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Abstract. This paper is concerned with the problem of finding a low-rank solution of an
arbitrary sparse linear matrix inequality (LMI). To this end, we map the sparsity of the LMI problem
into a graph. We develop a mathematical framework to relate the rank of the minimum-rank solution
of the LMI problem to the sparsity of its underlying graph. Furthermore, we propose three graph-
theoretic convex programs to obtain a low-rank solution. Two of these convex optimization problems
are based on a tree decomposition of the sparsity graph. The third one does not rely on any
computationally-expensive graph analysis and is always polynomial-time solvable, at the cost of
offering a milder theoretical guarantee on the rank of the obtained solution compared to the other
two methods. The results of this work can be readily applied to three separate problems of minimum-
rank matrix completion, conic relaxation for polynomial optimization, and affine rank minimization.
The results are finally illustrated on two applications of optimal distributed control and nonlinear
optimization for electrical networks.

1. Introduction. Let Sn denote the set of n × n real symmetric matrices and
S+n denote the cone of positive semidefinite matrices in Sn. Consider the linear matrix
inequality (LMI) problem

find X ∈ Sn
subject to trace{MkX} ≤ ak, k = 1, . . . , p, (1.1a)

X � 0, (1.1b)

where � represents the positive semidefinite sign, M1, . . . ,Mp ∈ Sn are sparse ma-
trices and a1, . . . , ap ∈ R are arbitrary fixed scalars. The formulation given in (1.1)
includes problems with equality constraints, but requires rewriting each equality as
two inequality constraints. The objective of this paper is twofold. First, it is aimed
to find a low-rank solution Xopt of the above LMI feasibility problem using a convex
program. Second, it is intended to study the relationship between the rank of such
a low-rank solution and the sparsity level of the matrices M1, . . . ,Mk. To formulate
the problem, let P ⊆ Sn denote the convex polytope characterized by the linear in-
equalities given in (1.1a). In this work, the goal is to design an efficient algorithm to
identify a low-rank matrix Xopt in the set S+n ∩ P .

Finding any feasible solution for (1.1) amounts to a semidefinite program, which
under mild technical assumptions can be solved within ε-approximation in polynomial
time (in terms of the problem size and log(ε−1)) [1]. However, since commonly-used
numerical algorithms (namely interior-point methods) tend to obtain a highest-rank
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feasible point, the problem of finding low-rank solutions for (1.1) requires further
studies. The special case where P is an affine subspace of Sn (i.e., it is characterized
by linear equality constraints) has been extensively studied in the literature [2, 3, 4].
In particular, the work [3] derives an upper bound on the rank of Xopt, which depends
on the dimension of P as opposed to the sparsity level of the problem. The paper [4]
develops a polynomial-time algorithm to find a solution satisfying the bound condition
given in [3]. However, since the bound obtained in [3] is independent of the sparsity of
the LMI problem (1.1), it is known not to be tight for several practical examples [5, 6].

The investigation of low-rank solutions for the above-mentioned LMI has direct
applications in three fundamental problems: (i) minimum-rank positive semidefinite
matrix completion, (ii) conic relaxation for polynomial optimization, and (iii) affine
rank minimization. In what follows, these problems will be introduced in three sepa-
rate subsections, followed by an outline of our contribution for each problem.

1.1. Low-rank Positive Semidefinite Matrix Completion. The LMI prob-
lem (1.1) encapsulates the low-rank positive semidefinite matrix completion problem,
which is as follows: given a partially completed matrix with some known entries,
the positive semidefinite matrix completion problem aims to design the unknown
(free) entries of the matrix in such a way that the completed matrix becomes positive
semidefinite. As a classical result, this problem has been fully addressed in [7], pro-
vided the graph capturing the locations of the known entries of the matrix is chordal.
The positive semidefinite matrix completion problem plays a critical role in reducing
the complexity of large-scale semidefinite programs [8, 9, 10, 11, 12, 13]. In the case
where a minimum-rank completion is sought, the problem is referred to as minimum-
rank positive semidefinite matrix completion. To formalize this problem, consider a
simple graph G = (VG , EG) with the vertex set VG and the edge set EG . Let gd(G)
denote the Gram dimension of G, defined as the smallest positive integer r such that
the feasibility problem

find X ∈ S|G|
subject to Xij = X̂ij , (i, j) ∈ EG , (1.2a)

Xkk = X̂kk, k ∈ VG , (1.2b)

X � 0, (1.2c)

has a solution with rank less than or equal to r for every X̂ ∈ S+|G|, where |G| denotes

the number vertices of G. According to the above definition, every arbitrary positive
semidefinite matrix X̂ can be turned into a matrix X with rank at most gd(G) by

manipulating those off-diagonal entries of X̂ that correspond to the non-existent edges
of G. The paper [14] introduces the notion of Gram dimension and shows that gd(G) ≤
tw(G) + 1 (for real-valued problems), where tw(G) denotes the treewidth of the graph
G.

There is a large body of literature on two graph-theoretic parameters about the
minimum semidefinite rank of a graph over the space of real symmetric or com-
plex Hermitian matrices [15, 16, 17]. These two parameters, denoted as msrS(G)
and msrH(G), are respectively equal to the smallest ranks of all positive semidefinite
matrices in S and H whose off-diagonal parts have the same support as the adja-
cency matrix of G. It is straightforward to verfiy that msrH(G) is a lower bound for
msrS(G). In [18], a simple graph G is provided for the first time with the property
msrH(G) < msrS(G). The notion of OS-vertex number of G, denoted by OS(G), is
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proposed in [19] that serves as a lower bound on msrH(G). The paper [19] also shows
that OS(G) = msrH(G) for every chordal graph G. Some examples of graphs with
OS(G) < msrH(G) are also provided in [20]. The positive semidefinite zero forcing
number of a graph G, denoted by Z+(G), has first been introduced in [18] and used
for the computation of msr of certain graphs. It is shown in [18] that

Z+(G) + OS(G) = |G| (1.3)

for every arbitrary graph G. The reader can refer to [21] and [22] for comprehensive
reviews of the relationship between the graph theoretic parameters of tw, msrS, msrH,
OS and Z+.

The matrix completion problem (1.2) can be cast as the LMI problem (1.1) after

expressing the constraints (1.2a) and (1.2b) as trace{(ejeTi + eie
T
j )X} = 2X̂ij and

trace{ekeTkX} = X̂kk, where {e1, . . . , e|G|} is the standard basis for R|G|. Hence, the
minimum-rank positive semidefinite matrix completion problem can be formulated as
finding a minimum-rank matrix in the convex set S+n ∩P . In this work, we utilize the
notions of tree decomposition, minimum semidefinite rank of a graph, OS-vertex and
positive semidefinite zero forcing to find low-rank matrices in S+n ∩ P using convex
optimization. Let G denote a graph capturing the sparsity of the LMI problem (1.1).
Consider the convex problem of minimizing a weighted sum of an arbitrary subset of
the free entries of X subject to the matrix completion constraint of (1.2). We show
that the rank of every solution of this problem can be upper bounded in terms of
the OS and msr of some supergraphs of G. Our bound depends only on the locations
of the free entries minimized in the objective function rather than their coefficients.
In particular, given an arbitrary tree decomposition of G with width t, we show
that the minimization of a weighted sum of certain free entries of X guarantees that
every solution Xopt of this problem belongs to S+n ∩ P and satisfies the relation
rank{Xopt} ≤ t + 1, for all possible nonzero coefficients of the objective function.
This result holds for both real- and complex-valued problems. The problem of finding
a tree decomposition of minimum width is NP-complete [23]. Nevertheless, for a fixed
integer t, the problem of checking the existence of a tree decomposition of width t and
finding such a decomposition (if any) can be solved in linear time [24, 25]. Moreover,
there are many efficient algorithms in the literature that provide lower and upper
bounds on treewidth [26, 27]. Whenever a minimal tree decomposition is known, we
offer infinitely many optimization problems such that every solution of those problems
satisfies the relation rank{Xopt} ≤ tw(G) + 1.

In the case where a good decomposition of G with small width is not known,
we propose a polynomial-time solvable optimization that is able to find a matrix in
S+n ∩ P with rank at most 2(n −msrH(G)). Note that this solution can be found in
polynomial time, whereas our theoretical upper bound on its rank is hard to compute.
The upper bound 2(n−msrH(G)) is a small number for a wide class of sparse graphs
[28].

1.2. Sparse Quadratically-Constrained Quadratic Program. The prob-
lem of searching for a low-rank matrix in the convex set S+n ∩P is important due to its
application in obtaining suboptimal solutions of quadratically-constrained quadratic
programs (QCQPs). Consider the standard nonconvex QCQP problem

minimize
x∈Rn−1

f0(x) (1.4a)

subject to fk(x) ≤ 0, k = 1, . . . , p, (1.4b)
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where fk(x) = xTAkx + 2bTk x + ck for k = 0, . . . , p. Every polynomial optimization
can be cast as problem (1.4) and this also includes all combinatorial optimization
problems [29, 30]. Thus, the above nonconvex QCQP “covers almost everything”
[30]. To tackle this NP-hard problem, define

Fk ,

[
ck bTk
bk Ak

]
. (1.5)

Each fk has the linear representation fk(x) = trace{FkX} for the following choice of
X:

X , [1 xT]T[1 xT]. (1.6)

It is obvious that an arbitrary matrix X ∈ Sn can be factorized as (1.6) if and only
if it satisfies the three properties X11 = 1, X � 0, and rank{X} = 1. Therefore,
problem (1.4) can be reformulated as follows:

minimize
X∈Sn

trace{F0X} (1.7a)

subject to trace{FkX} ≤ 0 k = 1, . . . , p, (1.7b)

X11 = 1, (1.7c)

X � 0, (1.7d)

rank{X} = 1. (1.7e)

In the above representation of QCQP, the constraint (1.7e) carries all the noncon-
vexity. Neglecting this constraint yields a convex problem, known as the semidefinite
programming (SDP) relaxation of QCQP [31, 32]. The existence of a rank-1 solu-
tion for the SDP relaxation guarantees the equivalence of the original QCQP and its
relaxed problem.

The SDP relaxation technique provides a lower bound on the minimum cost of
the original problem, which can be used for various purposes such as the branch and
bound algorithm [30]. To understand the quality of the SDP relaxation, this lower
bound is known to be at most 14% less than the minimum cost for the MAXCUT
problem [33]. In general, the maximum possible gap between the solution of a graph
optimization and that of its SDP relaxation is defined as the Grothendieck constant
of the graph [34, 35]. This constant is calculated for some special graphs in [36].
If the QCQP problem and its SDP relaxation result in the same optimal objective
value, then the relaxation is said to be exact. The exactness of the relaxation is
substantiated for various applications [37, 38, 39, 40].

By exploring the optimal power flow problem, we have shown in [41] that the
exactness of the relaxation could be heavily formulation dependent. Indeed, we have
designed a practical circuit optimization with four equivalent QCQP formulations,
where only one of them has an exact SDP relaxation. In the same context, we have also
verified in [41] that the SDP relaxation may have a hidden rank-1 solution that could
not be easily found. The reason is that the SDP relaxation of a sparse QCQP problem
often has infinitely many solutions and the conventional numerical algorithms would
find a solution with the highest rank. Hence, a question arises as to whether a low-rank
solution of the SDP relaxation of a sparse QCQP can be found efficiently. To address
this problem, let X̂ denote an arbitrary solution of the SDP relaxation. If the QCQP
problem (1.4) is sparse and associated with a sparsity graph G, then every positive
semidefinite matrix X satisfying the matrix completion constraint (1.2) is another
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solution of the SDP relaxation of the QCQP problem. Using this matrix completion
technique, the results spelled out in the preceding subsection can be exploited to find
a low-rank SDP solution.

1.3. Affine Rank Minimization Problem. Consider the problem

minimize
W∈Rm×r

rank{W} (1.8a)

subject to trace{NkW} ≤ ak, k = 1, . . . , p, (1.8b)

where N1, . . . ,Np ∈ Rr×m are sparse matrices. This is an affine rank minimiza-
tion problem without any positive semidefinite constraint. A popular convexification
method for the above non-convex optimization is to replace its objective with the
nuclear norm of W [42]. This is due to the fact that the nuclear norm ‖W‖∗ is the
convex envelop for the function rank{W} on the set {W ∈ Rm×r | ‖W‖ ≤ 1} [43]. A
special case of Optimization (1.8), known as low-rank matrix completion problem, has
been extensively studied in the literature due to its wide applications [44, 45, 42, 46].
In this problem, the constraint (1.8) determines what entries of W are known.

A closely related problem is the following: can a matrix W be recovered by ob-
serving only a subset of its entries? Interestingly, W can be successfully recovered by
means of a nuclear norm minimization as long as the matrix is non-structured and
the number of observed entries of W is large enough [45, 47, 46]. The performance
of the nuclear norm minimization method for the problem of rank minimization sub-
ject to general linear constraints has also been assessed in [48]. Based on empirical
studies, the nuclear norm technique is inefficient in the case where the number of
free (unconstrained) entries of W is relatively large. In the present work, we propose
a graph-theoretic approach that is able to generate low-rank solutions for a sparse
problem of the form (1.8) and for a matrix completion problem with many unknown
entries.

Optimization (1.8) can be embedded in a bigger problem of the form (1.1) by
associating the matrix W with a positive semidefinite matrix variable X defined as

X ,

[
X1 W
WT X2

]
, (1.9)

where X1 and X2 are two auxiliary matrices. Note that W acts as a submatrix of
X corresponding to its first m rows and last r columns. More precisely, consider the
nonconvex problem

minimize
X∈Sr+m

rank{X} (1.10a)

subject to trace{MkX} ≤ ak, k = 1, . . . , p, (1.10b)

X � 0, (1.10c)

where

Mk ,

[
0m×m

1
2NT

k
1
2Nk 0r×r

]
. (1.11)

For every feasible solution X of the above problem, its associated submatrix W is
feasible for (1.8) and satisfies

rank{W} ≤ rank{X}. (1.12)
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In particular, it is well known that the rank minimization problem (1.8) with linear
constraints is equivalent to the rank minimization (1.10) with LMI constraints [43, 49].

Let X̂ denote an arbitrary feasible point of optimization (1.10). Depending on the

sparsity level of the problem (1.8), some entries of X̂ are free and do not affect any
constraints of (1.10) except for X � 0. Let the locations of those entries be captured
by a bipartite graph. More precisely, define B as a bipartite graph whose first and
second parts of vertices are associated with the rows and columns of W, respectively.
Suppose that each edge of B represents a constrained entry of W. In this work, we
propose two convex problems with the following properties:

1. The first convex program is constructed from an arbitrary tree decomposition
of B. The rank of every solution to this problem is upper bounded by t+ 1,
where t is the width of its tree decomposition. Given the decomposition, the
low-rank solution can be found in polynomial time.

2. Since finding a tree decomposition of B with a low treewidth may be hard in
general, the second convex program does not rely on any decomposition and
is obtained by relaxing the real-valued problem (1.10) to a complex-valued
convex program. The rank of every solution to the second convex problem is
bounded by the number 2(r+m−msrH{B}) and such a solution can always
be found in polynomial time.

1.4. Simple Illustrative Examples. To illustrate some of the main ideas to
be discussed in this work, three simple examples will be provided below in the context
of low-rank positive semidefinite matrix completion.

Example 1. Consider a partially-known matrix X ∈ S+n with unknown off-
diagonal entries and known strictly positive diagonal entries X11, . . . , Xnn. The aim
is to design the unknown off-diagonal entries of X to make the resulting matrix as low
rank as possible. It can be shown that there are 2n rank-1 matrices X ∈ S+n with the
diagonal entries X11, . . . , Xnn, each of which can be expressed as xxT for a vector x
with the property that xi = ±

√
Xii. A question arises as to whether such matrix com-

pletions can be attained via solving a convex optimization. To address this question,
consider the problem of finding a matrix X ∈ S+n with the given diagonal to minimize

an arbitrary weighted sum of the subdiagonal entries of X, i.e.,
∑n−1
i=1 tiXi+1,i for

arbitrary nonzero coefficients t1, . . . , tn−1. It can be verified that every solution of
this optimization problem results in one of the aforementioned 2n rank-1 matrices X.
In other words, there are 2n ways to fill the matrix X, each of which corresponds to
infinitely many easy-to-characterize continuous optimization problems.

Example 2. Consider a 3× 3 symmetric block matrix X partitioned as

X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 (1.13)

where X11 ∈ Rα×α, X22 ∈ Rβ×β and X33 ∈ Rγ×γ , for some positive numbers α, β
and γ. Assume that the block X13 is unknown while the remaining blocks of X are
known either partially or completely. Suppose that X admits a positive definite matrix
completion, which implies that rank{X} ≥ max{α+β, β+γ}. The goal is to perform
the completion of X via convex optimization such that rank{X} = max{α+β, β+γ}.

Consider first the scenario where α = γ. Let {(i1, j1), . . . , (is, js)} denote an ar-
bitrary set of entries of X13 with s elements. Consider the optimization problem of
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(a) (b) (c)

Fig. 1.1. (a) The matrix X studied in Example 2 for α = γ; (b) the augmented matrix X̂
obtained from X in the case where α > γ; (c) the matrix X studied in Example 3.

minimizing
∑s
k=1 tkX13(ik, jk) subject to the constraint that X is a positive semidef-

inite matrix in the form of (1.13), where t1, . . . , ts are nonzero scalars and X13(ik, jk)
denotes the (is, js) entry of X13. Let Xopt be an arbitrary solution of this prob-
lem. In this work, we derive an upper bound on the rank of Xopt, which depends
only on the set {(i1, j1), . . . , (is, js)} and is independent of t1, . . . , ts. In particular, if
{(i1, j1), . . . , (is, js)} corresponds to s = α entries of X13 with no two elements in the
same row or column, then it is guaranteed that rank{Xopt} = max{α+ β, β + γ} for
all nonzero values of t1, t2, . . . , ts. Figure 1.1(a) shows the blocks of matrix X, where
the two 2×2 blocks of X specified by dashed red lines are known while the block X31

is to be designed. As a special case of the above method, minimizing a weighted sum
of the diagonal entries of X31 with nonzero weights leads to a lowest-rank completion.

Consider now the scenario where α > γ. We add α− γ rows and α− γ columns
to X and denote the augmented matrix as X̂. This procedure is demonstrated in
Figure 1.1(b), where the added blocks are labeled as X̂14, X̂24, X̂34, X̂41, X̂42, X̂43

and X̂44. Note that the first α+ β + γ rows and α+ β + γ columns of X̂ are exactly
the same as those of the matrix X. We also set all diagonal entries of X̂44 to 1. The
matrix X̂ has two partially-known 2× 2 blocks of size α+ β as well as a square non-
overlapping block containing X̂31 and X̂41. The problem under study now reduces to
the matrix completion posed in the previous scenario α = γ. More precisely, consider
the problem of minimizing an arbitrary weighted sum of the diagonal entries of the
non-overlapping block (X̂31, X̂41) with nonzero weights over all positive semidefinite

partially-known matrices X̂. Every solution X̂opt of this optimization has rank at
most α+ β, and so does its submatrix Xopt.

Example 3.Consider the 4×4 symmetric block matrix X shown in Figure 1.1(c)
with partially-known blocks X11,X21,X22,X32,X33,X43,X44 and totally-unknown
blocks X31,X41,X42. The goal is to fill the matrix to a minimum-rank positive
semidefinite matrix. For simplicity, assume that the matrix X admits a positive
definite completion and that all 16 blocks Xij have the same size α × α. It can be
verified that the matrix X admits a positive semidefinite completion with rank 2α.
To convert the problem into an optimization, one can minimize the weighted sum of
certain entries of X31,X41,X42. It turns that if the weighted sum of the diagonal
entries of one or all of these three blocks is minimized, the rank would be higher than
2α. However, the minimization of the diagonal entries of the two blocks X31 and X42

always produces a lowest-rank solution.
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Fig. 2.1. A maximal OS-vertex sequence for the Petersen graph

2. Notations and Definitions. The symbols R and C denote the sets of real
and complex numbers, respectively. Sn denotes the space of n × n real symmetric
matrices and Hn denotes the space of n × n complex Hermitian matrices. Also,
S+n ⊂ Sn and H+

n ⊂ Hn represent the convex cones of real and complex positive
semidefinite matrices, respectively. The set of notations (Fn,F+

n ,F) refers to either
(Sn,S+n ,R) or (Hn,H+

n ,C) depending on the context (i.e., whether the real or complex
domain is under study). Re{·}, Im{·}, rank{·}, and trace{·} denote the real part,
imaginary part, rank, and trace of a given scalar/matrix. Matrices are shown by
capital and bold letters. The symbols (·)T and (·)∗ denote transpose and conjugate
transpose, respectively. Also, “i” is reserved to denote the imaginary unit. The
notation ]x denotes the angle of a complex number x. The notation W � 0 means
that W is a Hermitian and positive semidefinite matrix. The (i, j) entry of W is
denoted as Wij , unless otherwise mentioned. Given scalars x1, . . . , xn, the notation
diag{[x1, . . . , xn]} denotes a n×n diagonal matrix with the diagonal entries x1, . . . , xn.
The vertex set and edge set of a simple undirected graph G are shown by the notations
VG and EG , and the graph G is identified by the pair (VG , EG). NG(k) denotes the set
of all neighbors of the vertex k in the graph G. The symbol |G| shows the number of
vertices of G.

Definition 2.1. For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), the
notation G1 ⊆ G2 means that V1 ⊆ V2 and E1 ⊆ E2. G1 is called a subgraph of G2 and
G2 is called a supergraph of G1. A subgraph G1 of G2 is said to be an induced subgraph
if for every pair of vertices vl, vm ∈ V1, the relation (vl, vm) ∈ E1 holds if and only if
(vl, vm) ∈ E2. In this case, G1 is said to be induced by the vertex subset V1.

Definition 2.2. For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), the
subgraph of G2 induced by the vertex set V2 \ V1 is shown by the notation G2 \ G1.

Definition 2.3. For two simple graphs G1 = (V, E1) and G2 = (V, E2) with the
same set of vertices, their union is defined as G1 ∪ G2 = (V, E1 ∪ E2) while the notion
h shows their subtraction edge-wise, i.e., G1 h G2 = (V, E1 \ E2).

Definition 2.4. The representative graph of an n × n symmetric matrix W,
denoted by G (W), is a simple graph with n vertices whose edges are specified by the
locations of the nonzero off-diagonal entries of W. In other words, two arbitrary
vertices i and j are connected if Wij is nonzero.
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Fig. 2.2. A maximal OS-vertex sequence for a tree

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

   

 

 

 

   

Fig. 2.3. A minimal tree decomposition for a ladder

3. Connection Between OS and Treewidth. In this section, we study the
relationship between the graph parameters OS and treewidth. For the sake of com-
pleteness, we first review these two graph notions.

Definition 3.1 (OS). Given a graph G, let O = {ok}sk=1 be a sequence of vertices
of G. Define Gk as the subgraph induced by the vertex set {o1, . . . , ok} for k = 1, . . . , s.
Let G′k be the connected component of Gk containing ok. O is called an OS-vertex
sequence of G if for every k ∈ {1, . . . , s}, the vertex ok has a neighbor wk with the
following two properties:

1. wk 6= or for 1 ≤ r ≤ k
2. (wk, or) /∈ EG for every or ∈ VG′k \ {ok},

Denote the maximum cardinality among all OS-vertex sequences of G as OS(G) [19] .

Figure 2.1 shows the construction of a maximal OS-vertex sequence for the Pe-
tersen graph. Dashed lines and bold lines highlight nonadjacency and adjacency,
respectively, to demonstrate that each wi satisfies the conditions of Definition 3.1.
Figure 2.2 illustrates the procedure for finding a maximal OS-vertex sequence for a
tree. The connected component of each ok in the subgraph induced by {o1, . . . , ok}
is also shown in the picture. Notice that although w2 is connected to o1, it is a valid
choice since o1 and o2 do not share the same connected component in G2.

Definition 3.2 (Treewidth). Given a graph G = (VG , EG), a tree T is called a
tree decomposition of G if it satisfies the following properties:

1. Every node of T corresponds to and is identified by a subset of VG.
2. Every vertex of G is a member of at least one node of T .
3. For every edge (i, j) of G, there exists a node in T containing both vertices i

and j.
4. Given an arbitrary vertex k of G, the subgraph induced by all nodes of T

containing vertex k must be connected (more precisely, a tree).
Each node of T is a bag (collection) of vertices of H and therefore it is referred to as
a bag. The width of a tree decomposition is the cardinality of its largest bag minus
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one. The treewidth of G is the minimum width over all possible tree decompositions
of G and is denoted by tw(G).

Note that the treewidth of a tree is equal to 1. Figure 2.3 shows a graph G with
6 vertices named a, b, c, d, e, f , together with a minimal tree decomposition T with 4
bags V1, V2, V3, V4. The width of this decomposition is equal to 2.

Definition 3.3 (Z+). Let G be a simple graph. A subset of vertices Z ⊆ VG is
called a positive semidefinite zero forcing set of G if, by starting from Z ′ := Z,
it is possible to add all of the vertices of G to Z ′ by repeating the following operation:

• Choose a vertex w ∈ VG \Z ′ and let W be the set of vertices of the connected
component of G \ Z ′ that contains w. Add w to Z ′ if there exists a vertex
u ∈ Z ′ such that w is the only neighbor of u in the subgraph of G induced by
W ∪ {u}.

The positive semidefinite zero forcing number of G, denoted by Z+(G), is the
minimum of |Z| over all positive semidefinite zero forcing sets Z ⊆ VG.

Definition 3.4 (Enriched Supergraph). Given a graph G accompanied by a tree
decomposition T of width t, G is called an enriched supergraph of G derived by T if it
is obtained according to the following procedure:

1. Add a sufficient number of (redundant) vertices to the bags of T , if necessary,
in such a way that every bag includes exactly t + 1 vertices. Also, add the
same vertices to G (without incorporating new edges). Denote the new graphs
associated with T and G as T and G, respectively. Set O as the empty sequence
and T̃ = T .

2. Identify a leaf of T̃ , named V . Let V ′ denote the neighbor of V in T̃ .
3. Let V \ V ′ = {o1, . . . , os} and V ′ \ V = {w1, . . . , ws}. Update O, G and T̃ as

O := O ∪ {o1, . . . , os}
G := (VG , EG ∪ {(o1, w1), . . . , (os, ws)})
T̃ := T̃ \V.

4. If T̃ has more than one bag, go to Step 2. Otherwise, terminate.

The graph G is referred to as an enriched supergraph of G derived by T . Moreover, O
serves as an OS-vertex sequence for this supergraph and every bag of T is a positive
semidefinite zero forcing set for G (see Theorem 3.5).

Figure 3.1(a) illustrates Step 3 of the above definition. Figure 3.2 delineates the
process of obtaining an enriched supergraph G of the graph G depicted in Figure 2.3.
Bold lines show the added edges at each step of the algorithm. Figure 3.1(b) sketches
the resulting OS-vertex sequence O. Observe that whether or not each non-bold edge
exists in the graph, O still remains an OS-vertex sequence. The next theorem reveals
the relationship between OS and treewidth.

Theorem 3.5. Given a graph G accompanied by a tree decomposition T of width t,
consider the enriched supergraph G of G derived by T together with the sequence O con-
structed in Definition 3.4. Let Gs be an arbitrary member of

{
Gs
∣∣ (G h G) ⊆ Gs ⊆ G

}
:

a) Then, O is an OS-vertex sequence for Gs of size |O| = |Gs| − t− 1.
b) Every bag Z ∈ VT is a positive semidefinite zero forcing set for Gs of size
|Z| = t+ 1.

Proof. Consider the procedure described in Definition 3.4 for the construction of
the supergraph G. It is easy to verify that O includes all vertices of G except for those
in the only remaining vertex of T̃ when this process is terminated. Call this bag V1.
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(b)

Fig. 3.1. (a) This figure illustrates Step 3 of Definition 3.4 for designing an enriched super-
graph. The shaded area includes the common vertices of bags V and V ′; (b) OS-vertex sequence O
for the graph G depicted in Figure 2.3.

 

 

 

 

 

 

  

  

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 3.2. An enriched supergraph G of the graph G given in Figure 2.3

Hence,

|O| = |G| − |V1| = |G| − (t+ 1). (3.1)

Now, it remains to show that O is an OS-vertex sequence. To this end, let Gs be an
arbitrary member of

{
Gs
∣∣ (G h G) ⊆ Gs ⊆ G

}
. We use induction to prove that O is

an OS-vertex sequence of Gs.
For |T |= 1, the sequence O is empty and the statement is trivial. For |T |> 1,

consider the first run of the loop in the algorithm. Notice that

{o1, . . . , os} ⊆ V and {o1, . . . , os} ∩ V ′ = ∅. (3.2)

Let T v denote the subgraph induced by all bags of T that include an arbitrary vertex
v ∈ G. According to the definition of tree decomposition, we have

V ∈ T o and V ′ /∈ T o (3.3)

for every o ∈ {o1, . . . , os}. Since T o is a connected subgraph of T and V is a leaf,
(3.3) implies that T o has one node and no edges, i.e.,

T o = ({V },∅) for o ∈ {o1, . . . , os}. (3.4)

On the other hand, since {w1, . . . , ws} ∩ V = ∅, we have

V /∈ VT w
for w ∈ {w1, . . . , ws}. (3.5)

Given a pair (i, j) ∈ {1, . . . , s} × {1, . . . , s}, the relations (3.4) and (3.5) yield that
the trees T oi and T wj

do not intersect and therefore (oi, wj) /∈ EG . Accordingly, since
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the edges (o1, w1), . . . , (os, ws) are added to the graph at Step 3 of the algorithm, we
have

(wi, oj) ∈ EGs ⇐⇒ i = j. (3.6)

This means that the vertex oi in the sequence O has a neighbor wi satisfying the
requirements of the OS definition (note that (oi, wi) is an edge of Gs).

On the other hand, T \V is a tree decomposition for the subgraph of G induced
by the vertex subset VG \ {o1, . . . , os}. Hence, according to the induction assumption,
the remaining members of the sequence O satisfy the conditions of Definition 3.1.
This completes the proof of Part (a).

For Part (b), we need to show that by using the procedure explained in Defini-
tion 3.3 and starting from an arbitrary bag Z ∈ VT , all of the vertices in VG can be
added to Z ′ sequentially. To prove this, consider two neighboring bags Y1,Y2 ∈ VT
such that Y1 ⊆ Z ′ and Y2 * Z ′. According to the definition of enriched suppergraph,
every vertex y2 ∈ Y2 \ Y1 is the unique neighbor of only a single vertex y1 ∈ Y1 \ Y2
in the set Y2 \ Y1 and, therefore, this vertex can be added to Z ′. Hence, all vertices
in Y2 \ Y1 can be added to Z ′ and then we can proceed with neighboring bags until
G is covered.

Corollary 3.6. For every graph G, there exists a supergraph G with the property
that

max
Gs

{
Z+(Gs)

∣∣ (G h G) ⊆ Gs ⊆ G
}
≤ tw(G) + 1. (3.7)

Proof. The proof follows directly from Theorem 3.5 and the equation (1.3).

4. Low-Rank Solutions Via Graph Decomposition. In this section, we
develop a graph-theoretic technique to find a low-rank feasible solution of the LMI
problem (1.1). To this end, we first introduce a convex optimization problem.

Optimization A: Let G and G′ be two graphs such that VG = {1, . . . , n}, VG′ =
{1, . . . ,m}, n ≤ m, and EG ⊆ EG′ . Consider arbitrary matrices Xref ∈ F+

n and
T ∈ Fm with the property that G (T) = G′, where (F+

n ,Fm) is either (S+n ,Sm) or
(H+

n ,Hm). The problem

minimize
X∈Fm

trace{TX} (4.1a)

subject to Xkk = Xref
kk , k ∈ VG , (4.1b)

Xkk = 1 k ∈ VG′ \ VG , (4.1c)

Xij = Xref
ij (i, j) ∈ EG , (4.1d)

X � 0, (4.1e)

is referred to as “Optimization A with the input (G,G′,T, Xref)”.
Optimization A is a convex semidefinite program with a non-empty feasible set

containing the point [
Xref 0n×(m−n)

0(m−n)×n I(m−n)

]
. (4.2)

Let X
opt ∈ Fm denote an arbitrary solution of Optimization A with the input

(G,G′,T,Xref) and Xopt ∈ Fn represent its n-th leading principal submatrix. Then,
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Xopt is called the subsolution to Optimization A associated with X
opt

. Note that
Xopt and Xref share the same diagonal and values for the entries corresponding to
the edges of G. Hence, Optimization A is intrinsically a positive semidefinite matrix
completion problem with the input Xref and the output Xopt. Moreover, it can be
easily observed that if Xref is feasible for the problem (1.1), then every subsolution
of Optimization A is feasible for (1.1) as well.

Definition 4.1 (msr). Given a simple graph G, define the real symmetric and
complex Hermitian minimum semidefinite rank of G as

msrS(G) , min
{

rank(W) |G (W) = G, W ∈ S+n
}

(4.3a)

msrH(G) , min
{

rank(W) |G (W) = G, W ∈ H+
n

}
. (4.3b)

The role of Optimization A is to find a low-rank feasible point for the original LMI
problem (1.1). This can be achieved by reformulating the LMI problem (1.1) with
respect to a possibly higher dimensional matrix X ∈ F|G′|, whose rows and columns
correspond to the vertices of G′. In other words, the low-rank matrix to be sought
is embedded in X. As illustrated in Examples 1, 2 and 3, we aim to show that if
the graph G′ in Optimization A is chosen as an enriched supergraph of G, then the
minimization of every nonzero weighted sum of the entries of X corresponding to the
edges of G′ results in a low-rank solution. In addition to the graph-theoretic analysis
required to construct the enriched supergraph, this result requires the availability of
an initial positive-definite feasible point Xref to built upon. Such an initial matrix
Xref can be obtained via any interior-point algorithm for the semidefinite program
(1.1), after possibly imposing the explicit conic constraint

X � ε× In (4.4)

for a sufficiently small ε > 0.
Theorem 4.2. Assume that M1, . . . ,Mp are arbitrary matrices in Fn which

is equal to either Sn or Hn. Suppose that a1, . . . , ap are real numbers such that the
feasibility problem

find X ∈ Fn
subject to trace{MkX} ≤ ak, k = 1, . . . , p, (4.5a)

X � 0, (4.5b)

has a positive-definite feasible solution Xref ∈ F+
n . Let G = G (M1) ∪ · · · ∪ G (Mp).

a) Consider an arbitrary supergraph G′ of G. Every subsolution Xopt to Opti-
mization A with the input (G,G′,T,Xref) is a solution to the LMI problem
(4.5) and satisfies the relations

rank{Xopt} ≤ |G′| −min
Gs

{
msrF(Gs)

∣∣ (G′ h G) ⊆ Gs ⊆ G′
}
, (4.6a)

rank{Xopt} ≤ max
Gs

{
Z+(Gs)

∣∣ (G′ h G) ⊆ Gs ⊆ G′
}
. (4.6b)

b) Consider an arbitrary tree decomposition T of G with width t. Let G be an
enriched supergraph of G derived by T . Every subsolution Xopt to Optimiza-
tion A with the input (G,G,T,Xref) is a solution to (4.5) and satisfies the
relation

rank{Xopt} ≤ t+ 1. (4.7)
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Proof. To prove Part (a), notice that Xij does not play a role in the linear
constraint (4.5a) of the LMI problem (4.5) as long as i 6= j and (i, j) 6∈ EG . It can be
inferred from this property that Xopt is a solution of (4.5). Now, it remains to show
the validity of the inequality (4.6). Constraints (4.1b), (4.1c) and (4.1d) imply that

for every feasible solution X of Optimization A, the matrix X−X
opt

belongs to the
convex cone

C = {W ∈ Fm|Wkk = 0 for k ∈ VG′ , Wij = 0 for (i, j) ∈ EG} . (4.8)

Therefore, a dual matrix variable Λ could be assigned to these constraints, which
belongs to the dual cone

C⊥ =
{
W ∈ Fm

∣∣Wij = 0 for (i, j) 6∈ EG and i 6= j
}
. (4.9)

Hence, the Lagrangian of Optimization A can be expressed as

L(X,Λ,Φ) = trace{TX}+ trace{Λ(X−X
opt

)} − trace{ΦX}

= trace{(Λ + T−Φ)X} − trace{ΛX
opt}

(4.10)

where Φ � 0 denotes the matrix dual variable corresponding to the constraint X � 0.
The infimum of the Lagrangian over X is −∞ unless Φ = Λ + T. Therefore, the dual
problem is as follows:

maximize
Λ∈Fm

− trace{ΛX
opt} (4.11a)

subject to Λij = 0 (i, j) /∈ EG and i 6= j, (4.11b)

Λ + T � 0. (4.11c)

By pushing the diagonal entries of Λ toward infinity, the inequality Λ + T � 0 will
become strict. Hence, strong duality holds according to the Slater’s condition. If
Φ = Φopt denotes an arbitrary dual solution, the complementary slackness condition

trace{ΦoptX
opt} = 0 yields that

rank{Φopt}+ rank{Xopt} ≤ m (4.12)

(note that since the primal and dual problems are strictly feasible, X
opt

and Φopt are
both finite). On the other hand, according to the equations Φ = Λ + T and Λ ∈ C⊥,
we have

Φopt
ij 6= 0, for (i, j) ∈ EG′ \ EG (4.13a)

Φopt
ij = 0, for (i, j) /∈ EG′ and i 6= j. (4.13b)

Therefore,

(G′ h G) ⊆ G (Φopt) ⊆ G′. (4.14)

The first upper bound on rank{Xopt} given in (4.6a) can be obtained by combining

(4.12) and (4.14) after noting that rank{Xopt} ≤ rank{Xopt} (recall that Xopt is a

submatrix of X
opt

). In addition, according to the equation (1.3), we have:

rank{Xopt} ≤ |G| −min
{

msrF(Gs)
∣∣ (G h G) ⊆ Gs ⊆ G

}
≤ |G| −min

{
OS(Gs)

∣∣ (G h G) ⊆ Gs ⊆ G
}

≤ max
{

Z+(Gs)
∣∣ (G h G) ⊆ Gs ⊆ G

}
.

(4.15)
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This completes the proof of Part (a).
For Part (b), it follows from Theorem 3.5 that OS(Gs) ≥ |G| − t− 1 for every Gs

with the property (G h G) ⊆ Gs ⊆ G. Therefore,

rank{Xopt} ≤ |G| −min
{

msrF(Gs)
∣∣ (G h G) ⊆ Gs ⊆ G

}
≤ |G| −min

{
OS(Gs)

∣∣ (G h G) ⊆ Gs ⊆ G
}

≤ |G| − (|G| − t− 1)

≤ t+ 1

(4.16)

(note that OS(G) ≤ msrF(G) as proven in [19]). This completes the proof.
Observe that the objective function of Optimization A is a weighted sum of cer-

tain entries of the matrix X, where the weights come from the matrix T. Part (a)
of Theorem 4.2 proposes an upper bound on the rank of all subsolutions of this opti-
mization, which is contingent upon the graph of the weight matrix T without making
use of the nonzero values of the weights.

Corollary 4.3. If the LMI problem (4.5) has a positive-definite feasible solution,
then it has a solution Xopt with rank at most tw(G) + 1.

Proof. The proof follows immediately from Part (b) of Theorem 4.2 by considering
T to be a minimal tree decomposition of G.

Note that Theorem 4.2 and Corollary 4.3 both require the existence of a positive-
definite feasible solution. This assumption will be reduced to only the feasibility of
the LMI problem (4.5) in the next section.

We now revisit Examples 1, 2 and 3 provided earlier and study them using The-
orem 4.2. First, consider Example 1. The graph G corresponding to a matrix X with
known diagonal entries has the vertex set {1, 2, . . . , n} with no edges. An enriched
supergraph graph G can be obtained from G by connecting vertices i and i + 1 for
i = 1, . . . , n− 1. Consider an arbitrary matrix T ∈ Sn with the representative graph
G. This matrix is sparse with nonzero subdiagonal and superdiagonal. Using The-
orem 4.2, Optimization A yields a solution such that Xopt ≤ tw(G) + 1. Since G
does not have any edges, its treewidth is equal to 0. As a result, every solution of
Optimization A has rank 1.

Consider now Example 2 with X visualized in Figure 1.1. As can be observed,
two 2 × 2 blocks of X specified by dashed red lines are known and the goal is to
design the block X31. The graph G has n = α + β + γ vertices with the property
that the subgraphs induced by the vertex subsets {1, . . . , α + β} and {α + 1, . . . , n}
are both complete graphs. In the case where α = γ, an enriched supergraph G can
be obtained by connecting vertex i to vertex α+ β + i for i = 1, 2, . . . , α. Consider a
matrix T with the representative graph G. Optimization A then aims to minimize the
weighted sum over the diagonal entries of X31. Consider now the case where α > γ.
A tree decomposition of G has two bags {1, . . . , α + β} and {α + 1, . . . , α + β + γ}.
Since these bags have disparate sizes, the definition of enriched supergraph requires
adding α− γ new vertices to the bag with the fewer number of vertices. This can be
translated as adding α − γ rows and α − γ columns to X in order to arrive at the
augmented matrix X̂ depicted in Figure 1.1(b). In this case, Optimization A may

minimize a weighted sum of the diagonal entries of the square block including X̂31

and X̂41. Regarding Example 3, the matrix G has the vertex set VG = {1, . . . , 4α}
such that its subgraphs induced by the vertex subsets {1, . . . , 2α}, {α + 1, . . . , 3α},
and {2α + 1, . . . , 4α} are all complete graphs. A tree decomposition of G has three
bags {1, . . . , 2α}, {α + 1, . . . , 3α} and {2α + 1, . . . , 4α}. Hence, an enriched graph G
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can be obtained by connecting vertices i and 2α+ i as well as vertices i+α and 3α+ i
for i = 1, . . . , α. This implies that Optimization A minimizes a weighted sum of the
diagonal entries of the blocks X31 and X42.

In the next section, we have applied a combined graph-theoretic and algebraic
approach in order to strengthened the results of Theorem 4.2.

5. Combined Graph-Theoretic and Algebraic Method. In this section, a
combined graph-theoretic and algebraic method is developed in order to strengthen
the results of the preceding section. According to Theorem 4.2, the minimization
of a weighted sum of certain unknown entries of a partially-known matrix (through
Optimization A) results in a low-rank positive semidefinite completion, where the
entries to be minimized can be found via a graph-theoretic analysis. The above result
requires the existence of a positive-definite feasible solution for the LMI problem (4.5).
The first objective of this section is to relax this assumption to the existence of only
a feasible solution. The second objective is to further characterize the rank of the
resulting solution as an extension to Theorem 4.2 and Corollary 4.3.

Given an arbitrary matrix M in Fn, we denote its Moore-Penrose pseudoin-
verse as M+. If r = rank{M} and M admits the eigenvalue decomposition M =
QΛQ∗ with Λ = diag{[λ1, . . . , λr, 0, . . . , 0]}, then M+ = QΛ+Q∗ where Λ+ =
diag{[λ−11 , . . . , λ−1r , 0, . . . , 0]}. The next lemma is borrowed from [50].

Lemma 5.1. Given a 2× 2 block matrix

M =

[
A B∗

B C

]
∈ Fn, (5.1)

define its generalized Schur complement as S+ , C −BA+B∗. The relation M � 0
holds if and only if

A � 0, S+ � 0 and null{A} ⊆ null{B}. (5.2)

In addition, the equation rank{M} = rank{A}+ rank{S+} is satisfied if and only if
null{A} ⊆ null{B}.

Theorem 5.2. Consider the block matrix

M (U) ,

 A B∗x B∗y
Bx X U∗

By U Y

 (5.3)

where A, X, Y, B∗x and B∗y are known and the matrix U is the variable. Define

Mx ,

[
A B∗x
Bx X

]
and My ,

[
A B∗y
By Y

]
. (5.4)

Define also S+
x , X −BxA

+B∗x and S+
y , Y −ByA

+B∗y. Given a constant matrix
T of appropriate dimension, for every solution Uopt of the optimization problem

minimize
U

trace{TU∗} (5.5a)

subject to M (U) � 0, (5.5b)

M(Uopt) has the minimum possible rank, i.e.,

rank{M
(
Uopt

)
} = max {rank{Mx}, rank{My}} , (5.6)
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provided that S+
y TS+

x has the maximum possible rank, i.e.,

rank{S+
y TS+

x } = min
{

rank{S+
x }, rank{S+

y }
}
. (5.7)

Proof. Let rx , rank{S+
x } and ry , rank{S+

y }. Consider the following eigenvalue
decompositions for S+

x and S+
y :

S+
x = QxΛxQ

∗
x and S+

y = QyΛyQ
∗
y. (5.8)

Let Qx = [Qx1 Qx0] and Qy = [Qy1 Qy0], where Qx1 ∈ Fn×rx and Qy1 ∈ Fn×ry .
We can also write

Λx ,

[
Λx1 0
0 0

]
and Λy ,

[
Λy1 0
0 0

]
, (5.9)

where Λx1 and Λy1 are diagonal matrices in Fnx
and Fny

, respectively. Define

Eij , Q∗yi(U−ByA
+B∗x)Qxj for i, j ∈ {1, 2}. (5.10)

It can be shown that

U−ByA
+B∗x =[Qy1 Qy0]

[
E11 E10

E01 E00

] [
Q∗x1
Q∗x0

]
=Qy1E11Q

∗
x1 + Qy1E10Q

∗
x0 + Qy0E01Q

∗
x1 + Qy0E00Q

∗
x0.

(5.11)

Hence,

S+ ,

[
X U∗

U Y

]
−
[

Bx

By

]
A+

[
B∗x B∗y

]
=

[
Qx1Λx1Q

∗
x1 U∗ −ByA

+B∗x
U−ByA

+B∗x Qy1Λy1Q
∗
y1

]
.

(5.12)

The constraint M(U) � 0 yields S+ � 0 and therefore[
0 E∗ij

Eij 0

]
=

[
Q∗xi 0
0 Q∗yj

] [
Qx1Λx1Q

∗
x1 U∗ −ByA

+B∗x
U−ByA

+B∗x Qy1Λy1Q
∗
y1

] [
Qxi 0
0 Qyj

]
=

[
Q∗xi 0
0 Q∗yj

]
S+

[
Qxi 0
0 Qyj

]
� 0 =⇒ Eij = 0, (5.13)

for every (i, j) ∈ {(0, 0), (1, 0), (0, 1)}. As a result, the block U can be written as
U = ByA

+B∗x + Qy1U1Q
∗
x1, where U1 , E11 ∈ Fry×rx . Therefore,

S+ ,

[
X U∗

U Y

]
−
[

Bx

By

]
A+

[
B∗x B∗y

]
=

[
Qx1 0

0 Qy1

] [
Λx1 U∗1
U1 Λy1

] [
Q∗x1 0

0 Q∗y1

]
.

(5.14)

Since Mx,My � 0 according to Lemma 5.1, one can write

null{A} ⊆ null{Bx} and null{A} ⊆ null{By} (5.15)
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and therefore Lemma 5.1 yields

rank{Mx} = rank{A}+ rx (5.16)

rank{My} = rank{A}+ ry. (5.17)

This implies that

M � 0 =⇒
[

Λx1 U∗1
U1 Λy1

]
� 0. (5.18)

On the other hand,

trace{TU∗} = trace{T(ByA
+B∗x + Qy1U1Q

∗
x1)∗}

= trace{B∗yTBxA
+}+ trace{Q∗y1TQx1U

∗
1}.

(5.19)

Hence, the problem (5.5) is equivalent to

minimize
U1

trace{T1U
∗
1} (5.20a)

subject to

[
Λx1 U∗1
U1 Λy1

]
� 0. (5.20b)

where T1 = Q∗y1TQx1. Let Uopt
1 be an arbitrary solution of the above problem. It

can be easily seen that the dual matrix variable corresponding to the sole constraint
of this problem is equal to [

Γx1 T∗1
T1 Γy1

]
� 0 (5.21)

for some matrices Γx1 and Γy1 (note that both primal and dual solutions are attain-
able, since the feasible set of the primal problem is bounded and U1 = 0 serves as a
strictly feasible solution). It follows from the complementary slackness that

trace

{[
Λx1 U∗1
U1 Λy1

] [
Γx1 T∗1
T1 Γy1

]}
= 0, (5.22)

implying that

rank

{[
Λx1 U∗1
U1 Λy1

]}
+ rank

{[
Γx1 T∗1
T1 Γy1

]}
≤ rx + ry. (5.23)

Therefore,

rank

{[
Λx1 (Uopt

1 )∗

Uopt
1 Λy1

]}
≤ rx + ry− rank{T1} = rx + ry− rank{S+

y TS+
x } (5.24)

Moreover, it can be concluded from (5.15) that

null{A} ⊆ null{Bx} ∩ null{By} = null

{[
Bx

By

]}
. (5.25)

The proof is now completed by Lemma 5.1.
Note that the condition (5.7) required in Theorem 5.2 is satisfied for a generic

matrix T.
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Suppose that O ∈ Fry×rx is a matrix with 1’s on its rectangular diagonal and 0
elsewhere. If the matrix M(U) is completed as

U = ByA
+B∗x + Qy1

√
Λy1 O

√
Λx1Q

∗
x1 (5.26)

then, it satisfies the rank property (5.6). This explicit formula provides an iterative
matrix-completion method.

Definition 5.3. For every matrix X ∈ Fk and sets A,B ⊆ {1, . . . , k}, define
X(A,B) as a submatrix of X obtained by choosing those rows of X with indices
appearing in A and those columns of X with indices in B. If A = B, then X(A,B)
will be abbreviated as X(A).

Assume that M1, . . . ,Mp are arbitrary matrices in Fn, which is equal to either
Sn or Hn. Suppose that a1, . . . , ap are real numbers such that the feasibility problem

find X ∈ Fn
subject to trace{MkX} ≤ ak, k = 1, . . . , p, (5.27a)

X � 0, (5.27b)

has a feasible solution Xref ∈ Fn. Let G = G (M1) ∪ · · · ∪ G (Mp). Consider an
arbitrary tree decomposition T of G with the set of bags VT = {V1, . . . , V|T |}. Let

r , max
{

rank{Xref(Vk)} | 1 ≤ k ≤ |T |
}

(5.28)

and define G as a graph obtained from G by adding

|T |∑
k=1

(
r − rank{Xref(Vk)}

)
(5.29)

new isolated vertices. Let T , (VT , ET ) be a tree decomposition for G with the bags
V 1, . . . , V |T |, where each bag V k is constructed from Vk by adding r−rank{Xref(Vk)}
of the new isolated vertices in VG \ VG such that (V i \ Vi) ∩ (V j \ Vj) = ∅ for every

i 6= j. Let m , |G| and define the matrix X
ref ∈ Fm as

X
ref

kk = Xref
kk for k ∈ VG (5.30a)

X
ref

kk = 1 for k ∈ VG \ VG (5.30b)

X
ref

ij = Xref
ij for (i, j) ∈ EG (5.30c)

X
ref

ij = 0 for (i, j) /∈ EG . (5.30d)

For every pair i, j ∈ {1, . . . , |T |}, define

S+
ij , X

ref
(V i \ V j)

−X
ref

(V i \ V j , V i ∩ V j)
(
X

ref
(V i ∩ V j)

)+
X

ref
(V i ∩ V j , V i \ V j). (5.31)

Let the edges of the tree decomposition T be oriented in such a way that the indegree
of every node becomes less than or equal to 1. The resulting directed tree is denoted
as ~T . The notation E~T also represents the edge set of this directed tree.
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Optimization B: This problem is as follows:

minimize
X∈Fm

∑
(i,j)∈E~T

trace{TijX
∗
ij} (5.32a)

subject to Xk = X
ref

k k = 1, . . . , |T |, (5.32b)

X � 0, (5.32c)

where Tij ’s are arbitrary constant matrices of appropriate dimensions and

Xk , X(V k), X
ref

k , X
ref

(V k) and Xij , X(V i \ V j , V j \ V i) (5.33)

for every i, j, k ∈ {1, . . . , |T |}.
Let X

opt ∈ Fm denote an arbitrary solution of problem (5.32) and Xopt ∈ Fn be

equal to X
opt

(VG). Then, Xopt is called the subsolution to Optimization B associated

with X
opt

. Note that Xopt and Xref share the same diagonal and values for the entries
corresponding to the edges of G. Therefore, if Xref is feasible for problem (5.27), then
Xopt is feasible for (5.27) as well. Hence, Optimization B is a positive semidefinite
matrix completion problem with the input Xref and the output Xopt.

Theorem 5.4. Given an arbitrary solution Xref of the problem (5.27), every
subsolution Xopt of Optimization B is a solution to the LMI problem (5.27) and has
the property

rank{Xopt} = max
{

rank{Xref(Vk)} | k = 1, . . . , |T |
}

(5.34)

provided that the following equality holds for every (i, j) ∈ E~T :

rank{S+
ijTijS

+
ji} = min

{
rank{S+

ij}, rank{S+
ji}
}
. (5.35)

Proof. According to the constraints (5.32b) and (5.32c), if X is a feasible point for
(5.32), then X(VG) is feasible for the LMI problem (5.27) as well. Therefore, for the
case |T | = 2, the proof follows immediately from Theorem 5.2. To prove by induction
in the general case, assume that the statement of Theorem 5.4 holds if |T | ≤ p for an
arbitrary natural number p, and the goal is to show its validity for |T | = p+ 1. With

no loss of generality, assume that Vp+1 is a leaf of ~T and that (Vp, Vp+1) is a directed
edge of this tree. Consider a tree decomposition T ′ = (VT ′ , ET ) for the sparsity graph

of Optimization B with the bags V
′
1, . . . , V

′
|T |, where each bag V

′
i is defined as the

union of V i and its parent in the oriented tree T , if any. It results from the chordal
theorem that the constraint X � 0 in Optimization B can be replaced by the set of

constraints X(V
′
j) � 0 for j = 1, . . . , p+ 1. This implies that Optimization B can be

decomposed into p =|T |−1 independent semidefinite programs:

minimize
X(V

′
j)

trace{TijX
∗
ij} (5.36a)

subject to Xi = X
ref

i , (5.36b)

Xj = X
ref

j , (5.36c)

X(V
′
j) � 0, (5.36d)
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for every (i, j) ∈ E~T . Notice that the submatrices X
ref

1 , . . . ,X
ref

|T | all have the same

rank r. By defining V
′
0 , V

′
1 ∪ V

′
2 . . . ∪ V

′
p, it follows from the induction assumption

and the decomposition property of Optimization B that

rank{Xopt
(V
′
0)} = max

{
rank{Xref

k }
∣∣∣∣ k = 1, . . . , p

}
= r. (5.37)

Now, consider the block matrix

M (U),

 X
opt

(V
′
0 ∩ V ′|T |) X

opt
(V
′
0∩V

′
|T |, V

′
0\V

′
|T |) X

opt
(V
′
0∩V

′
|T |, V

′
|T |\V

′
0)

X
opt

(V
′
0\V

′
|T |, V

′
0∩V

′
|T |) X

opt
(V
′
0 \ V ′|T |) U∗

X
opt

(V
′
|T |\V

′
0, V

′
0∩V

′
|T |) U X

opt
(V
′
|T | \ V

′
0)

.
According to Theorem 5.2, it only remains to prove that

rank{S+
|T |,0 T|T |,0 S+

0,|T |} = min
{

rank{S+
|T |,0}, rank{S+

0,|T |}
}

(5.38)

where

T|T |,0 =
[
0 T|T |−1,|T |

]
. (5.39)

One can write

rank{S+
|T |,0

[
0 T|T |−1,|T |

]
S+
0,|T |} = rank{S+

|T |−1,|T |T|T |−1,|T | S
+
|T |,|T |−1}

= min
{

rank{S+
|T |−1,|T |}, rank{S+

|T |,|T |−1}
}

= rank{S+
|T |−1,|T |}

= rank{S+
0,|T |}

= min
{

rank{S+
|T |,0}, rank{S+

0,|T |}
}
. (5.40)

This completes the proof.
Note that the condition (5.35) required in Theorem 5.4 is satisfied for generic

choices of Tij .
Example 4. Consider a tree decomposition T with three bags V1 = {1, 2, 3},

V2 = {3, 4, 5} and V3 = {5, 6, 7}, and the edge set ET = {(V1, V2), (V2, V3)}. Suppose
that the partially known matrix solution is as follows:

Xref =



2 1 1 u∗11 u∗21 w∗11 w∗21
1 1 1 u∗12 u∗22 w∗12 w∗22
1 1 1 1 1 v∗11 v∗21
u11 u12 1 1 1 v∗12 v∗22
u21 u22 1 1 1 1 1
w11 w12 v11 v12 1 2 1
w21 w22 v21 v22 1 1 3


. (5.41)

It can be verified that

rank{Xref(V1)} = 2, rank{Xref(V2)} = 1, rank{Xref(V3)} = 3, (5.42)

and that there exists only one unique solution for each unknown block

X12 =

[
u11 u12
u21 u22

]
and X23 =

[
v11 v12
v21 v22

]
(5.43)
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to meet the constraint X � 0. Hence, the only freedom for the matrix completion
problem is on the choice of the remaining block[

w11 w12

w21 w22

]
. (5.44)

Therefore, optimization problems solved over the blocks X12 and X23 would not result

in a rank-3 solution. To resolve the issue, we enrich Xref to obtain a matrix X
ref

by
adding multiple rows and columns to Xref in order to make the ranks of all resulting
bags equal:

X
ref

=



1 0 0 0 u∗11 u∗21 u∗31 u∗41 w∗11 w∗21
0 2 1 1 u∗12 u∗22 u∗32 u∗42 w∗12 w∗22
0 1 1 1 u∗13 u∗23 u∗33 u∗43 w∗13 w∗23
0 1 1 1 0 0 1 1 v∗11 v∗12
u11 u12 u13 0 1 0 0 0 v∗12 v∗22
u21 u22 u23 0 0 1 0 0 v∗13 v∗23
u31 u32 u33 1 0 0 1 1 v∗14 v∗24
u41 u42 u43 1 0 0 1 1 1 1
w11 w12 w13 v11 v12 v13 v14 1 2 1
w21 w22 w23 v21 v22 v23 v24 1 1 3


. (5.45)

Now, we have

V 1 = {1, 2, 3, 4}, V 2 = {4, 5, 6, 7, 8}, and V 3 = {8, 9, 10} (5.46)

and

rank{Xref

1 } = 3, rank{Xref

2 } = 3, and rank{Xref

3 } = 3. (5.47)

Therefore, the conditions of Theorem 5.4 hold for generic constant matrices T12 and
T23. As a result, every solution X of Optimization B has the property

rank{Xopt} = 3. (5.48)

As a final step, the deletion of those rows and columns of X
opt

with indices 1, 5 and
6 yields a completion of Xref with rank 3.

6. Low-Rank Solutions via Complex Analysis. Consider the problem of
finding a low-rank solution Xopt for the LMI problem (4.5). Theorem 4.2 can be used
for this purpose, but it needs solving one of the following graph problems: (i) designing
a supergraph G′ minimizing the upper bound given in (4.6), or (ii) obtaining a tree
decomposition of G with the minimum width. Although these graph problems are
easy to solve for highly sparse and structured graphs, they are NP-hard for arbitrary
graphs. A question arises as to whether a low-rank solution can be obtained using
a polynomial-time algorithm without requiring an expensive graph analysis. This
problem will be addressed in this section.

Definition 6.1. Given a complex number z, define

zray , {λz |λ ∈ R, λ ≥ 0}. (6.1)

Definition 6.2. A finite set U ⊂ C is called sign-definite in C if U and −U
can be separated in the complex plane by a line passing through the origin, where
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−U , {−u |u ∈ U} [5]. Moreover, a finite set U ⊂ R is called sign-definite in R if
its members are all nonnegative or all nonpositive.
Optimization C: Let G be a simple graph with n vertices and F be equal to either
R or C. Consider arbitrary matrices Xref ∈ F+

n and T ∈ Fn such that G (T) is a
supergraph of G. The problem

minimize
X∈Fn

trace{TX} (6.2a)

subject to Xkk = Xref
kk k ∈ VG , (6.2b)

Xij −Xref
ij ∈ T

ray
ij (i, j) ∈ EG , (6.2c)

X � 0, (6.2d)

is referred to as “Optimization C with the input (G,Xref ,T,F)”.
Lemma 6.3. Assume that Xref is positive definite. Every solution Xopt of Opti-

mization C with the input (G,Xref ,T,H) satisfies the inequality

rank{Xopt} ≤ n−msrH(G (T)). (6.3)

Proof. Constraints (6.2b) and (6.2c) imply that for any feasible matrix X, the
matrix X−Xref belongs to the convex cone

C =
{
W ∈ Fn|Wkk = 0 for k ∈ VG , Wij ∈ T ray

ij for (i, j) ∈ EG
}
. (6.4)

Hence, the dual matrix variable Λ is a member of the dual cone

C⊥ =
{
W ∈ Fn|Re{WijT

∗
ij} ≥ 0 for (i, j) ∈ EG , Wij = 0 for (i, j) /∈ EG and i 6= j

}
.

Therefore, the Lagrangian is equal to

L(X,Λ,Φ) = trace{TX}+ trace{Λ(X−Xref)} − trace{ΦX}
= trace{(Λ + T−Φ)X} − trace{ΛXref},

(6.5)

where Φ � 0 denotes the matrix dual variable corresponding to the constraint X � 0.
The infimum of the Lagrangian over X is −∞ unless Φ = Λ + T. Therefore, the dual
problem is as follows:

maximize
Λ∈Hn

− trace{ΛXref} (6.6a)

subject to Re{ΛijT ∗ij} ≥ 0 (i, j) ∈ EG (6.6b)

Λij = 0, (i, j) /∈ EG and i 6= j (6.6c)

Λ + T � 0. (6.6d)

By pushing the diagonal entries of Λ toward infinity, the inequality Λ + T � 0 will
become strict. Hence, strong duality holds according to the Slater’s condition. Let
Φ = Φopt denote an arbitrary dual solution. The complementary slackness condition
trace{ΦoptXopt} = 0 yields that

rank{Φopt}+ rank{Xopt} ≤ n. (6.7)

On the other hand, it can be deduced from the equation Φ = Λ + T together
with (6.6b) and (6.6c) that

G (T) = G (Φopt). (6.8)
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Now, combining (6.7) and (6.8) completes the proof.
Theorem 6.4. Assume that M1, . . . ,Mp are arbitrary matrices in Sn. Suppose

that a1, . . . , ap are real numbers such that the LMI problem

find X ∈ Sn
subject to trace{MkX} ≤ ak k = 1, . . . , p, (6.9a)

X � 0 (6.9b)

has a positive-definite feasible solution Xref ∈ Sn. Let T ∈ Hn be an arbitrary matrix
such that Re{T} = 0n×n and G (T) is a supergraph of G (M1) ∪ · · · ∪ G (Mp).

a) Every solution Xopt ∈ Hn of Optimization C with the input (G,Xref ,T,H) is
a solution of the LMI problem (6.9) and satisfies the relations

rank{Xopt} ≤ n−msrH(G (T)), (6.10a)

rank{Xopt} ≤ Z+(G (T)). (6.10b)

b) The matrix Re{Xopt} is a real-valued solution of the LMI problem (6.9) and
satisfies the inequalities

rank{Xreal} ≤ min{2(n−msrH(G (T)), n}, (6.11a)

rank{Xreal} ≤ min{2 Z+(G (T)), n}. (6.11b)

Proof. For every feasible solution X of Optimization C, we have

trace{MkX} = trace{MkX
ref} for k = 1, . . . ,p. (6.12)

Hence, every feasible solution of Optimization C is a solution of the LMI problem (6.9)
as well. Now, the proof of Part (a) follows from Lemma 6. For Part (b), it is
straightforward to verify that Xreal defined as 1

2

(
Xopt + (Xopt)T

)
is a feasible solution

of (6.9). Moreover,

rank{Xreal} ≤ rank{Xopt}+ rank{(Xopt)T}
= 2 rank{Xopt}.

(6.13)

The proof follows from the above inequality and Part (a).
Consider an LMI problem with real-valued coefficients. Theorem 6.4 states that

the complex-valued Optimization C can be exploited to find a real solution of the LMI
problem under study with a guaranteed bound on its rank. This bound might be looser
than the ones derived in Theorem 4.2, but is still small for very sparse graphs. Note
that although the calculation of the bound given in (6.11a) is an NP-hard problem,
Optimization C is polynomial-time solvable without requiring any expensive graph
preprocessing. In what follows, we improve the bound obtained in Theorem 6.4 for a
structured LMI problem.

Lemma 6.5. Let U = {u1, . . . , un} ⊂ F be sign-definite in F. Then, the set

∠U , {x ∈ F |Re{ukx} ≤ 0 for k = 1, . . . , n} (6.14)

forms a non-trivial convex cone in F.
Proof. In the case F = R, the set U is either the ray of nonnegative real numbers or

non-positive real numbers. Hence, U is a non-trivial convex cone if F = R. Consider
now the case F = C. The convexity of ∠U results from the fact that this set is
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described by linear inequalities. ∠U is also a cone because λx ∈ ∠U for every x ∈ ∠U
and λ ≥ 0. On the other hand, by the definition of a sign-definite set, there exists a line
passing through the origin that separates the sets {u1, . . . , un} and {−u1, . . . ,−un}.
Assume that this line makes the angle α with the real axis. Then, one of the two points
exp

[(
π
2 + α

)
i
]

and exp
[(
−π2 + α

)
i
]

belongs to ∠U . As a result, ∠U is non-trivial.
By leveraging the result of Lemma 6, the bound proposed in Theorem 6.4 will be

improved for a sign-definite LMI problem below.
Theorem 6.6. Assume that M1, . . . ,Mp belong to the set Fn that is equal to

either Sn or Hn. Let a1, . . . , am be real numbers such that the LMI problem

find X ∈ Fn
subject to trace{MkX} ≤ ak k = 1, . . . , p, (6.15a)

X � 0, (6.15b)

has a positive-definite feasible solution Xref ∈ F+
n . Let G = G (M1)∪ · · · ∪G (Mp) and

suppose that the set Mij composed of the (i, j) entries of M1, . . . ,Mp is sign-definite
for every pair (i, j) ∈ EG. Consider a matrix T ∈ Fn such that G (T) is a supergraph
of G and that Tij ∈ ∠Mij for every (i, j) ∈ EG. Then, every solution Xopt ∈ Fn of
Optimization C with the input (G,Xref ,T,F) is a solution of the LMI problem (6.15)
and satisfies the inequalities

rank{Xopt} ≤ n−msrF(G (T)), (6.16a)

rank{Xopt} ≤ Z+(G (T)). (6.16b)

Proof. According to Lemma 6, a matrix T with the properties mentioned in the
theorem always exists. We have Xopt

ij − Xref
ij ∈ T

ray
ij ⊆ ∠Mij for every (i, j) ∈ EG .

Hence, for k = 1, . . . , p, one can write

Re{Mk(i, j)(Xopt
ij −X

ref
ij )} ≤ 0 (6.17)

or equivalently

trace{MkX
opt} ≤ trace{MkX

ref} (6.18)

(Mk(i, j) denotes the (i, j) entry of Mk). Consequently, Xopt is a feasible solution of
the LMI problem (6.15) and satisfies the inequalities (6.16a) and (6.16b) in light of
Lemma 6.

Theorem 6.6 improves upon the results of Theorem 6.4 for structured LMI prob-
lems in two directions: (i) extension to the complex case, and (ii) reduction of the
upper bound by a factor of 2 in the real case.

7. Low-Rank Solutions for Affine Problems. In this section, we will gener-
alize the results derived earlier to the affine rank minimization problem.

Definition 7.1. For an arbitrary matrix W ∈ Cm×r, the notation B(W) =
(VB, EB) denotes a bipartite graph defined as:

1. VB is the union of the first vertex set VB1 = {1, . . . , n} and the second set
vertex set VB2

= {1, . . . ,m}, associated with the two parts of the graph.
2. For every (i, j) ∈ VB1

× VB2
, we have (i, j) ∈ EB if and only if Wij 6= 0.

Definition 7.2. Consider an arbitrary matrix X ∈ Hn and two natural numbers
m and r such that n ≥ m+r. The matrix subm,r{X} is defined as the m×r submatrix
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of X corresponding to the first m rows and the last r columns of the (m+r)-th leading
principal submatrix of X.

Theorem 7.3. Consider the feasibility problem

find W ∈ Rm×r

subject to trace{NkW} ≤ ak k = 1, . . . , p, (7.1a)

where a1, . . . , ap ∈ R and N1, . . . ,Np ∈ Rr×m. Let Wref ∈ Rm×r denote a fea-
sible solution of this feasibility problem and Xref ∈ S+r+m be a matrix such that
subr,m{Xref} = Wref . Define G = B(NT

1 ) ∪ · · · ∪B(NT
p ). The following statements

hold:
a) Consider an arbitrary supergraph G′ of G with n vertices, where n ≥ r +

m. Let X
opt

denote an arbitrary solution of Optimization A with the input

(G,G′,T,Xref). Then, Wopt defined as subm,r{X
opt} is a solution of the

feasibility problem (7.1) and satisfies the relations

rank{Wopt} ≤ |G′| −min
{

msrS(Gs)
∣∣ (G′ h G) ⊆ Gs ⊆ G′

}
, (7.2a)

rank{Wopt} ≤ max
{

Z+(Gs)
∣∣ (G′ h G) ⊆ Gs ⊆ G′

}
. (7.2b)

b) Consider an arbitrary tree decomposition T of G with width t. If G′ in Part (a)
is considered as an enriched supergraph of G derived by T , then

rank{Wopt} ≤ t+ 1. (7.3)

c) Let Xopt denote an arbitrary solution of Optimization C with the input (G,Xref ,
T,H). Then, Wreal defined as subm,r

{
Re{Xopt}

}
is a solution of the feasi-

bility problem (7.1) and satisfies the relations

rank{Wreal} ≤ min{2(r +m−msrH(G (T)), r,m}, (7.4a)

rank{Wreal} ≤ min{2Z+(G (T)), r,m}. (7.4b)

Proof. The proof follows directly from Theorems 4.2 and 6.4, the conversion
technique delineated in Subsection 1.3, and the inequality

rank{subm,r{X}} ≤ rank{X} (7.5)

for every X ∈ Sn.
The following corollary is an immediate consequence of Theorem 7.
Corollary 7.4. If the feasibility problem (7.1) has a non-empty feasible set,

then it has a solution Wopt with rank at most tw
(
B(NT

1 ) ∪ · · · ∪B(NT
p )
)

+ 1.
As discussed in Subsection 1.3, the nuclear norm method is a popular technique for

the minimum-rank matrix completion problem. In what follows, we adapt Theorem 7
to improve upon the nuclear norm method by incorporating a weighted sum into
this norm and then obtain a guaranteed bound on the rank of every solution of the
underlying convex optimization.

Theorem 7.5. Suppose that B is a bipartite graph with bipartition (V1,V2), such
that |V1| = m and |V2| = r. Given arbitrary matrices Wref and Q in Rm×r, consider
the convex program

minimize
W∈Rm×r

‖W‖∗ + trace{QTW} (7.6a)

subject to Wij = W ref
ij (i, j) ∈ EB. (7.6b)
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Let B′ be defined as the supergraph B ∪ B(Q). Then, every solution Wopt of the
optimization (7.6) satisfies the inequalities

rank{Wopt} ≤ m+ r −min
{

msrS(Bs)
∣∣ (B′ h B) ⊆ Bs ⊆ B′

}
, (7.7a)

rank{Wopt} ≤ max
{

Z+(Bs)
∣∣ (B′ h B) ⊆ Bs ⊆ B′

}
. (7.7b)

Proof. Consider an arbitrary matrix W ∈ Rm×r. It has been shown in [43] that
the nuclear norm of W is equal to the optimal objective value of the optimization

minimize
X1∈Rm×m

X2∈Rr×r

1

2
trace{X1}+

1

2
trace{X2} (7.8a)

subject to

[
X1 W
WT X2

]
� 0. (7.8b)

This implies that Optimization (7.6) is equivalent to

minimize
X1∈Rm×m

X2∈Rr×r

W∈Rm×r

1

2
trace{X1}+

1

2
trace{X2}+ trace{QTW} (7.9a)

subject to

[
X1 W
WT X2

]
� 0, (7.9b)

Wij = W ref
ij (i, j) ∈ EB. (7.9c)

The proof follows from applying Part (a) of Theorem 7 to the above optimization.

The nuclear norm method reviewed in Subsection 1.3 corresponds to the case
Q = 0 in Theorem 7.5. However, this theorem discloses the role of the weight matrix
Q. In particular, this matrix can be designed based on the results developed in
Section 3 to yield a small number for the upper bound given in (7.7a), provided B is
a sparse graph.

8. Applications. Two applications will be discussed in this section.

8.1. Optimal Power Flow Problem. Consider an n-bus electrical power net-
work with the topology described by a simple graph G, meaning that each vertex
belonging to VG = {1, . . . , n} represents a node of the network and each edge belong-
ing to EG represents a transmission line. Let yij ∈ C denote the admittance of the line
(i, j) ∈ EG . Define x ∈ Cn as the voltage phasor vector, i.e., xk is the voltage phasor
for node k ∈ VG . Let p+ q i represent the nodal complex power vector, where p ∈ Rn
and q ∈ Rn are the vectors of active and reactive powers injected at all buses. p+ q i
can be interpreted as the complex-power supply minus the complex-power demand at
node k of the network. The classical optimal power flow (OPF) problem is as follows:
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System G tw{G} System G Bound on tw{G}
IEEE 14-bus 2 Polish 2383wp 23
IEEE 30-bus 3 Polish 2736sp 23
New England

39-bus
3 Polish 2746wop 23

IEEE 57-bus 5 Polish 3012wp 24
IEEE 118-bus 4 Polish 3120sp 24
IEEE 300-bus 6 Polish 3375wp 25

Table 8.1
Upper bound on the treewidth of various power systems with n ranging from 14 to 3375 (the

topologies of these systems can be found in MATPOWER [51]).

minimize
x,p,q∈Rn

∑
k∈VG

fk(pk) (8.1a)

subject to xmin
k ≤ |xk| ≤ xmax

k , k ∈ VG (8.1b)

pmin
k ≤ pk ≤ pmax

k , k ∈ VG (8.1c)

qmin
k ≤ qk ≤ qmax

k , k ∈ VG (8.1d)

Re{xi(x∗i − x∗j )y∗ij} ≤ pmax
ij , (i, j) ∈ EG (8.1e)

pk + qki =
∑

i∈NG(k)

xk(x∗k − x∗i )y∗ki, k ∈ VG (8.1f)

where xmin
k , xmax

k , pmin
k , pmax

k , qmin
k , qmax

k , and pmax
ij are given network limitations, and

fk(pk) is a convex function accounting for the power generation cost at node k. The
details of this formulation may be found in [37].

The OPF problem is a highly non-convex problem that is known to be difficult
to solve in general. However, the constraints of problem (8.1) can all be expressed
as linear functions of the entries of the quadratic matrix xx∗. This implies that
the constraints of OPF are linear in terms of a matrix variable X , xx∗. One can
reformulate OPF by replacing each xix

∗
j by Xij and represent the constraints in the

form of (4.5a) with a union graph that is isomorphic to the network topology graph G.
In order to preserve the equivalence of the two formulations, two additional constraints
must be added to the problem: (i) X � 0, (ii) rank{X} = 1. If we drop the rank
condition as the only non-convex constraint of the reformulated OPF problem, we
attain the SDP relaxation of OPF that is convex. On the other hand, the parameter
tw(G) is perceived to be small for graphs that describe a practical network topology.
We have verified the treewidth of G for several power systems and reported our findings
in Table 8.1. It can be seen that the treewidth of a Polish network with 3375 nodes
is at most 25. Figure 8.1 shows a minimal tree decomposition associated with the
IEEE 14 case. As long as the treewidth is relatively small, Theorem 4.2 states that
the convex relaxation method yields a low-rank solution for the OPF problem that
can be found using convex optimization.

In what follows, we will offer two case studies on the OPF problem for IEEE 300-
bus and Polish 2383-bus systems. For the topology graph of the IEEE 300-bus system,
an optimal tree decomposition T of width 6 can be obtained using the exact QuickBB
method in [52]. Let Xopt denote a solution of the SDP relaxation of optimization (8.1)
for this network. Consider all submatrices of the matrix Xopt induced by the bags of
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Fig. 8.1. The IEEE 14-bus test case (left figure) and its minimal tree decomposition (right figure)

T , i.e., Xopt(Vi) for i = 1, . . . , |T |. Two of these submatrices have rank 2 (associated
with two bags named V1 and V2) and the remaining ones have rank 1. In addition,
|V1| = |V2| = 2. This implies that the SDP relaxation has a rank-2 solution that can
be obtained from Xopt via the matrix completion technique proposed earlier, and in
addition the bags V1 and V2 may not allow the existence of a rank-1 SDP solution.
However, the off-diagonal entries of these rank-2 submatrices correspond to only two
lines of the network. This implies that 2 lines of the IEEE 300-bus system make the
SDP relaxation fail. To enforce the existence of a rank-1 SDP solution, we can design
a penalized SDP relaxation where the loss over these problematic lines is added to
the objective of the original SDP problem as a regularization term. For a suitable
choice of the regularization coefficient, the penalized SDP has a rank-1 solution from
which a feasible solution of OPF can be found. Define the global optimality degree
associated with a feasible solution as

Global optimality degree (%) = 100− upper bound - lower bound

|upper bound|
× 100

where “upper bound” and “lower bound” denote the costs of the obtained feasible
solution and the optimal objective value of the SDP relaxation, respectively. This
measure shows the maximum distance of the suboptimal cost associated with the
available feasible solution from the unknown globally minimum cost. By comparing
the cost of this feasible solution to the lower bound obtained from the original SDP
relaxation, the global optimality degree of the obtained feasible solution of OPF turns
out to be at least 99.998%. For the Polish 2383-bus system, the SDP relaxation
has a high-rank solution, but only 5 submatrices induced by the bags of its tree
decomposition are not rank-1. These so-called problematic bags contain 9 lines of the
power network in total. By solving a penalized SDP relaxation with a regularization
term designed based on the problematic lines, a feasible solution of OPF with the
global optimality degree of at least 99% can be obtained. The details of the above
simulations may be found in [53].

8.2. Optimal Distributed Control Problem. Consider the discrete-time sys-
tem {

x[τ + 1] = Ax[τ ] + Bu[τ ]
y[τ ] = Cx[τ ]

τ = 0, 1, 2, . . . (8.2)

with the known matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n and x[0] ∈ Rn, where x[τ ],
u[τ ] and y[τ ] represent the state, input and output of the system, respectively. The
goal is to design a decentralized (distributed) static controller minimizing a quadratic
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cost functional. Denote the controller as u[τ ] = Ky[τ ], where the unknown controller
gain K must belong to a given linear subspace K ⊆ Rm×r. The set K captures the
sparsity structure of the unknown decentralized controller u[τ ] = Ky[τ ] and, more
specifically, it contains all m × r real-valued matrices with forced zeros in certain
entries. The optimal decentralized problem (ODC) aims to design a static controller
u[τ ] = Ky[τ ] to minimize the finite-horizon cost functional

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ γ trace{KKT} (8.3)

subject to the system dynamics (8.2) and the controller requirement K ∈ K, given
positive-definite matrices Q and R, the coefficient γ and the terminal time p. To
simplify this NP-hard problem, define the vectors

x =
[
x[0]T · · · x[p]T

]T
, u =

[
u[0]T · · · u[p]T

]T
, (8.4)

y =
[
y[0]T · · · y[p]T

]T
, v =

[
1 hT xT uT yT

]T
, (8.5)

where h denotes the vector of all nonzero (free) entries of K. The objective function
and constraints of the ODC problem are all quadratic with respect to the vector v.
However, they can be cast as linear functions of the entries of the matrix vvT. Thus,
by replacing vvT with a new variable X, ODC can be expressed as a linear program
with respect to this new variable. Nevertheless, in order to preserve the equivalence
through reformulation, three additional constraints need to be imposed: (i) X � 0,
(ii) rank{X} = 1, and (iii) X11 = 1. Note that the constraint (ii) carries all the
non-convexity of the reformulated ODC problem. By dropping this rank constraint,
an SDP relaxation of the ODC problem will be attained.

The ODC problem has a natural sparsity, which makes its SDP relaxation possess
a low-rank solution. To pinpoint the underlying sparsity pattern of the problem, we
construct a graph G as follows:

• Let η denote the size of the vector v. The graph G has η vertices corresponding
to the entries of v. In particular, the vertex set of G can be partitioned into
five vertex subsets, where subset 1 consist of a single vertex associated with
the number 1 in the vector v and subsets 2-5 correspond to the vectors x, u,
y, and h, respectively.

• Given two distinct numbers i, j ∈ {1, . . . , η}, vertices i and j are connected
in the graph G if and only if the quadratic term vivj appears in the objective
or one of the constraints of the reformulated ODC problem. As an example,
vertex 1 is connected to the vertex subsets corresponding to the vectors x
and u. This is due to the fact that the linear terms x[τ ] and u[τ ] appear in
the optimization (notice that x[τ ] can be regarded as 1 × x[τ ] implying the
product of 1 and x[τ ]).

The graph G is highly sparse. For instance, the vertex subsets of this graph corre-
sponding to the vectors x and u are isolated with no edges among them. To elucidate
this property, consider the decentralized control problem for which the matrix K is
required to be diagonal. Assume also that Q and R are diagonal. Under this cir-
cumstance, the graph G is depicted in Figure 8.2. To maximize the legibility of the
figure, all edges of vertex 1 are not shown. Notice that after excluding vertex 1 from
G, the graph collapses to a collection of isolated vertices and stars. Hence, the pa-
rameter tw(G) is equal to 2 for the above graph. It follows from Theorem 4.2 that
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Fig. 8.2. The sparsity graph of the ODC problem in the decentralized case (some edges connected
to vertex 1 are not shown to improve the readability of the graph).

the SDP relaxation of the ODC problem has a solution Xopt with rank at most 3. To
obtain such a solution, we create a supergraph G of G using Theorem 3.5 as follows.
First, we connect the vertices corresponding to the ith and (i + 1)th entries of h for
i = 1, 2, . . . ,m − 1. Then, we add a new vertex to the resulting graph and connect
it to all of the existing vertices. It can be shown that |G| − OS(Gs) ≤ 3 for every Gs
such that (G h G) ⊆ Gs ⊆ G. Now, the supergraph G can be fed into Theorem 4.2 to
find a solution Xopt with rank at most 3.

Consider now the general case where Q, R, and K are not necessarily diagonal.
As can be seen in Figure 8.2, there is no edge in the subgraph of G corresponding
to the entries of x, as long as Q is diagonal. However, if Q has nonzero off-diagonal
elements, certain edges (and probably cycles) may be created in the subgraph of G
associated with the aggregate state x. Under this circumstance, the treewidth of G
could be much higher than 2. The same argument holds for a non-diagonal R. To
understand the effect of a non-diagonal controller K, consider the case m = r = 2
and assume that the controller K under design has three free elements as follows:

K =

[
K11 K12

0 K22

]
(8.6)

(i.e., h1 = K11, h2 = K12 and h3 = K22). Figure 8.3 shows a part of the graph G. It
can be observed that this subgraph is acyclic for K12 = 0 but has a cycle as soon as
K12 becomes a free parameter. As a result, the treewidth of G is contingent upon the
zero pattern of K. To deal with this issue, the ODC formulation can be diagonalized
in such a way that its SDP relaxation will have a rank 1, 2 or 3 solution [54]. We
have performed several thousand simulations in [55] and verified that penalized SDP
can be used to design distributed controllers with global optimality degrees as high
as 99% for physical systems.

9. Conclusions. This paper aims to find low-rank solutions of sparse linear ma-
trix inequality (LMI) problems using convex optimization and graph theory. To this
end, the sparsity of a given LMI problem is mapped into a graph and a rigorous theory
is developed to connect the rank of the minimum-rank solution of the LMI problem

31



Fig. 8.3. Effect of a nonzero off-diagonal entry of the controller K: (a) a subgraph of G for
the case where K11 and K22 are the only free parameters of the controller K, (b) a subgraph of G
for the case where K12 is also a free parameter of the controller.

to the sparsity of this graph. Moreover, three graph-theoretic convex programs are
proposed to find low-rank solutions of the underlying LMI problem with the property
that the rank of every solution of these problems has a guaranteed upper bound. Two
of these convex optimization problems may need heavy graph computation, whereas
the third convex program does not rely on any computationally-expensive graph anal-
ysis and is always polynomial-time solvable. The implications of this work are also
discussed for three applications: minimum-rank matrix completion, conic relaxation
for polynomial optimization, and affine rank minimization. Finally, the results are
applied to two case studies for electrical power networks and dynamical systems.
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