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Abstract In this work, we study the optimization landscape of the non-convex matrix
sensing problem that is known to have many local minima in the worst case. Since
the existing results are related to the notion of restricted isometry property (RIP) that
cannot directly capture the underlying structure of a given problem, they can hardly
be applied to real-world problems where the amount of data is not exorbitantly high.
To address this issue, we develop the notion of kernel structure property to obtain
necessary and sufficient conditions for the inexistence of spurious local solution of
any class of matrix sensing problems over a given search space. This notion precisely
captures the underlying sparsity and structure of the problem, based on tools in conic
optimization. We simplify the conditions for a certain class of problems to show their
satisfaction and apply them to data analytics for power systems.
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1 Introduction

Even under the ideal condition of no noise and zero approximation error, many
highly-efficient machine learning techniques involve solving potentially hard or in-
tractable computational problems while learning from data. In practice, they are tack-
led by heuristic optimization algorithms, based on relaxations or greedy principals.
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The lack of guarantees on their performance limits their use in applications with sig-
nificant cost of an error, impacting our ability to implement progressive data analysis
techniques in crucial social and economic systems, such as healthcare, transporta-
tion, and energy production and distribution. Commonly, non-convexity is the main
obstacle for a guaranteed learning of continuous parameters.

It is well known that many fundamental problems with a natural non-convex for-
mulation can be .4 Z?-hard (Pardalos and Vavasis 1991). Sophisticated techniques
for addressing this issue, like generic convex relaxations, may require working in an
unrealistically high-dimensional space to guarantee exactness of the solution. As a
consequence of complicated geometrical structures, a non-convex function may con-
tain an exponential number of saddle points and spurious local minima, and therefore
local search algorithms may become trapped in such points. Nevertheless, empirical
observations show positive results regarding the application of these approaches to
several practically important instances. This provokes a large branch of research that
aims to explain the success of experimental results in order to understand the bound-
aries of applicability of the existing algorithms and develop new ones. A recent di-
rection in non-convex optimization consists in studying how simple algorithms can
solve potentially hard problems arising in data analysis applications. The most com-
monly applied class of such algorithms is based on local search, which will be the
focus of this work. In some cases, prior information about the location of the solution
is available, which significantly reduces the complexity of the search.

Consider searching over some given domain 2. For a twice continuously dif-
ferentiable objective function f : 2~ — R that reaches its global minimum f*, if the
point x attains f(x) = f*, then we call it a global minimizer. The point x is said to
be a local minimizer if f(x) < f(x') holds for all X' within a local neighborhood of
x. If x is a local minimizer, then it must satisfy the first- and second-order necessary
optimality conditions. Conversely, a point x satisfying only the first-order condition
is called a first-order critical point, while a point satisfying both of the conditions
is called a second-order critical point. We also call it a solution. We call a solution
spurious if it is not a global minimum. In this work, we study how existence of a
spurious solution depends on the size/volume of the domain as well as the underlying
structure of the problem.

The analysis of the landscape of the objective function around a global optimum
may lead to an optimality guarantee for local search algorithms initialized sufficiently
close to the solution (Keshavan, Montanari, and Oh 2010a, 2010b; Jain, Netrapalli,
and Sanghavi 2013; Zheng and Lafferty 2015; Zhao, Wang, and Liu 2015; Sun and
Luo 2016). Finding a good initialization scheme is highly problem-specific and dif-
ficult to generalize. Global analysis of the landscape is harder, but potentially more
rewarding.

Both local and global convergence guarantees have been developed to justify
the success of local search methods in various applications like dictionary learn-
ing (Agarwal et al. 2016), basic non-convex M-estimators (Mei, Bai, and Monta-
nari 2016), shallow (Soltanolkotabi 2017) and deep (Yun, Sra, and Jadbabaie 2018)
artificial neural networks with different activation (Li, Ding, and Sun 2018) and
loss (Nouiehed and Razaviyayn 2018) functions, phase retrieval (Chen et al. 2018;
Vaswani, Nayer, and Eldar 2017; Candes, Li, and Soltanolkotabi 2015) and more
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general matrix sensing problems (Ge, Jin, and Zheng 2017; Josz et al. 2018). Particu-
larly, significant progress has been made towards understanding different variants of
low-rank matrix recovery, although explanations of the simplest version called matrix
sensing are still under active development (Zhu et al. 2018; Chen et al. 2019; Li et
al. 2019; Ge, Jin, and Zheng 2017; Chi, Lu, and Chen 2018; Zhang et al. 2018). Given
a linear sensing operator 7 : §" — R™ and a ground truth matrix z € R"*" (r < n),
an instance of the rank-r matrix sensing problem consists in minimizing over R"*"
the nonconvex function

o () = || (ex" —22") [ = || (ax") = b3, (D

where b = o7 (zz"). We consider this function over a general set 2~ C R although
in this section we set 2~ = R"*". Recent work has generally found a certain assump-
tion on the sensing operator to be sufficient for the matrix sensing problem to be
“computationally easy to solve”. Precisely, this assumption works with the notion of
RIP.

Definition 1 (Restricted Isometry Property) The linear map 7 : S* — R™ is said
to satisfy 6,-RIP for some constant 6, € [0, 1) if there is ¥ > 0 such that

(1= 8)IX[[7 < M/ ()17 < (1+8) X7
holds for all X € S” satisfying rank(X) <r.

The existing results proving absence of spurious local minima using this notion
(such as Ge et al. 2015; Sun, Qu, and Wright 2015, 2018; Bhojanapalli, Neyshabur,
and Srebro 2016; Ge, Lee, and Ma 2016; Ge, Jin, and Zheng 2017; Park et al. 2016;
Zhu et al. 2018) are based on a norm-preserving argument: the problem turns out to be
a low-dimensional embedding of a canonical problem known to contain no spurious
local minima. While the approach is widely applicable in its scope, it requires fairly
strong assumptions on the data. In contrast, Zhang et al. 2018; Zhang, Sojoudi, and
Lavaei 2019 introduced a technique to find a certificate to guarantee that any given
point cannot be a spurious local minimum of the problem of minimizing f; ., over the
set 27 C R"™" where z € Z C R"™" and &« satisfies 0,,-RIP. Note that two different
sets 2 and 2 are involved here. Since f; ., depends on z and 7, this introduces a
class of optimization problems defined as

{mijr} foor(x) | o satisfies 6,,-RIP, z € & } . (ProblemR™")
xeZ

(Problem®'P) consists of infinitely many instances of an optimization problem, each

corresponding to some point z in 2 and some operator o/ satisfying &,.-RIP. The
state-of-the-art results for (ProblemR™P) are stated below.

Theorem 1 (Bhojanapalli, Neyshabur, and Srebro 2016; Ge, Jin, and Zheng
2017; Zhang, Sojoudi, and Lavaei 2019) By taking 2" = 2 = R"*", the follow-
ing statements hold:

- If 6 < 1/5, no instance of (Problem®™) has a spurious second-order critical
point.
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- Ifr=1and & < 1/2, then no instance of (Problem®) has a spurious second-
order critical point.

— Ifr=1and & > 1/2, then there exists an instance of (ProblemR™") with a spuri-
ous second-order critical point.

Non-existence of a spurious second-order critical point effectively means that any
algorithm that converges to a second-order critical point is guaranteed to recover zz/
exactly. Examples of such algorithms include variants of the stochastic gradient de-
scent (SGD) that is known to avoid saddle or even spurious local minimum points
under certain assumptions (Daneshmand et al. 2018), and widely used in machine
learning (Krizhevsky, Sutskever, and Hinton 2012; Bottou and Bousquet 2008). Be-
sides SGD, many local search methods have been shown to be convergent to second-
order critical points with high probability under mild conditions, including the clas-
sical gradient descent (Lee et al. 2016), alternating minimizations (Li, Zhu, and Tang
2019) and Newton’s method (Paternain, Mokhtari, and Ribeiro 2019). In this paper,
we present guarantees on the global optimality of the second-order critical points,
which means that our results can be combined with any of the algorithms mentioned
above to guarantee the global convergence.

Theorem 1 discloses the limits on the guarantees that the notion of RIP can pro-
vide. However, linear maps in applications related to physical systems, such as power
system analysis, typically have no RIP constant smaller than 0.9, and yet the non-
convex matrix sensing still manages to work on those instances. This gap between
theory and practice motivates the following question.

What is the alternative property practical problems satisfy that makes them
easy to solve via simple local search?

This question was studied earlier for special cases of matrix sensing, namely
phase retrieval (Sun, Qu, and Wright 2018) and matrix completion (Ge, Lee, and
Ma 2016). In case of phase retrieval, the alternative property consists in the particu-
lar distribution of the measurements operator. In matrix completion, the assumption
includes conditions on the properties of the matrix being recovered along with con-
ditions on the measurement operator itself. We address this question by developing
a new notion that deals with the measurement operator and precisely captures when
a structured matrix recovery problem has no spurious solution over an arbitrary ball.
We focus the analysis over a given ball since local search methods tend to search over
a neighborhood rather than the entire space, based on prior knowledge. In Section 2,
we motivate the need for a new notion replacing or improving RIP with real-world
examples. Section 3 introduces some formal definitions and develops a mathematical
framework to analyze spurious solutions and relate them to the underlying sparsity
and structure of the problem, using techniques in conic optimization. Sections 4 and
5 give the theory behind this notion and examples of its application. In Section 6,
we present numerical results of the application of the developed theory to a real-
world problem appearing in power systems analysis. Concluding remarks are given
in Section 7. Some of the proofs, technical details and lemmas are collected in the
Appendix.
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Notation

C", R" and R™" denote the sets of complex and real n-dimensional vectors, and n X r
matrices, respectively. S” denotes the set of n x n symmetric matrices. Tr(A), ||A||r
and (A,B) are the trace of a square matrix A, its Frobenius norm, and the Frobe-
nius inner product of matrices A and B of compatible sizes. The normal distribu-
tion with mean p and covariance matrix X is denoted as .4 (i,X). In any linear
space, 1 is a vector whose entries are all equal to 1 and [/ is the identity matrix. For
® € R and R € RU {+oo}, we define Bg(w) = {a € R™" : |la— o|r <R},
Br(w) ={a € R™ : |la— o|r <R} and dBg(®) = {a €R™" : ||a— @||r = R}.
It follows from the definition that 0B, .(®) = @ and minimization over this set re-
sults in +oo for any objective function. For a square matrix A, we define the symet-
ric part Sym(A) = (A +AT) /2. For a symmetric matrix A, its null space is denoted
with Ker(A). For square matrices A1,As, ..., A,, the matrix diag(Ai,...,A,) is block-
diagonal, with A;’s on the block diagonal. The notation A o B refers to the Hadamard
(entrywise) multiplication, and A ® B refers to the Kronecker product of matrices.
The vectorization operator vec : R"*" — R™ stacks the columns of a matrix into a
vector. The matricization operator mat(+) is the inverse of vec(-). Let > denote the
positive semidefinite sign.

For a linear operator .% : R"*" — R™, the adjoint operator is denoted by .Z7 :
R™ — R" ", The matrix L € R™*" such that .Z(x) = Lvec (x) is called the matrix
representation of the linear operator .. Bold letters are reserved for matrix repre-
sentations of corresponding linear operators.

Sparsity pattern S of a set of matrices M C R™*" is asubset of {1, ..., max{n,m}}?
such that (i, j) € S if and only if there is X € M with the property that X;; # 0. Given
a sparsity pattern S, define its matrix representation S € S™*" as

o _[oif(ij)es,
YOG ¢S,

The orthogonal basis of a given m x n matrix A (with m > n) is a matrix P = orth(A) €
R"™*7ak(4) consisting of rank (A) orthonormal columns that span range(A):

P= orth(A) — PPTA =A, P'p :Irank(A)'

Positive part means (-)+ = max{0,-}, and eigenvalues in an arbitrary order are de-
noted by A;(+).

2 Motivating example

In this section, we motivate this work by offering a case study on data analytics for
energy systems. The state of a power system can be modeled by a vector of complex
voltages on the nodes (buses) of the network. Monitoring the state of a power system
is obviously a necessary requirement for its efficient and safe operation. This crucial
information should be inferred from some measurable parameters, such as the power
that is generated and consumed at each bus or transmitted through a line. The power
network can be modeled by a number of parameters grouped into the admittance
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matrix ¥ € C"™". The state estimation problem consists in recovering the unknown
voltage vector v € C" from the available measurements. In the noiseless scenario,
these measurements are m real numbers of the form

VM, Yie{l,...,m}, 2)

where M; = M;(Y) € C"*" are sparse Hermitian matrices representing power-flow and
power-injection as well as voltage magnitudes measurements. The sparsity pattern of
the measurement matrices is determined by the topology of the network, while its
nonzero entries are certain known functions of the entries of Y. Since the total number
of nonzero elements in matrices M; exceeds the total number of parameters contained
in Y, we can think of ¥ — {M;}/" | as an embedding from a low-dimensional space.
For a detailed discussion on the problem formulation and approaches to its solution
see e.g. Zhang, Madani, and Lavaei 2018.

To formulate the problem as a low-rank matrix recovery, we introduce a sparse
matrix A=A(Y) € €™ with i-th row equal to vec(M;)T. The measurement vector
can be written as Avec(v!). To find v from the measurements, one can solve the
non-convex optimization problem:

minimize ||Avec (xx” —wT)]||? (3)

xeC ||lx—o|[F<R

where @ € C" and R € RU{+eo} are some parameters determined by the prior knowl-
edge about the solution v. In practice, this non-convex optimization problem is usu-
ally solved via local search methods, which converge to a second-order critical point
at best. Since f(x) = ||Avec (xx” —wT)||2 = (xx —wT AT Avec (xxT —wT)), the
set of critical points for the problem is defined by the linear map represented with
the matrix H = AT A, which thus is the key subject of the study. Problems arising in
power systems analysis are based on operators that possess a specific structure. An
example of a structure for the matrix A is given in Fig. 1a, and the structure of the
corresponding H is described in Fig. 1b. The respective power network will be con-
sidered in more details in Section 6. As discussed previously, given H, it is practically
important to know if there exist v,x € C" such that x is a critical point of (3) while
xx” #wT . Absence of these points proves that a local search method recovers v ex-
actly, certifying safety of its use. For example, in case of unconstrained optimization
(R = +o0), the answer can be provided by the following problem having its optimal
objective value equal to zero:

minimize ||.« (xx” —wT)||?
v, xeCn
0

subject to V. f(x) =
Vi (x) =0

However, this is an .#”Z?-hard problem in general and cannot be solved efficiently.
Even if we solved it, the sensing operator .«# could change over time without chang-
ing its structure, and therefore any conclusion made for a specific problem cannot
be generalized to other ones that should be solved for real-world problems where
data analysis is to be performed periodically. One way to circumvent this issue is to
develop a sufficient condition for all mapping H with the same structure.
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Fig. 1: Examples of the structure patterns of operators <7 (left plot) and J# (right
plot) in power system applications. The positions of the identical nonzero entries of
a matrix are marked with the same markers.

3 Introducing Kernel Structure

Consider a linear operator .27 : S — R™ with the matrix representation A € Rrmxn®
and a sparsity pattern S.,. Assume that there is a set of hidden parameters & €
R¢ d < m, such that A is the image of @ in the space of a much higher dimension.
In this way, <7 has a low-dimensional structure beyond sparsity, which is captured
by A = A(£) and A(0) = 0. The motivating example in Section 2 is a special case of
this construction since it could be stated entirely with the real vectors and matrices of
a bigger size. We define the nonconvex objective

FiR” SR such that fx) = || (xx — 22|12

parametrized by 7 and z € R"*". Its value is always nonnegative by construction,
and the global minimum O is attainable. To emphasize the dependence on certain
parameters, we will write them in the subscript. To align the minimization problem
with the problem of reconstructing zz’ , we need to introduce a regularity assumption:

Assumption 1. The 2r-RIP constant &, of &/ exists (and by definition is strictly
smaller than 1).

Note that we do not assume any particular value for the RIP constant here. We
will rely on Assumption 1 throughout the paper. This assumption implies that for all
X,z € RXr.

|l (xx” —zz")|| = 0 if and only if xx” = zz”

Another way to express the objective is

Fx) = (xl —zz", o (ex” —22")).
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Here, 7 = /T o/ is the linear kernel operator that has the matrix representation
H = AT A and sparsity pattern S 5. Namely, (i, j) € S if and only if there exists
k such that (k,i) € S,y and (k, j) € S.. Sparsity of % is controlled by the out-
degree of the graph represented by S./, and tends to be low in applications like
power systems. S is represented by a matrix S, so that S ,--sparse operators are
exclusively those satisfying the linear equation .’ (H) = S o H = 0. Besides spar-
sity, 7 inherits the low-dimensional structure from .o/, which can be captured by
H=A(E)TA(E) = H(E) where & € RY. This dependence can be locally approx-
imated in the hidden parameter space with a linear one. More precisely, suppose
that there is a linear operator % defined over S such that # (H(E)) =~ 0 for the
values of & under consideration. Thus, from now on we focus exclusively on low-
dimensional structures of the form % (H) = 0. Together, the sparsity operator .&
and the low-dimensional structure operator % form the combined structure operator
T = (S, W) that accumulates the structure of the kernel operator.

Definition 2 (Kernel Structure Property or KSP) The linear map < : S — R™
is said to satisfy .7-KSP if it satisfies Assumption 1 and there is a linear structure

operator 7 : S" — R’ such that
T(ATA)=0
where A is the matrix representation of o7

Notice that a particular sensing operator <7 can be kernel structured with respect
to an entire family of structure operators, and we can possibly select any of them for
our benefit in the following section.

4 Using KSP

After fixing the kernel structure of the sensing operators, @ € R**" and R € RU
{00}, we can state the problem under study as follows:

{ I]Eli? : feor(x) | & satisfies Assumption 1 and .7-KSP, z € IB%R(a))} ,
xeBr(w

(Problem®SP)
Note that (Problem®SP) consists of infinitely many instances of an optimization prob-
lem, each corresponding to some point z € Bg(®) and some operator <7 satisfying
7 -KSP.

If X is regarded as an input and the operator <7 is regarded as a system with its
output being <7 (X ), the RIP constant aims at characterizing the input-output behavior
of the system. This input-output relationship can also be controlled by imposing the
following constraint on the matrix J¢:

(1-8).7 <A < (1+8).7,

where .# is the identity operator. More precisely, the above inequality guarantees
that the operator &/ has an RIP constant less than or equal to 8. Inspired by this
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observation, we introduce the function Q(x,z;.7) to be the optimal objective value
of the convex optimization problem:

minimum 0

SeR.Z

subject to & () =0 (4a)
Mo (H) =0 (4b)
T(H#)=0 (4c)
(1-6)F 2 < (14+0)5 (4d)

where %, () = V. »(x) and A, (H) = V*f, 4 (x). This optimization is per-
formed over all operators .77 satisfying the KSP. We will later show that the function
O sets an upper bound on the &, such that none of the functions f;.., with </ satis-
fying .7 -KSP and 8,,-RIP has a spurious second-order critical point at x, provided
that x is not on the boundary of the optimization domain Bg(w).

For completeness, and for further reference within this paper, we calculate the
analytic forms of the first- and second-order derivatives of f; » below. Introduce a
vector e and a matrix X such that for all u € R"*" it holds that

e = vec (xx] —zz7), Xvec (u) = vec (xu! +ux").

We write the operators .2, .# and their transpose operators in closed form:

Lo ST SRV Z..(H) =2-X"He,
nxr ”2
.i”gz :R™" =S .i’chz(y) =ey! X7 +Xye!,
My, ST ST .(H) = [I,® (mat(He) + mat(He)" )] + X" HX,

M
///)Zz LS ///)ZZ(V) vec (V)e! +-evec (V)" +XvVXT.
Since f; s (x) is linear in .7, the operators ., ; and .#, ; are both linear. Thus, the
problem defining the function O is convex.

The function O is useful only for those points x that are located strictly inside the
domain Bg(w) . This is due to the fact the constraints (4a) and (4b) are meant to be
optimality conditions for a point inside the domain Bg(®). For a point x that lies on
the boundary, we define the corresponding function Q7% (x,z;.7, @) as the optimal
objective value of the convex optimization problem:

minimum O

o,u>0,

subject to . () = —pu(x— o) (52)
P Mlez(H )P = 0 (5b)
T(H) =0 (5¢)
(1-8)F 2 < (14+06)5 (5d)

where P,_q € ROV=1*n" i the matrix of orthogonal projection onto the subspace
orthogonal to x — @. The role of Q7% is the same as O but will be used only for those
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values of x such that ||x — @|| = R. Note that (5a) and (5b) are the necessary optimal
conditions for a point on the boundary of Bg(®).

To relax the 8,,-RIP condition, we consider those operators that have a bounded
effect on a linear subspace of limited-rank inputs. Indeed, for any 2r linearly inde-
pendent vectors, the linear span of them is a linear subspace of the manifold of the
2r-rank matrices. Thus, for any linear operator &2 from a 2r-dimensional (or lower)

vector space to R”z, the following condition on J# holds if < satisfies §-RIP:
(1-8)P"2 < P" w2 <(1+8) 2" 2. (6)

Based on this observation, we define the function Op(x,z; ) as the optimal objective
value of the following convex optimization problem:

minimum &

SeR,. 7

subject to .Z () =0 (7a)
My () =0 (7b)
T(H)=0 (Tc)
1-8PT2 < PT 2 <(1+8) 2T P (7d)

where 7 is the linear operator from R@([¥ D? to R" that is represented by the
matrix P = orth([x z]) ® orth([x z]). Note that (7) is obtained from (4) by replacing
its constraint (4d) with the milder condition (6). We will show that the function Qp
sets a lower bound on the &, such that none of the functions f;,., with < satisfying
 -KSP and 8,,-RIP has a spurious second-order critical point at x, provided that x is
not on the boundary of the optimization domain Bg ().

Similarly to @72, the function @gB (x,7; 7, ) is defined as the optimal objective
value of the convex optimization problem:

minimum &
8,u>0,¢

subjectto .2y () = —u(x— o)
P oMy ()P, = 0
T(H)=0
(1-8)PTP < PTH# P <(1+6)PT P

which is designed to lower bound the 8, such that none of the functions f;.., with
o satisfying 7-KSP and &,,-RIP has a spurious second-order critical point at x,
provided that x is on the boundary of Br(®).

Now, we are ready to state one of the main results of this paper.

Theorem 2 (KSP necessary and sufficient conditions) For all instances of (ProblemXSP),

there are no spurious second-order critical points if

{@p(x,z; T) = 1 over Br(w) x Br() \ {xx” =27} ®

098 (x,2; 7, 0) = 1 over IBr(®) x Br(w) \ {xx” =z}
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and only if
O(x,z; 7) = 1 over Br(w) x Bg() \ {xx” =zz"'} ©)
0%B(x,2;.7,0) = 1 over IBg(w) x Br(w) \ {xx” =27}

This theorem is formally proven in the Appendix. To elaborate on implications
and practicality of the result, we present its application for a specific structure of the
sensing operator below.

4.1 Ellipsoid norm: Rank 1

In this subsection, we prove a special case of Theorem 2 for the ellipsoid norm objec-
tive function and R = +-co. This proof first provides useful intuition behind the proof
of the general case and then simplifies the conditions of Theorem 2 to show that they
always hold for a specific class of operators.

Consider the ellipsoid norm of xx” — zz” given by a full-rank matrix Q € R"™",
denoted with 4 :

h(x) = Q" — 22" )|[F = foa(x)
With no loss of generality, assume that Q € S" since h(-) really depends only
on QT Q. The function can be implemented with a block-diagonal sensing opera-

tor matrix A = diag(Q,...,Q) € S"z, which generates a block-diagonal kernel ma-
trix H = diag(QQ,...,00). Thus, the kernel matrix is a block-diagonal matrix

H = diag(Hy1,...,Hy,) € S” with blocks of size 1 x n equal to each other; in other
words, H;; = Hj; for all i,j € {1,...,n}. This generates a kernel structure. By ap-
plying the theory introduced above, we obtain the following result for the rank-one
case.

Proposition 1 Consider a kernel structure operator T = (., #') such that

- YH) =0if H=diag(H1,...,Hm)
- W(H):Ol:ﬁHii:Hjj7i7j€{1,...,”}7

Then, no instance of the (Problem®S?) with R = co has a spurious second-order criti-
cal point over R".

The proposition implies that the function A(x) can never have a spurious solu-
tion for rank-1 arguments. Indeed, Assumption 1 and the following lemma combined
imply that H;;, and, consequently, its decomposition H;; = QQ, are full-rank matrices.

Lemma 1 For any J, € [0,1), the matrix Q € S" satisfies
(1=8) X[l < loX | < (1+8)|IX|7
for every X such that rank (X) < r only ifrank (Q) = n

Proof. For contradiction, suppose that u € Ker(Q) and u # 0. Take X = uu’ and
observe that OX = 0, which contradicts that (1 — §,)[|X||% < ||0X||%. O
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The following lemma provides a version the conditions (8) and (9) combined for
this particular structure operator.

Lemma 2 Given z € R™" | a point x € R"™" is not a first-order critical point of the
Sunction h(-) for an arbitrary full-rank matrix Q if and only if there is A € R"™" such
that
0# Sym [(xA” +Ax") (xx" —zz")] = 0
Proof. By expanding h(x+u) as
h(x+u) = h(x) +Tr(2x" ((ex” — 22" )M+ M (xx” —227)) u) +
Tr (u” ((exT — 22" )M + M (xx” —227))u + (xu” +ux )M (xu” +ux"))) +o(|ul?)

one can arrive at a more specified expression for the second-order necessary condi-
tions for local optimality:

(Vh(x),u) = 2(Q(xx" —2zz"),0(xu” +ux")) =0 (10a)
(V2h(x)u,u) = 2(0Q(xx" — 227 ), uu”) + || Q(xu” —uxT)||% >0 (10b)

for all u € R™". We re-arrange the first-order condition (10a):
(G — 2 M+ M(ex" —22)) =0 (1)

If the equation (11) does not hold for some M > 0, then x cannot be a critical point
for that z and M. Consequently, the problem

minimize -

MeS", acR

subject to ((ny —xxT)M +M(ny —xxT)) y=0 (12a)
M—al>0, (12b)

is bounded by O if and only if the equation (11) does not hold for arbitrary M > 0. If
x is critical for some M = 0, then it is unbounded.

The problem (12) is a semidefinite program with a zero duality gap, since M =0
and oo = —1 constitute a strictly feasible primal point. We introduce the dual variable
A € R™*" for the equality constraint (12a) and the dual variable G € S" for the Positive
Semidefiniteness (PSD) constraint (12b). The dual problem can be written as

in _Tr[(2S AT+ 2" (y" —xx")] — G) M) + a(Tr(G) — 1
P cmin _ Tr((2Sym{(AT +AyT) 0y —xx')] ~ G) M|+ a(Tr(G) ~ 1)

The inner optimization problem has a finite solution if and only if

G =0AT Aoy =)+ Oy~ AT +4yT)
Tr(G) =1
The dual problem can be expressed as
maximize 0
AERMT GeSn
subject to G = Sym[(yAT + Ay ") (yy" —xx")],
Tr(G) =1,
G~0
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This is feasible if and only if the primal problem (12) is bounded. Consequently, it is
feasible if and only if the point x € R"*" is not a critical point of the function A for all
M 0.

To eliminate the condition on trace, notice that a PSD matrix had a nonnegative
trace, which is equal to zero if and only if the matrix is the zero matrix. All the
constraints are homogeneous in G, so the trace can always be normalized to 1. Thus,
the dual feasibility is equivalent to the condition 0 # G = 0. This concludes the proof.

O

This condition will be relaxed further for simplicity below.

Lemma 3 Given z € R™*"| a point x € R"™" is not a first-order critical point of the
Sunction h(-) for an arbitrary full-rank matrix Q if there are Ty € R and T, € S"

such that the matrix T = (7),T ? } satisfies the relations
-1 1
T —Zr
0+# [—z x| (T P+PT)[XT } =0 (13)

7
where P = L‘T] [z x].

Proof. Suppose that there exists 7' from the statement of the lemma. Notice that

I T

1 1 — T
X1 2+ ExszT +z2Tx" + ExszT =[—z %] [ 0 Tl} [)ZCT] =
el 0,7 =
ST | | AT

and
o~ = | 5 | =[]

We use the formulas above to expand the condition (13) and obtain

T T
0 # Sym|[(x(zT; + %)T +(zh + %)xT)(xxT —zz")] =0,
Conclusion immediately follows by applying Lemma 2 with A = z7} + %xTz. [

To prove Proposition 1, we check the condition above for all pairs of z and x.
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Proof of Proposition 1.

We start by proving that any point except for O and 4z cannot be a first-order critical
point of the function /. Assume that x & {0, +z}. By Lemma 3, it is sufficient to prove

that there are o and B in R such that the matrix T = [Oa g] satisfies

0#G=[—z 2 (TTP+PT) [‘xﬂ =0

T
where P = [)ZCT} [z x]. Consider three scenarios for x and z :
Case 1 x = yz:

G=[-z x| (T"P+PT) [ xﬂ =217 - 1)2a+By)z' ="

For o = y(y*— 1) and B = 0, it holds that G = (2y(y* — l)ZZT)2 = 0. The matrix is
nonzero for x & {0,+z}.

Case 277x=0:
2> 0

The matrix P takes the form P = [ e

],soforoc:Oandﬁ =1, it holds that

G =2||x||2xx" =0

The matrix is nonzero for x # 0.
Case 30 < (z"x)* < [|z|3lx[13:
Iz[3 1 }
Loz ]
It is sufficient to show that 77 P+ PT > 0 to guarantee G to be nonzero and PSD. To
show this, we use Sylvester’s criterion. The upper left corner of this matrix is equal
to —2a. Moreover,

By scaling, we can assume without loss of generality that z/ x = 1; thus P = {

det(T"P+PT) = (—(|lxl3 — [I¥I13)* — 4) & —2(||x||3 + [ly[12) B — B

For a = —1, the discriminant of this quadratic polynomial with respect to 8 is equal
to D = 16(||z|3]|x||3 — 1). By the strict Cauchy-Schwarz inequality in the assumption
of the case, D is strictly greater than 0. Thus, there exists § such that the matrix is
positive definite. This implies that none of x ¢ {0, %z} satisfies the first-order neces-
sary condition of local optimality for an unconstrained problem. Assume that x = 0.
The quadratic form on the Hessian at this point

(V2h(0)u,u) = —2(Qzz" ,uu")

takes a negative value at u = z. Thus, it does not satisfy the second-order necessary
condition of local optimality for an unconstrained problem. The points x = +z are
not spurious points, which concludes the proof. O
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4.2 Ellipsoid norm: Higher ranks

The function k() defined over R"*" is significantly harder to study analytically if
r > 1. Numerical application of Theorem 2 allows us to make a conjecture.

Conjecture 1 For the kernel structure operator introduced in Proposition 1, no in-
stance of the (Problem®SP) with 2 = R"*" has a spurious second-order critical points
over R™*" for an arbitrary r.

This conjecture is based on evaluation of Q(x,z; 7) at 72000 pairs of points x,z €
R®*3 randomly sampled from the standard Gaussian distribution. All of them have
the optimal value 1. However, if we consider first-order critical points as well, then it
is straightforward to find a counterexample. After dropping the constraint on .# ; in
the formulation of O(x,z;.7) and Op(x,z;.7 ), one can formulate a statement similar
to Theorem 2 tailored to first-order solutions. The following proposition presents a
corollary of the result.

Proposition 2 For the kernel structure operator introduced in Proposition 1, for ev-
eryn>8andr > 1, there is 7 € R"™" such that (Problem®S?) has a spurious saddle
point.

Proof. First, we prove it for n = 8 and r = 2 by a counterexample. Consider the two
points

0 —1 [—1 1]
1 -1 11
11 1 -1
|t _|-to
00| 10
-1 1 1 -1
-1 1 1 -1
0 0 | | —1-1]

and find a matrix 5 that solves O(x,z;.7) without the constraint on .# ;. This
will result in .2 such that ./, .(.7) has both negative and positive eigenvalues. For
larger values of n and r, one can fill up the extra entries with zeros and the proof
carries over. O

The code for reproducing the result is available on-line'. Tt took 482 tosses to
generate the counterexample of the matrices containing only +1 or 0 as their compo-
nents. We used the uniform distribution over those matrices to generate the tosses.

4.3 DC power systems with acyclic topology

In Section 4.2, we studied one particular structure for the operator 7. Now, we an-
alyze a real-world problem to highlight the role of the KSP. Recall that the power

! github.com/igormolybog/matrix-sense-global
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system discussed in Section 2 was an AC network for which the voltages were com-
plex numbers. To simplify the computation, we analyze a DC system in this section,
where all voltages are real-valued (Ghosh, Boyd, and Saberi 2008). Assume that there
are n nodes, associated with the unknown real-valued voltages 71, ...,7,. The power
is measured at each node i € {1,...,n}, and is denoted as p;, which can be calculated
according to the formula:

. N T
pi0) =Y, w(hi—v)—=pi,
JEN() i
where N (i) C {1,...,n} is the set of nodes adjacent to node i and r;; = rj; > 0 is

the resistance of the line between nodes i and j. The least-squares formulation of the
voltage recovery problem consists in minimization over the set v € Bg(1) of

(pi(v) = pi)?

(ngE

f) =

i=1

which is a special case of the function (1). Let R be a number such that 2v; > v,
for all i € {1,...,n— 1}. In this subsection, we will demonstrate the application of
our results on a specific topology of the network, although as discussed later on, our
conclusion applies to any acyclic topology.

Suppose that the network possesses a star topology, meaning that each node i €
{1,...,n—1} is connected to only one node — namely, node n — and no others.
This means that N(i) = {n} ifi Znand N(n) = {1,...,n— 1}. As aresult, the power
measurements in this particular case can be written as

pi(v) =vivi—va);b,  ie{l,.,n—1}

n—1
pn(v) = ZI Vn("n_vj)i
j=

Tjn

which generate a particular structure for the sensing operator. Solving a;vec (! —

w!) = p, for a;, we conclude that the i-th row of A can be written as
a; = Eivec (Ejj — Eyi), ie{l,..,n—1}
n—1
a, = —vec (& Epy + _Zl EiEjn)
J:

where E;; is an n X n matrix with (i, j)-th entry equal to 1 and all other entries equal

to zero, and where &; = i = r%,, >0fori#nand &, =— Z?;} &;. The corresponding

kernel matrix is given by
n
H=A"A=Y aa] =Hyu(§)
i=1

As a result, H has a structured sparsity pattern: it is a block-diagonal matrix with n
blocks My, ...,M, € S" such that the first n — 1 blocks have only four nonzero entries:

M; = EP[Eii — Ein — Epi + Epn] = EX[en — eil[en —ei]”, ie{l,..,n—1}
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0
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101
)
o e
ecoe
XXX
15+ XXX
® 0o 00
0 5 10 15

Fig. 2: Sparsity pattern of the matrix H corresponding to a DC power system with a
star topology consisting of four buses.

where e; is the i-th column of the n x n identity matrix. The last block of H is a full
matrix:

M, = é‘gT

The sparsity pattern of H is visualized for n = 4 in Figure 2. The matrix H = Hy,, (&)
also has a low-dimensional structure: the 4(n — 1) +n? non-zero entries of H quadrat-
ically depend on only n— 1 parameters 1, ...,&,_1. In Section 6, we will demonstrate
how linearization of the structure can be applied, while here we provide an analytical
proof that deals with the non-linear low-dimensional structure directly. This proof
sheds light on some of the ideas behind Theorem 2.

The best RIP constant of the sensing operators that correspond to star topology
power networks is significantly higher than % The code repository mentioned earlier
contains examples of v and ¥ such that 2v; > v, and 27; > ¥,,, which prove that the best
RIP constant of .7 that correspond to a four-bus system with r14 = rp4 = y34 = 1 is at
least 0.95. Therefore, Theorem 1 cannot be applied. Nevertheless, we will show that
the non-convex voltage recovery problem on a system with a star topology possesses
no spurious local minima.

Proposition 3 Consider the problem

{ min fz,A(x) H=Hy.,(8); z€ IB%1/3(1) andéTp(z) # 0}7

)CE]B|/3(])

or equivalently, (Problem®S?) under the additional constraint ET p(z) # 0. No in-
stance of this problem has a spurious second-order critical point.
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Proof. Since R < 1, it holds that 2x; > x, and 2z; > z, for all i € {1,...,n}. We are
interested in the landscape of the function

h(x) = vec (xxT —ZZT)THVGC ()C)CT *ZZT)

n
= Y (xix —ziz) T Mi(xix — z;z)
i=1

To find the first and second derivatives, consider

n

h(x+u) = Y (xix — ziz +xiu + uix + wiu) T M; (xix — 2z + xu + uix + uju)
=
n

= h(x)+2 Y (cu+ux)T M;(xix — z;z)+

i=1
n
+ ¥ (x4 uix) T M (xiu+ uix) +

i=1

+ ')j:l(u,‘u)TMi(xix —z;z) +o(Jul?)

Selecting the term that is linear in u, the gradient takes the form
n
Vih(x) = 2 ¥ piMi(xix — ziz) + Trlx? Mi(xix — ziz) ) ei]
i=1

n—1
=2x EPxi(en —ei)(en — ) (xix — zi2)+
5

+fr[xT (en—e)(en—e)T (xix —ziz)ei+
F2x:EET (xix — ziz) + Tr[xT EET (xix — ziz)]e;

which can be written in the compact form

Vih(x) = B(x)[p(x) - p(2)]
where the (i, j)-th component of the n X n matrix B(x) is
&(2xi—x,) if i = j,i#n
YU (2 —x) ifi=j=n

—&ixiifi# ji=nori# j,j=n
0 otherwise

B,‘jz

and p(x) is a vector with i-th component eqal to p;(x). If B(x) is non-singular at a
point x, then x is a first-order critical point of /(x) in the open ball B, /3(1) if and
only if p(x) — p(z) = & (xxT —zz") = 0, which implies that it is a global minimum.
Therefore, it is essential to identify all points x such that det(B) = 0.
With a slight abuse of notation, we show B(x) with the shorthand notation B. Let
B, denote the (n,n)-th entry of B, which is equal to Z?;ll +(2x, — x;). Represent the
/T
b B”} with the scalar B’ = & (2x; —x,,) and the
(n—1)-dimensional vector b =[0,...,0,—&x|]. Since x € B, 3(1), we have B’ # 0.
One can write:

matrix B as a block matrix: B = [

det(B) = 0 <= det(B" — B 'bbT) =0
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The new (n— 1) x (n— 1) matrix B” — B'~'bb” is equal to B” in all components but
its (n — 1,n — 1)-th entry, which changes to

ﬁn—l = _‘5 2:11)(’; +ﬁn
==& lel 4 & (2x, —x1) + Z gs(zxn Xg)

s=2

—2&; ;)lq x;lc + ):zés(an—xs)

Repeating the same matrix reduction argument n — 1 times yields that det(B) = 0 if
and only if 8; = 0, where

n—1 2
—Xn)
=-2
Z ‘Sl 2x, —Xn
Since 2x; — x,, > 0, we conclude that §; = 0 if and only if x; = --- = x,,. Therefore,
there are no spurious solutions outside the set {x : x; = --- = x, }. To study this set,

we derive the Hessian of /(x) by extracting from h(x+ u) the term that is quadratic
inu:

n
Vih(x) = Z[ X?M; + xi(ex” M; + Mixe! ) + eix” Mixe! +
+M;(xix — ziz)e! +ei(xix — ziz) T M)

and substitute x; = --- = x, = x’ or x = xX'1. At the same time, we substitute M; =
E2en —eillen —e]T and M, = EET and note that (e, — ;)71 =17 (e, —¢;) = 0 and
ET1=17& = 0 by construction. After simplification, we obtain that

V%huﬂﬁwl=xﬂ[Ejé?@n—e»@n—eoT+ééT—«¢4>+%5TkﬂTé—
~'E E¥((en—ee] +eilen—e) iz )]

Consider the quadratic form g(s,) =[s ... s (]VZh(x)| _ s ... s 1], where
[s ... s t] € R". One can write:

qmnzziaW—n%uE¥&+@&—
—2t2,( Z s§,+z§,,)( 1zz€z+zn§n)
—2s(t —s) Z EPzi(zn—z) =
:a—w[2é2<250}+

+%rwﬂ<zaxz@@m a)—5(E &ala—2))| =

=c1(t—5)2+2(t —s5)(cat —c35) =
= (c1+2¢2)t> —2(ct +ca+c3)st+ (1 +2¢3)s?



20 Molybog, Sojoudi and Lavaei

where cq,cy and c¢3 are constants that are introduced to shorten the expression. If
q(s,t) takes negative values, then V2 h(x) |x:x/1 has a negative eigenvalue, and there-
fore x = x’1 cannot be a spurious second-order critical point.

n—1 n—1
Now, consider the polynomials ¢(1,#) and ¢(s, 1). Suppose that ¥, &2 > ('Y &)?
i=1 i=1

and consider any z € By /3(1). Since |z, (2 — z4)| < -2 =28 it must hold that

8 n—1 n—1 6 n—1

n—1 n—1
c1+2c > 25;2+(Z§i)2—2§(25i)2= Z§i2—§(25i)220
=1 i=1 i=1 =1 =1

=

Thus, g(1,¢) is a polynomial of order 2 with respect to ¢ with a positive leading term.

n—1 n—1
Suppose that ¥ £ < ('Y &)2. Similarly,
i=1 i=1

n—1 n—1 8n—l n—1 6n—1

ct2i> Y E+() 51‘)2*2§ Yé&=Y 51‘)2*5 Y &>o0
i=1 i=1 i=1 i=1 i=1
and thus ¢(s, 1) is a polynomial of order 2 with respect to s with a positive leading
term. At least one of the polynomials ¢(1,#) or g(s, 1) has a positive leading term.
Both ¢(1,7) and g(s, 1) have the same determinant and thus the following argument
can be made for any of them. Therefore, without loss of generality, assume that ¢(1,7)
has a positive leading term and takes negative values if and only if its determinant is
strictly positive:

4(cy —|—C2—|—C3)2 —4(c1+2¢2)(c1 +2¢3) > 0.

It is positive if and only if (¢ —c3)? > 0, which is equivalent to c; # c3. After substi-

tuting 2 = (Y77 &) (X1 &iznlzi—2n)) = —(X02) &) palz) and c3 = (L07) EP2i(za —

z7)) = — Y= &pi(z), one can guarantee that V2,h(x)| _,, has a negative eigenvalue
unless

&'p(x)=0.
Otherwise, ¢(1,7) only reaches zero at t = 1 and never crosses it. O

The technique of using the properties of the Schur complement to eliminate the
dimension of a matrix one by one can be applied in case of an arbitrary network with
an acyclic topology. For any such network, the gradient V. 4(x) also takes the form
V,h(x) = B[p(x) — p(z)], but with a different matrix B. Applying elimination of the
rows and columns of B that correspond to the leaves first, then to the first layer of par-
ent nodes, then to the second layer of parent nodes and so forth results in a similar re-
sult on the location of first-order critical points. Thus, in a similar way, the conclusion
of Proposition 3 can be proven for any arbitrary acyclic network, but for a different
value of the radius R that may not be analytically calculable. However, the proof is not
generalizable to networks with cycles. The proof of Proposition 3 was based on ana-
lyzing the first- and second-order optimality conditions and exploiting the properties
of the operator .7 that benefits from both sparsity and a low-dimensional structure.
The ideas used in the proof help the reader understand Theorem 2. Since Proposition
3 does not apply to networks with cycles, one may instead use Theorem 2 to numeri-
cally evaluate the inexistence of spurious solutions for any particular cyclic network.
This will be carried out in Section 6.
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5 Combining KSP with RIP

After fixing the hyperparameters @ € R"*" and R € RU {+c0} together with the ker-
nel structure of the sensing operators and the RIP constant, we can state the problem
under study in this section as follows:

{ min f; o(x) | o satisfies 8,,-RIP and .7-KSP, z € IB%R(a))} ,

xEBR(m)

(ProblemKSP+RIP)
Note that (Problem®SP*RIP) consists in minimization of a class of functions f; .
that correspond to some point z € Bg(®) and some operator </ that satisfies .7'-
KSP and &,,-RIP simultaniously. This is a generalization of both (Problem®!") and
(Problem®SP). For (Problem®SP*RP) we provide necessary and sufficient conditions
for having no spurious second-order critical point, and consequently no spurious local
minimum.

Theorem 3 (KSP+RIP necessary and sufficient conditions) For all instances of
(Problem®SP+RIP) “there are no spurious second-order critical points if

& < min Op(x,7;.7) (14a)

XEBR(w),z€BR(w)
xxl 77"

& < min 0% (x,2;.7, 0) (14b)
x€0BR(m).zEBR(®)
axT £zl

and only if
&, < min O(x,z;9) (15a)

x€BR(®),2€Br(w)
xx' #zz

6 < min @aB(x,z; 7,0) (15b)
an]BR((O),ZEIBR(w)
xxl #z2"

Following from the results of Zhang, Sojoudi, and Lavaei 2019, the necessary and
sufficient conditions coincide for the trivial structure operator .7 = 0 and R = 0.

5.1 Robustness

Consider the scenario where the measurements are corrupted with independent and
identically distributed Gaussian noise. More precisely, we assume that the measure-
ment vector b is corrupted by an additive noise that can be written as <7 (V') for some
random matrix V that is probably full rank (since .27 (+) is from the high-dimensional
space S” to the presumably low-dimensional space R™, we just need the mild surjec-
tivity assumption). In this section, we show that the resulting recovery error can be
bounded with high probability. For simplicity, we consider the case R = 4o, but a
similar argument can be used to analyse the case with a finite radius.
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Theorem 4 Consider (Problem®SP*RIP) vith R = 400 for which the condition (14a)
holds. Let V € S™ be a random matrix of arbitrary rank. Define the noisy recovery
loss

g(x) = || (x” — 22" + V).
For every p € (0,1) and € > 0, there exists 6 = o(p, €;.97,z) > 0 such that for V ~
N (0,021, with probability at least p, every second-order critical point x* of g(x)
satisfies | x*T —z7T|| < €

Proof. Expand the recovery loss:

g(x) = (o — 2z +V, (xl — 227 +V))
= f(x)+(V, A (xx" —z2") +xx —22") +(V,. (V)

We outline the proof below:

— Split R” into four regions according to the behaviour of f(x) associated with the
noiseless scenario::
1. &-neighborhood of the second-order critical points of f(x)
2. some neighborhood of the remaining first-order critical points of f(x)
3. inner compact region where the value of ||V f|| is bounded by some positive
constants from below and from above
4. Outer region, where ||V f|| is large;

— Show the existence of ¢ such that there are no second-order critical points of g(x)
in regions 2, 3 and 4 with high probability;

— Conclude that the only region that contains the second-order critical points of g(x)
with high probability is region 1, which coincides with the set {x : [jxx” —zz7 || <
e}.

The illustration of the regions used in the proof can be found in Figure 3. To prove
formally, first calculate the gradient

V.g(x) = Vo f(x) + Vo (V, 7 (xx) +xxT)

Forie{l...n} and j € {1...r}, one can write:

d
g (V,xxy = <V7eix]T- +xjel)y =2l Vx;
ij

where ¢; is the i-th column of the n x n identity matrix. Moreover,

d

dx;; j

(v, %ﬂ(xx )) = (%%(e,'x]r +xje,»T)>
The Hessian can also be written as
Vig(x) = Vo f(x) + VE(V, 2 (xx" ) 4+ xx)

Similarly, for i’ € {1...n} and j' € {1...r}, we have
92

— (V. xxTV =26, V.E;»
axijaxi'j'< ) XX > ]]< zz>
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lif j=/

where 6, € Ris defined as 8, = 0 otherwi
otherwise

,and E;y € R"™" is a matrix whose

(i,i')-th entry is 1 and other entries are 0. Similarly,

82

== T =0; .y .
8xijaxi’j’ <V,%(X)C )> 6././ <V7%(Eu +El l)>

By assumption, there exists ¥ > 0 such that l;}fs"”|\xxT — 7zl |2 < || (axT — 227)||2
for all x. This implies that f(x) is a coercive functions of x for any given ./ and z.
Moreover, ||V, f(x)]| is also a coercive function. To show this, using the notation from
Section 4, consider

(p Vaf () = Hxi vec (x), X He)
(Xvec (x),He)
{

4 aoxl x| %”( xxl —zz1)
= [f() (2", A (xx" —z2))]

~ |

~ |

Knowing that f(x) grows as fast as HxxT||F = ||x||# and —(zz", 2 (xxT — zzT')) grows

at most as fast as ||x[|%, we conclude that (5~ V. f(x)) — oo as x — oo, which implies

that ||V, f(x)|| — oo as x — oo.

For an arbitrary K’ > 0, define the set Cxr = {x|f(x) < K, ||V f(x)]| < K'}. It
is compact due to coerciveness. The difference Vyg(x) — V,f(x) is linear in both V
and x, while V,f(x) is cubic in x. Noting that ||[V.g(x)|| > [|V.f(x)|| — [|Vsf(x) —
V.g(x)||, one can conclude that ||V,g(x)]|| is also a coercive function. Therefore, for
any px € (0,1) there exist K and 6 = ok such that ||V,g(x)|| > 0 over R"\Cg with
probability pk. Select px = J/p and fix the corresponding K and o

The set Oy, of first-order critical points of f(x) is closed due to the closed graph
theorem. Moreover, it is bounded due to coercievness of f(x), and thus compact
even when R = +4oo. Denote the set of second-order critical points of f(x) with
Omin € Oy,. It coincides with the set of global minimizers of f (x) since the con-
dition 14a holds and Theorem 3 can be utilized. Define Ui, = Uxeo,,;, Be(x), and the
set Oyesr = Ofo\Upin that is compact. Note that the minimal eigenvalue of V2 f(x)is
strictly negative for every x € O,y . Since minimal elgenvalue is a continious func-
tion, there exists A < 0 such that min,co,,, Amin(V2.f(x)) = A. By cont1nu1ty of

V2 f(x) with respect to x, there exists & > 0 such that A, (V2. f(x)) < 2 for all
x € Urest = Uyeq,,, Be (¥). The difference of Hessians V7 g(x) — V2, f(x) is linear in
V and constant in x. Therefore, for any y > 0 and py, € (0,1), there exists oy such
that with probablhty Py, it holds that [|V2,g(x) — V2, f(x)||r < ¥ for all x € Ck. Se-

lect y =% A and Py = /P, and fix the corresponding Gy,. Notice that under 6 < oy,
with probability py, there are no second-order critical points of g(x) in Uy .

Denote Uy, = Uyest UUpin and notice that Cxk\U o is a compact set that contains no
first-order critical points of f(x). Therefore, there exists p > 0 such that ||V, f(x)|| >
p for all x € Cx\Uy,. Due to continuity of V,g(x) — V. f(x), for any ¢ > 0 and py €
(0,1), there exists 6 = 0 such that with probability py it holds that ||V, g(x) —

«f(x)||F < ¢ for all x € Cx. Select ¢ = p and py = /p, and fix the corresponding

[N
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Fig. 3: Schematic of the domain of the function f(x) with highlighted regions. Grey
area denotes the compact region Cx. The bold lines denote the set of first-order crit-
ical points named Oy, whose subset shown in red corresponds to the set of global
minimizers named O,,;,, while the blue part corresponds to O,y . The area countered
by the red shaded line is the e-neighborhood of O,,;,, namely U,,;,, while the area
countered by the blue shaded line is the &-neighborhood of Oy, namely Uy, . The
proof finds that with high probability there are no second-order critical points of g(x)
outside of Ck (outer region 4), or inside U,y (region 2), or inside Cx\ [Uyest U Uypin]-
Therefore, all of such points must be located inside U,y,,.

0. Notice that under o < 0, with probability py there are no second-order critical
points of g(x) in Cx\Uy,.

To conclude the proof, select ¢ < min{ox, 0y, 0y} and observe that with prob-
ability at least px X py X py = p there are no second-order critical points of g(x) in
the set R"\Umm = [R”\C[(] UUjes U [C[(\Ufo].

O

5.2 Sparse structure and normalization

Due to Theorem 1 for the rank-1 case, the instances of (Problem®SP+RIP) have no
spurious solutions with & =0 as long as &, is upper bounded by % In this subsection,
we are concerned with the question of how much sparsity can impact the best bound
on RIP that certifies global convergence. Formally, we set # =0 and .7 = . and
find a tighter upper bound for 8,. After enforcing sparsity, it is natural to expect that
the bound grows and becomes less restrictive. However, this turns out not to be the
case.
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Let n =2 and r = 1, and consider the smallest sparsity pattern possible for
H = T/ = 0. 1t consists exclusively of elements (i,i), and thus enforces H to
be diagonal. Consider the point x with respect to the instance of the problem given by
zand A as in the example below:

Example 1 Assume that
x=(L1); z=(V2,-V2); A=diag(V3,1,1,V3)

Then, x is spurious for f; o since it satisfies the second-order necessary condi-

tions:

Vialx) =0, Vfia(x)=16 “ ” =0

which makes it a spurious second-order critical point (note that xx” # zz”). Notice
that # = «/T o/ is indeed diagonal. Moreover, for all X € S?, the operator .« satis-

fies the tight bound || X||% < ||« (X)||* = || [\? \}g

largest number 0, for this instance is equal to 1/2, which coincides with the upper
bound for unstructured problems. Somewhat counter-intuitively, the tight bound es-
tablished in Zhang et al. 2018; Zhang, Sojoudi, and Lavaei 2019 holds even when a
very restrictive sparsity pattern of the kernel operator is enforced. Nevertheless, for
an arbitrary low-dimensional structure %, a tighter sparsity constraint entails a less
restrictive bound on incoherence as discussed below.

} oX|| <3|IX||%. Therefore, the

Proposition 4 If the sparsity pattern S has a sub-pattern S' meaning that S' C S,
then O(x,z; % ,.") < O(x,z;# ,-) for all x,y € R"*". Thus, the necessary bound
on incoherence for H with S' is not more restrictive than the bound for H with S.

In other words, a more restricting assumption on the sparsity of the kernel op-
erator can only push the upper bound on the RIP constant higher up. Consequently,
Example 1 shows that there is no sparsity pattern of cardinality > 3 that can itself
compensate the lack of isometry. Note that the example is given for the case n = 2,
but there is a straightforward extension to an arbitrary n by adding zero components
to x and z. It is common in practice to normalize the rows of the sensing matrix
before proceeding to recovery. In the context of power systems, it is expressed as
I Mx — "“}Tw% For Example 1, after normalization, A turns into the identity. The
corresponding instance of the problem is known to have no spurious critical points.
This illustrates how normalization helps to improve the isometry property of the sens-
ing operator and removes the spurious second-order critical points out of the cor-
responding instance of the problem. Normalization in this case can be regarded as
inducing structure on top of sparsity.

6 Numerical results

It is desirable to numerical study the non-convex matrix recovery in problems with a
structured sensing operator. The objective is to show how the general theory devel-
oped in Section 3 can be applied to a real-world problem, namely the power system
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state estimation discussed in Section 2. In general, optimization problems in (14) and
(15) are non-convex. Thus, we propose to use Bayessian optimization (Frazier 2018)
in order to obtain a numerical estimation of their solutions.

6.1 Power systems

In this section, we focus our attention on three networks named case9, case14 and
case30 that are provided in the MATPOWER package. For case9, the number of
buses is n =9 and there are m = 63 possible power measurements that can be col-
lected, while we have n = 14 and m = 98 for case14 and n = 30 and m = 210 for
case30. We denote the corresponding sensing operators with <7, o71% and 730, Al-
though the matrices A" have complex entries, the corresponding kernel operators 77
are represented with real matrices due to the properties of the measurement matrices.
Both matrices A3° and H*® are visualized in Figure 1.

We linearize the low-dimensional structure that was discussed in Section 4.3.
Repetition of the non-zero entries of H' (after some scaling) is considered as a form
of low-dimensional structure, instead of the nonlinear dependence on the admittance.
For example, if the entries (i, j) and (7', j') of 3" are equal, then %3 is constructed
to be such that its kernel consists of matrices, for which the entries (i, j) and (7, j)
are equal.

Based on this property, we form the linear operators .7°, .7 * and .73°. All of the
matrices in their kernel subspace are rank deficient. In this case, Theorem 3 can only
provide us with the trivial upper bound on the RIP: &, < 1. However, this operator
will allow us to use Theorem 3 to find a less conservative bound on RIP to certify
the inexistence of spurious solutions for the structured mapping. Although the power
system state estimation aims to find a complex vector, it is straightforward to verify
that (a++/—1b,H(a+/—1b)) = (a,Ha) + (b,—Hb) for any real vectors a and b
as well as a real symmetric matrix H. Therefore, it is enough to consider (14) over
X =% =R"

Purpose of the experiment is to study the dependence of &, that is sufficient for
absence of spurious solutions in (Problem®SP*RIPY on the radius R of the ball domain.
Intuitively, one would expect the dependence to be monotonically decreasing, since
the larger the domain, the more solutions can appear there with some being spurious.
However, this is not exactly what can be observed. Figure 4 shows the right-hand
side of the inequalities in (14) from Theorem 3 for a range of values of R for three
structure operators: .7°, .74 and .73. In these experiments, the vector @ has the
unit entries. The red line provides with a guarantee on no spurious solution in the
interior of the domain, while the blue dashed line takes care of the spurious solutions
on the boundary. Indeed, the red curve decreases monotonically and converges to a
value around 0.64 for all the experiments, while the blue dashed line decreases to 0.5
and recovers back to the same value afterwards. It turns out that 0.64 is the bound on
6y, for R = +o0 in each of the cases as well. This interesting behaviour is possible to
be explained qualitatively. Consider a toy example with three cases in Figure 5, where
the domain grows from Case I to Case III. There are no spurious solutions in case I,
whereas one appears in case II and disappears in case III. Notice that the spurious
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Fig. 4. The outcome of the minimization of Op(x,z) and Q%B(x,z) with the
Bayessian optimization toolbox. The resulting value is the approximation of the right-
hand side of the inequalities in (14) and can be used in Theorem 3 to estimate the
lower bound on the sufficient RIP constant for global optimality. The values of the
radius of the domain ball Bg(®) are on the x-axis, and the corresponding approxi-
mations of minQp(x,z) and min OB (x,z) are on the y-axis. The red line depicts the
lowest observed value of the function Qp(x,z) and the blue dashed line depicts the
minimum value of the function Q%% (x, z).
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Fig. 5: Illustration for the local solution on the boundary. Three cases are considered,
each marked with a different color. The colored intervals along the x-axis depict the
domain in each of the cases, while the colored crosses denote the local solutions.

solution can only appear on the boundary, which motivates the steady behaviour of
the red curve in Figure 4. Recall that the threshold 0.5 is valid for the trivial structure
operator .7 =0 and R = +oco and the blue curve never goes below it. Therefore, the
constructed conditions of absence of spurious local optimality are strictly superior to
the previously known bound.

The above simulations were based on the networks provided in the package MAT-
POWER 7.0bl (Zimmerman, Murillo-Sanchez, and Thomas 2011). Keeping the struc-
ture of a network, we set the parameters of the lines equal to each other to be able
to better visualize the operator 5. All the presented simulations were done using
the MATLAB bayesopt toolbox, and MATLAB modeling toolbox CVX (Grant and
Boyd 2014, 2008) with SDPT3 (Toh, Todd, and Tiitiincii 1999; Tiitiincii, Toh, and
Todd 2003) as the underlying solver.

6.2 Synthetic data

In this subsection, we present numerical studies of the matrix recovery problem for
structured sensing operators obtained from random ensembles. For simplicity, we
set R = +oo. Here, we propose to use Bayesian optimization (Frazier 2018) in order
to obtain a numerical estimation of the solution of the optimization problem (14).
We have empirically observed that Bayesian optimization tends to obtain the same
optimal solution to this problem much faster than random shooting or cross-entropy.
In this section, the smallest value of J, such that <7 satisfies the §,-RIP property is
referred to as the best RIP constant of the map 7.

Recall that the structure operator is defined by two operators stack together:
T = (S, W ). Here, # captures the underlying structure that is not captured by the
sparsity operator .¥’. We consider the same form of this operator as in the experiment
on power systems data. Given the matrix representation H of the kernel operator, de-
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Fig. 6: The average of sufficient best RIP constant obtained from the developed an-
alytic framework (Theorem 3) for random structures generated from the distribution
RS(po,U) (each colored line stands for one specific value of pg), compared with the
baseline method from Theorem 1 (shown as black and dashed). Shaded area repre-
sents the standard deviation window.

note the unique nonzero values in this matrix with the scalars 4y,..., Ay, . It means
that H is representable in the form H=mE; +...+hy, Eq,, , where E; is a matrix of
the same size as H, with 0 and 1 entries. The operator 7 that we use in this section
is any operator that has the subspace {B1E + ...+ Ba, Eq, |B1,...,Bs, € R} as its
kernel.

We introduce a distribution RS(po,U) over the space of structure operators by
describing the sampling scheme below. First, we generate the measurement structure
matrix Ag such that each of its components takes value O with probability po and any
of the values 1,...,U with the equal probability of 17% We then form the kernel
structure matrix as Hg = ASTtAst and construct the sparsity operator .%’ and the ex-
tra structure operator % as discussed before. The obtained structure operator .7 is
such that the operator represented with Ay, satisfies the .7-KSP. Note that the average
sparsity of Ay is po and the number of unique nonzero values is U with high proba-
bility, which implies that pg is the parameter for the amount of sparsity structure in
the problem, and U is the parameter for the amount of additional structure.

Figure 6 depicts the estimated sufficient RIP to guarantee the existence of no
spurious second-order critical points, random problems with different values for the
sparsity (po) and the unique counter (U). The sufficient RIP is obtained from The-
orem 3 by imposing the KSP. Observe that the sparsity and the additional structure
(the number of unique nonzero values in the measurement matrix in this particular
case) both have a significant impact on the sufficient RIP. Note that higher pg means
more sparsity and lower U means more extra structure. Although it was observed the-
oretically that sparsity alone cannot guarantee the increase in the sufficient best RIP



30 REFERENCES

constant, it appears to be an important characteristic when combined with the addi-
tional structure. Even for structures with a considerably low sparsity (0.85), the tight
extra structure (U = 2) has the sufficient best RIP of 1, which is a counter-intuitive
result. The sufficient RIP seems to decay exponentially as we relax extra structure by
increasing U, but with different bases for different pg. This behaviour coincides with
the one predicted in Proposition 4. If the goal is to make the RIP higher than a certain
threshold, the amount of extra structure needed to achieve this reduces dramatically
with the increase of the sparsity structure.

The experiment demonstrates that our method can be successfully applied to ma-
trix sensing with randomly generated structure. The key takeaway from this exper-
iment is that our method captures the trade-off between the sparsity and the low-
dimensional structural properties of a given mapping. It shows that imposing restric-
tions on structure significantly affects the sufficient RIP, which leads to certifying the
absence of spurious solutions under far less restrictive requirements (by improving
the previous RIP bound 0.5 for arbitrary mappings).

7 Conclusion

The paper is concerned with the theoretical explanation of the recent empirical suc-
cess of solving the low-rank matrix sensing problem via nonconvex optimization. It
is known that under an incoherence assumption (namely, RIP) on the sensing opera-
tor, the optimization problem has no spurious local minima. This assumption is too
strong for real-world applications where the amount of data cannot be sufficiently
high. Aside from that, it does not account for the prior about the solution that is avail-
able in different applications. We develop the notion of Kernel Structure Property
(KSP) based on linear matrix inequalities, which can be used instead or combined
with RIP in this context. KSP explains how the inherent structure of an operator con-
tributes to the inexistence of spurious local minima over the entire space or a given
ball. As a special case, we study sparse sensing operators that have a low-dimensional
representation. Using KSP, we obtain novel necessary and sufficient conditions for
having no spurious solutions over a compact set for the matrix sensing problem, and
demonstrate them in analytical and numerical studies.
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Appendix

In this part, we will prove Theorems 2 and 3 by nonexistence of a counterexample.
Specifically, given .7, for a point x and a parameter value z, we aim to find a value
8, for which the following claim holds:

“There exists <7 that satisfies .7-KSP and &,,-RIP such that x
is a second-order critical point of f; . if and only if &, > 6;”

Z is equal to Bg(w) in the notation from Section 1. The conditions for a point x to
be a second-order critical point of a function f over Bg(®) can be expressed in the
compact form:

Vf(x)=0,
V2f(x) =0

Fp<0: VIlx) =px- o),

if x € dBr(w
PeoV2f(x)PT =0 #(@)

if x Z dBg(®) or {

where P,_¢, € R ~1)*"" j5 the matrix of orthogonal projection onto the subspace or-
thogonal to x — . With that in mind, we construct two functions: 6 (x,z) and 9 (x,z)
by the following optimization procedures:

o(x,z) = m{sizné%g/m o
,€R, o7

subjectto L (T /) =0
My () =0
T(dTe?)=0
&/ satisfies 6,,-RIP.

d0(x,z) = minimum &,
Oy LER, >0,/
subjectto L (AT ) = —p(x— o)
P tlez(/" )P = 0
T(dTet)=0
o/ satisfies 6,,-RIP.
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In each of the problems, the first two constraints represent the requirement that x is a
second-order critical point is f; ./, the third constraint takes care of the KS property,
and the last one of the RIP. It is straightforward to verify that min{d,d6} takes the
value of the desired &85°°. Minimization of 8 over {x € 2",z € 2 :xxT # zz! } gives
&5 such that (Problem®SP+RIP) with &), has an instance with a spurious second-order
critical point if and only if 0, > 65,

Suppose that we are able to find 8, and 8, such that 6;° < §,° < 8, for all
x€ X ,z€ Z. Then, o o

8 = min §°< min §°< min & =05"
xeX €% xeX € xeZ £€¥
xxl #zz" xxl 270 xxl £zl

This inequality shows that &, > 03, is a sufficient, and &, < 5727 is a necessary con-

dition for the absence of spurious second-order critical points in the instances of the
problem (Problem®SP*RIP) Now, it is desirable to show that min{ Q%% (x,z; .7, @), Qp(x,2; 7 )}

can serve as 8%, and min{Q?® (x,z;.7, ®),0(x,z; 7)} as &,
Lemma 4 The following statements hold allx € 2 and z € % :

Op(x,z) < 8(x,2) <O(x,z) (16a)
028 (x,2) < 08 (x,2) < 0B (x,z) (16b)

Proof. Here, we show only inequality (16a) since (16b) can be shown similarly. No-
tice that for P = orth([x,z]), the following sequence of inclusions holds:

{PYPT .y e ¥\ C {X € §" : rank (X) < 2r} C S". (17)

Let (7*,8") denote the minimizer of the problem corresponding to LMI(x,z). By
the defenition of the O function, for every X € S" it holds that

(1= &)X < (X, 227(X)) = |« (X)|* < (1+8")IX [

where the operator o7* is such that J#* = &7/*T o7* exists because #* > 0. If the
inequality holds for all X € §", it must hold for rank(X) < 2r, as noticed by (17).
Thus, we conclude that the pair (27*,0*) is feasible for the problem defining 6 (x,z).
This proves the upper bound. Similarly, if (<%, d,) is the minimizer of the problem
defining & (x,z), then by (17), the pair (=7, @/, ) is feasible for the problem defin-
ing Op(x,z). This can be verified after rewriting the last constraint of the problem
defining Op in the form

(1= 8)|IPYPT||7 < (PYPT, o] o (PYP")) = || (PYPT)|I* < (1+8)|PYP"|F

for all Y € S™(x2) Tt is important to notice that the same argument works for an
arbitrary choice of P € R"*¢ with d < 2r. O
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The lemma above completes the proof of Theorem 3. Theorem 2 follows by sub-
stituting 1 in the right hand side of (14) and (15). Notice that the linearity of the
gradient and the Hessian with respect to the kernel operation matrix is the only prop-
erty of the objective function that has been extensively used here. It can be exploited
for generalization of the developed theory.

Proof of Proposition 4
We write the dual of the problem defining the function O as:

maximize Tr[U; — Us] (18a)
YA U =0,U» =0,V =0
subjectto  Tr[U; +Us] =1, (18b)
LLO) - M (V)+TT(A) =
U —-U, (18c)

This problem is the exact reformulation of

L ML) - (V) T ()4
maximize T T - (19)
et vopes T (F4(LL0) — ML V) + T (1)
For details see Lemma 14 by Zhang, Sojoudi, and Lavaei 2019. Both primal and dual
problems are bounded and the dual is strictly feasible. Recall vector e and matrix X
from Section 4, such that for all u € R"*" it holds that

e = vec (xx] —zz7), Xvec (1) = vec (xu! +ux")

Strictly feasible point of (18) has the componentsy=0,A =0,V =¢l, Uy =Nl —eW
and U = Nl +&W where 21 = n=2, 2W = r[vec (I)e +evec (I)"] — XX”, and ¢ is
sufficiently small to ensure that both U; and U, are PSD. Consequently, Slater’s con-
dition and strong duality hold and thus the solution of (19) coincides with O(x,z).

It 7 = (W), then 7T (u,T) = #T (u) + .77 (T). At the same time, if .7 is rep-
resented by the matrix S, then .7 (T) = .#7(T) =SoT. Let S and S’ be the matrix
representations of . and ., respectively. §' C S means that there exists S4 such
that S = S'USA and 8’ = S +S4. Tt is straightforward to verify that for any R € S
there exists T € S” such that SoT+S4 oR = §' o T. The opposite is also true: for
any T € S there exists R € S” such that SoT+S4 oR = S/ o T.

We introduce the short-hand notation & (y,V,u) = £ (y) — 4L, (V)+#7 (u). One
can write:

O,z ,") = minimize Z (A0, V,u) +80T)) _
e 0k Test Laet (+4i(O(y,V,u) + 8 o T))
d A
minimize Z’ 1( Ai(O(y,V,u) +SOT+SA oR))+ <
VERT V=0 uck! Tes"” ReS™ Ai(O(y,V,u)+SoT+S40R))

L+
d
minimize L (M0 (y,V ui +SoT+8%00)), =0(x,z¥,7)

yerrr v0uek! Tes? Lint (FAi(0(3,V,u) +SoT+8400)),.

This completes the proof.



