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Abstract

Stochastic time-varying optimization is an integral part of learning in which the shape of the
function changes over time in a non-deterministic manner. This paper considers multiple models
of stochastic time variation and analyzes the corresponding notion of hitting time for each model,
i.e., the period after which optimizing the stochastic time-varying function reveals informative
statistics on the optimization of the target function. The studied models of time variation
are motivated by adversarial attacks on the computation of value iteration in Markov decision
processes. In this application, the hitting time quantifies the extent that the computation is
robust to adversarial disturbance. We develop upper bounds on the hitting time by analyzing
the contraction-expansion transformation appeared in the time-variation models. We prove
that the hitting time of the value function in the value iteration with a probabilistic contraction-
expansion transformation is logarithmic in terms of the inverse of a desired precision. In addition,
the hitting time is analyzed for optimization of unknown continuous or discrete time-varying
functions whose noisy evaluations are revealed over time. The upper bound for a continuous
function is super-quadratic (but sub-cubic) in terms of the inverse of a desired precision and the
upper bound for a discrete function is logarithmic in terms of the cardinality of the function
domain. Improved bounds for convex functions are obtained and we show that such functions
are learned faster than non-convex functions. Finally, we study a time-varying linear model
with additive noise, where hitting time is bounded with the notion of shape dominance.

Keywords— Stochastic time-varying functions, stochastic operators, hitting time, probabilistic contraction-
expansion mapping, probabilistic Banach fixed-point theorem, adversarial Markov decision process

1 Introduction and Related Work

In many practical applications of optimization, such as those in the training of neural networks [1,2], online
advertising [3], decision-making process of power systems [4,5], and the real-time state estimation of nonlinear
systems [6], the parameters of the problem are often uncertain and change over time [7]. To put the time-
varying and uncertainty of the systems into perspective in optimization problems, time-varying or online
optimization aims to find the solution trajectories determined by

x∗
t = argmin

x∈X
{ft(x) = EFt(x, ξ)} , t ∈ {1, 2, . . . }, (1)

where the random variable ξ models the uncertainty in the objective that comes from disturbance, inexactness
of model, use of small batches, or injected noise, and where argmin denotes any global minimizer of the input
function. Note that the expectation E over ξ can only be evaluated approximately since the probability
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distribution is unknown, and therefore the target function ft should be approximated by observed samples.
The estimate of the target function may not capture the shape of the target function given a limited number
of observed samples. However, there is a point of time, named hitting time, after which optimizing the
estimated target function results in optimizing the target function up to some precision and confidence level.
The hitting time captures the stochastic complexity of the time-varying problem in (1).

Table 1: Comparison of Selected Theorems in Sections II-III

Theorem Assumptions Hitting Time Definition

3 Assumptions 3-4, bounded difference functions (45)
4 Assumptions 3-6, convex bounded difference functions (45)
5 Assumptions 3 and 7 (65)
6 Assumptions 3 and 7, unimodal functions (65)
8 linear dynamics and shape dominance (84)

1.1 Motivating Applications

In order to motivate the analysis of hitting time for time-varying probabilistic transformations, we first
explain its applications in Markov Decision Process (MDP) and reinforcement learning (RL). Consider an
MDP with the set of states (state space) S, the set of actions (action space) A, the time-invariant state
transition h such that sk+1 = h(sk, ak, wk), where wk for k ∈ {0, 1, . . . } is a sequence of independent and
identically distributed (i.i.d.) random variables, and the immediate reward r(sk, ak, wk) received after taking
action ak in state sk. A state-contingent decision policy is a mapping µ : S → A. Given a discount factor
0 < q < 1 and a policy µ, the value function V µ : S → R is defined as

V µ(s) = E

[ ∞∑
k=0

qk · r(sk, µ(sk), wk)

∣∣∣∣s0 = s

]
, (2)

where expectation is taken over wk for k ≥ 0. Then, the optimal value function V ∗ is defined by

V ∗(s) = max
µ

V µ(s). (3)

For a finite action space, any policy µ∗ given by

µ∗(s) = argmax
a∈A

E
[
r(s, a, w) + q · V ∗(h(s, a, w))

]
(4)

is optimal in the sense that V ∗(s) = V µ∗
(s), which gives rise to the Bellman equation

V ∗(s) = max
a∈A

E
[
r(s, a, w) + q · V ∗(h(s, a, w))

]
∀s ∈ S, (5)

where w is a random variable with the same distribution as wk for some k. Define the Bellman operator T
as

(T V )(s) = max
a∈A

E
[
r(s, a, w) + q · V (h(s, a, w))

]
(6)

Starting from an arbitrary V0, the value iteration method constructs a sequence {V0, V1, V2, . . . } with Vt+1 =
T (Vt) for t ∈ {0, 1, . . . }. It is well known that the Bellman operator is a contraction mapping, which
guarantees convergence to V ∗. The optimal value function V ∗ is unknown in MDP and RL applications.
The value function Vt is a time-varying function and may never be exactly equal to V ∗. Moreover, Vt is
rarely computed exactly and is subject to adversarial attacks. We will introduce multiple models of attack
and analyze the corresponding notion of hitting time for each model to be able to study the convergence of
Vt.
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1.2 Related Work

1.2.1 Approximate Dynamic Programming

The field approximate dynamic programming encompasses a wide range of techniques that overcomes the
curse of dimensionality in the computation of Bellman operator. The adversarial attack model studied in
this paper is motivated by the following approaches:

I. Approximation in computing expectation: There are different approaches to circumventing the
costly computation of expectation in (6), e.g., a) assuming certainty equivalence by replacing stochastic
quantities with deterministic ones to arrive at a deterministic optimization, b) using Monte Carlo tree
search and adaptive simulation to determine which expectations associated with actions should be computed
more accurately [8–12]. Both of these approaches introduce some errors in the expectation.

II. Approximation in maximization: The maximization in the Bellman operator in (6) can be over a
large number of actions, possibly a continuous action space with an infinite number of actions. In addition
to the discretization of the action space, nonlinear programming techniques are prone to errors especially
when they are used in an online fashion.

III. Approximation of value function: Due to the large number of states in many recent applications
of Markov decision processes and reinforcement learning, parametric feature-based approximation methods,
such as neural network architectures, are used for value function representation [8, 13–16]. The parameter-
ization of the value function is another source of error in value iteration that can cause expansion in value
iteration [13,14].

IV. Adversarial value iteration: The emergence of cloud, edge, and fog computing means that large-
scale MDP and RL problems will likely be solved by distributed servers [17–19]. This swift shift to edge
reinforcement learning brings a host of new adversarial attack challenges that can be catastrophic in critical
applications of autonomous vehicles and Internet of Things (IoT) in general [20–22].

The first three causes have been studied extensively in the literature [23], while there is no mathematical
analysis of adversarial attacks on the computation of the value functions.

1.2.2 Reinforcement Learning in Time-varying Environment

Consider a reinforcement learning framework in which the model is being learned or there is a time-varying
environment whose state transition probabilities and rewards change over time [24]. An example of a time-
varying environment is the changing environment at which autonomous vehicles interact with each other,
human drivers, and pedestrians. In the context of reinforcement learning and Markov decision processes, this
gradual change is translated into time-varying reward functions and transition probabilities. The relevance
of time-varying functions to MDP and RL problems presented above is one of the many problems that can be
described by time-varying functions whose hitting time analysis is of interest. Other applications of a time-
varying framework, such as bandit optimization, model predictive control, and empirical risk minimization,
are discussed in [25].

1.2.3 Scenario-based Approach for Optimization

Scenario-based approach for optimization [26–28] is concerned with decision making based on seen cases
while having the ability to generalize to new situations. In this context, a bound on the violation probability
captures the generalization of time-invariant decisions. The hitting time defined in this paper is related to
the violation probability. Our work departs from this line of research in that we study a sequence of time-
varying functions instead of a time-invariant function, which can potentially be corrupted by an adversary,
and seeking to constantly adjusting our understanding of the optimal solution. The hitting time captures
the time-varying aspect in our setting.
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1.2.4 Dynamical Systems

Our work is also related to asynchronous dynamical systems [29], which have been extensively studied in the
literature. Despite the mathematical resemblance, our work is different from this line of research since our
focus is on analyzing the associated hitting times of different models and the dynamics considered in this
work may not even be linear.

1.3 Contributions

We propose a probabilistic model of adversarial attacks, in which both expansion up to a constant and
contraction occur with certain probabilities in iterates of the value iteration method. We then study the
hitting time of such stochastic time-varying value functions in Section 2. We develop an upper bound on
the hitting time under a time-varying contraction mapping with additive noise and develop an upper bound
on the distance between the fixed point and the value function.

In the rest of this paper, different models of stochastic time variation for continuous and discrete functions
are studied in Sections 2 and 3, respectively. In particular, probabilistic contraction-expansion mappings
are studied in Section 2.1, time-varying probabilistic contraction-expansion mappings with additive noise
are studied in Section 2.2, time-varying continuous functions with additive noise are studied in Section 2.3,
and improved bounds for convex functions with additive noise are studied in Section 2.4. Time-varying
discrete functions with additive noise are studied in Section 3.1, improved bounds for unimodal functions
with additive noise are studied in Section 3.2, and a time-varying linear model with additive noise with
the notion of shape dominance are studied in Section 3.3. We summarize the theorems and the associated
assumptions as well as the hitting times definitions in Table 1. Finally, the simulation results are presented
in Section 4 and the paper is concluded in Section 5 in which a discussion of opportunities for future work
is presented as well.

2 The Hitting Time Analysis for Continuous Functions

In this section, three variants of stochastic time-varying models are studied and their hitting times are
analyzed. In the first model, a probabilistic contraction-expansion mapping is analyzed, where the classical
Banach fixed-point theorem cannot be applied to this model due to the probabilistic contraction-expansion
nature of the problem. In the second model, a time-varying probabilistic contraction-expansion mapping
with additive noise is investigated. The above two models are applicable to both continuous and discrete
functions. In the last model, an unknown time-varying continuous function is observed with additive noise
whose estimated function changes over time.

To motivate the three stochastic time-varying models, we revisit the motivating example in the previous
section, where a sequence of value functions V0, V1, . . . is generated by the Bellman operator T defined in
(6). Note that the theoretical proof of convergence behind the value iteration method depends heavily on
the contraction mapping parameter q and the fact that d

(
T (Vt+1), T (Vt)

)
≤ q ·d

(
Vt+1, Vt

)
deterministically,

where d(·, ·) is a translation-invariant distance function induced by a norm. However, in an online implemen-
tation of the value iteration with large state or action spaces, the actual calculation in practice may result
in the value iteration method not to satisfy the contraction condition d

(
T (Vt+1), T (Vt)

)
≤ q · d

(
Vt+1, Vt

)
in some iterations. Instead, the distance may expand up to a factor greater than one in some iterations of
the value iteration, i.e., d

(
T (Vt+1), T (Vt)

)
≤ Q · d

(
Vt+1, Vt

)
, where Q ≥ 1. In this problem, the Bellman

contraction mapping in value iteration may not be fixed anymore and could change over time. Hence, instead
of applying the same transformation T in value iteration, a time-varying transformation Tt for t ∈ {0, 1, . . . }
may be applied to value iteration. Section 2.1 formalizes this observation.

2.1 Probabilistic Contraction-Expansion Mapping

Let (X, ∥ · ∥) be a non-empty complete normed vector (linear) space, known as a Banach space, over the
field R of real scalars, where X is a vector space, e.g., a function space, together with a norm ∥ · ∥. The norm
induces a translation invariant distance function, called canonical induced metric, as d(f, g) = ∥f − g∥. Let
∥f∥ = ⟨f, f⟩1/2, where the inner product of f, g ∈ X in general is defined by ⟨f, g⟩ =

∫
f(x)g(x)dx. Consider
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a contraction mapping T : X → X with the property that for all f, g ∈ X, there exists a scalar q ∈ [0, 1)
such that

d
(
T (f), T (g)

)
≤ q · d(f, g). (7)

In light of the Banach-Caccioppoli fixed-point theorem, this contraction mapping has its own unique fixed
point, i.e., there exists f∗ ∈ X such that T (f∗) = f∗. Furthermore, starting with an arbitrary function
f0 ∈ X, the sequence {fn} with fn = T (fn−1) for n ≥ 1 converges to f∗; in other words, fn → f∗, where

d
(
f∗, fn

)
≤ qn

1−q · d(f
1, f0). Note that in all iterations of the above value iteration, the mapping T operates

as a contraction mapping according to (7) with probability one. However, in the rest of this subsection, we
consider a probabilistic version of the Banach fixed-point theorem, where the mapping either contracts or
expands the distance between any two points in a probabilistic manner.

Consider the time-varying function ft ∈ X for t ∈ {0, 1, 2, . . . } evolving over time according to

ft+1 = T (ft), t ∈ {0, 1, 2, . . . }, (8)

where T is a probabilistic contraction-expansion mapping such that

d
(
T (ft+1), T (ft)

)
≤

{
q · d(ft+1, ft) w.p. p

Q · d(ft+1, ft) otherwise
, ∀t ∈ N0 (9)

for some constants q ∈ [0, 1), Q ≥ 1, and p ∈ (0, 1], where w.p. stands for “with probability” and N0 is
natural numbers with zero. The expansion in (9) is caused by an adversary in an attempt to move the
function sequence away from the fixed point. The contraction or expansion of T is independent over time
and f∗ is a fixed point of the mapping if T (f∗) = f∗. The shape of the function ft changes over time, but
there can be a time, called hitting time T , at which fT reaches a neighborhood of f∗, as formally defined
below.

Definition 1. Given ϵ > 0 and a ∈ (0, 1], the hitting time T (ϵ, a) for the stochastic function sequence
introduced in (8) is defined as

T (ϵ, a) = min
{
T : P

{
d
(
ft, f

∗) < ϵ
}
≥ 1− a, ∀t ≥ T

}
, (10)

where f∗ is a fixed point whose existence and uniqueness is proven in Theorem 1 and P{·} takes the probability
of the input event.

As a result, the complexity of optimizing the functions ft for t < T can be irrelevant to the optimization
complexity of the functions ft for t ≥ T . Consequently, the hitting time T together with the optimization
complexity of any function ft for t ≥ T captures the complexity of optimizing the time-varying sequence of
functions {ft}. In the following theorem, the limiting behavior of the function sequence {ft} is studied and
an upper bound on the hitting time is derived.

Theorem 1. Probabilistic Banach Fixed-Point Theorem. Let (X, ∥ · ∥) be a non-empty complete
normed vector space with a probabilistic contraction-expansion mapping T : X → X defined in (9) such that
q2 ·p+Q2 · (1−p) < 1. Starting with an arbitrary element f0 ∈ X, the sequence {ft} defined in (8) converges
to an element f∗ ∈ X with an associated confidence level 1 − a, where f∗ is a unique fixed point for the
mapping T . Furthermore, for every 0 < L < ϵ

d(f1,f0)
, the hitting time T (ϵ, a) satisfies the inequality

T (ϵ, a)≤max


ln

(
a·L2·
(
1−q·p−Q·(1−p)

)
·
(
1−q2·p−Q2·(1−p)

)
1+q·p+Q·(1−p)

)
ln
(
q2 · p+Q2 · (1− p)

) ,
ln
((

ϵ
d(f1,f0)

−L
)
·
(
1− q · p−Q · (1− p)

))
ln
(
q · p+Q · (1− p)

)
. (11)

Proof. In order to find an upper bound on the hitting time T (ϵ, a) defined in Definition 1, we first need
to study the convergence behavior of the function sequence {ft} in (8) under the probabilistic contraction-
expansion mapping T . To this end, we prove that this function sequence is a Cauchy sequence with high
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probability. Given arbitrary integer values n and m such that n > m, one can write

d
(
fn, fm

)
= d
(
T n

(f0), T
m
(f0)

) (a)

≤
n−m∑
i=1

d
(
T n−i+1

(f0), T
n−i

(f0)
)
=

n−m∑
i=1

d
(
T n−i

(f1), T
n−i

(f0)
)

(b)

≤
n−m∑
i=1

n−i∏
j=1

Bj

 · d
(
f1, f0

)
= d
(
f1, f0

)
·
n−m∑
i=1

n−i∏
j=1

Bj ,

(12)

where triangular inequality is applied n−m−1 times in (a) and the independent and identically distributed
random variables Bj for j ∈ {1, 2, . . . , n− 1} used in (b) have the distribution

Bj =

{
q w.p. p

Q otherwise
. (13)

Next, we study the mean and variance of the random variable Sn,m =
∑n−m

i=1

∏n−i
j=1 Bj in (12). Using the

independence of Bj for j ∈ {1, 2, . . . , n− 1}, the mean can be upper-bounded as

E[Sn,m] = E

n−m∑
i=1

n−i∏
j=1

Bj

 =

n−m∑
i=1

n−i∏
j=1

E [Bj ] =

n−m∑
i=1

(
q · p+Q · (1− p)

)n−i ≤
(
q · p+Q · (1− p)

)m
1− q · p−Q · (1− p)

. (14)

On the other hand, Var (Sn,m) ≤ E
[
S2
n,m

]
, where Var (·) takes the variance of the input random variable,

and the second moment of Sn,m will be upper-bounded next. Note that

Sn,m = B1 ·B2 · · ·Bm ·
(
1+Bm+1 +Bm+1 ·Bm+2 + · · ·+Bm+1 · · ·Bn−1

)
. (15)

Let S̄n,m = 1+Bm+1+Bm+1 ·Bm+2+ · · ·+Bm+1 · · ·Bn−1, where S̄n,m is a random variable independent of
Bj for j ∈ {1, 2, . . . ,m}, and S̄ = limn→∞ S̄n,m. We leave out the subscript m since the limits limn→∞ S̄n,m

and limn→∞ S̄n,m′ are identically distributed for all m,m′ ≥ 0. This is because S̄ is an infinite sum and
{Bj} are i.i.d. random variables. Since E[Bj ] > 0 for j ≥ 1, we have E[S̄2

n,m] ≤ E[S̄2]; hence, it follows
from (15) that

E
[
S2
n,m

]
= E

[
B2

1

]
· · ·E

[
B2

m

]
· E
[
S̄2
n,m

]
≤ E

[
B2

1

]
· · ·E

[
B2

m

]
· E
[
S̄2
]
. (16)

In order to find an upper bound on E
[
S̄2
]
, we have

S̄ = 1+Bm+1 · (1 +Bm+2 +Bm+2 ·Bm+3 +Bm+2 ·Bm+3 ·Bm+4 + . . . ) = 1 +Bm+1 · S̃, (17)

where S̃ is independent of Bm+1, and the random variables S̄ and S̃ are identically distributed but not
independent of each other. By taking expectation on both sides of S̄2 = (1 + Bm+1 · S̃)2, and using the
independence of S̃ and Bm+1 and the fact that E

[
S̄2
]
= E

[
S̃2
]
, one can obtain

E
[
S̄2
]
= 1 + E

[
B2

m+1

]
· E
[
S̃2
]
+ 2E [Bm+1] · E

[
S̃
]
=⇒ E

[
S̄2
]
=

1 + 2E [Bm+1] · E
[
S̃
]

1− E
[
B2

m+1

] . (18)

In the same way as finding the mean of Sn,m in (14), it is derived that E
[
S̃
]
= 1

1−q·p−Q·(1−p) ; furthermore,

E [Bm+1] = q · p +Q · (1 − p) and E
[
B2

m+1

]
= q2 · p +Q2 · (1 − p). As a result, if q2 · p +Q2 · (1 − p) < 1,

Equation (18) results in

E
[
S̄2
]
=

1 + q · p+Q · (1− p)(
1− q · p−Q · (1− p)

)
·
(
1− q2 · p−Q2 · (1− p)

) . (19)

Using Equation (16), we have

Var (Sn,m) ≤ E
[
S2
n,m

]
≤
(
q2 · p+Q2 · (1− p)

)m× 1 + q · p+Q · (1− p)(
1− q · p−Q · (1− p)

)
·
(
1− q2 · p−Q2 · (1− p)

) . (20)
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So far, it is shown that d
(
T n

(f0), T
m
(f0)

)
≤ Sn,m ·d

(
f1, f0

)
, where Sn,m is a random variable with its mean

and variance upper-bounded in (14) and (20), respectively. Using Chebyshev’s inequality, for any L > 0, we
have

P {|Sn,m − E[Sn,m]| ≤ L} ≥ 1− Var (Sn,m)

L2
=⇒

P

{
Sn,m ≤

(
q · p+Q · (1− p)

)m
1− q · p−Q · (1− p)

+ L

}
≥1−

(
q2 · p+Q2 · (1− p)

)m ·
(
1 + q · p+Q · (1− p)

)
L2 ·

(
1− q · p−Q · (1− p)

)
·
(
1− q2 · p−Q2 · (1− p)

) . (21)

As a result, for any ϵ > 0 and a ∈ (0, 1], we have d(fn, fm) = d
(
T n

(f0), T
m
(f0)

)
≤ ϵ with the confidence

level 1− a if m satisfies the two inequalities(
q2 · p+Q2 · (1− p)

)m ·
(
1 + q · p+Q · (1− p)

)
L2 ·

(
1− q · p−Q · (1− p)

)
·
(
1− q2 · p−Q2 · (1− p)

) ≤ a (22a)((
q · p+Q · (1− p)

)m
1− q · p−Q · (1− p)

+ L

)
· d
(
f1, f0

)
≤ ϵ. (22b)

Assume that d
(
f1, f0

)
̸= 0; otherwise, f0 is a fixed point by definition. Hence, for 0 < L < ϵ

d(f1,f0)
, if

q · p+Q · (1− p) < 1 and q2 · p+Q2 · (1− p) < 1, then the two inequalities in (22a) and (22b) are satisfied
when

m ≥ max


ln

(
a·L2·
(
1−q·p−Q·(1−p)

)
·
(
1−q2·p−Q2·(1−p)

)
1+q·p+Q·(1−p)

)
ln
(
q2 · p+Q2 · (1− p)

) ,
ln
((

ϵ
d(f1,f0)

−L
)
·
(
1− q · p−Q · (1− p)

))
ln
(
q · p+Q · (1− p)

)
 . (23)

Now, for every ϵ > 0 and a ∈ (0, 1], let Nϵ be the constant on the right-hand side of (23). Then, with
probability 1 − a, it holds that limn→∞ d(fn, fNϵ

) ≤ limn→∞ Sn,Nϵ
· d
(
f1, f0

)
≤ ϵ. For all n > m > Nϵ,

since {Bj} are nonnegative, it holds that Sn,m = B1 · B2 · · ·BNϵ
· (BNϵ+1 · · ·Bm + · · ·+BNϵ+1 · · ·Bn−1) ≤

B1·B2 · · ·BNϵ
·(1+BNϵ+1+BNϵ+1BNϵ+2+. . . ) = limn→∞ Sn,Nϵ

, which implies d(fn, fm) ≤ Sn,m·d
(
f1, f0

)
≤ ϵ

as long as limn→∞ Sn,Nϵ
·d
(
f1, f0

)
≤ ϵ. To conclude, the sequence {ft} is a Cauchy sequence with probability

1− a. Since the vector space X is complete, the sequence {ft} converges to an element f∗ in the space with
high probability. Moreover, f∗ is a fixed point of the mapping T since with high probability we have

T (f∗) = T ( lim
t→∞

ft)
(a)
= lim

t→∞
T (ft) = lim

t→∞
ft+1 = f∗, (24)

where (a) is true as the mapping T is continuous due to (9), which justifies bringing the limit outside the
operator T . Lastly, there cannot be more than one fixed point for the mapping T , which can be proved by
contradiction. Considering any pair of distinct fixed points f∗

1 and f∗
2 , we have d

(
T (f∗

1 ), T (f∗
2 )
)
= d
(
f∗
1 , f

∗
2

)
with probability 1, which contradicts the fact that the distance between the mapped points contracts with
a factor q < 1 with probability p > 0.

In this proof, both q ·p+Q·(1−p) < 1 and q2 ·p+Q2 ·(1−p) < 1 must be satisfied to ensure that Equations
(22a) and (22b) hold for a large enough m. However, q2 · p+Q2 · (1− p) < 1 implies q · p+Q · (1− p) < 1
since one can write

(1− p) · (Q2 − 2Q+ 1) ≥ 0 =⇒ Q2 · (1− p)− 2Q · (1− p) + 1− p ≥ 0

(a)
=⇒ Q2 · (1− p)2 − 2Q · (1− p) + 1 ≥ p ·

(
1− (1− p) ·Q2

)
(b)
=⇒ 1−Q · (1− p) ≥ p ·

√
1−Q2 · (1− p)

p

(c)
=⇒ q · p+Q · (1− p) < 1,

(25)

where p− p · (1− p) ·Q2 is added on both sides of inequality in (a), the square root is taken from both sides
in (b), and q2 · p+Q2 · (1− p) < 1 is used in (c) to draw the claimed conclusion.

7



Theorem 1 states that if contraction of an operator in the iterates of the value iteration is compromised
by an adversary via expansions in the iterates of value iteration, the value function sequence can still converge
to the fixed point of the operator with high probability. The standard Banach fixed-point theorem is a special
case of Theorem 1 by setting p = 1 and L = 0. The analysis in the proof of this theorem suggests that
the compromised operator being contractive on expectation is not enough for the convergence of the value
function sequence with high probability since the introduced randomness to the operator by the adversary
can lead to high variance in the elements of the value function sequence. Hence, the additional assumption
q2 · p + Q2 · (1 − p) < 1 is required to bound such a variance rooted from the expansion caused by the
adversary. Furthermore, this theorem provides an upper bound on the number of rounds for value iteration
to defeat the effect of the adversary that attempts to move the value function sequence away from the fixed
point. If the adversary is not modeled, the user who expects a normal scenario may perform fewer iterations
of the value iteration. This can lead to a highly inaccurate estimate of the fixed point in the presence of an
adversary.

Remark 1. The parameter L ∈
(
0, ϵ

d(f1,f0)

)
serves as an auxiliary parameter used in (21). We observe that

the first term in the upper bound (11) is decreasing with respect to L and the second term is increasing with

respect to L. By minimizing the bound (11) over L, we have that T (ϵ, a) has the order O
(

d(f1,f0)
ϵ

)
.

2.2 Time-Varying Probabilistic Contraction-Expansion Mapping with Additive
Noise

Let (X, ∥·∥) be the same complete normed vector space as in Section 2.1. Consider time-varying probabilistic
contraction-expansion mappings T t(·) : X → X for t ∈ {0, 1, 2, . . . } with parameters pt, qt, and Qt, i.e.,

d
(
T t(f), T t(g)

)
≤

{
qt · d(f, g) w.p. pt

Qt · d(f, g) otherwise
, ∀t ∈ N0. (26)

By Theorem 1, starting with an arbitrary function f0 ∈ X, the sequence {fn} with fn = T t(f
n−1) for

n ≥ 1, where the same probabilistic contraction-expansion mapping T t is applied repeatedly, converges to
f∗
t with high probability.

Assumption 1. The fixed points of every two consecutive mappings are at most ϵf > 0 away from each
other, i.e., d

(
f∗
t , f

∗
t−1

)
≤ ϵf for all t ∈ {1, 2, 3, . . . }.

It is worth mention that, even under Assumption 1, there can be non-consecutive mappings T t and
T t′ whose fixed points are arbitrarily far away from each other. Note that in all iterations of the proba-
bilistic value iteration, the same probabilistic contraction-expansion mapping T t is applied to the function
sequence {fn}. However, in the remainder of this subsection, we consider a time-varying and noisy version
of the probabilistic Banach fixed-point theorem, where the underlying mapping changes over time and noise
functions are added to the outcome of the mapping in each iteration.

Consider the time-varying function ft ∈ X for t ∈ {0, 1, 2, . . . } evolving over time according to

ft+1 = T̃t(ft) = T t(ft) + wt, t ∈ {0, 1, 2, . . . }, (27)

where wt ∈ X is some additive noise.

Assumption 2. The additive noise is uniformly upper-bounded by a constant ϵw > 0, i.e., ∥wt∥ ≤ ϵw for
all t ∈ {0, 1, 2, . . . }.

Note that the shape of the function ft can change over time and can be non-convex. However, the
following theorem shows that an upper bound can be established for the distance between ft and the time-
varying fixed point f∗

t .

Theorem 2. Consider arbitrary time-varying probabilistic contraction-expansion mappings Tt with fixed
points f∗

t , where supt
(
q2t · pt+Q2

t · (1− pt)
)
< 1 for t ∈ {0, 1, 2, . . . }. Let the time-varying function ft evolve
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over time according to the time-varying noisy probabilistic transformation in (27). Under Assumptions 1
and 2, it holds that

d
(
ft, f

∗
t

)
≤ Pt · d

(
f0, f

∗
0

)
+ St · (ϵf + ϵw), (28)

where Pt =
(∏t−1

i=0 Bi

)
and St =

(
1 +

∑t−1
i=1

∏t−i
j=1 Bj

)
are random variables with independent random

variables Bt having the distribution

Bt =

{
qt w.p. pt

Qt otherwise
. (29)

The means and variances of Pt and St are upper-bounded as

E [Pt] ≤
(
sup
t

(
qt · pt +Qt · (1− pt)

))t
t→∞−−−→ 0,

Var (Pt) ≤
(
sup
t

(
q2t · pt +Q2

t · (1− pt)
))t

t→∞−−−→ 0,

(30)

and

E [St] ≤
1

1− supt
(
qt · pt +Qt · (1− pt)

) ,
Var (St) ≤

(
q̄2 · p̄+ Q̄2 · (1− p̄)

)
·
(
1 + q̄ · p̄+ Q̄ · (1− p̄)

)(
1− q̄2 · p̄− Q̄2 · (1− p̄)

)
·
(
1− q̄ · p̄− Q̄ · (1− p̄)

) , (31)

where q̄, Q̄, and p̄ satisfy q̄ · p̄+ Q̄ · (1− p̄) ≥ supt≥1 E[Bt] and q̄2 · p̄+ Q̄2 · (1− p̄) ≥ supt≥1 E[B2
t ].

Proof. Under the time-varying probabilistic contraction-expansion mappings with added noise functions
introduced in (27), the distance between ft and f∗

t can be upper-bounded as

d
(
ft, f

∗
t

)
= d
(
T̃t−1 ◦ · · · ◦ T̃0(f0), f∗

t

)
(a)
= d

(
T t−1

(
T̃t−2 ◦ · · · ◦ T̃0(f0)

)
+ wt−1, f

∗
t

)
=
∥∥T t−1

(
T̃t−2 ◦ · · · ◦ T̃0(f0)

)
+ wt−1 − f∗

t

∥∥
(b)

≤ d
(
T t−1

(
T̃t−2 ◦ · · · ◦ T̃0(f0)

)
, f∗

t

)
+ ∥wt−1∥

(c)

≤ d
(
T t−1

(
T̃t−2 ◦ · · · ◦ T̃0(f0)

)
, f∗

t−1

)
+ d
(
f∗
t−1, f

∗
t

)
+ ∥wt−1∥

(d)

≤ Bt−1 · d
(
T̃t−2 ◦ · · · ◦ T̃0(f0), f∗

t−1

)
+ ϵf + ϵw,

(32)

where ◦ denotes the composition of linear operators, the definition of the mapping T̃t−1 in (27) is used in
(a), inequalities (b) and (c) are true by the triangular inequality, and (d) follows from Assumptions 1 and
2 in addition to the probabilistic contraction-expansion property of the operator T t−1 and the fact that
T t−1(f

∗
t−1) = f∗

t−1. Furthermore, the independent random variables Bt for t ≥ 0 used in (d) have the
distribution as specified in (29). Taking similar steps as in (32), we have

d
(
ft, f

∗
t

)
≤ Bt−1 ·

(
Bt−2 · d

(
T̃t−3 ◦ · · · ◦ T̃0(f0), f∗

t−2

)
+ ϵf + ϵw

)
+ ϵf + ϵw

≤ Bt−1 ·
(
Bt−2 ·

(
Bt−3 · d

(
T̃t−4 ◦ · · · ◦ T̃0(f0), f∗

t−3

)
+ ϵf + ϵw

)
+ ϵf + ϵw

)
+ ϵf + ϵw

≤

(
t−1∏
i=0

Bi

)
· d
(
f0, f

∗
0

)
+

1 +

t−1∑
i=1

t−i∏
j=1

Bj

 · (ϵf + ϵw)

≤ Pt · d
(
f0, f

∗
0

)
+ St · (ϵf + ϵw),

(33)

where Pt =
(∏t−1

i=0 Bi

)
and St =

(
1 +

∑t−1
i=1

∏t−i
j=1 Bj

)
are random variables whose means and variances will

be calculated below. Using the independence of random variables Bt for t ≥ 0, we have

E [Pt] = E

[
t−1∏
i=0

Bi

]
=

t−1∏
i=0

E [Bi] =

t−1∏
i=0

(
qt · pt +Qt · (1− pt)

)
≤
(
sup
t

(
qt · pt +Qt · (1− pt)

))t

(34)
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and
Var (Pt) = E

[
P 2
t

]
− (E [Pt])

2

= E

[
t−1∏
i=0

B2
i

]
−

t−1∏
i=0

(
qt · pt +Qt · (1− pt)

)2
≤

t−1∏
i=0

(
q2t · pt +Q2

t · (1− pt)
)

≤
(
sup
t

(
q2t · pt +Q2

t · (1− pt)
))t

.

(35)

Note that it is already shown in (25) that q2t · pt + Q2
t · (1 − pt) < 1 implies qt · pt + Qt · (1 − pt) < 1, and

therefore it suffices to assume that supt
(
q2t · pt +Q2

t · (1− pt)
)
< 1. Furthermore,

E [St] = E

1 + t−1∑
i=1

t−i∏
j=1

Bj


= 1 +

t−1∑
i=1

t−i∏
j=1

E [Bj ]

= 1 +

t−1∑
i=1

t−i∏
j=1

(
qj · pj +Qj · (1− pj)

)
≤ 1 +

t−1∑
i=1

(
sup
j

(
qj · pj +Qj · (1− pj)

))t−i

≤ 1

1− supj
(
qj · pj +Qj · (1− pj)

)

(36)

and

Var (St) = Var

1 +

t−1∑
i=1

t−i∏
j=1

Bj

 = Var

t−1∑
i=1

t−i∏
j=1

Bj

 ≤ E


t−1∑

i=1

t−i∏
j=1

Bj

2
 . (37)

Consider the sequence of independent and identically distributed random variables B̄t for t ∈ {1, 2, . . . } that
have the distribution

B̄t =

{
q̄ w.p. p̄

Q̄ otherwise
(38)

such that E[B̄t] ≥ supi≥1 E[Bi] and E[B̄2
t ] ≥ supi≥1 E[B2

i ]. Proceeding with (37), one can write

Var (St) ≤ E


t−1∑

i=1

t−i∏
j=1

Bj

2
 ≤ E


t−1∑

i=1

t−i∏
j=1

B̄j

2
 ≤ E


 ∞∑

i=1

i∏
j=1

B̄j

2
 = E

[
S̄2
]
, (39)

where S̄ =
∑∞

i=1

∏i
j=1 B̄j . We have E[S̄] = q̄·p̄+Q̄·(1−p̄)

1−q̄·p̄−Q̄·(1−p̄)
and S̄ = B̄1 · (1 + B̄2 + B̄2 · B̄3 + · · · ) =

B̄1 · (1 + S̃), where S̃ is independent of B1, and the random variables S̄ and S̃ are identically distributed
but not independent of each other. Taking expectation on both sides of S̄2 = B̄2

1 · (1 + S̃)2, and using the
independence of S̃ and B1 and the fact that E[S̄2] = E[S̃2], we have

E[S̄2] = E[B̄2
1 ] · E[1 + 2S̃ + S̃2] =

(
q̄2 · p̄+ Q̄2 · (1− p̄)

)
×

(
1 +

2
(
q̄ · p̄+ Q̄ · (1− p̄)

)
1− q̄ · p̄− Q̄ · (1− p̄)

+ E[S̃2]

)

=⇒ E[S̄2] =

(
q̄2 · p̄+ Q̄2 · (1− p̄)

)
·
(
1 + q̄ · p̄+ Q̄ · (1− p̄)

)(
1− q̄2 · p̄− Q̄2 · (1− p̄)

)
·
(
1− q̄ · p̄− Q̄ · (1− p̄)

) . (40)
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Putting (39) and (40) together, it can be concluded that Var (St) ≤
(
q̄2·p̄+Q̄2·(1−p̄)

)
·
(
1+q̄·p̄+Q̄·(1−p̄)

)(
1−q̄2·p̄−Q̄2·(1−p̄)

)
·
(
1−q̄·p̄−Q̄·(1−p̄)

) , which
completes the proof.

In the absence of the adversary, the probabilistic contraction-expansion mapping T t is purely a contrac-
tion with the rate qt. We obtain the following corollary as a direct consequence of Theorem 2.

Corollary 1. Consider arbitrary time-varying contraction mappings T t with the contraction constants qt and
fixed points f∗

t . Suppose that q = supt qt < 1 and that Assumption 1 holds. Let the time-varying function ft
evolve over time according to (27). For ϵ > 0, we define the hitting time as T (ϵ) = min

{
T : d

(
ft, f

∗
t

)
< ϵ, ∀t ≥ T

}
.

If ϵ ∈ ( 1
1−q · (ϵf + ϵw),

1
1−q · (ϵf + ϵw) +D], then

T (ϵ) ≤ 1 + ln

((
ϵ− 1

1− q
· (ϵf + ϵw)

)/
D

)/
ln(q), (41)

where ϵw is an upper bound on the norm of each noise function and D > 0 is an upper bound on d
(
f∗
0 , f0

)
.

Proof. When the time-varying mappings {Tt} are only contraction mappings, the random variable Bt is
equal to qt with probability 1 in (29). As a result, Equation (33) has the following form:

d
(
ft, f

∗
t

)
≤ qt · d

(
f0, f

∗
0

)
+

1

1− q
· (ϵf + ϵw), (42)

where we use q = supt qt. Since the right-hand side of (42) is decreasing in t, the hitting time T (ϵ) is upper-
bounded by the minimum value of t that satisfies qt ·d

(
f0, f

∗
0

)
+ 1

1−q ·(ϵf +ϵw) ≤ ϵ. The proof is completed by

noticing that d
(
f∗
0 , f0

)
is upper-bounded by a constant D > 0 and 1

1−q ·(ϵf+ϵw) ≤ ϵ ≤ 1
1−q ·(ϵf+ϵw)+D.

Corollary 1 formalizes how many iterations are required in the value iteration with additive noise and a
time-varying contraction operator – that can be caused by a time-varying environment – to guarantee that
the ultimate function value is in an ϵ-neighborhood of the fixed point.

Remark 2. Tighter bounds on the hitting time for Theorems 1 and 2 may be obtained by applying concen-
tration inequalities involving higher moments instead of Chebyshev’s inequality. However, since our bounds
already have logarithmic dependence on the relevant parameters p, Q, L, ϵ, and d(f1, f0), they are sufficient
for most practical purposes as long as those parameters do not scale exponentially with the problem size.

2.3 Optimization of Time-Varying Functions with Additive Noise

Consider the unknown time-varying continuous function ft : D → R with the known bounded Lipschitz
constant Kt, over the discrete-time horizon t ∈ {1, 2, . . . }, where D ⊂ Rd is a compact set and R ⊂ R. The
goal is to ϵ-optimize the unknown time-varying function ft, i.e., to find a possibly time-varying point x̂∗

t

such that |ft(x̂∗
t )− ft(x

∗
t )| ≤ ϵ for ϵ > 0, where x∗

t = argminx∈D ft(x). Although the function ft is unknown,
inquiries of the function values at given input points can be made in consecutive rounds, which are evaluated
with added noise. More precisely, at round t ∈ {1, 2, . . . }, we consider querying the function ft on the set of
input points P = {x1, . . . , xn} ⊂ D, and the revealed values are

f̃t(xi) = ft(xi) +Nt(xi), (43)

where Nt(xi) is some noise satisfying the following assumption.

Assumption 3. The noise parameters Nt(xi) are bounded i.i.d. random variables with zero mean, i.e.,
E[Nt(xi)] = 0, for which there exists LN > 0 such that [sup{Nt(xi)} − inf{Nt(xi)}] < LN for all t ∈
{1, 2, . . . } and xi ∈ P.

If the noise is disruptive enough, a single set of observed noisy function values ft(xi) for all xi ∈ P may
not represent the unknown target function accurately, making it impossible to ϵ-optimize the function with
a few number of observations. Furthermore, since the function changes over time, old observations may not
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be useful in ϵ-optimizing the time-varying function as t increases. Putting these two facts into perspective,
the estimate of the target function ft at round t − 1, namely f̂t−1, may need to be updated with the new
observation at round t, while discarding inaccurate old observations. We propose the following formula for
estimating ft:

f̂t(xi) =
min{t, T + 1} − 1

min{t, T}
· f̂t−1(xi) +

1

min{t, T}
· f̃t(xi)−

1

T
· f̃t−T (xi) · 1{t > T}, (44)

where 1{·} is the indicator function. The parameter T , whose value to be specified, should be chosen
such that old data is discarded due to the time-varying nature of the function while not harming accurate
estimation of the function value in the presence of noise. The computational cost of (44) is on the same
order of that of the moving average update in reinforcement learning, but in (44) there is a need for storing

the previous T observations in order to have access to f̃t−T (xi).

The estimation function f̂t(xi) changes over time and may not represent the target function for small
values of t. However, there may exist a hitting time T that is used in (44) after which optimizing the

estimated function f̂t ϵ-optimizes the target function ft with an associated confidence level 1 − a, where
0 < a ≤ 1. As a result, the complexity of ϵ-optimizing the unknown time-varying target function ft in
long-run is irrelevant to the complexity of optimizing function f̂t up to the hitting time T . Consequently, the
hitting time T as well as the optimization complexity of f̂t for t ≥ T captures the difficulty of ϵ-optimizing the
target function ft rather than the cumulative optimization complexities of functions f̂t for t < T . Formally
speaking, the hitting time T (ϵ, a) is defined below.

Definition 2. Given ϵ > 0 and a ∈ (0, 1], the hitting time T (ϵ, a) is defined as

T (ϵ, a) = min
{
T : P

(∣∣ft(x̂∗
t )− ft(x

∗
t )
∣∣ ≤ ϵ

)
≥ 1− a, ∀t ≥ T

}
, (45)

where x̂∗
t = argminx∈P f̂t(x) and x∗

t = argminx∈D ft(x).

To make the time-varying problem amenable to optimization, we also make the following assumption
about the set of input points P.

Assumption 4. For a given ϵ > 0, the set of input points P = {x1, x2, . . . , xn} is a δ-uniform grid of
the function domain D such that δ < 2ϵ

7
√
dK

, where K = supt≥1 Kt with Kt being the Lipschitz constant of

function ft.

Recall that being a δ-uniform grid means that P satisfies two properties: (i) {xi + δej , xi − δej}∩D ∈ P
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, where e1, . . . , ed are the standard basis of Rd, and (ii) for every
x ∈ D there exists xi ∈ P such that ∥xi − x∥ ≤

√
dδ/2. The fine granularity assumption, i.e., δ < 2ϵ

7
√
dK

,

assures that there exists a grid point whose unknown function value at time t is at least ϵ
7 close to the

minimum of function ft. Denote such points of the grid P by Nt(
ϵ
7 ) = {xi ∈ P : ft(xi) − ft(x

∗
t ) ≤ ϵ

7} and

let N t(ϵ) = {xi ∈ P : ft(xi)− ft(x
∗
t ) > ϵ}. Without loss of generality, we assume that N t(ϵ) ̸= ∅; otherwise,

any point in P ϵ-optimizes function ft. The following theorem presents an upper bound on the hitting time.

Theorem 3. Consider the unknown time-varying function ft with the property |ft(x)− ft−1(x)| ≤ ϵ3

43L2
N ·ln(n

a )
,

for all t ≥ 1 and x ∈ D. Given ϵ > 0 and a ∈ (0, 1], let Assumptions 3 and 4 hold. Then, the hitting time
T (ϵ, a) satisfies the inequality

T (ϵ, a) ≤ 49L2
N

8ϵ2
· ln
(n
a

)
+ 1. (46)

Proof. In order to find an upper bound on the hitting time T (ϵ, a), it is reasonable to assume that the
function variation over time is upper-bounded; otherwise, there may not be enough time for learning the
rapidly changing functions {ft}. Assume that the time-variation of the unknown time-varying target function
ft is upper-bounded by

|ft(x)− ft−1(x)| ≤
ϵ

7T
, ∀t ≥ 1,∀x ∈ D. (47)
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Then, under Assumption 4, the hitting event defined in (45) satisfies the following condition{
∃xi ∈ Nt(

ϵ

7
) such that

1

T
·

t∑
s=t−T+1

Ns(xi) ≤
2ϵ

7
and

1

T
·

t∑
s=t−T+1

Ns(xi) ≥ −2ϵ

7
,∀xi ∈ N t(ϵ)

}
⊆
{∣∣ft(x̂∗

t )− ft(x
∗
t )
∣∣ ≤ ϵ

}
, ∀t ≥ T.

(48)

The above equation holds true because (43) and (44) result in f̂t(xi) =
1
T ·
∑t

s=t−T+1 fs(xi)+
1
T ·
∑t

s=t−T+1 Ns(xi)
for t ≥ T , and by (47), one can write

f̂t(xi) ≤ ft(xi) +
ϵ

7
+

1

T
·

t∑
s=t−T+1

Ns(xi), ∀xi ∈ Nt(
ϵ

7
),

f̂t(xj) ≥ ft(xj)−
ϵ

7
+

1

T
·

t∑
s=t−T+1

Ns(xj), ∀xj ∈ N t(ϵ).

(49)

Furthermore, ft(xj) − ft(xi) > 6ϵ
7 for all xj ∈ N t(ϵ) and xi ∈ Nt(

ϵ
7 ). Taking the difference of the two

inequalities in (49) yields that f̂t(xj)− f̂t(xi) >
4ϵ
7 +

∑t
s=t−T+1 Ns(xj)−

∑t
s=t−T+1 Ns(xi). If the event on

the left-hand side of (48) is true, then f̂t(xj)− f̂t(xi) > 0, which means that there exists x̃∗
t ∈ Nt(

ϵ
7 ) whose

estimated function value is less than the estimated function value at all points xj ∈ N t(ϵ). Note that the

estimated function value at a point x∗
t ∈ P \

(
Nt(

ϵ
7 ) ∪N t(ϵ)

)
can be less than f̂t(x̃

∗
t ), but such a point also

ϵ-optimizes the function ft. Hence, x̂∗
t = argminx∈P f̂t(x) ϵ-optimizes the function ft, which means that the

event on right-hand side of (48) is true.
Denote the event on the left-hand side of (48) as Et, whose probability can be lower-bounded as

P{Et}
(a)

≥P

{
1

T
·

t∑
s=t−T+1

Ns(xi) ≤
2ϵ

7
, xi ∈ Nt(

ϵ

7
)

}
×

∏
xi∈N t(ϵ)

P

{
1

T
·

t∑
s=t−T+1

Ns(xi) ≥ −2ϵ

7

}
(b)

≥
∏
xi∈P

(
1− exp

(
− 8Tϵ2

49L2
N

))

> 1− n · exp
(
− 8Tϵ2

49L2
N

)
,

(50)

where (a) is true as the added noise signals are independent of each other and (b) follows from Hoeffding’s
inequality and possibly multiplying by positive terms that are less than one. Putting (48) and (50) together,
we have

P
{∣∣ft(x̂∗

t )− ft(x
∗
t )
∣∣ ≤ ϵ

}
≥ 1− n · exp

(
− 8Tϵ2

49L2
N

)
,∀t ≥ T. (51)

If 1− n · exp
(
− 8Tϵ2

49L2
N

)
≥ 1− a or equivalently T ≥ 49L2

N

8ϵ2 · ln
(
n
a

)
, we have

P
{∣∣ft(x̂∗

t )− ft(x
∗
t )
∣∣ ≤ ϵ

}
≥ 1− a, ∀t ≥ T. (52)

As a result, an upper bound on the hitting time T (ϵ, a) defined in (45) is provided as

T (ϵ, a) ≤ 49L2
N

8ϵ2
· ln
(n
a

)
+ 1. (53)

We substitute the upper bound on T (ϵ, a) into (47). It follows that the above analysis is valid if

|ft(x)− ft−1(x)| ≤
8ϵ3

343L2
N · ln(na )

, ∀t ≥ 1,∀x ∈ D. (54)

This completes the proof.
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Remark 3. Note that the cardinality of the δ-grid with δ < 2ϵ
7
√
dK

used in Theorem 3, namely n = |P|,
depends on ϵ. As an example, if D can be written as the Cartesian product of d intervals of length at most

M as D = D1×D2×· · ·×Dd, then the cardinality of the δ-grid would be n = O
((√

dKM
ϵ

)d)
, and therefore

the upper bound on the hitting time in Theorem 3 is given by T (ϵ, a) ≤ O
(

dL2
N

ϵ2 · ln
(√

dKM
d
√
aϵ

))
.

Theorem 3 determines how fast the unknown function ft is allowed to change over time such that one
can still learn the estimation function f̂t which is used to ϵ-optimize the target function ft with a confidence
level. The parameter T in (44) can be set to the upper bound provided in Theorem 3 so that old inaccurate
observations are discarded and at the same time enough observations are used for an accurate estimation of
ft.

2.4 Improved Bounds for Convex Functions

Consider the same framework as in Section 2.3 under additional assumptions to be stated here. Let ft be a
convex function for all t ≥ 1. Denote the lower contour set of the convex function ft by Ct(c) = {x ∈ D :
ft(x)−ft(x

∗
t ) ≤ c} and the level set of the convex function ft by Lt(c) = {x ∈ D : ft(x)−ft(x

∗
t ) = c} for c > 0.

Define Ct(c1, c2) = {x ∈ D : c1 < ft(x)− ft(x
∗
t ) ≤ c2} when c2 > c1. Let Mt(c) = {xi ∈ P : xi ∈ Ct(c)} and

Mt(c1, c2) = {xi ∈ P : xi ∈ Ct(c1, c2)}.

Assumption 5. There exists M > 0 such that Lt(M) is homeomorphic to a d-dimensional sphere and is
inside D for all t ≥ 1.

If d = 1 or d = 2, a sphere is defined as two distinctive points or a circle, respectively. Note that a lower
bound on M can be estimated up to a precision with high probability, but M is assumed to be known to
simplify the proof concepts.

Assumption 6. There exists k > 0 such that ∥∇ft(x)∥ ≥ k, for all t ≥ 1 and x ∈ D \ Ct(ϵ).

Intuitively, Assumption 6 requires every convex function ft have enough curvature inside its lower contour
set Ct(ϵ), so that ∥∇ft(x)∥ can be uniformly lower-bounded by a positive constant k in D \ Ct(ϵ) for all
t ≥ 1.

Leveraging the new assumptions on the time-varying functions {ft}, the following theorem presents a
tighter upper bound on the hitting time compared to Theorem 3.

Theorem 4. Consider the unknown time-varying convex function ft with the property |ft(x)− ft−1(x)| ≤
ϵ3

43L2
N ·ln(n

a )
, for all t ≥ 1 and x ∈ D. Given ϵ > 0 and a ∈ (0, 1], suppose that Assumptions 3-6 hold. Then,

the hitting time T (ϵ, a) is upper-bounded by the minimum T satisfying the inequality

lm∑
l=0

nl · exp
(
−

2T
(
l + 2

7

)2
ϵ2

L2
N

)
≤ a, (55)

where
∑lm

l=0 nl = n and lm ≤ ⌊M
ϵ ⌋ − 3 such that nl =

ml

1+ml
· n + 1 for l ∈ {0, 1, . . . , lm − 1} with ml =

2d+1·K·ϵ
k·
(
M−(l+4)ϵ

) .
Proof. Following the same logic as in (48) and leveraging the convexity of {ft}, we obtain that the the hitting
event in (45) satisfies the condition{

∃xi ∈ Mt(
ϵ

7
) such that

1

T
·

t∑
s=t−T+1

Ns(xi) ≤
2ϵ

7
and

1

T
·

t∑
s=t−T+1

Ns(xi) ≥ −2ϵ

7
,∀xi ∈ Mt

(
ϵ, 2ϵ

)
and

1

T
·

t∑
s=t−T+1

Ns(xi) ≥ −
(
l +

2

7

)
ϵ,∀xi ∈ Mt

(
(l + 1)ϵ, (l + 2)ϵ

)
,∀1 ≤ l ≤

⌊M
ϵ

⌋}
⊆
{∣∣ft(x̂∗

t )− ft(x
∗
t )
∣∣ ≤ ϵ

}
, ∀t ≥ T.

(56)
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Denote the event on the left-hand side of (56) as Et, whose probability can be lower-bounded as

P{Et}
(a)

≥P

{
1

T
·

t∑
s=t−T+1

Ns(xi) ≤
2ϵ

7
, xi ∈ Mt(

ϵ

7
)

}
×

∏
xi∈Mt

(
ϵ,2ϵ
)P
{

1

T
·

t∑
s=t−T+1

Ns(xi) ≥ −2ϵ

7

}

×
⌊M

ϵ ⌋∏
l=1

∏
xi∈Mt

(
(l+1)ϵ,(l+2)ϵ

)P
{

1

T
·

t∑
s=t−T+1

Ns(xi) ≥ −
(
l +

2

7

)
ϵ

}

(b)

≥
[
1− exp

(
− 8Tϵ2

49L2
N

)]n0+1

×
lm∏
l=1

[
1− exp

(
−
2T
(
l + 2

7

)2
ϵ2

L2
N

)]nl

≥ 1−
lm∑
l=0

nl · exp

(
−
2T
(
l + 2

7

)2
ϵ2

L2
N

)
(57)

where (a) is true as the added noise signals are independent of each other and (b) follows from Hoeffding’s
inequality, n0 is an upper bound on the number of grid points in the set Mt

(
ϵ, 2ϵ

)
and n0 = n0+1, and nl is

an upper bound on the number of grid points in the set Mt

(
(l+1)ϵ, (l+2)ϵ

)
, where lm satisfies

∑lm
l=0 nl = n

and lm ≤ ⌊M
ϵ ⌋ − 3. Note that the last nonzero nl is not a free parameter since the sum of all nl should be

n. Putting (56) and (57) together, we have P
{∣∣ft(x̂∗

t )− ft(x
∗
t )
∣∣ ≤ ϵ

}
≥ 1− a for all t ≥ T provided that

lm∑
l=0

nl · exp
(
−

2T
(
l + 2

7

)2
ϵ2

L2
N

)
≤ a, (58)

which provides an upper bound on the hitting time T (ϵ, a) defined in (45). As stated earlier in (47), the
above analysis is true if |ft(x)− ft−1(x)| ≤ ϵ

7T (ϵ,a) for all t ≥ 1 and x ∈ D. Using the general upper bound

on the hitting time provided in Theorem 3, the analysis holds if |ft(x)− ft−1(x)| ≤ ϵ3

43L2
N ·ln(n

a )
for all t ≥ 1

and x ∈ D.
In the rest of the proof, the values of nl for 0 ≤ l ≤ lm are computed. The key ideas behind finding these

upper bounds are that the level sets Lt

(
(l+1)ϵ

)
for 0 ≤ l ≤ lm+2 are nested surfaces that are homeomorphic

to a d-dimensional sphere inside the function domain and that the minimum distance between any point of
a level set from any of the other level set is controlled by K and k. Let V ol(·) denote the volume of an input
d-dimensional set and A(·) denote the area of an input (d− 1)-dimensional surface. By convention, the area
of a d-dimensional sphere for d = 1 and d = 2 is equal to 2 and the length of the sphere, respectively. For
every l ∈ {0, 1, . . . , lm}, one can write

nl − 1 ≤
2d · V ol

(
Ct

(
(l + 1)ϵ, (l + 3)ϵ

))
δd

≤
2d · 2ϵ

k ·A
(
Pt

(
(l + 1)ϵ, (l + 3)ϵ

))
δd

,

lm∑
l=l+1

nl ≥
V ol

(
Ct

(
(l + 3)ϵ,M − ϵ

))
δd

≥
M−(l+4)ϵ

K ·A
(
Pt

(
(l + 3)ϵ,M − ϵ

))
δd

,
(59)

where the term 2d comes from the facts that each d-dimensional cube has at most 2d endpoints and Pt

(
(l+

1)ϵ, (l+3)ϵ
)
⊂ Ct

(
(l+1)ϵ, (l+3)ϵ

)
and Pt

(
(l+3)ϵ,M − ϵ

)
⊂ Ct

(
(l+3)ϵ,M − ϵ

)
are two (d− 1)-dimensional

planes such that A
(
Pt

(
(l + 1)ϵ, (l + 3)ϵ

))
≤ A

(
Lt

(
(l + 3)ϵ

))
≤ A

(
Pt

(
(l + 3)ϵ,M − ϵ

))
. Then,

nl − 1

n− nl
≤ nl − 1∑lm

l=l+1
nl

≤ 2d+1 ·K · ϵ
k ·
(
M − (l + 4)ϵ

) = ml =⇒ nl ≤
ml

1 +ml
· n+ 1, (60)

which completes the proof.

Remark 4. We note that, since the left-hand side of (55) is monotone decreasing in T , a number T satisfying
(55) always exists. By substituting the bound in (46) into (55), it can be verified that Theorem 4 provides a
better bound than Theorem 3 since some properties of convex functions are leveraged. A comparison of the
results of Theorems 3 and 4 along with the simulation details is depicted in Figure 1.
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(a) ϵ = L = 10−4, n = 3.2× 1011, and a varies. (b) a = 0.01 and ϵ = L varies.

Figure 1: A comparison of the upper bounds in Theorems 3 and 4 when M = K = 16, k = 2×10−2,
and d = 2. In Figure 1b, the value of n depends on ϵ, which is taken into account for drawing the
plots.

3 The Hitting Time Analysis for Discrete Functions

In this section, two variants of stochastic time-varying models are studied for discrete functions. In the first
model, an unknown discrete function is observed with additive noise whose estimation function changes over
time due to the presence of noise. In the second model, a time-varying linear model with additive noise is
studied.

3.1 Optimization of Functions with Additive Noise

Consider an unknown discrete function f : X → R, where X ⊂ Zd is a bounded subset of d integer tuples
and R ⊂ R is a subset of real numbers (Z denotes the set of integer numbers). Denote the strict local minima
and maxima, known collectively as strict local extrema, of the unknown function f by X ∗ defined as

X ∗ ={x∗ ∈ X : f(x∗) < f(x),∀x ∈ B(x∗)} ∪ {x∗ ∈ X : f(x∗) > f(x),∀x ∈ B(x∗)} (61)

where B(x∗) = ∪d
j=1{x∗ + hj , x

∗ − hj}∩X with h1, . . . , hd being the standard basis of Zd. The goal is to find
X ∗, the set of strict local extrema of the unknown function f . Although the function f is unknown, inquiries
of the function values at points in the domain can be made in consecutive rounds, which are evaluated
with added noise signals that are mean zero, independent and identically distributed over time and over X .
Formally speaking, the revealed values of the target function f at round t ∈ {1, 2, . . . } are

ft(x) = f(x) +Nt(x), ∀x ∈ X , (62)

where Nt(x) are noise signals satisfying Assumption 3. Note that if the noise is disruptive enough, a single
set of observed noisy function values ft(x) for all x ∈ X may not represent the unknown target function
accurately, making it impossible to find local extrema of the function. To address this issue, we estimate the
target function f at round t− 1 by leveraging the new observations at round t ∈ {2, 3, . . . } as

f̂t(x) =
t− 1

t
· f̂t−1(x) +

1

t
· ft(x), ∀x ∈ X . (63)

Note that the estimation function f̂t(x) changes over time and may not represent the shape of the unknown
target function f when t is small. However, there may exist a hitting time T after which the estimation
function f̂t shares the same set of local extrema as the target function f with an associated confidence level
1 − a, where 0 < a ≤ 1. As a result, the complexity of finding the local extrema of the target function f
may be irrelevant to the complexity of finding the local extrema of function f̂t before the hitting time T .
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Consequently, the complexity of finding the local extrema of the unknown target function f is related to the
hitting time T as well as the computational complexity of optimizing function f̂T . Denote the set of strict
local extrema of f̂t by X̂ ∗

t , defined as

X̂ ∗
t =

{
x̂∗ ∈ X : f̂t(x̂

∗) < f̂t(x),∀x ∈ B(x̂∗)
}
∪
{
x̂∗ ∈ X : f̂t(x̂

∗) > f̂t(x),∀x ∈ B(x̂∗)
}
. (64)

Definition 3. Given a ∈ (0, 1], the hitting time T (a) for an unknown discrete function f is defined as

T (a) = min
{
T : P

(
X̂ ∗

t = X ∗
)
≥ 1− a, ∀t ≥ T

}
, (65)

where X ∗ and X̂ ∗
t are defined in (61) and (64), respectively.

The hitting time T (a) depends on the minimum distance of the function values of f at point x ∈ X from
the function values at its neighbor points. This distance, denoted by δ(x), is defined as

δ(x) = min
x′∈B(x)

|f(x)− f(x′)|. (66)

In order to simply the analysis, we make the following assumption about the target function f .

Assumption 7. The minimum distance δ(x) of function f is uniformly lower-bounded by a positive number
for all x ∈ X , i.e., δm = minx∈X δ(x) > 0.

Intuitively, Assumption 7 ensures that function values of f at adjacent points are different, so that their
noisy values become distinguishable after enough observations. The following theorem presents an upper
bound on the hitting time T (a).

Theorem 5. Consider the time-varying function f̂t in (63). Under Assumptions 3 and 7, given a ∈ (0, 1],
the associated hitting time T (a) defined in (65), satisfies the inequality

T (a) ≤ 2L2
N

δ2m
· ln
(
2|X |
a

)
, (67)

where |X | denotes the number of elements in the set X .

Proof. In order to find an upper bound on the hitting time T (a), note that the hitting event used in (65)
satisfies the condition {

1

T
·
∥∥∥ T∑

t=1

Nt(x)
∥∥∥ <

δ(x)

2
, ∀x ∈ X

}
⊆
{
X̂ ∗

T = X ∗
}
. (68)

The above equation holds because (62) and (63) result in f̂T (x) = f(x)+ 1
T ·
∑T

t=1 Nt(x), and if the magnitude
of the noise added to the true value of function f at point x is less than δ(x)/2 for all x ∈ X , then the set of

local extrema of the function f̂T coincides with the set X ∗, the local extrema of function f . The probability
of the event on the left-hand side of (68) can be lower-bounded as

P

{
1

T
·
∥∥∥ T∑

t=1

Nt(x)
∥∥∥ <

δ(x)

2
, ∀x ∈ X

}
(a)
=

|X |∏
i=1

P

{
1

T
·
∥∥∥ T∑

t=1

Nt(x)
∥∥∥ <

δ(x)

2

}
(b)

≥
|X |∏
i=1

(
1− 2 exp

(
−Tδ(x)2

2L2
N

))

>1− 2

|X |∑
i=1

exp

(
−Tδ(x)2

2L2
N

)
≥ 1− 2|X | · exp

(
−Tδ2m
2L2

N

)
,

(69)
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where (a) holds because the added noise signals are independent from each other and (b) follows from
Hoeffding’s inequality. Putting (68) and (69) together, we have

P
{
X̂ ∗

T = X ∗
}
> 1− 2|X | · exp

(
−Tδ2m
2L2

N

)
. (70)

If 1− 2|X | · exp
(
−Tδ2m

2L2
N

)
≥ 1− a or equivalently T ≥ 2L2

N

δ2m
· ln
(

2|X |
a

)
, we have P

{
X̂ ∗

T = X ∗
}
> 1− a, from

which the upper bound in (65) follows.

3.2 A Special Case for Unimodal Functions

A function f over a bounded set X ⊂ Z is called unimodal if it has only one global minimum x∗ ∈ X and
f(i) > f(j) for all i < j ≤ x∗, i, j ∈ X , while f(i) < f(j) for all x∗ ≤ i < j. Assume that the unknown target
function f is unimodal over X , which implies it has a single global minimum. As mentioned earlier, the
time-varying function f̂t may not even be unimodal for small values of t under disruptive noise, and therefore
it could have multiple local extrema. However, the single global minimum of the function f becomes known
after the hitting time with an associated confidence level. In this section, a new notion of hitting time is
proposed for unimodal functions that captures the complexity of finding the global minimum of the function
and does not take the local extrema of the estimated function f̂t into account.

Without loss of generality, we additionally assume that the noise signals Nt(x) are continuous random

variables. This implies that the estimation function f̂t has a single global minimum with probability 1. Let
x̂∗
t = argminx∈X f̂t(x) denote the global minimum. The hitting time for a unimodal function f is defined

below.

Definition 4. Given a ∈ (0, 1], the hitting time Tu(a) for a unimodal function f with its global minimum

at x∗ = argminx∈X f(x) and its estimated global minimum x̂∗
t = argminx∈X f̂t(x) is defined as

Tu(a) = min
{
T : P

(
x̂∗
t = x∗) ≥ 1− a, ∀t ≥ T

}
. (71)

The distance of the function value at point x ∈ X from the minimum function value is denoted by ∆(x),
which is defined as

∆(x) =

{
f(x)− f(x∗), if x ∈ X \ {x∗},
min{f(x∗ − 1)− f(x∗), f(x∗ + 1)− f(x∗)}, if x = x∗.

(72)

The following theorem presents an upper bound on the hitting time for a unimodal function.

Theorem 6. Consider the time-varying function f̂t defined in (63) with f being a unimodal function.
Suppose that Assumptions 3 and 7 hold. Given a ∈ (0, 1], the associated hitting time Tu(a) satisfies the
inequality Tu(a) ≤ T , where T is the smallest number such that

exp

(
−δ2mT

2L2
N

)
+ 2

∑
i∈[⌊|X |/2⌋]

exp

(
− i2δ2mT

2L2
N

)
≤ a. (73)

Proof. By construction, we have ∆(x) > 0 for all x ∈ X . In order to find an upper bound on the hitting
time Tu(a), note that the hitting event used in (71) satisfies the condition{

1

T
·

T∑
t=1

Nt(x) > −∆(x)

2
,∀x ∈ X \ {x∗} and

1

T
·

T∑
t=1

Nt(x
∗) <

∆(x∗)

2

}
⊆
{
x̂∗
T = x∗

}
. (74)
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(a) |D| = 10000 and a varies. (b) a = 0.01 and |D| varies.

Figure 2: A comparison of the upper bounds in Theorems 5 and 6 when LN = 0.02 and δm = 0.01.

Denote the event on the left-hand side of (74) as Et, whose probability can be lower-bounded as

P{Et}
(a)
= P

{
1

T
·

T∑
t=1

Nt(x
∗) <

∆(x∗)

2

}
×

∏
x∈X\{x∗}

P

{
1

T
·

T∑
t=1

Nt(x) > −∆(x)

2

}
(b)

≥
(
1− exp

(
−T∆(x∗)2

2L2
N

))
×
∏

x∈X\{x∗}

(
1− exp

(
−T∆(x)2

2L2
N

))

> 1− exp

(
−T∆(x∗)2

2L2
N

)
−

∑
x∈X\{x∗}

exp

(
−T∆(x)2

2L2
N

)
(c)

≥ 1− exp

(
−Tδ2m
2L2

N

)
−

∑
x∈X\{x∗}

exp

(
−T (x− x∗)2δ2m

2L2
N

)
(d)

≥ 1− exp

(
−Tδ2m
2L2

N

)
− 2

∑
i∈[⌊|X |/2⌋]

exp

(
−Ti2δ2m

2L2
N

)

(75)

where (a) holds true by the independence property of the added noise signals, (b) is due to Hoeffding’s
inequality, (c) is true because function f is unimodal, ∆(x∗) ≥ δm, and ∆(x) ≥ (x− x∗)δm, and (d) results
from minimizing the equation with respect to all possible values of x∗, which gives rise to x∗ = ⌈|X |/2⌉ (taking
the ceiling corresponding to the summation through ⌊|X |/2⌋). Putting (74) and (75) together concludes the
proof.

Remark 5. A number T that satisfies (73) must exists because the left-hand side of (73) approaches 0 when
T → ∞. Also, by substituting the bound in (67) into (73), it can be verified that Theorem 6 provides a better
bound than Theorem 5 as the properties of unimodal functions are leveraged. A comparison of the results of
Theorems 5 and 6 along with the details of the simulation model is depicted in Figure 2.

3.3 Time-Varying Linear Model with Additive Noise

In this section, we study a linear model of time-variation and analyze the hitting time under shape-dominant
operators. Consider the Hilbert space L2(X ), where the inner product of f and g ∈ L2(X ) is defined by
⟨f, g⟩ =

∫
X f(x)g(x)dx. We use the same inner product notation when the domain X is a discrete set. For

any nonzero functions f, g ∈ L2, there exists a bounded linear transformation T : L2(X ) → L2(X ) such

that T f = g. In fact, one such transformation is given by T h = ⟨f,h⟩
⟨f,f⟩g. Since the zero function is trivial to

optimize, the restriction to linear transformation is a general framework that captures the varying nature of
nonlinear functions.
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We further note that for any scalar λ > 0, the functions f and λf share the same set of local minima.
Rescaling by a positive number does not affect the complexity of the optimization problem. Hence, restricting
the linear operators T to have norm 1 incurs no loss of generality.

In practice, the functions to be minimized are often not specified exactly, due to the rounding error
of numerical computation or the inexact nature of the model. We model this limitation by the random
perturbation w sampled from some distribution. Given a sequence of linear operators {At} such that

∥At∥ = supf ̸=0
∥Atf∥
∥f∥ = 1 together with the perturbations {wt}, consider the following model of linear time

variation:
ft+1 = Ttft = Atft + wt, for t ∈ {0, 1, . . . }. (76)

What properties the operators {Tt} should satisfy in order for ft to almost reach a target function f∗ at
time t = T? We will provide an answer using the notion of shape dominant operator. To understand the
importance of this problem, suppose that at time t = 0, we optimize f0 around a poor local minimum
x∗
0. If at t = T , the function fT becomes convex with a unique global minimum x∗

T , then no matter how
optimization is carried out for f1 through fT−1, minimizing fT will yield the same solution x∗

T , which is
globally optimal. The effect of minimizing fT cancels out the sub-optimality at time t = 0. Moreover, under
some technical conditions, the global solution at time T can be used to find global solutions at future times
using tracking methods [30–32]. In other words, the shape of fT affects the complexity of online optimization
in the long run.

Now, we introduce the notion of shape dominant operator. Consider time-varying functions {ft} defined
on a finite discrete set X = {x1, . . . , xn} ⊂ Zd. Equivalently, ft can be viewed as a vector in Rn. For
the noisy linear operator Tt defined in (76), let At denote the associated matrix of the linear operator At

represented under the standard basis, for t ∈ {1, 2, . . . }. Let P (At, wt) denote the joint distribution of At

and wt.

Definition 5. The joint distribution P (A,w) is said to be (δ, σ, f∗, ϕ∗) shape dominant if following conditions
hold with probability 1: 1) the unit vector f∗ is the eigenvector of A associated with eigenvalue 1; 2) the unit
vector ϕ∗ is the eigenvector of A⊤ associated with eigenvalue 1; 3) ⟨f∗, ϕ∗⟩ ≠ 0; 4) all other eigenvalues of
A have absolute values less than 1− δ; 5) conditioned on A, the noise w has zero mean and is sub-Gaussian

with parameter σ2 in the sense that for all u ∈ Rn with ∥u∥ ≤ 1, it holds that E[exp(su⊤w)] ≤ exp
(

σ2s2

2

)
.

Theorem 7. For the time-varying operator Tt defined in (76), suppose that P (At, wt) is (δ, σt, f
∗, ϕ∗) shape

dominant and independent for all t ∈ {0, 1, . . . , T − 1}, then,

fT =
⟨ϕ∗, f0 +

∑T−1
t=0 wt⟩

⟨ϕ∗, f∗⟩
f∗ + v + w, (77)

where ∥v∥ ≤ (1−δ)T
(
∥f0∥+ ⟨ϕ∗,f0⟩

⟨ϕ∗,f∗⟩

)
and w is sub-Gaussian with parameter σ2 =

(
1 + 1

⟨ϕ∗,f∗⟩2

)∑T−1
t=0 (1−

δ)2(T−t)σ2
t .

Proof. Consider the subspace G = {g ∈ Rn, ⟨ϕ∗, g⟩ = 0}. Since ⟨ϕ∗, f∗⟩ ≠ 0, we have f∗ /∈ G. Since ϕ∗ is the
eigenvector of A⊤

t , the following holds for all g ∈ G

⟨ϕ∗, Atg⟩ = ⟨At
⊤ϕ∗, g⟩ = ⟨ϕ∗, g⟩ = 0. (78)

Therefore, Atg ∈ G, and G is an invariant subspace of At in Rn for t ∈ {0, 1, . . . , T − 1}. Let a basis of G be
given by {g1, . . . , gn−1}. Then, B = {f∗, g1, . . . , gn−1} is a basis of Rn, under which the linear operator At

takes the form

At =


1 0 . . . 0
0
... A′

t

0

 , (79)
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where A′
t is a random matrix in R(n−1)×(n−1). With a slight abuse of notation, we regard A′

t as a linear
transformation from G to G. Note that ∥A′

t∥ ≤ 1− δ because all other eigenvalues of At have norm less than

1− δ. Under the basis B, f0 has the representation f0 = ⟨ϕ∗,f0⟩
⟨ϕ∗,f∗⟩f

∗ + g, where g ∈ G. As a result,

fT = TT−1 ◦ · · · ◦ T0f0

= AT−1 · · ·A0f0 +

T−1∑
t=0

AT−1 · · ·At+1wt

=
⟨ϕ∗, f0⟩
⟨ϕ∗, f∗⟩

f∗ +A′
T−1 . . . A

′
1g +

T−1∑
t=0

AT−1 · · ·At+1wt.

(80)

The norm estimate gives rise to∥∥A′
T−1 . . . A

′
1g
∥∥ ≤ (1− δ)T · ∥g∥ ≤ (1− δ)T ·

(
∥f0∥+

∣∣∣∣ ⟨ϕ∗, f0⟩
⟨ϕ∗, f∗⟩

∣∣∣∣) , (81)

where the triangle inequality is used. Similarly, one can write wt =
⟨ϕ∗,wt⟩
⟨ϕ∗,f∗⟩f

∗ + ht, where ht ∈ G. We have

AT−1 · · ·At+1wt =
⟨ϕ∗, wt⟩
⟨ϕ∗, f∗⟩

f∗ +A′
T−1 · · ·A′

t+1ht. (82)

For all u ∈ Rn with ∥u∥ ≤ 1, it holds that

E
[
exp

(
s
〈
u,A′

T−1 · · ·A′
t+1ht

〉)]
= E

[
exp

(
s
〈
A′⊤

t+1 · · ·A′⊤
T−1u, ht

〉)]
= E

[
exp

(
s

〈
A′⊤

t+1 · · ·A′⊤
T−1u,wt −

⟨ϕ∗, wt⟩
⟨ϕ∗, f∗⟩

f∗
〉)]

= E

[
exp

(
s
〈
A′⊤

t+1 · · ·A′⊤
T−1u,wt

〉)
× exp

(
s

〈
−
⟨A′⊤

t+1 · · ·A′⊤
T−1u, f

∗⟩
⟨ϕ∗, f∗⟩

ϕ∗, wt

〉)]

≤ exp

(
σ2
t s

2
∥∥A′⊤

t+1 · · ·A′⊤
T−1u

∥∥2
2

)
× exp

σ2
t s

2

2

(
⟨A′⊤

t+1 · · ·A′⊤
T−1u, f

∗⟩
⟨ϕ∗, f∗⟩

)2


≤ exp

σ2
t s

2(1− δ)2(T−t)
(
1 + 1

⟨ϕ∗,f∗⟩2

)
2

 ,

(83)

which implies that A′
T−1 · · ·A′

t+1ht is sub-Gaussian with parameter σ2
t (1 − δ)2(T−t)

(
1 + 1

⟨ϕ∗,f∗⟩2

)
, and

thereby,
∑T−1

t=0 A′
T−1 · · ·A′

t+1ht is sub-Gaussian with parameter σ2 =
(
1 + 1

⟨ϕ∗,f∗⟩2

)∑T−1
t=0 (1− δ)2(T−t)σ2

t .

This completes the proof.

Theorem 7 states that if the time-varying model is given by shape dominant operators, the function fT
decomposes into the sum of dominating shape f∗, a bias term v that gradually fades away, and a cumulating
noise term that discounts noise in previous iterations. We provide a bound on the hitting time below.

Theorem 8. Under the same assumptions made in Theorem 7, for a given ϵ > 0, define the associated
hitting time T (ϵ) as

T (ϵ) = min
{
T : ∃λ ∈ R s.t. ∥fT − λf∗∥ < ϵ

}
. (84)

Then, for all T >
log 2

(
∥f0∥+

∣∣∣ ⟨ϕ∗,f0⟩
⟨ϕ∗,f∗⟩

∣∣∣)−log ϵ

log 1
1−δ

, it holds that

P(T (ϵ) ≥ T ) ≤ Cn exp

− ϵ2

32
(
1 + 1

⟨ϕ∗,f∗⟩2

)∑T−1
t=0 (1− δ)2(T−t)σ2

t

 , (85)
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where Cn is a universal constant depending only on n.

Proof. By Theorem 7, for a fixed number T , we have the following decomposition for fT :

fT =
⟨ϕ∗, f0 +

∑T−1
t=0 wt⟩

⟨ϕ∗, f∗⟩
f∗ + v(T ) + w(T ), (86)

where
∥∥v(T )

∥∥ < (1 − δ)T
(
∥f0∥+

∣∣∣ ⟨ϕ∗,f0⟩
⟨ϕ∗,f∗⟩

∣∣∣) and w(T ) =
∑T−1

t=0 A′
T−1 · · ·A′

t+1ht is sub-Gaussian with pa-

rameter σ2 =
(
1 + 1

⟨ϕ∗,f∗⟩2

)∑T−1
t=0 (1− δ)2(T−t)σ2

t . From the definition of the hitting time T (ϵ) in (84), we

have
P(T (ϵ) < T ) ≥ P

(∥∥∥v(T )
∥∥∥ < ϵ/2,

∥∥∥w(T )
∥∥∥ < ϵ/2

)
. (87)

When T >
log 2

(
∥f0∥+

∣∣∣ ⟨ϕ∗,f0⟩
⟨ϕ∗,f∗⟩

∣∣∣)−log ϵ

log 1
1−δ

, the bound
∥∥v(T )

∥∥ < ϵ/2 is satisfied. Since w(T ) is sub-Gaussian with

parameter σ2, the tail-bound for w(T ) yields

P
(∥∥∥w(T )

∥∥∥ < ϵ/2
)
= 1− P

(∥∥∥w(T )
∥∥∥ > ϵ/2

)
≥ 1− Cn exp

(
− ϵ2

32σ2

)
, (88)

where Cn is a universal constant depending only on n. This completes the proof.

To understand the above bound, consider a fixed time T . When σt decreases, the bound becomes smaller.
As a result, with a smaller random perturbation, it is more likely to reach the target function faster. When ϵ
increases, the bound also becomes smaller, which matches the intuition that a larger neighborhood is easier
to reach than a smaller one.

Remark 6. The analysis in this section can be generalized to continuous functions by working through
eigenfunctions as opposed to eigenvectors. We briefly discuss this in the special case where L2(X ) has a
finite number of bases. Let the inner product be ⟨f, g⟩ =

∫
X f(x) · g(x)dx and the function space to have an

orthonormal basis given by the set of functions {u1, u2, . . . , un} such that

⟨ui, uj⟩ =
∫
X
ui(x) · uj(x)dx =

{
1 if i = j

0 if i ̸= j
. (89)

Note that any function can be decomposed into a linear combination of the basis functions, i.e., f(x) =∑n
j=1 aj · uj(x), where the coefficients can be stacked into a column vector a = [a1, a2, . . . , an]

T . Define the
matrix A representing the linear operator T with the elements

Aij = ⟨ui, T (uj)⟩ =
∫
X
ui(x) · T

(
uj(x)

)
dx. (90)

There exists a vector b = [b1, b2, . . . , bn]
T such that applying the operator T on the decomposed form of f(x)

yields

T
(
f(x)

)
=

n∑
j=1

aj · T
(
uj(x)

)
=

n∑
j=1

bj · uj(x). (91)

Taking the inner product of both sides of the above equation with an arbitrary basis function ui leads to

n∑
j=1

aj ·
〈
ui, T

(
uj

)〉
=

n∑
j=1

bj · ⟨ui, uj⟩ ⇒
n∑

j=1

aj ·Aij = bi. (92)

The above equation is the matrix multiplication Aa = b, which is the matrix associated with T acting upon
the function f(x) expressed in the orthonormal basis. If f(x) is an eigenfunction of transformation T with
eigenvalue λ, we have Aa = λa. Hence, the results of Theorem 8 can be applied to continuous functions in
a function space with a finite number of bases. The extension to the case with an infinite, but countable,
number of bases is similar under some technical assumptions.
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Figure 3: (a) the agent interacts with an environment, (b) the agent has a set of four actions in
each state.

(a) A comparison of value iteration convergence in
the absence and presence of an adversary.

(b) The effect of an adversary versus the number of
states.

Figure 4: The effect of an adversary on the convergence of value iteration.

4 Simulation Results

In this section, the adversarial attack on the computation of value iteration is simulated for an agent inter-
acting with an environment depicted in Figure 3. The agent can take any of the four actions Up, Down,
Right, and Left in each of the non-terminal states. By taking an action, the agent moves one block toward
the desired action 90% of the time, or moves one block to the right or left of the desired taken action uni-
formly at random 10% of the time. The agent bounces back to its original state before taking an action
if movement in the direction described above is not possible due to the walls marked with diagonal strips
or exiting the environment. The agent is incurred a cost of 0.02 by each move and there are two terminal
states in which the agent receives an immediate reward of +1 and -1 as shown in Figure 3. In order to
determine the optimal path for the agent starting from any of the states, the value function is calculated
using synchronous value iteration. In our simulated example, an adversary contaminates the value function
by expanding up to Q = 1.8 in a random direction, withholding the contraction, 20% of the time. As a result,
the distance of the time-varying value function from the true value function based on the L2-norm is affected
negatively as depicted in Figure 4a, where the starting function is the all-zero function in our simulations
and the average and standard deviations are estimated by 1000 rounds of independent runs of the value
iteration. Furthermore, the negative effect of the adversary is worsened by increasing the cardinality of the
state space in the studied example. In order to show this, the number of intermediate blocks in Figure 3
is changed from 1 to 10, i.e., the number of states is changed from 9 to 27, and the distance between the
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value function at the tenth iterate and the true value function is depicted in Figure 4b. As shown in Figure
4b, E

[
d(V a

10, V
∗)
]
− d(V10, V

∗) has an increasing trend as the number of states increases, where V a
10 is value

function at the tenth iterate in the presence of an adversary and V10 is the corresponding function in the
absence of an adversary, and the dependence of value function on the number of states is eliminated to keep
the notations simple.

5 Conclusion and Future work

Multiple models of stochastic time variation along with their corresponding notions of hitting time are
studied in this paper. In particular, we develop a probabilistic Banach fixed-point theorem that proves
the convergence of the value iteration method with a probabilistic contraction-expansion transformation
with an associated confidence level, which finds applications to adversarial attacks on computation of the
value iteration method. We prove that the hitting time of the value function in the value iteration method
with a probabilistic contraction-expansion transformation is logarithmic in terms of the inverse of a desired
precision. Furthermore, we develop upper bounds on the hitting time for optimization of unknown discrete
and continuous time-varying functions whose noisy evaluations are revealed over time. The upper bound for
a discrete function is logarithmic in terms of the cardinality of the function domain and the upper bound
for a continuous function is super-quadratic (but sub-cubic) in terms of the inverse of a desired precision.
In this framework, we show that convex functions are learned faster than non-convex functions. Finally,
an upper bound on the hitting time is developed for a time-varying linear model with additive noise under
the notion of shape dominance for discrete functions. Future research directions include: studying how
an environment with time-varying parameters modeled by transition probabilities and rewards affects the
Bellman transformation and its fixed point, obtaining upper bounds on the rate of change of the time-
varying parameters such that the time-varying fixed points are achievable after a hitting time, and studying
the effect of an adversary in applications of reinforcement learning whose computations are performed via
edge computing.
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[3] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering, Elon Por-
tugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems:
The example of computational advertising. The Journal of Machine Learning Research, 14(1):3207–
3260, 2013.

[4] Julie Mulvaney-Kemp, Salar Fattahi, and Javad Lavaei. Load variation enables escaping poor solutions
of time-varying optimal power flow. In 2020 IEEE Power & Energy Society General Meeting (PESGM),
pages 1–5. IEEE, 2020.

[5] SangWoo Park, Elizabeth Glista, Javad Lavaei, and Somayeh Sojoudi. Homotopy method for finding the
global solution of post-contingency optimal power flow. In 2020 American Control Conference (ACC),
pages 3126–3133. IEEE, 2020.

[6] Christopher V Rao, James B Rawlings, and David Q Mayne. Constrained state estimation for nonlinear
discrete-time systems: Stability and moving horizon approximations. IEEE transactions on automatic
control, 48(2):246–258, 2003.

[7] Amirhossein Ajalloeian, Andrea Simonetto, and Emiliano Dall’Anese. Inexact online proximal-gradient
method for time-varying convex optimization. In 2020 American Control Conference (ACC), pages
2850–2857. IEEE, 2020.

[8] P Bertsekas Dimitri. Dynamic programming and optimal control. Athena Scientific, 2017.

24



[9] Hyeong Soo Chang, Jiaqiao Hu, Michael C Fu, and Steven I Marcus. Simulation-based algorithms for
Markov decision processes. Springer Science & Business Media, 2013.
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