
admittance of the line between nodes j and k as gjk − ibjk, where the symbol
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i denotes the imaginary unit. gjk and bjk are nonnegative numbers due to the
passivity of the line. There are two active flows entering the line (j, k) from
its both ends. These flows are given by the equations:

pjk = |vj |2gjk + |vj ||vk|bjk sin(θjk)− |vj ||vk|gjk cos(θjk),

pkj = |vk|2gjk − |vj ||vk|bjk sin(θjk)− |vj ||vk|gjk cos(θjk)

where θjk = θj − θk. First, consider the distribution system where the under-
lying network is a tree. For now, assume that |vj | and |vk| are fixed at their
nominal values, while θjk is a variable to be designed. If θjk varies from −π to
π, then the feasible set of (pjk, pkj) becomes an ellipse, as illustrated in Fig-
ure 10(a). It can be observed that pkj cannot be written as a function of pjk.
This observation is based on the implicit assumption that there is no limit on
θjk. Suppose that θjk must belong to an interval [−θmax

jk , θmax
jk ] for some angle

θmax
jk . If the new feasible set for (pjk, pkj) resembles the partial ellipse drawn

in Figure 10(b), then pkj can be expressed as fjk(pjk) for a monotonically
decreasing and convex function fjk(·). This occurs if

θmax
jk ≤ tan−1

(
bjk
gjk

)
(83)

It is interesting to note that the right side of the above inequality is equal to
45.0◦, 63.4◦ and 78.6◦ for

bjk
gjk

equal to 1, 2 and 5, respectively. Note that
bjk
gjk

is normally greater than 5 (due to the specifications of the lines) and θmax
jk

is normally less than 15◦ and very rarely as high as 30◦ due to stability and
thermal limits (this angle constraint is forced either directly or through pmin

jk

and pmax
jk in practice). Hence, Condition (83) is practical. Furthermore, each

line of the power system can tolerate a certain amount of current in magnitude.
One can verify that the magnitude of the current on the line (j, k), denoted
by ijk, satisfies the equation

|ijk|2 = |yjk|
(
|vj |2 + |vk|2 − 2|vjvk| cos(θjk)

)
Therefore, an upper bound on |ijk| can be translated into a constraint on θjk,
which can be reflected in θmax

jk . By assuming that (83) is satisfied, there exists
a monotonically decreasing, convex function fjk(·) such that

pkj = fjk(pjk), ∀pjk ∈ [pmin
jk , pmax

jk ], (84)

where pmin
jk and pmax

jk correspond to θmax
jk and −θmax

jk , respectively.
Given two disparate edges (j, k) and (j′, k′), the phase differences θjk and

θj′k′ may be varied independently in the distribution network. (84) implies
that the problem of optimizing active flows reduces to GNF. In this case,
Theorems 1 and 2 can be used to study the corresponding approximated OPF
problem. As a result, the optimal injections for the approximated OPF can be
found via the corresponding CGNF problem. This implies two facts about the
conic relaxations studied in [19,29–37] for solving the OPF problem:
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Fig. 11: Linear transformation of active flows to reactive flows

– The relaxations are exact without using the concept of load over-satisfaction
(i.e., relaxing the flow constraints). This is a generalization of the results
derived in the above papers (please refer to [37] for more details on this
concept).

– Given the optimal injections, the optimal flows can be uniquely derived
using the method delineated in the proof of Theorem 5.

In addition to active power, voltage magnitudes and reactive power are nor-
mally optimized in the OPF problem. In what follows, we generalize the above
results to these cases.

3.6.1 Variable Reactive Power

In real-world power systems, different components of the network pro-
duce/consume reactive power. Since reactive power has a direct impact on the
operation of the power system, this is often controlled in the OPF problem.
To formulate the problem in this case, notice that each line has two reactive
flows entering from its both endpoints. These equations can be described as

qjk = |vj |2gjk − |vj ||vk|gjk sin(θjk)− |vj ||vk|bjk cos(θjk),

qkj = |vk|2gjk + |vj ||vk|gjk sin(θjk)− |vj ||vk|bjk cos(θjk)
(85)

Each bus at the network has a limited capacity to absorb/produce reactive
power. Upon defining qi as the reactive power injection at node i (which is
equal to the summation of outgoing reactive flows from node i), this limited
capacity can be captured by the pre-specified constraints qmin

i ≤ qi ≤ qmax
i .

Therefore, reactive flows can be written as linear functions of active flows
based on the formula[

qjk
qkj

]
=

1

2bjkgjk

[
b2jk − g2

jk b
2
jk + g2

jk

b2jk + g2
jk b

2
jk − g2

jk

]
︸ ︷︷ ︸

Ajk

[
pjk
pkj

]
(86)

Figure 11 visualizes this linear transformation. Assume that G is a tree (cor-
responding to a distribution network). Using (86), one can write the reactive
power constraints in terms of the active flows. It can be observed that as long
as the practical condition

bjk
gjk
≥ 1 is satisfied for every line (j, k), the upper
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bound on the reactive power injection is a box-preserving convex constraint.
This is due to the fact that each reactive power injection can be written as
a linear and non-decreasing function of active flows (in light of (86)). This
means that if the lower bounds on the reactive power injections are small
enough (no matter what the upper bounds are), the OPF problem is reduced
to the extended GNF problem with box-preserving coupling constraints. In
this case, Theorem 6 can be invoked to conclude that the proposed convexi-
fication technique finds the optimal active-power injection vector. Similar to
the previous case, once the optimal active-power injection vector is found, the
optimal active and reactive flows can be uniquely extracted. It is worthwhile
to mention that binding lower bounds on the reactive power injections may
potentially destroy the exactness of the extended GNF problem since these
constraints may not preserve the box property of the feasible region of the
active-power injection vector.
3.6.2 Variable Voltage Magnitudes and Reactive Power

Consider the OPF problem with variable voltage magnitudes, namely vmin
i ≤

|vi| ≤ vmax
i for every node i in G.

Definition 14 Given an arbitrary line (j, k) ∈ E, two numbers uj , uk ∈ R+,
and an angle θmax

jk ∈ R, define Pjk(uj , uk, θ
max
jk ) as the set of all pairs (pjk, pkj)

for which there exists an angle −θmax
jk ≤ θjk ≤ θmax

jk such that (85) holds after
replacing |vj | and |vk| with uj and uk, respectively.

We make the following assumptions:

– The set Pjk(uj , uk, θ
max
jk ) forms a monotonically decreasing curve in R2,

for every line (j, k) ∈ E and the pair (uj , uk) ∈ [vmin
j , vmax

j ]× [vmin
k , vmax

k ].

– For every [u1, ..., u|N |] ∈ [vmin
1 , vmax

1 ]× ...× [vmin
|N | , v

max
|N | ], the OPF problem

under the additional fixed-voltage-magnitude constraints |vi| = ui, i =
1, ..., |N | is feasible.

According to the first assumption, the upper bound on the angle difference
between the two endpoints of each line must ensure that only the Pareto front
of the ellipse describing the relationship between pjk and pkj is feasible. Notice
that for every fixed set of voltages, (83) ensures that the first assumption is
satisfied. Furthermore, the second assumption is practical since for every node
i, the limits vmin

i and vmax
i are normally chosen to be less than 5− 10% away

from the nominal voltage magnitudes.
Observe that the OPF problem for distribution networks (or acyclic graphs

G) can be reduced to the GNF problem after fixing the magnitude of every
voltage at its optimal value. Since the CGNF is exact in this case, it can be
shown that there is a second-order cone programming (SOCP) relaxation of
the OPF problem with variable voltage magnitudes that is exact. This conic
relaxation can be regarded as the union of the CGNF problems with different
fixed voltage magnitudes. The details can be found in [56]. Furthermore, this
conic relaxation is exact even in presence of reactive power constraints if the
inequality

bjk
gjk
≥ 1 holds for every line of the network. The main reason is that
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G1 G2
100 MW100 MW

10-20 MW

Bus 1 Bus 2

Bus 3

Fig. 12: The three-bus power network studied in Subsection 3.6.

the problem reduces to the one studied in the preceding subsection after fixing
the voltage magnitudes at their optimal values.

3.6.3 OPF for General Networks

Given two different edges (j, k) and (j′, k′), the phase differences θjk and θj′k′

may not be varied independently if the graph G is cyclic (because the sum
of the phase differences over a cycle must be zero). This is not an issue if
the graph G is acyclic (corresponding to distribution networks) or if there is
a sufficient number of phase-shifting transformers in the network. If none of
these cases is true, then one could add virtual phase shifters to the power
network at the cost of approximating the OPF problem. The following simple
example is provided to further elaborate on the effect of this approximation.

Consider the three-bus network illustrated in Figure 12 with the node set
N = {1, 2, 3}, the edge set E = {(1, 2), (2, 3), (3, 1)}, and the line admittances
(y):

y12 = 0.275− 0.917i, y23 = 0.345− 0.862i, y31 = 0.4− 0.8i

In this network, the loads at buses 1 and 2 are fixed at the value 100MW,
whereas the load at bus 3 is flexible and can accept any amount of power in
the range [10MW,20MW]. For simplicity, assume that the voltages are fixed
at their nominal values and we only consider the active powers in the system.
Furthermore, suppose that θmax

12 = 40◦, θmax
23 = 50◦ and θmax

31 = 20◦. Note
that the angle constraint |θjk| ≤ θmax

jk can be regarded as the flow constraints
pjk, pkj ≤ pmax

jk = pmax
kj , where

pmax
12 = 71.29, pmax

23 = 90.89, pmax
31 = 37.21 (87)

There are two generators in the system, whose active power outputs are
denoted as PG1

and PG2
. Figure 13 represents the projection of the feasible

set of OPF onto the space of the production vector (PG1
, PG2

) in two cases:
(i) with no phase shifter, (ii) with a virtual phase shifter in the cycle. P is
the feasible production region of (PG1 , PG2). Define Ps as the projection of
the feasible set of OPF problem onto the space for (PG1 , PG2) after removing
the angle constraint θ12 + θ23 + θ31 = 0. The set Ps is depicted in Figure 13,
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Fig. 13: Feasible set P (blue area) and feasible set Ps (blue and green areas).

which has two components: (i) the blue part P, and (ii) the green part created
by the elimination of the angle constraint. Four points have been marked on
the Pareto front of Ps as a, b, c and d. Notice that the Pareto front of Ps has
three segments:

– Segment with the endpoints b and c: This segment “almost” overlaps the
Pareto front of P. Indeed, there is a very little gap between this segment
and the front of P.

– Segment with the endpoints a and b: This segment extends the Pareto front
of P from the top.

– Segment with the endpoints c and d: This segment extends the Pareto front
of P from the bottom.

The gap between the Pareto front of P and a subset of the Pareto front of
Ps with the endpoints b and c can be unveiled by performing some simulations.
For instance, assume that f1(PG1) = PG1 and f1(PG2) = 1.2PG2 . Two OPF
problems will be solved next:

– OPF without phase shifter: The solution is (P opt
G1

, P opt
G2

) = (144.27, 69.39)
corresponding to the optimal cost $227.53.

– OPF with phase shifter: The solution is (P opt
G1

, P opt
G2

) = (145.56, 68.18) with

θopt
12 + θopt

23 + θopt
31 = 6.02◦ corresponding to the optimal cost $227.37.

Although the optimal value of the angle mismatch is not negligible, the optimal
production (P opt

G1
, P opt

G2
) has very similar values in the above cases. In other

words, the optimal injections obtained using the proposed convex problem are
very close to the globally optimal solutions of OPF. Notice that the flows
obtained from the convex problem could be completely wrong and one needs
to pursue other techniques to find a set of optimal flows based on the obtained
optimal injections.

The aforementioned case study offers a visual and intuitive explanation of
the effect of virtual phase shifters on the optimal solution of the OPF problem
and the Pareto front of the injection region. However, there is a large body of
work suggesting that the inclusion of virtual phase shifters would have a small
effect on the optimal solution of OPF in real-world systems [19, 49, 57–59].
Hence, the conclusion of this part is that the OPF problem with virtual phase
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shifters can be efficiently converted to an SOCP problem (under mild assump-
tions), which leads to an approximate solution for OPF (to be later rectified in
a local-search solver) or can be strengthened via convex constraints account-
ing for omitted phase cycle effects. For example, the paper [49] proposes a
strengthened SOCP to solve the OPF problem, which exhibits a great per-
formance in many systems. The above result implies that the success of the
method developed in [49] is due in part to the fact that the SOCP relax-
ation correctly convefixies the OPF problem with virtual phase shifters, and
therefore it eliminates some of the non-convexity of the original problem.

Several works in the literature indicate that the convex relaxation of the
OPF and its related problems, such as voltage regulation [39] and the state
estimation [42], are exact in most practical instances. This paper explains the
reasoning behind the effectiveness of these methods by proposing a unified
certificate on the exactness of these methods. In particular, it shows that
these methods are successful under various conditions because the optimal
solution belongs to the Pareto front of the feasible region and the proposed
relaxations keep this Pareto front intact. One main application of this work is
in the design of efficient algorithms for optimization over distribution networks,
which is regarded as a key ingredient of future power systems, named Smart
Grids. As a future work, the convexification of the GNF problem under a
broader set of global coupling constraints (similar to the cycle effects in OPF)
will be investigated. Another future direction is to study the GNF problem
in the case where the injection and flow parameters are vectors of arbitrary
dimensions, rather than scalars. This case naturally appears in multi-phased
power systems, where the nodal injections (and line flows) are of dimension 1,
2 or 3. The machinery developed in this paper suggests that the GNF problem
for such networks could be convefixied through the notion of CGNF if certain
monotonicity and box-preserving properties are satisfied. A detailed analysis
of these types of networks is left as future work.

4 Conclusions

Network flow plays a central role in operations research, computer science and
engineering. Due to the complexity of this problem, the main focus has long
been on lossless flow networks and more recently on networks with linear loss
functions. This paper studies the generalized network flow (GNF) problem,
which aims to optimize the flows over a lossy flow network. It is assumed that
each node is associated with an injection and that the two flows at the end-
points of each line are related to each other via an arbitrary convex monotonic
function. The GNF problem is hard to solve due to the presence of nonlinear
equality flow constraints. It is shown that although GNF is highly nonconvex,
globally optimal injections can be found by means of a convexified generalized
network flow (CGNF) problem. It is also proven that CGNF obtains globally
optimal flows for GNF, as long as the optimal injection vector is a Pareto
point. In the case where CGNF returns a wrong (infeasible) flow vector for
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GNF, the network can be decomposed into two subgraphs such that: (i) the
flows found by CGNF for one of the subgraphs are all globally optimal, and
(ii) the flows obtained by CGNF for the lines between the subgraphs are all
correct and at their limits (i.e., the lines between the two subgraphs are con-
gested). The set of all globally optimal flow vectors are characterized based
on the optimal injection vector found using CGNF. This set may be infinite,
non-convex, and disconnected, while it belongs to the boundary of a convex
set. Finally, we generalize the GNF problem and its convexification to include
coupling convex constraints on the flows or the injections. An immediate ap-
plication of this work is in power systems, where the goal is to optimize the
power flows at nodes and over lines of a power grid. Recent work on the opti-
mal power flow problem has shown that this non-convex problem can be solved
via a convex relaxation after two approximations: relaxing angle constraints
(by adding virtual phase shifters) and relaxing power balance equations to
inequality flow constraints. The results on GNF prove that the second approx-
imation (on power balance equations) is redundant under a practical angle
assumption.
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