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Abstract—This paper is concerned with the minimum-cost
flow problem over an arbitrary flow network. In this problem,
each node is associated with some possibly unknown injection,
each line has two unknown flows at its ends related to each
other via a nonlinear function, and all injections and flows
need to satisfy certain box constraints. This problem, named
generalized network flow (GNF), is highly non-convex due to its
nonlinear equality constraints. Under the practical assumption
of monotonicity and convexity of the flow and cost functions, a
convex relaxation is proposed, which always finds the optimal
injections. This relaxation may fail to find optimal flows because
the mapping from injections to flows might lead to an exponential
number of solutions. However, once optimal injections are found
in polynomial time, other techniques can be used to find a feasible
set of flows corresponding to the injections. A primary application
of this work is in optimization over power networks. Recent work
on the optimal power flow (OPF) problem has shown that this
non-convex problem can be solved efficiently using semidefinite
programming (SDP) after two approximations: relaxing angle
constraints (by adding virtual phase shifters) and relaxing power
balance equations to inequality constraints. The results of this
work prove two facts for the OPF problem: (i) the second
relaxation (on balance equations) is not needed in practice under
a very mild angle assumption, (ii) if the SDP relaxation fails to
find a rank-one solution, the optimal injections (and not flows)
may still be recovered from an undesirable high-rank solution.

I. INTRODUCTION

The area of “network flows” plays a central role in op-

erations research, computer science and engineering [1], [2].

This area is motivated by many real-word applications in as-

signment, transportation, communication networks, electrical

power distribution, production scheduling, financial budgeting,

and aircraft routing, to name only a few. Started by the

classical book [3] in 1962, network flow problems have been

studied extensively [4], [5], [6], [7].

The minimum-cost flow problem aims to optimize the flows

over a flow network that is used to carry some commodity from

suppliers to consumers. In a flow network, there is an injection

of some commodity at every node, which leads to two flows

over each line (arc) at its endpoints. The injection—depending

on being positive or negative, corresponds to supply or demand

at the node. The minimum-cost flow problem has been studied

thoroughly for a lossless network, where the amount of flow

entering a line equals the amount of flow leaving the line.

However, since many real-world flow networks are lossy, the

minimum-cost flow problem has also attracted much attention

for generalized networks, also known as networks with gain

[2], [8]. In this type of network, each line is associated with

a constant gain relating the two flows of the line through a
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linear function. From the optimization perspective, network

flow problems are convex and can be solved efficiently unless

there are discrete variables involved [9].

There are several real-world network flows that are lossy,

where the loss is a nonlinear function of the flows. An

important example is power distribution networks for which

the loss over a transmission line (with fixed voltage mag-

nitudes at both ends) is given by a parabolic function due

to Kirchhoff’s circuit laws [10]. The loss function could be

much more complicated depending on the power electronic

devices installed on the transmission line. To the best of

our knowledge, there is no theoretical result in the literature

on the polynomial-time solvability of network flow problems

with nonlinear flow functions, except in very special cases.

This paper is concerned with this general problem, named

Generalized Network Flow (GNF). Note that the term “GNF”

has already been used in the literature for networks with linear

losses, but it corresponds to arbitrary lossy networks in this

work.

GNF aims to optimize the nodal injections subject to flow

constraints for each line and box constraints for both injections

and flows. A flow constraint is a nonlinear equality relating

the flows at both ends of a line. To solve GNF, this paper

makes the practical assumption that the cost and flow functions

are all monotonic and convex. The GNF problem is still

highly non-convex due to its equality constraints. Relaxing

the nonlinear equalities to convex inequalities gives rise to

a convex relaxation of GNF. It can be easily observed that

solving the relaxed problem may likely lead to a solution for

which the new inequality flow constraints are not binding. One

may speculate that this observation implies that the convex

relaxation is not tight. However, the objective of this work is

to show that as long as GNF is feasible, the convex relaxation

is tight. More precisely, the convex relaxation always finds

the optimal injections (and hence the optimal objective value),

but probably produces wrong flows leading to non-binding

inequalities. However, once the optimal injections are obtained

at the nodes, a feasibility problem can be solved to find a set

of feasible flows corresponding to the injections. Note that the

reason why the convex relaxation does not necessarily find the

correct flows is that the mapping from injections to flows is

not invertible. For example, it is known in the context of power

systems that the power flow equations may not have a unique

solution. The main contribution of this work is to show that

although GNF is NP-hard (since the flow equations can have

an exponential number of solutions), the optimal injections

can be found in polynomial time.
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A. Application of GNF in Power Systems

The operation of a power network depends heavily on

various large-scale optimization problems such as state esti-

mation, optimal power flow (OPF), contingency constrained

OPF, unit commitment, sizing of capacitor banks and network

reconfiguration. These problems are highly non-convex due

to the nonlinearities imposed by laws of physics [11], [12].

For example, each of the above problems has the power

flow equations embedded in it, which are nonlinear equality

constraints. The nonlinearity of OPF, as the most fundamental

optimization problem for power systems, has been studied

since 1962 leading to developing various heuristic and local-

search algorithms [13], [14], [15]. These algorithms suffer

from sensitivity and convergence issues, and more importantly

they may convergence to a local optimum that is noticeably

far from a global solution.

Recently, it has been shown in [16] that the semidefinite

programming (SDP) relaxation is able to find the global

solution of the OPF problem under a sufficient condition,

which is satisfied for IEEE benchmark systems with 14, 30,

57, 118 and 300 buses and many randomly generated power

networks. The papers [16] and [12] show that this condition

holds widely in practice due to the passivity of transmission

lines and transformers. In particular, [12] shows that in the case

when this condition is not satisfied (see [17] for counterex-

amples), OPF can always be solved globally in polynomial

time after two approximations: (i) relaxing angle constraints

by adding a sufficient number of actual/virtual phase shifters

to the network, (ii) relaxing power balance equalities at the

buses to inequality constraints. OPF under Approximation (ii)

was also studied in [18] and [19] for distribution networks.

The paper [20] studies the optimization of active power flows

over distribution networks under fixed voltage magnitudes and

shows that SDP relaxation works without Approximation (i) as

long as a very practical angle condition is satisfied. The idea of

convex relaxation developed in [21] and [16] can be applied to

many other power problems, such as voltage regulation [22],

state estimation [23], calculation of voltage stability margin

[24], charging of electric vehicles [25], SCOPF with variable

tap-changers and capacitor banks [26], dynamic energy man-

agement [10] and electricity market [27].

Energy-related optimizations with embedded power flow

equations can be regarded as nonlinear network flow problems,

which are analogous to GNF. The results derived in this work

for a general GNF problem lead to the following conclusions

for OPF (and some of the abovementioned OPF-based opti-

mizations):

• They generalize the result of [20] to networks with virtual

phase shifters. This proves that in order to use SDP relax-

ation for OPF over an arbitrary power network, it may not

be needed to relax power balance equalities to inequality

constraints under a very mild angle assumption.

• If the SDP relaxation does not work exactly for an OPF

problem, it means that the obtained bus voltages are

wrong. However, it can be inferred from the results of this

work on GNF that the obtained bus injection powers may

still be correct, in which case the optimal voltages can

be recovered by solving a separate power flow problem.

B. Notations

The following notations will be used throughout this paper:

• R and R+ denote the sets of real numbers and nonneg-

ative numbers, respectively.

• Given two matrices M and N , the inequality M ≤ N

means that M is less than or equal to N element-wise.

• Given a set T , its cardinality is shown as |T |.
• Lowercase, bold lowercase and uppercase letters are used

for scalars, vectors and matrices (say x, x and X).

II. PROBLEM STATEMENT AND CONTRIBUTIONS

Consider an undirected graph (network) G with the vertex

set N := {1, 2, ..., m} and the edge set E ⊆ N ×N . For every

i ∈ N , let N (i) denote the set of the neighboring vertices

of node i. Assume that every edge (i, j) ∈ E is associated

with two unknown flows pij and pji belonging to R. The

parameters pij and pji can be regarded as the flows entering

the edge (i, j) from the endpoints i and j, respectively. Define

pi =
∑

j∈N(i)

pij, ∀i ∈ N (1)

The parameter pi is called “nodal injection at vertex i” or

simply “injection”, which is equal to the sum of the flows

leaving vertex i through the edges connected to this vertex.

Given an edge (i, j) ∈ E , we assume that the flows pij and pji

are related to each other via a function fij(·) to be introduced

later. To specify which of the flows pij and pji is a function

of the other, we give an arbitrary orientation to every edge of

the graph G and denote the resulting graph as ~G. Denote also

its directed edge set as ~E. If an edge (i, j) ∈ E belongs to ~E ,

we then express pji as a function of pij .

Definition 1: Define the vectors pn, pe and pd as follows:

pn = {pi | ∀i ∈ N} (2a)

pe = {pij | ∀(i, j) ∈ E} (2b)

pd = {pij | ∀(i, j) ∈ ~E} (2c)

(the subscripts “n”, “e” and “d” stand for nodes, edges and

directed edges). The terms pn, pe and pd are referred to as

injection vector, flow vector and semi-flow vector, respectively

(note that pe contains two flows per each line, while pd has

only one flow per line).

Definition 2: Given two arbitrary points x, y ∈ Rn, the box

B(x, y) is defined as follows:

B(x, y) = {z ∈ Rn |x ≤ z ≤ y} (3)

(note that B(x, y) is non-empty only if x ≤ y).

Assume that each nodal injection pi must be within the

given interval [pmin
i , pmax

i ] for every i ∈ N . We use the

shorthand notation B for the box B(pmin
n , pmax

n ), where pmin
n

and pmax
n are the vectors of the lower bounds pmin

i ’s and the

upper bounds pmax
i ’s, respectively. This paper is concerned

with the following problem.
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Generalized network flow (GNF):

min
Pn∈B,Pe∈R|E|

∑

i∈N

fi(pi) (4a)

subject to pi =
∑

j∈N(i)

pij, ∀i ∈ N (4b)

pji = fij(pij), ∀(i, j) ∈ ~E (4c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ ~E (4d)

where

1) fi(·) is convex and monotonically increasing for every

i ∈ N .

2) fij(·) is convex and monotonically decreasing for every

(i, j) ∈ ~E.

3) The limits pmin
ij and pmax

ij are given for every (i, j) ∈ ~E .

In the case when fij(pji) is equal to −pij for all (i, j) ∈ ~E ,

the GNF problem reduces to the network flow problem for

which every line is lossless. A few remarks can be made here:

• Given an edge (i, j) ∈ ~E , there is no explicit limit on pji

in the formulation of the GNF problem because restricting

pji is equivalent to limiting pij .

• Given a node i ∈ N , the assumption of fi(pi) being

monotonically increasing is motivated by the fact that

increasing the injection pi normally elevates the cost in

practice.

• Given an edge (i, j) ∈ ~E, pij and −pji can be regarded

as the input and output flows of the line (i, j), which

travel in the same direction. The assumption of fij(pij)
being monotonically decreasing is motivated by the fact

that increasing the input flow normally makes the output

flow higher in practice (note that −pji = −fij(pij)).

Definition 3: Define P as the set of all vectors pn for

which there exists a vector pe such that (pn, pe) satisfies

equations (4b), (4c) and (4d). The set P and P∩B are referred

to as injection region and box-constrained injection region,

respectively.

Regarding Definition 3, the box-constrained injection region

is indeed the projection of the feasible set of GNF onto the

space of the injection vector pn. Now, one can express GNF

geometrically as follows:

Geometric GNF : min
pn∈P∩B

∑

i∈N

fi(pi) (5)

Note that pe has been eliminated in Geometric GNF. It is hard

to solve this problem directly because the injection region P
is non-convex in general. This non-convexity can be observed

in Figure 2(a), which shows P for the two-node graph drawn

in Figure 1. To address this non-convexity issue, the GNF

problem will be convexified naturally next.

Convexified generalized network flow (CGNF):

min
Pn∈B,Pe∈R|E|

∑

i∈N

fi(pi) (6a)

subject to pi =
∑

j∈N(i)

pij, ∀i ∈ N (6b)

pji ≥ fij(pij), ∀(i, j) ∈ ~E (6c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ E (6d)

1 2

)2(
12p

)1(
12p

)1(
21p

)2(
21p

1p 2p

Fig. 1: The graph G studied in Section III-A.

where (pmin
ij , pmax

ij ) = (fji(p
max
ji ), fji(p

min
ji )) for every

(i, j) ∈ E such that (j, i) ∈ ~E. Note that CGNF has been

obtained from GNF by relaxing equality (4c) to inequality (6c)

and adding limits to pij for every (j, i) ∈ ~E . One can write:

Geometric CGNF : min
pn∈Pc∩B

∑

i∈N

fi(pi) (7)

where Pc denotes the set of all vectors pn for which there

exists a vector pe such that (pn, pe) satisfies equations (6b),

(6c) and (6d).

Two main results to be proved in this paper are:

• Geometry of injection region: Given any two points

pn and p̃n in the injection region, the box B(pn, p̃n) is

entirely contained in the injection region. Similar result

holds true for the box-constrained injection region.

• Relationship between GNF and CGNF: If (p∗
n , p

∗
e )

and (p̄∗
n , p̄

∗
e ) denote two arbitrary solutions of GNF and

CGNF, then p∗
n = p̄∗

n . Hence, although CGNF may not

be able to find a feasible flow vector for GNF, it always

finds the correct optimal injection vector for GNF.

The application of these results in power systems will also

be discussed. Note that this work implicitly assumes that

every two nodes of G are connected via at most one edge.

However, the results to be derived later are all valid in the

presence of multiple edges between two nodes. To avoid

complicated notations, the proof will not be provided for this

case. However, Section III-A studies a simple example with

parallel lines.

III. MAIN RESULTS

In this section, a detailed illustrative example will first be

provided to clarify the issues and highlight the contribution

of this work. In Subsections III-B and III-C, the main results

for GNF will be derived, whose application in power systems

will be later discussed in Subsection III-D.

A. Illustrative Example

In this subsection, we study the particular graph G depicted

in Figure 1. This graph has two vertices and two parallel edges.

Let (p
(1)
12 , p

(1)
21 ) and (p

(2)
12 , p

(2)
21 ) denote the flows associated

with the first and second edges of the graph, respectively.

Consider the following GNF problem:

min f1(p1) + f2(p2) (8a)

subject to p
(i)
21 =

(

p
(i)
12 − 1

)2

− 1, i = 1, 2 (8b)

−0.5 ≤ p
(1)
12 ≤ 0.5, −1 ≤ p

(2)
12 ≤ 1, (8c)

p1 = p
(1)
12 + p

(2)
12 , p2 = p

(1)
21 + p

(2)
21 (8d)
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(a) (b) (c)

Fig. 2: (a) Injection region P for the GNF problem given in (8); (b) The set Pc corresponding to the GNF problem given in (8);

(c) This figure shows the set Pc corresponding to the GNF problem given in (8) together with a box constraint (p1, p2) ∈ B
for four different positions of B.

with the variables p1, p2, p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 , where f1(·) and

f2(·) are both convex and monotonically increasing. The

CGNF problem corresponding to this problem can be obtained

by replacing (8b) with p
(i)
21 ≥ (p

(i)
12 − 1)2 − 1 and adding the

limits p
(1)
21 ≤ 1.52 − 1 and p

(2)
21 ≤ 22 − 1. One can write:

Geometric GNF: min
(p1,p2)∈P

f1(p1) + f2(p2) (9a)

Geometric CGNF: min
(p1,p2)∈Pc

f1(p1) + f2(p2) (9b)

where P and Pc are indeed the projections of the feasible

sets of GNF and CGNF over the injection space (p1, p2). The

green area in Figure 2(a) shows the injection region P. As

expected, this set is non-convex. In contrast, the set Pc is a

convex set containing P. This set is shown in Figure 2(b),

which includes two parts: (i) the green area is the same as P,

(ii) the blue area is the part of Pc that does not exist in P.

Thus, the transition from GNF to CGNF extends the injection

region P to a convex set by adding the blue area. Notice

that Pc has three boundaries: (1) straight line on the top, (2)

straight line on the right side, and (3) a lower curvy boundary.

Since f1(·) and f2(·) are both monotonically increasing, the

unique solution of Geometric CGNF must lie on the lower

curvy boundary of Pc. Since this lower boundary is in the

green area, it is contained in P. As a result, the unique solution

of Geometric CGNF is a feasible point of P and therefore it

is a solution of Geometric GNF. This means that CGNF finds

the optimal injection vector for GNF.

To make the problem more interesting, we add the box

constraint (p1, p2) ∈ B to GNF (and correspondingly to

CGNF), where B is an arbitrary rectangular convex set in R2.

The effect of this box constraint will be investigated in four

different scenarios:

• Assume that B corresponds to Box 1 (including its

interior) in Figure 2(c). In this case, P∩B = Pc∩B = φ,

meaning that Geometric GNF and Geometric CGNF are

both infeasible.

• Assume that B corresponds to Box 2 (including its

interior) in Figure 2(c). In this case, the solution of

Geometric CGNF lies on the lower boundary of Pc and

therefore it is also a solution of Geometric GNF.

• Assume that B corresponds to Box 3 (including its

interior) in Figure 2(c). In this case, the solutions of

Geometric GNF and Geometric CGNF are identical and

both correspond to the lower left corner of the box B.

• Assume that B corresponds to Box 4 (including its

interior) in Figure 2(c). In this case, P ∩ B = φ but

Pc ∩ B 6= φ. Hence, Geometric GNF is infeasible while

Geometric CGNF has an optimal solution

In summary, it can be argued that independent of the position

of the box B in R2, CGNF finds the optimal injection vector

for GNF as long as GNF is feasible.

B. Geometry of Injection Region

In order to study the relationship between GNF and CGNF,

it is beneficial to explore the geometry of the feasible set

of GNF. Hence, we investigate the geometry of the injection

region P and the box-constrained injection region P ∩ B in

this part.

Theorem 1: Consider two arbitrary points p̂n and p̃n in the

injection region P. The box B(p̂n, p̃n) is contained in P. �

The proof of this theorem is based on four lemmas, and

will be provided later in this subsection. To understand this

theorem, consider the injection region P depicted in Fig-

ure 2(a) corresponding to the illustrative example given in

Section III-A. If any arbitrary box is drawn in R2 in such

a way that its upper right corner and lower left corner both lie

in the green area, then the entire box must lie in the green area

completely. This can be easily proved in this special case and

is true in general due to Theorem 1. The result of Theorem 1

can be generalized to the box-constrained injection region, as

stated below.

Corollary 1: Consider two arbitrary points p̂n and p̃n be-

longing to the box-constrained injection region P ∩ B. The

box B(p̂n, p̃n) is contained in P ∩ B.

Proof: The proof follows immediately from Theorem 1. �

The rest of this subsection is dedicated to the proof of

Theorem 1, which is based on a series of definitions and

lemmas.

Definition 4: Define Bd as the box containing all vectors pd

introduced in (2c) satisfying the condition pij ∈ [pmin
ij , pmax

ij ]

for every (i, j) ∈ ~E .

Definition 5: Given two arbitrary points p̄d, p̃d ∈ Bd, define

M(p̄d, p̃d) as follows:

• Let M(p̄d, p̃d) be a matrix with |N | rows indexed by the

vertices of G and with |~E| columns indexed by the edges

in ~E .

• For every vertex k ∈ N and edge (i, j) ∈ ~E , set the

(k, (i, j))th entry of M(p̄d, p̃d) (the one in the intersection
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Fig. 3: (a) A particular graph ~G; (b) The matrix M(p̄d, p̃d) corresponding to the graph ~G in Figure (a); (c): The (j, (i, j))th

entry of M(p̄d, p̃d) (shown as “*”) is equal to the slope of the line connecting the point (p̄ij, p̄ji) to (p̃ij, p̃ji).

of row k and column (i, j)) as















1 if k = i
fij(p̄ij)−fij(p̃ij)

p̄ij−p̃ij
if k = j and p̄ij 6= p̃ij

f ′
ij(p̄ij) if k = j and p̄ij = p̃ij

0 otherwise

(10)

where f ′
ij(p̄ij) denotes the right derivative of fij(p̄ij) if p̄ij <

pmax
ij and the left derivative of fij(p̄ij) if p̄ij = pmax

ij .

To illustrate Definition 5, consider the three-node graph
~G depicted in Figure 3(a). The matrix M(p̄d, p̃d) associated

with this graph has the structure shown in Figure 3(b), where

the “*” entries depend on the specific values of p̄d and

p̃d. Consider an edge (i, j) ∈ ~E . The (j, (i, j))th entry of

M(p̄d, p̃d) is equal to

fij(p̄ij) − fij(p̃ij)

p̄ij − p̃ij

, (11)

provided p̄ij 6= p̃ij . As can be seen in Figure 3(c), this is

equal to the slope of the line connecting the point (p̄ij, p̄ji)
to the point (p̃ij , p̃ji) on the parameterized curve (pij, pji),
where pji = fij(pij). Moreover, f ′

ij(p̄ij) is the limit of this

slope as the point (p̃ij , p̃ji) approaches (p̄ij, p̄ji). It is also

interesting to note that M(p̄d, p̃d) has one positive entry, one

negative entry and m − 2 zero entries in each column (note

that the slope of the line connecting (p̄ij, p̄ji) to (p̃ij, p̃ji) is

always negative). The next lemma explains how the matrix

M(p̄d, p̃d) can be used to relate the semi-flow vector to the

injection vector.

Lemma 1: Consider two arbitrary injection vectors p̄n and

p̃n in P, associated with the semi-flow vectors p̄d and p̃d

(defined in (2)). The relation

p̄n − p̃n = M(p̄d, p̃d) × (P̄d − P̃d) (12)

holds.

Proof: One can write:

p̄i − p̃i =
∑

j∈N(i)

(p̄ij − p̃ij), ∀i ∈ N (13)

By using the relations

p̄ji = fij(p̄ij), p̃ji = fij(p̃ij), ∀(i, j) ∈ ~E , (14)

it is straightforward to verify that (12) and (13) are equiva-

lent. �

The next lemma investigates an important property of the

matrix M(p̄d, p̃d).
Lemma 2: Given two arbitrary points p̄d, p̃d ∈ Bd, as-

sume that there exists a nonzero vector x ∈ Rm such that

xT M(p̄d, p̃d) ≥ 0. If x has at least one strictly positive

entry, then there exists a nonzero vector y ∈ Rm
+ such that

yT M(p̄d, p̃d) ≥ 0.

Proof: Consider an index i0 ∈ N such that xi0 > 0. Define

V(i0) as the set of all vertices i ∈ N from which there exists

a directed path to vertex i0 in the graph ~G. Note that V(i0)
includes vertex i0 itself. The first goal is to show that

xi ≥ 0, ∀i ∈ V(i0) (15)

To this end, consider an arbitrary set of vertices i1, ..., ik in

V(i0) such that {i0, i1..., ik} forms a direct path in ~G as

ik → ik−1 → · · · i1 → i0 (16)

To prove (15), it suffices to show that xi1 , ..., xik
≥ 0. For

this purpose, one can expand the product xT M(p̄d, p̃d) and

use the fact that each column of M(p̄d, p̃d) has m − 2 zero

entries to conclude that

xi1 +
fi1i0(p̄i1i0) − fi1i0(p̃i1i0)

p̄i1i0 − p̃i1i0

xi0 ≥ 0 (17)

Since xi0 is positive and fi1i0(·) is a decreasing function, xi1

turns out to be positive. Now, repeating the above argument for

i1 instead of i0 yields that xi2 ≥ 0. Continuing this reasoning

leads to xi1 , ..., xik
≥ 0. Hence, inequality (15) holds. Now,

define y as

yi =

{

xi if i ∈ V(i0)
0 otherwise

, ∀i ∈ N (18)

In light of (15), y is a nonzero vector in Rm
+ . To complete

the proof, it suffices to show that yT M(p̄d, p̃d) ≥ 0. Similar

to the indexing procedure used for the columns of the matrix

M(p̄d, p̃d), we index the entries of the |~E| dimensional vector

yT M(p̄d, p̃d) according to the edges of ~G. Now, given an

arbitrary edge (α, β) ∈ ~E , the following statements hold true:

• If α, β ∈ V(i0), then the (α, β)th entries of yT M(p̄d, p̃d)
and xT M(p̄d, p̃d) (i.e., the entries corresponding to the

edge (α, β)) are identical.
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• If α ∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of

yT M(p̄d, p̃d) is equal to yα.

• If α 6∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of

yT M(p̄d, p̃d) is equal to zero.

Note that the case α 6∈ V(i0) and β ∈ V(i0) cannot happen,

because if β ∈ V(i0) and (α, β) ∈ ~E, then α ∈ V(i0) by the

definition of V(i0). It follows from the above results and the

inequality xT M(p̄d, p̃d) ≥ 0 that yT M(p̄d, p̃d) ≥ 0. �

The next lemma studies the injection region P in the case

when fij(·)’s are all piecewise linear.

Lemma 3: Assume that the function fij(·) is piecewise

linear for every (i, j) ∈ ~E. Consider two arbitrary points

p̂n, p̄n ∈ P and a vector ∆p̄n ∈ Rm satisfying the relations

p̂n ≤ p̄n − ∆p̄n ≤ p̄n (19)

There exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P, ∀ε ∈ [0, εmax] (20)

Proof: The proof is based on Lemmas 1 and 2. Since the

proof is lengthy and complicated, it has been moved to [28]. �

The next lemma proves Theorem 1 in the case when fij(·)’s
are all piecewise linear.

Lemma 4: Assume that the function fij(·) is piecewise

linear for every (i, j) ∈ ~E. Given any two arbitrary points

p̂n, p̃n ∈ P, the box B(p̂n, p̃n) is a subset of the injection

region P.

Proof: With no loss of generality, assume that p̂n ≤ p̃n (be-

cause otherwise B(p̂n, p̃n) is empty). To prove the lemma by

contradiction, suppose that there exists a point pn ∈ B(p̂n, p̃n)
such that pn 6∈ P. Consider the set

{

γ

∣

∣

∣

∣

γ ∈ [0, 1], p̃n + γ(pn − p̃n) ∈ P

}

(21)

and denote its maximum as γmax (the existence of this maxi-

mum number is guaranteed by the closedness and compactness

of P). Note that p̃n + γ(pn − p̃n) is equal to pn at γ = 1.

Since pn 6∈ P by assumption, we have γmax < 1. Denote

p̃n +γmax(pn − p̃n) as p̄n. Hence, p̄n ∈ P and p̂n ≤ pn ≤ p̄n

(recall that γmax < 1). Define ∆p̄n as p̄n−pn. One can write:

p̂n ≤ p̄n − ∆p̄n ≤ p̄n, p̂n, p̄n ∈ P (22)

By Lemma 3, there exists a strictly positive number εmax with

the property

p̄n − ε∆p̄n ∈ P, ∀ε ∈ [0, εmax] (23)

or equivalently

p̃n+(γmax+ε(1−γmax))(pn−p̃n) ∈ P, ∀ε ∈ [0, εmax] (24)

Notice that

γmax + ε(1 − γmax) > γmax, ∀ε > 0 (25)

Due to (24), this violates the assumption that γmax is the

maximum of the set given in (21). �

Lemma 4 will be deployed next to prove Theorem 1 in the

general case.

Proof of Theorem 1: Consider an arbitrary approximation

of fij(·) by a piecewise linear function for every (i, j) ∈ ~E .

As a counterpart of P, let Ps denote the injection region in

the piecewise-linear case. By Lemma 4, we have

B(p̂n, p̃n) ⊆ Ps (26)

Since the piecewise linear approximation can be made in such

a way that the sets P and Ps become arbitrarily close to each

other, the above relation implies that the interior of B(p̂n, p̃n)
is a subset of P. On the other hand, P is a closed set. Hence,

the box B(p̂n, p̃n) must entirely belong to P. �

C. Relationship Between GNF and CGNF

In this subsection, the relationship between GNF and CGNF

will be explored.

Theorem 2: Assume that the GNF problem is feasible. Let

(p∗
n , p

∗
e ) and (p̄∗

n , p̄
∗
e ) denote arbitrary solutions of GNF and

CGNF, respectively. The relation p∗
n = p̄∗

n holds. �

Observe that since (p̄∗
n , p̄

∗
e ) is a feasible point of CGNF,

one can write

p̄∗i ≥ pmin
i , ∀i ∈ N (27)

The proof of Theorem 2 is lengthy and involved in the general

case, but it simplifies greatly in the special case

p̄∗i = pmin
i , ∀i ∈ N (28)

Hence, the general proof has been moved to [28], but its

special case is provided below.

Proof of Theorem 2 under Condition (28): (p∗
n , p

∗
e ) being

a feasible point of GNF implies that

p∗i ≥ pmin
i , ∀i ∈ N (29)

Equations (28) and (29) lead to

p̄∗
n ≤ p∗

n (30)

Define the vector p̃n as

p̃i =
∑

(i,j)∈~E

p̄∗ij +
∑

(j,i)∈~E

fij(p̄
∗
ij), ∀i ∈ N (31)

Notice that p̃n belongs to P. It can be inferred from the

definition of CGNF that

p̃n ≤ p̄∗
n (32)

Since p̃n, p
∗
n ∈ P, it follows from Theorem 1, (30) and (32)

that p̄∗
n ∈ P. On the other hand, p̄∗

n ∈ B. Therefore, p̄∗
n ∈

P ∩B, meaning that p̄∗
n is a feasible point of Geometric GNF.

Since the feasible set of Geometric CGNF includes that of

Geometric GNF, p̄∗
n must be a solution of Geometric GNF as

well. The proof follows from equation (30) and the fact that

p∗
n is another solution of Geometric GNF. �

An optimal solution of CGNF comprises two parts: injection

vector and flow vector. Theorem 2 states that CGNF always

finds the correct optimal injection vector solving GNF. An

example is provided in [28] to understand the reason why

CGNF may not be able to find the correct optimal flow vector

solving GNF.
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D. Optimal Power Flow in Electrical Power Networks

In this subsection, the results derived earlier for GNF will

be applied to power networks. Consider a group of generators

(sources of energy), which are connected to a group of

electrical loads (consumers) via an electrical power network

(grid). This network comprises a set of transmission lines

connecting various nodes to each other (e.g., a generator to

a load). Figure 4(a) exemplifies a four-node power network

with two generators and two loads. Each load requests certain

amount of energy, and the question of interest is to find the

most economical power dispatch by the generators so that the

demand and network constraints are met. To formulate the

problem, let G denote the flow network corresponding to the

electrical power network, where

• Each injection pi, i ∈ G, represents either the active

power produced by a generator and injected to the net-

work or the active power absorbed from the network by

an electrical load.

• Each pij , (i, j) ∈ E , represents the active power entering

the transmission line (i, j) from its i endpoint.

The problem of optimizing the flows in a power network is

called “optimal power flow (OPF)”. In this part, the goal is

to optimize only active power, but most of the results to be

developed later can be generalized to reactive power as well.

Let vi denote the complex (phasor) voltage at node i ∈ N
of the power network. Denote the phase of vi as θi. Given an

edge (j, k) ∈ G, we denote the admittance of the transmission

line between nodes j and k as gjk − ibjk, where the symbol

i denotes the imaginary unit. gjk and bjk are nonnegative

numbers due to the passivity of the line. There are two flows

entering the transmission line from its both ends. These flows

are given by:

pjk = |vj|
2gjk + |vj||vk|bjk sin(θjk) − |vj||vk|gjk cos(θjk),

pkj = |vk|
2gjk − |vj ||vk|bjk sin(θjk) − |vj||vk|gjk cos(θjk)

where θjk = θj − θk . As traditionally done in the power area,

assume that |vj| and |vk| are fixed at their nominal values,

while θjk is a variable to be designed. If θjk varies from −π

to π, then the feasible set of (pjk, pkj) becomes an ellipse, as

illustrated in Figure 4(b). It can be seen from this figure that

pkj cannot be written as a function of pjk. This observation is

based on the implicit assumption that there is no limit on θjk .

Suppose that θjk must belong to an interval [−θmax
jk , θmax

jk ]
for some angle θmax

jk . If the new feasible set for (pjk, pkj)
resembles the partial ellipse drawn in Figure 4(c), then pkj

can be expressed as fjk(pjk) for a monotonically decreasing,

convex function fjk(·). This happens if

θmax
jk ≤ tan−1

(

bjk

gjk

)

(33)

It is interesting to note that the right side of the above

inequality is equal to 45.0◦, 63.4◦ and 78.6◦ for
bjk

gjk
equal

to 1, 2 and 5, respectively. Note that
bjk

gjk
is normally greater

than 5 (due to the specifications of transmission lines) and

θmax
jk is normally less than 15◦ and very rarely as high as

30◦ due to stability and thermal limits (this angle constraint is

forced either directly or through pmin
jk and pmax

jk in practice).

Hence, Condition (33) is very practical. By assuming that this

condition is satisfied, there exists a monotonically decreasing,

convex function fjk(·) such that

pkj = fjk(pjk), ∀pjk ∈ [pmin
jk , pmax

jk ], (34)

where pmin
jk and pmax

jk correspond to θmax
jk and −θmax

jk , respec-

tively.

Given two disparate edges (j, k) and (j′, k′), the phase

differences θjk and θj′k′ may not be varied independently if

the graph G is cyclic (because the sum of the phase differences

over a cycle must be zero). This is not an issue if the graph

G is acyclic (corresponding to distribution networks) or if

there is a sufficient number of phase-shifting transformers

in the network. If none of these cases is true, then one

could add virtual phase shifters to the power network at

the cost of approximating the OPF problem. As soon as

the flows (or phase differences) on various lines can be

varied independently, equation (34) yields that the problem

of optimizing active flows reduces to GNF. In this case,

Theorems 1 and 2 can be used to study the corresponding

approximated OPF problem. As a result, the optimal injections

for the approximated OPF can be found via the corresponding

CGNF problem. This implies two facts about the SDP and

SOCP relaxations proposed in [16] and [12] for solving the

OPF problem:

• The relaxations are exact without using the concept of

load over-satisfaction (i.e., relaxing the flow constraints).

This is the generalization of the result derived in [20].

• The relaxations always yields the optimal injections, but

the produced flow vector can be wrong (meaning that the

flow inequality constraints are not all binding). It is easy

to contrive such examples.

In addition to active powers, voltage magnitudes and reactive

powers are often variables in power systems. The following

remarks can be made for a general OPF problem:

• Reactive flows can be written as linear functions of active

flows. This implies that the above conclusions on OPF

are valid even if the reactive power at each bus is upper

bounded by a given number.

• In the case when the voltage magnitudes are variable,

the flow constraint pkj = fjk(pjk) needs to be replaced

by pkj = fjk(pjk, x), where x is an exogenous input

containing the voltage magnitudes at all buses. The

technique proposed in this paper can be used to show that

there is a region for x over which the above conclusions

on OPF are valid. Due to space restrictions, the details

are omitted here.

IV. CONCLUSIONS

Network flow plays a central role in operations research,

computer science and engineering. Due to the complexity

of this problem, the main focus has been on lossless flow

networks and more recently on networks with a linear loss

function. This paper studies the generalized network flow

(GNF) problem, which aims to optimize the flows over a lossy

flow network. It is assumed that the two flows over a line

are related to each other via an arbitrary convex monotonic
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Fig. 4: (a): An example of electrical power network; (b) Feasible set for (pjk, pkj); (c) Feasible set for (pjk, pkj) after imposing

lower and upper bounds on θjk.

function. The GNF problem is hard due to the presence of

nonlinear equality flow constraints. If the flow constraints are

relaxed to convex inequalities, these constraints may not be

binding at optimality (as verified in simulations). This implies

that a natural convex relaxation of GNF may lead to wrong

flows. Nonetheless, this paper proves that the nodal injections

obtained by solving the convex relaxation are optimal, as long

as GNF is feasible. In other words, this paper proposes a

polynomial-time algorithm for finding the optimal injections.

Obtaining a set of flows associated with the optimal injections

is a separate problem and has been considered as future work.

An immediate application of this work is in power systems,

where the goal is to optimize the power flows at buses and

over transmission lines. Recent work on the optimal power

flow problem has shown that this non-convex problem can

be solved via a convex relaxation after two approximations:

relaxing angle constraints (by adding virtual phase shifters)

and relaxing power balance equations to inequality flow con-

straints. The results on GNF proves that the second relaxation

(on power balance equations) is redundant under a very mild

angle assumption.
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