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Abstract—Linear matrix inequalities (LMIs) play a funda-
mental role in robust and optimal control theory. However, their
practical use remains limited, in part because their solution
complexities of O(n6.5) time and O(n4) memory limit their
applicability to systems containing no more than a few hundred
state variables. This paper describes a Newton-PCG algorithm
to efficiently solve large-and-sparse LMI feasibility problems,
based on efficient log-det barriers for sparse matrices. Assuming
that the data matrices share a sparsity pattern that admits
a sparse Cholesky factorization, we prove that the algorithm
converges in linear O(n) time and memory. The algorithm is
highly efficient in practice: we solve LMI feasibility problems
over power system models with as many as n = 5738 state
variables in 2 minutes on a standard workstation running
MATLAB.

I. INTRODUCTION

We consider linear matrix inequality (LMI) feasibility
problems

find y such that
m∑
i=1

yiAi � 0,

in which the n×n real symmetric data matrices A1, . . . , Am
are large-and-sparse. LMI feasibility problems are ubiquitous
in robust and optimal control, and are used for Lyapunov
stability analysis, LQR / LQG analysis and sythesis, H∞
and mixed H2/H∞ analysis and synthesis, and model or-
der reduction [1], [2]. Large-and-sparse instances of these
problems are readily obtained by applying classic robust and
optimal control theory to large-scale systems, including elec-
tric power systems, transportation networks, communication
grids, and multi-agent distributed systems.

LMI problems are efficient to solve in theory, but difficult
to solve in practice. The standard approach is to view the
problem as a semidefinite program (SDP), and to solve it
using a general-purpose interior-point method. These algo-
rithms solve a set of Newton equations at each iteration,
usually converging in no more than 20-30 iterations. An
important feature of SDPs is that the interior-point Newton
subproblem is almost always fully-dense, despite any appar-
ent sparsity in the problem data. Consequently, every iteration
forms and factors an m×m fully-dense matrix, using at least
cubic m3/3 arithmetic operations and quadratic 1

2m(m+ 1)
units of memory.

The difficulty in solving large-scale LMI problems using
interior-point methods has motivated first-order methods,
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like proximal descent, projected gradient descent, and Dou-
glas–Rachford / ADMM [3]–[5]. By avoiding the dense
second-order information, first-order methods have very low
per-iteration costs, that can often be custom-tailored to the
problem structure of a specific application. On the other hand,
first order methods also converge significantly slower than
interior-point methods.

A. Contributions

This paper proposes a Newton–PCG algorithm for solving
LMI feasibility problems, based on the Projective Method of
Gahinet and Nemirovski [6]. At a high level, the algorithm
uses Newton’s method to solve a determinant maximization
problem that either generates a primal feasible point or
converges towards a dual Farkas certificate; it solves the
inner Newton subproblem using CG and a fast matrix-vector
product due to Andersen, Dahl, and Vandenberghe [7]. More
specifically, this paper contributes three key insights.

Solve the Newton Subproblem using conjugate gra-
dients (CG). CG is an optimal Krylov subspace iterative
method under the Newton metric, making it particularly
appropriate as an iterative solver for the Newton subproblem.
The most expensive part of CG is a single matrix-vector
product with the Hessian matrix at each iteration, typically
requiring cubic Θ(n3 + N) time and quadratic Θ(n2 + N)
memory, where N is the number of nonzeros in the data
matrices A1, . . . , Am. However, when the problem is sparse
with an aggregate sparsity pattern that factors into a sparse
Cholesky factorization pattern, it is possible to reduce these
figures to linear Θ(n+N), by applying the efficient numerical
algorithms described in [7].

Step-control to limit the growth of the condition num-
ber. If the associated Hessian matrix is sufficiently well-
conditioned, then CG converges to machine precision in O(1)
iterations, in effect solving the Newton subproblem in linear
O(n + N) time and memory. In order to control the rate
at which the Newton subproblem becomes ill-conditioned,
we modify the Projective Method by limiting its maximum
step-size. Despite this modification, we prove in Theorem 2
that Newton’s method still makes a fixed amount of progress
at every iteration, converging to the optimal solution within
O(1) Newton steps.

The Newton decrement is Ω(n) when the LMI is
feasible. We prove in Theorem 3 that Newton’s method
makes much more progress per iteration when the LMI
problem is feasible. In particular, each Newton step achieves
a reduction of Ω(n), which is within a factor of maximum
reduction achievable. Consequently, when the LMI problem
is feasible, the algorithm converges in just 2-5 Newton steps,



for a total of 20-50 inner CG steps. If Newton’s method
does converge in O(1) steps, then our overall algorithm is
also linear O(n+N) time and memory.

B. Related work

Second-order algorithms. The outer Newton framework
of our algorithm is adopted from the Projective Method of
Gahinet and Nemirovski [6]. Our same approach can also be
applied to any other Newton framework, including the Phase-
I barrier method / big-M method [8] and methods relating
to the homogeneous self-dual embedding [9]. As we note
in Section III-A, an important advantage of the Projective
Method is that the algorithm attempts to directly solve the
feasibility / infeasibility problem at every Newton step.

First-order algorithms. First-order methods have have
been used extensively to solve convex feasibility problems;
see the surveys [3]–[5]. All of these methods have worst-case
complexities of O(1/ε) iterations to an ε-accurate solution,
and in vast majority of cases, the worst-case bound is
attained. This paper proposes a Newton-CG algorithm, which
can be viewed as embedding a first-order method (i.e. CG)
within an outer second-order method (i.e. Newton’s method).
The advantage here is that CG usually performs significantly
better than its worst-case bounds in solving a linear system of
equations. While Newton-CG methods have the same worst-
case complexity of O(1/ε) iterations to ε-accuracy, they tend
to converge in significantly fewer iterations in practice.

Newton-CG Algorithms. The idea of using a Newton-CG
algorithm is not new; indeed, it was proposed in Karmarkar’s
original interior-point paper [10], as well as early solvers
for LMI feasibility problems [11]. However, the approach
is only effective if the cost of each matrix-vector product is
small, and if the condition number of the Newton system can
be effectively controlled, typically using a preconditioner;
see [12], [13]. Indeed, the need for good preconditioners
is commonly cited as the primary difficulty for Newton-
CG methods in general-purpose interior-point solvers. Our
contribution in this paper is to use the efficient matrix-vector
products of Andersen, Dahl, and Vandenberghe [7] to reduce
the cost of the matrix-vector product, and to use a specialized
step-size rule to control the growth of the Newton condition
number.

Algorithms for sparse matrices. Andersen, Dahl, and
Vandenberghe also proposed a nonsymmetric interior-point
method [14] based on the same efficient algorithms for the
log-det barrier function [7] that we use extensively in this pa-
per; they applied this method to LMI problems in [15]. Their
algorithm directly solves the Newton system via Cholesky
factorization, whereas the algorithm in this paper solves the
same subproblem iteratively via CG. As a consequence, their
algorithm has a much higher complexity of cubic O(m3) time
and O(m2) memory per Newton step, but tends to be much
more robust.

II. PROBLEM DESCRIPTION

This paper considers LMI feasibility problem put into
homogenous canonical form:

find y such that A(y) ≡
m∑
i=1

yiAi ≺ 0, (1)

where A : Rm → Sn is a linear matrix-valued function.
The keyword “homogenous” refers to the scale invariance of
the linear model. The feasible set of y satisfying A(y) ≺ 0
is an open convex cone: if A(x) ≺ 0 and A(y) ≺ 0, then
A(αx+ βy) ≺ 0 holds for all α, β > 0.

Every LMI feasibility problem can be converted into
homogenous form. For example, we can find a feasible
point x satisfying the inhomogenous relation A(x) = C −∑m
i=1 xiAi ≺ 0 by solving the augmented homogenous

problem

find (y0, y) ∈ Rm+1 s.t. − Cy0 −
m∑
i=1

yiAi ≺ 0, y0 < 0,

and rescaling x = y/|y0|. Also, multiple LMI constraints can
be aggregated into a single LMI constraint by concatenating
them along the block diagonals of a big matrix, as in

Ai(y) ≺ 0 ∀i ∈ {1, . . . , `},
⇐⇒ diag(A1(y), A2(y), . . . , Am(y)) ≺ 0.

Most practical algorithms avoid aggregating constraints this
way, because it increases the size of the semidefinite cone by
a factor of `. However, the efficient log-det barrier function
in Section III-C below treats the aggregated size-n` LMI
constraint identically as ` separate size-n LMI constraints.
For this reason, the rest of this paper assumes a single LMI
constraint, without either loss of generality or a practical
performance penalty.

Problem (1) has Lagrangian dual:

find
X � 0
X 6= 0

such that AT (X) ≡

A1 •X
...

Am •X

 = 0. (2)

A choice of X satisfying (2) is known as a Farkas (infeasi-
bility) certificate for (1), because it guarantees the inexistence
of a feasible point for our original problem (1). Conversely,
a feasible point for our original problem guarantees the
inexistence of a Farkas certificate satisfying (2).

In this paper, we will actually focus our attention on
finding a strictly feasible Farkas certificate satisfying

find X � 0 such that AT (X) = 0. (3)

In other words, we assume that X is never perfectly singular
(though we do allow it to be numerically singular, i.e.
with some eigenvalues on the order of machine epsilon).
Feasibility problems that do not satisfy this assumption are
ill-posed [16], because an arbitrarily perturbation of the data
matrices A1, . . . , Am can change its feasibility type. Non-
strict feasibility problems are far more difficult to solve, and
generally require sophisticated path-following algorithms,
which are outside of the scope of this paper.



III. MAIN IDEAS

Before we describe our algorithm in detail, we begin by
discussing four key insights that we use to make the method
efficient. We keep the discussion in this section at a relatively
high level, and defer rigorous details to subsequent sections.

A. The Projective Method

Consider solving the strict feasibility pair

find y ∈ Rm such that A(y) ≺ 0 (4)

or find X � 0 such that AT (X) = 0,

by applying Newton’s method (with line search) to the
determinant maximization problem

maximize log det(I −A(y)) (5)

starting from the origin y = 0. Intuitively, every feasible
point y satisfying A(y) ≺ 0 is an increasing direction for
(5), so attempting to maximize this objective will push y
towards feasibility. If y does attain A(y) ≺ 0 at any point,
then we may terminate Newton’s method and output y as a
feasible point. Otherwise, we proceed with Newton’s method
as usual. If the method converges to a maximizer y → ŷ, then
the gradient of the log-det function here X̂ = (I −A(ŷ))−1

is a Farkas certificate. If the method diverges, then setting
τ = 1/‖y‖ and ŷ = τy yields a nonstrict almost-feasible
point satisfying A(τ) � τI .

Following Gahinet and Nemirovski [6], we use the Pro-
jective Method to refer to the approach of solving the
feasibility problem (4) through the maximum determinant
problem (5). This particular name refers to an interesting
feature of the method: every Newton iteration makes a
direct attempt to solve the original feasibility problem via
projection. To explain, let us define the positive definite
matrix S = I − A(y) � 0 at the iterate y. Then Newton
search direction ∆y at y is defined by projecting S onto the
range of A, as in

minimize ‖S−1/2(∆S − S)S−1/2‖2F (6)
subject to A(∆y) + ∆S = 0.

If the positive definite matrix S is sufficiently close to the
range of A, then we can expect its projection ∆S = A(∆y).
If this occurs, then ∆y is a strictly feasible point, and we may
terminate Newton’s method. Simultaneously, the Lagrange
dual of (6) is defined by projecting S−1 onto the kernel of
A, as in

minimize ‖S1/2 (∆X − S−1)S1/2‖2F (7)

subject to AT (∆X) = 0.

The dual solution (7) is explicitly given in terms of the primal
solution (6) via

∆X = S−1 − S−1 ∆S S−1.

If S−1 is sufficiently close to the kernel of A, then we can
expect its projection to be positive definite. In this case, ∆X
is a Farkas certificate, and we may also terminate Newton’s
method.

More rigorously, the optimal values of (6) and (7) are n−
δ2 and δ2 respectively, where

δ2 = −A(∆y) • S−1 = A(∆y) • S−1A(∆y)S−1 (8)

is the Newton decrement at y. Classic complexity results for
self-concordant functions show that if Newton’s method does
converge, then δ2 must go to zero; see [17, Section 9.6.4] or
[18, Section 4.1.5]. As soon as δ2 < 1, the Farkas certificate
projection (7) is guaranteed to succeed, because

‖S1/2 (∆X − S−1)S1/2‖2F < 1,

=⇒ |λi(S1/2 ∆X S1/2)− 1| < 1 ∀i,
=⇒ λi(∆X) > 0 ∀i.

On the other hand, if Newton’s method diverges and
λmin(S) → ∞, then the feasible point projection (6) is
guaranteed to succeed for the same reason.

We end our discussing by noting that it is possible for
Newton’s method to diverge towards a choice of y satisfying
nonstrict feasibility A(y) � 0. In this case, S and δ2 diverge
but λmin(S) = 1, and neither projections (6) and (7) are ex-
pected to succeed. As we had discussed earlier in Section II,
this scenario corresponds to a nonstrict feasibility problem,
and requires more sophisticated path-following methods that
are outside of the scope of this paper.

B. Quantifying infeasibility

Problem (5) has Lagrange dual

minimize trX − log detX − n (9)

subject to AT (X) = 0,

whose feasible set coincides with the set of strict Farkas
certificates in (4). Since Slater’s conditions are satisfied, the
two objectives coincide, so we see that (5) is bounded if and
only if there exists a Farkas certificate.

Assuming infeasibility, let us write the unique primal
solution of (5) as ŷ and Ŝ = I−A(ŷ). Then, complementary
slackness yields X̂ = Ŝ−1 as the unique dual solution for (9),
and the fact that the objectives coincide implies tr X̂ = n.
These insights motivate the scalar

φ ≡ − log det X̂ ≥ n− tr X̂ = 0

as a quantification of the difficulty of the infeasibility prob-
lem. If φ is small, then the set of Farkas certificates is large
in volume, and it is easy for an interior-point type algorithm
like Newton’s method to locate its analytic center.

Most feasibility problems in control theory have an upper-
bound on the values of φ that can be deemed “practically
useful”. To explain, note that X̂ also minimizes the ratio of
the arithmetic and geometric means of its eigenvalues over
the set of Farkas certificates,

φ = min
X�0

{
n log

( ∑n
i=1 λi(X)

[
∏n
i=1 λi(X)]

1/n

)
: AT (X) = 0

}
,

so φ is bounded [8, p.76]

(n− 1) log κX ≥ φ ≥ log(κX/4), (10)



where κX is the largest condition number over all Farkas
certificates

κX = min
X�0

{
λmax(X)

λmin(X)
: AT (X) = 0

}
. (11)

For feasibility problems that arise in control theory, the scalar
κX has physical interpretations relating to notions of control-
lability, observability, stability, and passivity. For example, if
the matrix X � 0 represents a quadratic Lyapunov function,
then a large value of κX results from system modes that are
close to being unstable. While the existence of such X would
technically prove stability, the conclusion is not robust, and is
easily invalidated by nonlinear effects and modeling errors.
In practice, it would be more prudent to upper-bound the
maximum “useful value” of κX , and this in turn places an
upper-bound φ ≤ (n− 1) log κX .

On the other hand, Newton’s method generates a sequence
of increasing lower-bounds:

φ ≥ log det(I −A(yj)) ≥ · · · ≥ log det(I −A(y0)) ≥ 0.

Given a maximium “practically useful” value of φ, we
may terminate the Newton iteration as soon as the best
lower-bound exceeds this value. Standard arguments for self-
concordant barrier functions show that each bound improves
upon the last by at least a constant, so the Projective Method
must terminate after at most O(φ) Newton steps.

C. Determinant maximization for sparse matrices
Given a sparsity pattern V , we define SnV ⊆ Sn as the set

of n × n real symmetric matrices with this sparsity pattern.
Suppose that we view the usual log-det barrier function as a
function from SnV to R, as in

f(S) =

{
− log detS S � 0, S ∈ SnV
+∞ otherwise.

(12)

Using this convention, the gradient of f at S is a function
from SnV to SnV

∇f(S) = −PV (S−1), (13)

where PV : Sn → SnV denotes the Euclidean projection
onto SnV , i.e. we set [PV (X)]i,j = Xi,j if (i, j) ∈ V , and
[PV (X)]i,j = 0 otherwise. Similarly, the Hessian matrix-
vector product of f at S with Y is a function from SnV ×SnV
to SnV

∇2f(S)[Y ] = lim
t→0

1

t
[∇f(S + tY )−∇f(S)]

= PV (S−1Y S−1). (14)

Andersen, Dahl, and Vandenberghe [7] developed sparsity-
exploiting algorithms to evaluate ∇f(S), and ∇2f(S)[Y ],
with about the same running time as the sparse Cholesky fac-
torization algorithm. The key insight is to use the Cholesky
factor as a sparse implicit representation of the dense matrix
inverse S−1. Indeed, the standard technique for evaluating
f(S) is to compute the Cholesky factor (L,D) satisfying

LDLT = S, L is lower-triangular, Li,i = 1, (15)
D is diagonal, Di,i > 0,

and to evaluate the determinant of D, noting that detL = 1
by construction:

f(S) = − log detD − 2 log detL = −
n∑
i=1

logDi,i. (16)

(If Cholesky factorization fails, then S is not positive definite,
and we have f(S) = −∞.) Differentiating the sparse
Cholesky factorization algorithm with respect to the nonzero
elements of the input matrix yields an algorithm [8, Algo-
rithm 4.1] for the projected inverse onto the filled sparsity
pattern Ṽ ⊇ V

X̃ = PṼ (S−1), Ṽ = {(i, j), Li,j 6= 0}. (17)

Discarding the added elements Ṽ \V (known as the fill-in)
yields the usual gradient of f

−∇f(S) = PV (S−1) = PV (PṼ (S−1)) = PV (X̃). (18)

Similarly, differentiating the projected inverse formula yields
an algorithm [7, Algorithm 5.1] for the following

M = PṼ (S−1Y S−1) Y ∈ Sn
Ṽ
. (19)

Discarding the fill-in Ṽ \V after computing M yields the
Hessian matrix-vector product

∇f(S)[Y ] = PV (S−1Y S−1) = PV (M).

Moreover, the algorithms that evaluate ∇f and ∇2f can
be mechanically reversed if all matrix elements in the filled
sparsity pattern Ṽ in (17) are known. For our purposes, this
amounts to an algorithm [7, Algorithm 4.2] that solves

find S̃ ∈ Sn
Ṽ

such that X̃ = PṼ (S̃−1), S̃ � 0 (20)

given X̃ , and an algorithm [7, Algorithm 5.2] that solves

find Ỹ ∈ Sn
Ṽ

such that W̃ = PṼ (S−1Ỹ S−1) (21)

given W̃ . These two algorithms also have about the same
running time as sparse Cholesky factorization. We emphasize
that (20) and (21) can only be solved in closed-form when
all matrix elements in the filled pattern Ṽ are known (an not
just the elements in the original pattern V ⊆ Ṽ ).

All four algorithms mentioned above have the same the-
oretical complexity and practical running time as Cholesky
factorization

O(ω3n) time and O(ω2n) memory, (22)

where ω is the maximum number of elements in a column
of the Cholesky factor matrix L satisfying (15)

ω = max
j∈{1,...,n}

|Jj |, Jj = {i : Li,j 6= 0}. (23)

It is worth emphasizing that the value of ω depends only
on the sparsity pattern V , and not on the exact choice of
S ∈ SnV used to compute L. If L is sparse with O(n)
nonzero elements, then ω is guaranteed to be O(1), and all
four algorithms mentioned above (as well as sparse Cholesky
factorization) are linear time and memory.



In practice, it is usually necessary to use a fill-reducing
permutation in order to keep the value of ω small. To be
more specific, we compute a permutation matrix Q, and
evaluate each f , ∇f , and ∇2f by symmetrically permuting
their inputs and reverting the permutation upon output, as in

f(S) = f(QSQT ) (24)

∇f(S) = QT ∇f(QSQT )Q (25)

∇2f(S)[Y ] = QT ∇2f(QSQT )[QY QT ]Q. (26)

Computing the optimal Q that minimizes ω is NP-hard,
but standard heuristics from numerical linear algebra (like
minimum degree and nested dissection) will readily produce
high-quality orderings with ω that is within a modest factor
of the optimal.

D. Iteratively solving the Newton subproblem
The main computational bottleneck at each iteration of the

Projective Method is the solution of an m × m system of
linear equations

H∆y ≡ AT (S ⊗ S)−1A∆y = ATvecS−1 (27)

for the Newton search direction ∆y. Here, A =
[vecA1, . . . , vecAm] is the matrix of vectorized data ma-
trices, and S = I − A(y) is the current primal iterate. Con-
sidering that the method usually converges in tens of Newton
iterations, it is helpful to think of the overall complexity
as a modest constant times the cost of computing ∆y. The
standard approach is to solve (27) directly, by forming the
matrix H explicitly and computing its Cholesky factoriza-
tion, in m3/3 +O(n3m+ n2m2) arithmetic operations and
Θ(m2 + n2) memory.

Alternatively, we can solve (27) iteratively, using an itera-
tive Krylov subspace method like conjugate gradients (CG).
We defer to standard texts for implementation details1, and
only note that at each iteration, CG performs a single matrix-
vector product with H and some negligible linear algebra
operations. Applying the sparsity-exploiting algorithms in
Section III-C as

ATvecS−1 = −AT (∇f(S)),

AT (S ⊗ S)−1A∆y = AT (∇2f(S)[A(∆y)])

reduces the cost of each matrix-vector to O(ω3n+N) time
and O(ω2n + N) memory, where ω was defined earlier in
(23), and N is the total number of nonzero elements in the
data matrices A1, . . . , Am. Hence, each CG iteration linear
O(n + N) time and memory, so long as the value of ω is
not too large.

Indeed, CG enjoys several “nice” properties that makes
it particularly suitable as an inner iterative method within an
outer Newton’s method. First, it is optimal within the Newton
metric, meaning that its k-th iterate pk solves the following
problem

minimize ‖S−1/2(A(pk) + ∆S)S−1/2‖2F (28)

subject to pk ∈ span{H∆y, . . . ,Hk∆y},
1In our discussions, we will always refer to the variant of CG that choses

its initial point to be the origin

where ∆S = −A(∆y) is the primal Newton direction in
(6); see [19, Chapter 2] for a detailed discussion of this point.
It is worth noting the similarities between (28) and (6): CG
projects ∆S onto the Krylov subspace spanned by k matrix-
vector products with the Hessian, under the same metric used
to obtain ∆S as a projection of S in the first place. Second,
CG is able to exploit clustering in the eigenvalues of the
Hessian matrix H to accelerate convergence; its average-
case behavior is often considerably better than its worst-case
behavior. If the spectrum of H is sufficiently discrete, the
convergence of CG is even superlinear. Third, by virtue of
being a solution of the problem (28), every iterate of CG is
a direction of descent for the original nonlinear objective.

In the worst-case, CG converges to an ε-accurate search
direction p satisfying ‖p−∆y‖2H ≤ ε‖∆y‖2H in

d
√
κH log(2/ε)e CG iterations (29)

where κH = cond(H) ≡ ‖H‖‖H−1‖ is the condition
number of the matrix H. Some linear algebra shows that√
κH ≤ cond(A)·cond(S), so the worst-case number of CG

iterations is actually proportional to cond(S), the condition
number of the current primal matrix S. In most positive
definite matrix optimization problems, cond(S) grows like
O(1/ε) within an ε-neighborhood of the true solution. In the
worst-case, Newton-CG methods require O(1/ε) total inner
CG iterations to converge to an ε-accurate (outer) solution.

IV. PROPOSED ALGORITHM

Given large-and-sparse data matrices A1, . . . , Am ∈ SnV ,
our algorithm attempts to find a choice of y satisfying
A(y) ≺ 0 or a choice of X � 0 satisfying AT (X) = 0
by implementing the Projective Method of Section III-A
using the efficient barrier function f in Section III-C. In
other words, we use Newton’s method with back-tracking
line search to solve

minimize
y∈Rm

g(y) ≡ f(I −A(y))

starting from the origin y = 0. At each Newton iteration,
we compute the Newton direction ∆y = −∇2g(y)−1∇g(y)
using conjugate gradients (CG) as a set of inner iterations
within an outer iterative algorithm.

A key feature of our algorithm is a step-size control that
bounds the growth of the condition number of the current
iterate S. This allows us to bound the growth in the worst-
case number of inner CG iterations per outer Newton step;
in practice, CG usually converges in far fewer iterations. Our
actual algorithm is stated as Algorithm 1. The remainder of
this section explains each step in further detail; a complexity
analysis is given in Section V.

A. Computing the Newton direction

We begin by computing the Newton direction ∆y =
∇2g(y)−1∇g(y) using the framework outlined in Sec-



Algorithm 1 Newton-PCG for LMI feasibility
Input. Data matrices A1, . . . , Am ∈ SnV . Strict feasibility
tolerance τ > 0. Residual tolerance εr ∈ (0, 1). Condition
number bound κ > 1. Backtracking line search parameters
γ ∈ (0, 1/2) and ρ ∈ (0, 1). (Optional) Preconditioner matrix
H̃.
Output. A feasible y satisfying A(y) ≺ 0, a Farkas certificate
X � 0 satisfying AT (X) = 0, or a nonstrict almost-feasible
point y satisfying A(y) � τI .
Algorithm. Set y = 0 and do:

1) (Newton direction) Use preconditioned conjugate gra-
dients with preconditioner H̃ to solve

∇2g(y)∆y = −∇g(y)

for the Newton directions ∆y and∆S = −A(∆y) to
εr residual tolerance. Here, we define S = I − A(y)
and evaluate the gradient and the Hessian matrix-vector
product at each iteration of PCG as

∇g(y) = AT∇f(S),

∇2g(y)∆y = AT∇2f(S)[A(∆y)].

2) (Feasibility / infeasibility test) Find α and β satisfying

minimize α+ β such that − α∆S � S � β∆S.

If α ≤ −τ , then terminate and output ∆y as a feasible
point satisfying A(∆y) � −τI . If β ≤ 1 − τ , then
terminate and output the sparse matrix Z whose matrix
inverse ∆X = Z−1 is a Farkas certificate satisfying
∆X � τI and AT (∆X) = 0.

3) (Line search) Determine the maximum step-size

tmax = min

{
1,

κ− 1

ακ+ β

}
,

and find t/tmax ∈ {1, ρ, ρ2, . . .} satisfying

g(y + t∆y) ≤ g(y) + tγ∇g(y)T∆y,

while evaluating each g(y) = f(A(y)). Make step y ←
y + t∆y.

4) (Termination test) If A(y) � −τI , then exit and return
y as a feasible point. If y is not feasible but g(y) >
n log(1/τ), then exit and mark y ← τy as a nonstrict
almost-feasible point satisfying A(y) � τI . If neither
conditions hold, go to Step 1.

tion III-D with one minor modification: we optionally adopt
the following preconditioner

H̃ = ATA =


‖A1‖2F A1 •A2 · · · A1 •Am
A2 •A1 ‖A2‖2F · · · A2 •Am

...
...

. . .
...

Am •A1 Am •A2 · · · ‖Am‖2F


and use the preconditioned conjugate gradients (PCG) algo-
rithm in lieu of the standard CG algorithm. We again defer
the implementation details to standard texts, and note that
each PCG iteration makes a single matrix-vector product with

∇2g(y), and a single linear solve with the preconditioner
given a right-hand side r ∈ Rm:

find x ∈ Rm such that H̃x = r. (30)

For many applications, the m × m matrix H̃ is large-and-
sparse, and can be factored into a sparse Cholesky factor. In
these cases, (30) can be efficiently solved in O(m) time, and
the number of PCG iterations in (29) becomes independent
of the condition number of the data cond(A). This is partic-
ularly important in controls applications, which often contain
borderline-stable matrices that are near-singular. Even in
cases where H̃ cannot be efficiently factored, it is still usually
worthwhile to use some sort of preconditioner, such as an
incomplete Cholesky factor of H̃, or its (block) diagonal
elements.

Indeed, the matrix H̃ implements the Euclidean projection
onto the range of the operator A:

H̃−1AT (U) = arg min
y
‖A(y)− U‖2F ,

a crucial building block for first-order feasibility algo-
rithms, including classical projection methods like alternating
projections and Dykstra’s algorithm, as well as proximal
point methods like the Douglas–Rachford iterations, Peace-
man–Rachford iterations, and ADMM. As a consequence, a
body of literature has been developed to classify the controls
problems for which (30) can be efficiently solved.

B. Feasibility / infeasibility tests

After the Newton direction ∆y = ∇2g(y)−1∇g(y) has
been computed, we evaluate the primal search direction
∆S = −A(∆y), and attempt to find the smallest value of
α and β satisfying

α ≥ −λmin(S−1∆S), β ≥ λmax(S−1∆S). (31)

This can be done by a simple line search, noting that positive
definiteness can be checked in O(ω3n) time and O(ω2n)
memory by attempting to compute the sparse Cholesky
factorization. We emphasize that α and β do not have to
be particularly accurate, so long as they satisfy (31).

Now, if α < 0 or if β < 1, then the “projection” part of the
Projective Method has found a feasible point or infeasibility
certificate, and may proceed to terminate. To explain why
this is the case, note that by their definition in (6) and (7),
the matrices

∆S = −A(∆y), ∆X = S−1 − S−1 ∆S S−1 (32)

satisfy primal feasibility ∃w : S = A(w) and dual feasibility
AT (∆X) = 0. If either matrix is also positive definite, then
they would constitute a valid certificate.

Proposition 1. Define ∆S and ∆X as in (32) and let α and
β be the smallest values satisfying (31). Then, we have α < 0
if and only if ∆S � 0 and β < 1 if and only if ∆X � 0.

Proof: Equation (32) implies the following eigenvalue
relationship

1 = λn−i+1(S∆X) + λi(S
−1∆S) ∀i ∈ {1, . . . , n}



where the eigenvalues are ordered λ1 ≥ · · · ≥ λn. If
λmin(S−1∆S) > 0, then ∆S � 0 because S−1 is positive
definite. If λmax(S−1∆S) < 1, then λmin(S∆X) > 0 and
hence ∆X � 0 because S is positive definite.

Note that the matrix ∆X is dense, and should not be
explicitly formed. Instead, we use the efficient algorithms in
Section III-C to compute its projection onto the filled sparsity
pattern PṼ (∆X) = PṼ (S−1) − PṼ (S−1 ∆S S−1), i.e. as
instances of (17) and (19). We then look for a sparse matrix
Z ∈ Sn

Ṽ
satisfying PṼ (Z−1) = PṼ (∆X), and Z � 0, i.e.

as an instance of (20). The fact that PV (Z−1) = PV (∆X)
implies AT (Z−1) = 0, so Z−1 � 0 is a valid Farkas
certificate. By representing the dense Farkas certificate ∆X
using its sparse inverse Z, we have reduced the associated
cost to O(ω3n) time and O(ω2n) memory.

C. Backtracking line search

In Step 3, we perform a backtracking line search with the
step-size t ≥ 0 limited to tmax = (κ − 1)/(ακ + β). This
way, the condition number of the new iterate is limited to be
at most a factor of κ larger than the current iterate, as in

cond(S + t∆S) ≤
(

1 + tβ

1− tα

)
cond(S) ≤ κcond(S). (33)

The following result shows that backtracking line search will
always find a sufficiently large step-size that achieves the
Armijo sufficient decrement condition

g(y + t∆y) ≤ g(y) + γt∇g(y)T∆y, (34)

with some ρ ∈ (0, 1) and γ ∈ (0, 1/2).

Theorem 2. Backtracking line-search finds a step-size t
satisfying (34) within the following range

ρtmax

tmax + 1
≤ t ≤ tmax,

Hence, Newton’s method makes a decrement of at least

g(y + t∆y)− g(y) ≤ −γρκ− 1

2κ
δ2,

where δ2 = −∇g(y)T∆y is the Newton decrement. More-
over, if α ≤ 1/2 − γ, then backtracking line-search takes a
unit-step with t = 1.

Proof: The proof is given in Appendix A.
We may always assume that δ ≥ 1, because δ < 1 implies

β < 1, and our algorithm would have terminated at the
feasibility / infeasibility test. Consequently, the algorithm
reduces the objective by at least γρ(κ − 1)/2κ = O(1) at
every Newton step.

V. COMPLEXITY

The value of a current iterate y can be measured by its
ability to bound the maximum determinant of all Farkas
certificates with trace n:

ε = max
X�0

{
det(X) :

AT (X) = 0
trX = n

}
� 1.

Note that this quantity is related to the scalar φ defined in
Section III-B by φ = log(1/ε) ≥ −g(y) > 0. It is helpful to

interpret ε as an absolute measure of accuracy, and φ as the
number of accurate digits.

Let us assume infeasibility, so that both ε and φ attain
finite values. In the previous section, we proved that Newton’s
method decreases g(y) by a constant factor after every New-
ton step (Theorem 2). Accordingly, we achieve an accuracy
of −g(y) = φ = log(1/ε) in at most O(log(1/ε)) Newton
steps. On the other hand, every Newton step increases the
condition number of S by a factor of κ. At the j-th Newton
step, PCG requires at most O(κj) iterations to compute a
sufficiently accurate Newton direction in order for further
progress to be made. Taking the summation and applying
the upper-bound log(1+ t) ≤ t yields a total of O(1/ε) PCG
iterations.

However, the above analysis breaks down when the prob-
lem is feasible. Even though Newton’s method diverges, we
can compute the number of PCG iterations required to attain
a value of y satisfying −g(y) = log(1/ε). The following
result is our key estimate.

Theorem 3. Define κS is the largest condition number over
all feasible points

κS = min
S�0

{
λmax(S)

λmin(S)
: S = A(y)

}
.

Then at an iterate y and S = I−A(y), the Newton decrement
δ2 = −∇g(y)T∆y is bounded by

n

κS [cond(S)]2
≤ δ2 ≤ n.

Proof: The proof is given in Appendix B.
Combining this result with Theorem 2 shows that the

algorithm makes a massive Ω(n) decrement at each Newton
step, within a constant factor of the maximum achievable. If
the value of κS is not too small (and hence the feasibility
problem is not too difficult to solve), then our algorithm
should quickly diverge to a strict or nonstrict feasible point.

VI. NUMERICAL EXAMPLE

Finally, we benchmark the performance of our algorithm
by solving the structured Lyapunov feasibility problem:

find P ∈ SnV such that ATP + PA ≺ 0, (35)

where V is an a priori imposed sparsity pattern. (Note
that Hurwitz stability of A guarantees P � 0, so positive
definiteness does not need to be explicitly enforced.) Problem
(35) arises as a sparse and scalable surrogate for the fully-
dense quadratic Lyapunov function in stability analysis and
model reduction applications. The sparse Cholesky factor of
P provides important insights on the block-wise coupling
of different modes in A, and can be used in decoupled and
decentralized control. The problem is also a basic building
block for sparse optimal control, including LQR and H∞.

Our numerical experiments source their A matrices from
standard power system test cases in the MATPOWER suite,
and enforce P to have the same sparsity pattern as A +
AT . For each test case, we compute the (nearly) complex
symmetric bus admittance matrix Ybus ≈ Y Tbus, and embed
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Figure 1. Comparison of our algorithm vs SeDuMi over 31 structured
Lyapunov problems. Regression lines show O(n1.12) and O(n2.73) re-
spectively.

Table I
SOME SELECT STRUCTURED LYAPUNOV PROBLEMS.

Problem Description Newton-PCG SeDuMi
# n m ω Newt PCG sec sec

19 400 1580 42 3 18 1.2 19
20 600 2408 38 3 21 1.8 64
21 2708 10902 64 5 57 30 8255
22 3776 14400 84 4 32 26 (17912)
23 3902 14675 86 4 32 28 (19617)
25 5472 21240 112 3 18 103 (50048)
31 5738 24211 88 5 65 169 (57080)

it into a real matrix with a slight diagonal shift, as in A ≡
τIn +

[
G −C
C G

]
, where G = ReYbus and C = ReYbus. It is

worth emphasizing that the Hermitian projection Ybus+Y Hbus
is positive semidefinite. We set the diagonal shift τ to be 0.2%
of the spectral radius of Ybus, in order to give all matrices a
similar asymptotic decay rate. Our algorithm parameters are
set to τ = 10−3, εr = 10−3, κ = 3, γ = 0.01 and ρ = 0.5.
All numerical experiments are performed on an Intel Xeon
E3-1230 quad-core 3.30GHz CPU with 16 GB of RAM.

Figure 1 compares the running times between our algo-
rithm and SeDuMi, an open-source general-purpose interior-
point solver for semidefinite programs. Table I gives the
associated details for some select examples: ω is the com-
plexity parameter defined in (23), “PCG” is the total number
of inner PCG iterations, and estimated running times are
shown in parantheses. Our algorithm manages to find feasible
points for problems as large as n = 5738 in under two
minutes, while the largest problem solved by SeDuMi has
just n = 2708 and took 2.5 hours. Logarithmic regression
(weighted against log n) results in empirical time complexi-
ties of O(n1.12) for our algorithm and O(n2.73) for SeDuMi.
As we explained in Section III-D, the approximate cubic time
complexity of SeDuMi comes from factoring a fully-dense
matrix of size-m, while our near-linear time complexity
comes from a fast matrix-vector product within PCG.

VII. CONCLUSIONS

This paper describes an efficient algorithm that solves
large-and-sparse LMI feasibility problems. The key insight
is to solve the dense m × m Newton subproblem using

an iterative method like conjugate gradients, because each
(inner) iteration can be performed in linear O(n) time and
memory. We also use a step-size control to bound the rate
at which the number of inner iterations per outer iteration
can grow. In practice, the algorithm usually converges in
no more than 100 inner iterations, and this allows us to
solve large-scale LMI feasibility problems with as many as
n = 5738 state variables in less than two minutes, on a
standard workstation computer.
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APPENDIX

A. Proof of Theorem 2

We begin by proving a technical lemma and an associated
lower-bound on the log-det function.



Lemma 4. The function f(t) = t−2(t − log(1 + t)) is
monotonously decreasing for all t > −1, i.e. we have
d
dtf(t) < 0.

Proof: This follows from the fact that

f(t) = t−2

∫ t

0

τ

1 + τ
dτ =

∫ 1

0

s

1 + ts
ds.

Both the integrand and its partial derivative are continuous for
t > −1, so we can commute differentiation with integration
and yield

d

dt
f(t) =

∫ 1

0

(
∂

∂t

s

1 + ts

)
ds =

∫ 1

0

−s2

(1 + ts)2
ds,

showing that the gradient is always negative.

Corollary 5. For any D ∈ Sn satisfying I+D � 0, we have

log det(I +D) ≥ trD − µ− log(1 + µ)

µ
‖D‖2F

where λmin(D) ≥ µ > −1.

Proof: Write λ1 ≥ · · · ≥ λn as the n eigenvalues of D,
and use the monotonicity of f the bound the sum

trD − log det(I +D) =

n∑
i=1

λ2
i f(λi) ≤ f(λn)

n∑
i=1

λ2
i .

Following Nesterov [18, p.186], we define the auxillary
functions ω(t) = t− log(1 + t) and ω∗(t) = −t− log(1− t).
Note that these two functions are convex conjugates, and so
satisfy [18, Lemma 4.1.4]

ω(ξ) = max
0≤t<1

{ξt− ω∗(t)}, ∀ξ ≥ 0, (36)

ω∗(t) = max
ξ≥0
{ξt− ω(ξ)}, ∀t ∈ [0, 1).

It is helpful to view both functions as approximately t2/2,
since

t2

2(t+ 1)
≤ ω(t) ≤ t2

2
≤ ω∗(t) ≤

t2

2
+ t3, (37)

where the first three bounds hold for all t ≥ 0, and the final
upper-bound holds only for t ≤ 0.81. Finally, note that the
Newton decrement, defined as

δ2 = −∇g(y)T∆y = ∆yT∇2g(y)∆y

=

n∑
i=1

λ2
i (S
−1∆S),

gives upper-bounds α ≤ δ and β ≤ δ, since

α = |λmin(S−1∆S)|, β = λmax(S−1∆S),

and the Frobenius norm is bigger than any individual eigen-
value.

Proof of Theorem 2: Corollary 5 implies the following
bound

g(y + t∆y)− g(y) ≤ δ2

µ2
[−tµ2 + ω∗(tµ)]

for any µ ≥ α > 0 in (31). To prove the minimum step-size
t ≥ tmax/(1 + tmax), we chose µ = 1/tmax, noting that
positive-definiteness at step-size tmax implies 1−αtmax > 0
and hence µ ≥ α. Using (36) to minimize the bound over t
yields an optimal step-size of t∗ = 1/(1 + µ) = tmax/(1 +
tmax), with an associated decrement of

g(y + t∆y)− g(y) ≤ − δ
2

µ2
ω(µ) ≤ −t∗

δ2

2
.

The second bound here follows from the first lower-bound in
(37). Hence, the Armijo sufficient decrement condition (34)
is satisfied at the step-size t = ρt∗. To prove the minimum
decrement, we lower-bound t∗ in terms of κ, as in

t∗ =
κ− 1

(α+ 1)κ+ (β − 1)
≥
(
κ− 1

κ+ 1

)
1

δ + 1
,

noting that α ≤ δ and β ≤ δ. Substituting this into the
Armijo condition (34) yields the desired decrement. Finally,
to prove that unit-step is achieved at α ≤ 1/2 − γ, we set
t = 1 and observe the upper-bound

g(y + ∆y)− g(y) ≤ δ2

α2
[−α2 + ω∗(α)].

Suppose that α ≤ 0.81 (which is guaranteed by α ≤ 1/2−γ).
Then, by the upper-bound in (37), we have

δ2

α2
[−α2 + ω∗(α)] ≤ δ2

α2
[−α2 +

α2

2
+ α3]

= −
(

1

2
− α

)
δ2.

Hence, if 1/2−α ≥ γ, or equivalently if α ≤ 1/2− γ, then
the Armijo sufficient decrement condition (34) is satisfied at
t = 1.

B. Proof of Theorem 3

Proof: The upper-bound is a classic result for the log-
det barrier; see Nesterov [18, Theorem 4.3.3]. To derive the
lower-bound, write L = λmax(S) and µ = λmin(S) and
observe that the Newton decrement satisfy

δ2

2
= min

∆X
{1

2
‖S 1

2 (∆X − S−1)S
1
2 ‖2F : AT (∆X) = 0},

≥ µ2 min
∆X
{1

2
‖∆X − S−1‖2F : AT (∆X) = 0},

= µ2 min
U,∆X

{1

2
‖∆X − U‖2F : AT (∆X) = 0, U = S−1},

≥ µ2 min
U,∆X

{1

2
‖∆X − U‖2F : AT (∆X) = 0, U � S−1},

≥ µ2 min
U,∆X

{1

2
‖∆X − U‖2F : AT (∆X) = 0, U � 1

L
},

=
µ2

L2
min
U,∆X

{1

2
‖∆X − U‖2F : AT (∆X) = 0, U � I}.

The first bound follows from ‖S 1
2XS

1
2 ‖F ≥ µ‖X‖F , and

the second bound follows by relaxing the equality into an



inequality, and the third bound follows because S−1 � 1
LI .

Now, to bound the last term, we take the Lagrangian dual

min
∆X
{1

2
‖∆X − U‖2F : AT (∆X) = 0, U � I},

= max
A(∆y)�0

{trA(∆y)− 1

2
‖A(∆y)‖2F },

= max
A(∆y)�0

{n
2
− 1

2
‖A(∆y)− I‖2F },

=
n

2
− min
A(∆y)�0

1

2
‖A(∆y)− I‖2F ,

≥n
2

(
1− min

A(∆y)�0
‖A(∆y)− I‖2

)
.

The final line upper-bounds the Frobenius with the spectral
norm, as in ‖X‖2F ≤ n‖X‖. Finally, we derive an upper-
bound to the minimization by adding A(∆y) � I as a
constraint, and solving

min
A(∆y)�0

‖A(∆y)− I‖2

≤ min
A(∆y)�0

{‖A(∆y)− I‖2 : A(∆y) � I}

= min
A(∆y)�0

(
1

cond(A(∆y))
− 1

)2

,

=(κ−1
S − 1)2.

Combined, we have the proved the following bound

δ2 ≥ n µ
2

L2
(1− (κ−1

S − 1)2)

≥ n µ
2

L2
(2κ−1

S − κ
−2
S ) ≥ n µ

2

L2
κ−1
S ,

as desired.


