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This work examines the behaviors of the online projected gradient ascent (OPGA) algorithm and its variant

in a repeated oligopoly price competition under reference effects. In particular, we consider that multiple

firms engage in a multi-period price competition, where consecutive periods are linked by the reference price

update and each firm has access only to its own first-order feedback. Consumers assess their willingness to

pay by comparing the current price against the memory-based reference price, and their choices follow the

multinomial logit (MNL) model. We use the notion of stationary Nash equilibrium (SNE), defined as the

fixed point of the equilibrium pricing policy, to simultaneously capture the long-run equilibrium and stability.

We first study the loss-neutral reference effects and show that if the firms employ the OPGA algorithm—

adjusting the price using the first-order derivatives of their log-revenues—the price and reference price paths

attain last-iterate convergence to the unique SNE, thereby guaranteeing the no-regret learning and market

stability. Moreover, with appropriate step-sizes, we prove that this algorithm exhibits a convergence rate

of Õ(1/t2) in terms of the squared distance and achieves a constant dynamic regret. Despite the simplicity

of the algorithm, its convergence analysis is challenging due to the model lacking typical properties such

as strong monotonicity and variational stability that are ordinarily used for the convergence analysis of

online games. The inherent asymmetry nature of reference effects motivates the exploration beyond loss-

neutrality. When loss-averse reference effects are introduced, we propose a variant of the original algorithm

named the conservative-OPGA (C-OPGA) to handle the non-smooth revenue functions and show that the price

and reference price achieve last-iterate convergence to the set of SNEs with the rate of O(1/
√
t). Finally,

we demonstrate the practicality and robustness of OPGA and C-OPGA by theoretically showing that these

algorithms can also adapt to firm-differentiated step-sizes and inexact gradients.

Key words : last-iterate convergence, price competition, reference effect, multinomial logit model

*We note that the algorithm and its convergence for the case of loss-neutral reference effects in duopoly competition

(i.e., Theorems 1 and 2) were proposed in our conference proceeding paper (Guo et al. 2024). In this work, however,

we not only improve the convergence rate and regret in the loss-neural scenario but also extend all results to the

oligopoly competition with potentially asymmetric reference effects.
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1. Introduction

The memory-based reference effect is a well-established strategic consumer behavior, which refers

to the phenomenon that consumers shape their price expectations, known as reference prices, based

on their past encounters and then use them to judge the current price. Driven by the ubiquitous

evidence, there has been a growing trend of studies dedicated to exploring effective pricing strategies

in the presence of reference effects. However, the majority of research in this field focuses on

scenarios of a monopolistic seller, and little is known about the role of reference effects within a

competitive framework despite its practical importance.

In a competitive environment, a major challenge is non-transparency, as firms often lack detailed

transaction data about their rivals, which prevents them from seeing a full picture of the market.

Under such settings, one common approach in optimization literature is to assume access to a

first-order oracle (Nesterov 2003), which typically does not require information from competitors.

Despite the simplicity of gradient-based algorithms, they have proven effective in similar pricing

problems. For instance, Goyal et al. (2023) consider an oligopoly price competition under the

multinomial logit (MNL) demand model, aiming to derive the convergence to a Nash equilibrium,

where each firm uses an online gradient descent to estimate the aggregated parameter of all other

firms. Within the context of reference effects, Golrezaei et al. (2020) demonstrate the long-term

market stability of a duopoly price competition under a general online mirror descent algorithm,

where consumer demands are modeled using linear functions.

Enlightened by these real-world practices, we study a repeated oligopoly price competition with

reference effects, where each firm can only access its first-order oracle. In this general multi-player

game, we unify the settings of Golrezaei et al. (2020) and Goyal et al. (2023) by employing the

MNL demand model to capture consumer choices under reference effects, as the logit function

endogenously accounts for interactions among substitutes. Moreover, we also accommodate the

potential asymmetry in the reference effects, i.e., allowing consumers to have different responsive-

ness to a price higher than the reference price versus a price lower with an equal amount. This

asymmetry nature has its theoretical foundation in the renowned prospect theory (Kahneman and

Tversky 1979) and is further justified by abundant empirical evidence (please refer to Section 2.1

for more details). Finally, due to the intertemporal characteristic of the memory-based reference

effect, we consider the game in a dynamic/multi-period framework, i.e., the firms engage in repeated

competitions with consecutive periods linked by reference price updates.

In this article, our goal is to investigate whether firms’ prices and reference prices will be stabilized

in the long run under gradient-based algorithms. The stability here means that price and reference

price paths would converge to some point such that firms have no incentive to deviate from it

unilaterally, which is commonly referred to as the Nash equilibrium in a standard static game. Yet,
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for our problem of interest, the conventional equilibrium notion is inadequate in determining the

stable state, given the evolution of reference prices. For instance, even if an equilibrium is reached

in one period, reference price updates will probably cause firms to deviate from this equilibrium in

subsequent periods. As a result, to jointly capture the market equilibrium and stability, we consider

the concept of stationary Nash equilibrium (SNE), defined as the fixed point of the equilibrium

pricing policy. More precisely, at an SNE, each firm’s equilibrium price with respect to its single-

period revenue is equal to the given reference price, which is formally stated in Definition 2. Once

firms’ prices and reference prices converge to an SNE, they will remain fixed for subsequent periods.

We emphasize that the goal of this paper is different from developing a dynamic pricing policy

that maximizes firms’ cumulative revenue. It is noteworthy that even in the monopolistic market

with a single product and full information, maximizing the cumulative revenue is highly compli-

cated, where the optimal pricing path can be either static or cyclic in the long run (Jiang et al.

2022), and there is even no clear characterization on when each pattern would occur. Hence, in

a competitive market where multiple firms interact with each other, optimizing the entire price

trajectories, i.e., {pt}Tt=0, becomes more intractable. Under such circumstances, a more practical

objective is to examine the convergence to the SNE, which effectively ensures both equilibrium and

market stability. A similar notion of equilibrium has also been studied in Golrezaei et al. (2020).

One common objective in the study of online competitions is to achieve the so-called no-regret

learning, i.e., the regret of each player associated with the sequence of online actions produced

by the algorithm, when compared to the best fixed action in hindsight, grows sub-linearly with

the total number of periods. However, it is important to mention that being no-regret does not

guarantee the convergence to the equilibrium by any means (Mertikopoulos et al. 2018). In our

work, we seek to derive the convergence of both prices and reference prices to the SNE in the

last-iterate sense, where the convergence is assessed based on the output in the last iteration of

the algorithm. This is in contrast with the average-iterate convergence, which is established on

the average of all iterates generated by the algorithm. Achieving the last-iterate convergence is

typically more challenging than merely demonstrating the sublinear regret or the convergence in

the average sense, as the former automatically proves the latter two goals.

To achieve the aforementioned goal, we employ a vanilla gradient descent algorithm called Online

Projected Gradient Ascent (OPGA) for loss-neutral (symmetric) reference effects and further extend

it to Conservative Online Projected Gradient Ascent (C-OPGA) to accommodate loss-averse (asym-

metric) reference effects. Both algorithms only require the first-order feedback received by firms,

thereby making OPGA and C-OPGA practical for implementation (see Appendix A for more details).

Our conclusions show that if firms run the OPGA or C-OPGA algorithm in repeated price competitions

with reference effects, they will reach SNE and achieve market stability in the long term.



4 Guo et al.: Last-iterate Convergence in Games with Reference Effects

1.1. Contributions

We evaluate the convergence of gradient-based learning algorithms in a repeated oligopoly price

competition with reference effects, where the multi-period setting stems from the intertemporal

nature of the reference price. To the best of our knowledge, this is the first work that examines the

stable equilibrium in a general n-player game with the influence of reference effects.

1. Loss-neutral Reference Effects. We study the OPGA algorithm in the loss-neutral scenario,

where each firm adjusts its price using the first-order derivative of its log-revenue. When the firms

execute the OPGA with (possibly firm-differentiated) diminishing step-sizes, we show that their price

and reference price paths achieve last-iterate convergence to the unique SNE, thereby assuring

no-regret learning and leading to the long-run equilibrium and stability. Furthermore, when the

step-sizes decrease appropriately in the order of Θ(log t/t), we demonstrate that the prices and

reference prices converge at a rate of Õ(1/t2) in terms of the squared distance and achieve a

constant dynamic regret.

2. Loss-averse and Gain-seeking Reference Effects. The loss-averse scenario introduces significant

challenges due to the non-smooth revenue function and the non-convex set of SNEs. To navigate

this, we adapt the original OPGA into the C-OPGA algorithm by introducing a conservative pausing

mechanism in the learning process. Specifically, the firm would temporarily pause its price update

if it finds the current price close to stationarity. Under (possibly firm-differentiated) diminishing

step-sizes, we show that the price and reference price paths generated by the C-OPGA achieve last-

iterate convergence to the set of SNEs in terms of the proposed stationarity metric. In addition,

when the step-sizes are chosen in the order of Θ(1/
√
t), we attain a convergence rate of O(1/

√
t).

By contrast, when consumers exhibit gain-seeking reference effects towards any product, we prove

that an SNE cannot exist, thus making it infeasible to simultaneously achieve the equilibrium and

market stability.

3. Convergence Analysis. From the optimization perspective, the analyses of the OPGA and

C-OPGA are related to the studies of online games with gradient feedback and discrete nonlinear

systems. However, the incorporation of the MNL model renders our problem lacking favorable

properties typically required in the literature, such as monotonicity, variational stability, and con-

cavity of the objective function, making existing theories inapplicable. Additionally, unlike standard

online games or nonlinear systems, the dynamic state from the reference price updates and the non-

smoothness introduced by the loss-averse reference effects further perplex the convergence analysis.

To address these challenges, we introduce problem-specific metrics for both OPGA and C-OPGA to

assess the convergence and develop original techniques that exploit the characteristic properties of

the MNL-based revenue functions. Finally, we show that our algorithms are robust in the sense

that the analyses can also be adapted to the inexact gradient oracle, under which the price and

reference price would converge to the neighborhood of the SNE.
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4. Managerial Insights. We believe that achieving convergence to SNE offers a reasonable objec-

tive in practice, given the intractability of optimizing an entire price trajectory in a competitive

market with limited information. By the nature of the SNE, this convergence ensures both long-run

equilibrium and market stability, making the adoption of OPGA and C-OPGA a prudent and effec-

tive strategy in such a market environment. This achievement of stable equilibrium has broader

implications for the ongoing debate on algorithmic collusion in price competitions, referring to

the phenomenon that firms jointly charge higher prices at the expense of consumer welfare. Our

findings demonstrate that OPGA and C-OPGA can effectively guide sellers toward equilibrium rather

than engaging in supra-competitive behaviors, which makes these algorithms less susceptible to

regulatory concerns on potential anti-competitive effects.

1.2. Organization

The rest of the paper is structured as follows. In Section 2, we conduct a literature review on

topics pertinent to our study. Section 3 introduces the model and defines the partial information

structure and the notion of SNE, whose properties are investigated in Section 4. Section 5 is

dedicated to the loss-neutral scenario, where we propose the OPGA algorithm and establish its global

convergence rate and the dynamic regret bound. We then introduce the C-OPGA algorithm for the

loss-averse scenario in Section 6, with the exploration of its convergence. In Section 7, we extend

the convergence results to more practical situations, allowing for firm-differentiated step-sizes and

the inexact first-order oracle. Finally, we conclude this work with a discussion in Section 8. All

formal proofs are documented in the supplemental materials.

2. Related Literature

Our research on the price competition with reference effects under a partial information setting is

related to several streams of literature: modeling of reference effect, pricing with reference effects

in monopolistic and competitive markets, and general convergence results for online games.

2.1. Modeling of Reference Effects

The concept of reference effects can be traced back to the adaptation-level theory, which states that

consumers evaluate prices against the level they have adapted to. Meanwhile, the asymmetry nature

of reference effects is theoretically grounded in the renowned prospect theory (Kahneman and

Tversky 1979), which posits that individuals exhibit loss-averse behaviors, meaning that they weigh

losses more heavily than equivalent gains. In addition to its theoretical foundation, the presence of

reference effects is further corroborated by extensive empirical evidence (see, e.g., Krishnamurthi

et al. (1992), Hardie et al. (1993), Kalyanaram and Winer (1995)).

Extensive research in marketing literature has been dedicated to the formulation of reference

effects, from which two predominant models have emerged: memory-based and stimulus-based
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reference prices (see Briesch et al. (1997) and the references therein). The memory-based reference

model leverages historical prices to form the benchmark, whereas the stimulus-based reference

model posits that price judgments are established at the moment of purchase utilizing current

external information such as the prices of substitutable products. According to the comparative

analysis by Briesch et al. (1997), among different reference models, the memory-based formulation

that relies on a product’s own historical prices, referred to as PASTBRSP, offers the best fit and

strongest predictive power in a multi-product setting. Consequently, our paper adopts this type of

reference price formulation.

2.2. Dynamic Pricing in Monopolistic Market with Reference Effects

We observe a growth trend in the study of price optimization with reference effects within the field

of operations management. The majority of classical works target the monopolistic setting, where

they usually formulate the problem as a dynamic program since the memory-based reference effect

naturally gives rise to the intertemporal feature. Their objectives typically involve determining the

long-run market stability under the optimal strategies. For example, Popescu and Wu (2007) show

that the optimal pricing policy converges and leads to market stabilization under both loss-neutral

and loss-averse reference effects. More recent papers on reference effects primarily concentrate on

the piecewise linear demand in a single-product case and delve into more comprehensive character-

izations of myopic and optimal pricing policies (Chen et al. 2017, Chen and Nasiry 2020). Beyond

the linear demand, Jiang et al. (2022) and Guo et al. (2022) employ the logit model similar to ours,

though within the context of a monopoly. Jiang et al. (2022) emphasize on consumer heterogeneity

and devise a numerical method for computing the optimal policy, whereas Guo et al. (2022) expand

into the multi-product setting and investigate the long-run convergence behavior under the myopic

and optimal pricing.

While the aforementioned studies commonly assume that the firm possesses full knowledge of its

demand function, another line of research tackles the problem in the context of uncertain demand,

where they couple monopolistic price optimization with reference effects and online demand learn-

ing (den Boer and Keskin 2022, Agrawal and Tang 2024). Although these works incorporate learning

components, our paper distinguishes itself in two critical aspects. Firstly, the objectives for the

algorithms are different. While their goals center around designing algorithms to boost the total

revenue from a monopolist’s perspective, our algorithm aims for the simultaneous realization of

Nash equilibrium and market stability under a competitive framework. Secondly, the uncertainties

to be learned reside in distinct areas. Those aforementioned works assume that a monopolist recog-

nizes the demand structure but needs to estimate sensitivity parameters. By contrast, we consider

a competitive environment where a firm knows its own demand but lacks insights into its rivals’

pricing and demand functions.
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2.3. Price Competition with Reference Effects

With the incorporation of reference effects, the existing literature on price competitions primarily

focuses on the perfect information setting. For example, Federgruen and Lu (2016) and Guo and

Shen (2024) examine the equilibrium properties in the single-period price competitions under

different reference price formulations. Colombo and Labrecciosa (2021) analyze the game with

reference effects in a multi-stage, continuous-time framework.

More closely pertinent to our work, Golrezaei et al. (2020) examine the long-run market stability

of a duopoly price competition in a partial information setting. However, our study diverges signifi-

cantly from theirs in four aspects. The first prominent distinction is our inclusion of loss-averse and

gain-seeking reference effects, a factor not considered by Golrezaei et al. (2020). In particularly, we

derive the convergence result in the loss-averse case and establish the non-existence of SNE under

gain-seekingness. The second major improvement is our extension to the oligopoly competition,

i.e., a general n-player game. Under this setting, as opposed to the linear demand used in Golrezaei

et al. (2020), we adopt the logit demand for its suitability to model discrete choices among multiple

products and for its better empirical performance in the presence of reference effects (Wang 2018,

Jiang et al. 2022). Yet, this logit demand imposes great challenges for convergence, as a crucial

step of the analysis in Golrezaei et al. (2020) hinges on demand linearity (see Golrezaei et al. (2020,

Lemma 9.1)), a condition not met by the MNL model. Lastly, our approach to reference price

formulation further sets us apart from Golrezaei et al. (2020). Contrary to their assumption of a

uniform reference price for both products, our model incorporates the product-specific reference

price, which is empirically validated by Briesch et al. (1997) to yield superior performance. These

adaptations, though enriching the model’s expressiveness and flexibility, render analyses in Gol-

rezaei et al. (2020) not generalizable to our setting. For an elaboration on this reasoning, we refer

readers to Appendix B.1.2.

2.4. General Convergence Results for Games

Our problem is also closely related to a stream of theoretical research in online games with first-

order feedback. In this area, a typical question of interest is whether learning algorithms can achieve

some equilibrium for multiple agents who aim to minimize (resp. maximize) their individual loss

(resp. reward) functions. For games with continuous actions, Bravo et al. (2018) and Ba et al.

(2021) show the convergence of online mirror descent to the Nash equilibrium in strongly mono-

tone games. Lin et al. (2020) then relax the strong monotonicity assumption and examine the

last-iterate convergence for games with unconstrained action sets satisfying the so-called “cocoer-

cive” condition. Mertikopoulos and Zhou (2019) establish the convergence of the dual averaging

method under a more general condition called global variational stability, which encompasses the
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cocoercive condition as a sub-case. We point out that in the works cited above, the concavity and

smoothness of the individual reward function are invariably required for the convergence analysis.

By contrast, the firm’s revenue function in our problem is neither concave in its price nor satisfies

any aforementioned properties, and it even becomes non-smooth under loss-averse/gain-seeking

reference effects. Besides, due to the dynamic nature of reference price, the standard notion of

equilibrium fails to characterize the convergence. To address the issues, we adopt the concept of

SNE to jointly capture the equilibrium and market stability. For both loss-neutral and loss-averse

reference effects, we demonstrate that the proposed algorithms provably converge to the SNE.

3. Problem Formulation

3.1. MNL Demand Model with Reference Effects

This study examines an oligopoly price competition that involves potentially loss-averse/gain-

seeking reference price effects. We consider a market with n firms, denoted by set N := {1,2, . . . , n},

where each firm offers a substitutable product with the choice set also labeled by N . In our discrete-

time setting, firms simultaneously set prices at the beginning of each period over an infinite time

horizon. Hence, in the current period, the firm does not observe its competitors’ prices before

setting its own price. We suppose that consumers’ purchase behavior follows the multinomial logit

(MNL) model, an effective framework for capturing the cross-product interactions among various

alternatives. Let p= (pi)i∈N and r= (ri)i∈N be the price and reference price vectors, respectively,

with pt = (pti)i∈N and rt = (rti)i∈N representing those at a specific time period t. The utility for

purchasing product i depends on its posted price pi and the reference price ri, i.e.,

Ui (pi, ri) = ui (pi, ri)+ εi = ai− bipi + c+i · (ri− pi)+ + c−i · (ri− pi)− + εi, ∀i∈N, (1)

where ui(pi, ri) is the deterministic component and εi is the random fluctuation that follows the

i.i.d. standard Gumbel distribution. For the parameters in Eq. (1), ai is the intrinsic value for

product i, and bi denotes its price sensitivity. In the presence of reference effects, c+i and c−i corre-

spond to the reference price sensitivities to gains and losses, respectively. When ri > pi, consumers

would perceive gains or discounts, whereas ri < pi is regarded as losses or surcharges. The nota-

tions (·)+ := max{·,0} and (·)− := min{·,0} are adopted to account for consumers’ potentially

asymmetric reactions to gains and losses, respectively.

According to the random utility maximization theory (McFadden 1974), when εi follows the

Gumbel distribution, the market share for product i is given by

di
(
p,r
)
=

exp
(
ui(pi, ri)

)
1+

∑
k∈N exp

(
uk(pk, rk)

) , ∀i∈N. (2)
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Consequently, the expected revenue for firm i can be expressed as

Πi(p,r) = pi · di(p,r), ∀i∈N. (3)

Given the above definitions, at period t, the market share and revenue for firm i∈N are denoted

by di
(
pt,rt

)
and Πi(p

t,rt), respectively.

Acknowledging the potential asymmetry in consumer sensitivities to gains and losses, we classify

reference effects into three types—loss-averse, loss-neutral, and gain-seeking. Here, the loss-neutral

is also known as symmetric reference effects, while the loss-averse and gain-seeking are collectively

referred to as the asymmetric reference effects.

Definition 1 (Types of Reference Effects). For each product i∈N , consumers are loss-

averse when c+i < c−i , loss-neutral when ci := c+i = c−i , or gain-seeking when c+i > c−i .

We assume the sensitivities to be positive, i.e., bi, c
+
i , c

−
i > 0 for i∈N , which reflects consumer

behaviors toward substitutes. Moreover, we stipulate the feasible range for both price and reference

price to be P = [p, p] with p, p > 0. This price constraint is well-aligned with the real-world instances

of price floors and ceilings and commonly adopted in literature on price optimization with reference

effects (see, e.g., Chen et al. (2017)).

We formulate the reference price using the brand-specific past prices (PASTBRSP) model proposed

by Briesch et al. (1997), which posits that the reference price is product-specific and memory-based.

For each product i, the reference price is constructed by applying exponential smoothing to its own

historical prices, which is described as

rt+1
i = αrti +(1−α)pti, ∀i∈N, ∀t≥ 0, (4)

where α∈ [0,1] is a memory parameter that controls the rate at which the reference price evolves.

We remark that the theories established in our work can readily be generalized to scenarios with

time-varying α, although for clarity, we present the static α here.

3.2. Equilibrium and Market Stability

The goal of our paper is to analyze a gradient-based pricing update mechanism and determine

whether it leads to a stable equilibrium state over the long term. Before introducing the notion of

stable equilibrium considered in this work, we first define the equilibrium pricing policy, denoted

by pE(r) =
(
pEi (r)

)
i∈N

, which is a function that maps reference price to price and achieves the pure

strategy Nash equilibrium in the single-period game, i.e.,

pEi (r) = argmax
pi∈P

{
Πi

(
(pi,p

E
−i(r)),r

)}
= argmax

pi∈P

{
pi · di

(
(pi,p

E
−i(r)),r

)}
, ∀i∈N, (5)

where the subscript −i :=N\{i} denotes the set of all products excluding product i, and the vector

pE
−i(r) =

(
pEj (r)

)
j∈N\{i} represents the equilibrium price of all products except for product i.
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Definition 2 (Stationary Nash equilibrium). A stationary Nash equilibrium (SNE) is

defined as the fixed point of the equilibrium pricing policy. Specifically, a price vector p⋆ is a

stationary Nash equilibrium if pE(p⋆) = p⋆, i.e., the equilibrium price is equal to its reference price.

From Eq. (5) and Definition 2, we observe that an SNE possesses the following two properties:

• Equilibrium. The revenue function for every firm i∈N satisfies Πi

(
(pi,p

⋆
−i),p

⋆
)
≤Πi

(
p⋆,p⋆

)
for all pi ∈ P, i.e., when the reference price r and the price of other firms p−i =

(
pj
)
j∈N\{i} are

both set at the SNE, the best-response price for firm i is equal to its SNE price p⋆i . Therefore, in

such a case, firm i has no incentive to deviate from the SNE.

• Stability. If the price and the reference price attain the SNE at some period t, they would

remain unchanged in the following periods, i.e., pt = rt = p⋆ implies that rτ = pτ = p⋆,∀τ ≥ t+1.

Together, the SNE jointly characterizes the equilibrium and the market stability, implying that

when the market reaches the SNE, the firms have no incentive to deviate and will maintain the

same price in subsequent competitions.

As our study integrates the aspects of reference effects and competition, it is pertinent to two

special cases that exclusively consider one of these aspects. When c+i = c−i = 0, our problem reduces

to the standard price competition without reference effects, a setting studied by Goyal et al. (2023).

Specifically, they explore the sequential price competition and mainly focus on learning to price—

firms gradually adjust their prices by learning competitors’ aggregated parameters, with the goal

of reaching a Nash equilibrium. However, since Goyal et al. (2023) do not incorporate reference

effects and assume uniform price sensitivities, i.e., bi ≡ b for all i ∈N , their analyses and findings

are greatly different from ours. When |N |= 1, indicating there is no competition, our problem is

equivalent to price optimization in the monopolistic market with reference effects. The relevant

literature includes Jiang et al. (2022) and Guo et al. (2022), where they investigate long-term

market behaviors—either convergent or cyclic—under the optimal dynamic pricing policy. Yet,

both studies diverge significantly from ours as they are conducted within a perfect information

setting typical for monopolies and thus lack the learning components central to this study.

3.3. First-order Feedback

We assume that the firms can access a first-order oracle as a feedback mechanism, which is a

common assumption in the optimization literature (Nesterov 2003). For every firm i∈N , this oracle

outputs the derivative of its log-transformed revenue function, i.e., ∂ log
(
Πi(p,r)

)
/∂pi = 1/pi+(bi+

ci) [di(p,r)− 1] in the loss-neutral scenario. Under loss-averse/gain-seeking reference effects, the

oracle returns two distinct values by substituting ci in the derivative with both c+i and c−i . To access

this oracle, the firm does not require any information about its competitors, including their prices,

reference prices, and market shares, as well as the scheme behind reference price updates. It suffices
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for each firm i to know its previously posted price, own sensitivity parameters (bi, c
+
i , c

−
i ), and

market share di(p,r). In addition, if the firms have a good understanding of their own sensitivity

parameters from operational experiences, the first-order feedback reduces to the bandit feedback,

since knowing only the revenue Πi(p,r) is sufficient for firm i to compute ∂ log
(
Πi(p,r)

)
/∂pi.

Otherwise, it is also feasible for firms to estimate their sensitivity parameters while protecting their

privacy. This can be achieved through temporary cooperation between firms, during which one firm

applies a slight perturbation to its price while the others maintain the previous prices. We provide

a detailed elaboration and a step-by-step methodology for this idea in Appendix A. Admittedly,

any parameter estimation may incur some errors, the impact of which is further explored as an

extension in Section 7.2.

4. Properties of SNE

To guarantee that long-run equilibrium and market stability are achievable, it is important to

investigate whether an SNE always exists. In this section, we focus on the existence, structure, and

uniqueness of SNE under different types of reference effects. This endeavor is far from trivial as

the revenue function is non-concave and potentially non-smooth due to the MNL choice model and

loss-averse/gain-seeking reference effects. By Definition 2, an SNE is equivalent to the fixed-point

of the equilibrium pricing policy pE(·) defined in Eq. (5). Using the optimality condition for the

Nash equilibrium in the single-period game, we reveal that the existence of an SNE is contingent

on the presence of gain-seekingness. The formal proof of Proposition 1 is deferred to Appendix C.1.

Proposition 1 (Existence and Structure of SNE). Let S be the set of SNE(s). Then, the

following statements hold:

• If there exists any gain-seeking product, an SNE never exists, i.e., S is empty.

• Otherwise, with only loss-averse and loss-neutral products, an SNE always exists, and S can

be expressed as

S =

{
p⋆

∣∣∣∣∣ p⋆i ∈
[

1(
bi + c−i

)
·
(
1− di(p⋆,p⋆)

) , 1(
bi + c+i

)
·
(
1− di(p⋆,p⋆)

)] , ∀i∈N} . (6)

As indicated by Proposition 1, the presence of one or more gain-seeking products implies the

non-existence of SNE, suggesting that the long-run equilibrium and market stability cannot be

achieved simultaneously. Therefore, the remaining part of the paper will be devoted to the loss-

neutral and loss-averse scenarios. To avoid ambiguity, we provide the precise definition for each

scenario: the loss-neutral scenario refers to when all products have loss-neutral reference effects;

the loss-averse scenario refers to when at least one product displays loss-averse reference effects,

with the others being either loss-neutral or loss-averse.
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It is noteworthy that the characterization in Eq. (6) is not a simple box constraint since the two

boundaries of the interval are functions depending on p⋆. Under the loss-neutral scenario where

c−i = c+i , the interval collapses into a single function of p⋆, suggesting the potential uniqueness of

the SNE. In the next proposition, we confirm this uniqueness and further provide a bound for the

set S in terms of problem parameters, with its proof documented in Appendix C.2.

Proposition 2 (Uniqueness of SNE). In loss-averse and loss-neutral scenarios where SNE(s)

always exists, its uniqueness depends on the presence of any loss-averse product. Specifically,

• The SNE is unique, i.e., S is a singleton, if and only if all products are loss-neutral.

• Otherwise, with any loss-averse product, there always exists a continuum of SNEs, and S can

be a non-convex set.

Furthermore, any SNE p⋆ ∈ S can be bounded as

1

bi + c−i
< p⋆i <

1

bi + c+i
+

1

bi
W

(
bi

bi + c+i
exp

(
ai−

bi
bi + c+i

))
, ∀i∈N, (7)

where W (·) is the Lambert W function (see definition in Eq. (C.25)).

In Figure 1, we illustrate the non-convexity of the set S using a two-product example, where both

exhibit loss-averse reference effects (i.e., c+i < c−i for i ∈ {1,2}, as outlined in the figure caption).

The shaded area in Figure 1a depicts the set of SNEs, with the four colored curves corresponding

to the boundaries of intervals defined in Eq. (6). Upon closer inspection of the region surrounding

the upper green curve, as displayed in Figure 1b, the non-convexity of S becomes evident, marked

by the black dashed line that represents a straight path between two vertices.

Without loss of generality, we assume that the feasible price range Pn = [p, p]n is sufficiently large

to contain the set of SNE(s), i.e., S ⊆ [p, p]n. Proposition 2 provides a quantitative characterization

for this assumption: it suffices to choose the price lower bound p to be any real number between(
0,mini∈N{1/(bi + c−i )}

]
, and the price upper bound p can be set to any value satisfying that

p≥max
i∈N

{
1

bi + c+i
+

1

bi
W

(
bi

bi + c+i
exp

(
ai−

bi
bi + c+i

))}
. (8)

This assumption is mild since the bound in Eq. (8) is independent of both the price and reference

price and does not grow exponentially with respect to any parameters. Hence, there is no need

for p to be excessively large. For example, when a1 = a2 = 10 and b1 = b2 = c+1 = c+2 = 1, the upper

bound from Eq. (8) becomes p≥ 7.3785.
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Figure 1 Illustration for the Non-convexity of S in the Loss-averse Scenario. The Shaded Region

Represents S and the Colored Curves Represent the Boundaries of S.

(Parameters: (a1, b1, c
+
1 , c

−
1 ) = (5.88,4.20,1.17,3.63) and (a2, b2, c

+
2 , c

−
2 ) = (5.32,1.16,1.77,4.12).)

(a) Global view. (b) Enlarged local view.

5. Loss-neutral: Online Projected Gradient Ascent

We first consider the loss-neutral scenario and explore the convergence behavior of the price and

reference price paths under the Online Projected Gradient Ascent (OPGA) method, as outlined in

Algorithm 1. Under the setting of first-order feedback, the firm is incapable of computing either

the equilibrium price, as defined in Eq. (5), or the best-response price, i.e., the optimal response

to the competitors’ previous-period prices and all firms’ current reference prices. While these

two commonly studied pricing strategies are impractical due to the lack of information about

competitors, our OPGA algorithm provides a feasible and effective way for firms to enhance revenues

based on gradient feedback.

In the OPGA algorithm, firms update their prices using the first-order derivatives of log-revenues

(see Lines 3–5). We note that the derivative of the log-revenue in Eq. (10) differs from that of the

standard revenue by a scaling factor equal to the revenue itself, i.e.,

∂ log
(
Πi(p,r)

)
∂pi

=
1

Πi(p,r)
·
∂
(
Πi(p,r)

)
∂pi

, ∀i∈N. (9)

Therefore, the price updates can be equivalently viewed as an adaptively regularized gradient ascent

using the standard revenue function, where the regularizer is 1/Πi(p
t,rt) for firm i at time t. When

executing the algorithm, firms do not need to know their own reference prices, and the updates of

reference prices in Line 7 are automatically handled by the market. For now, we assume all firms
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have the same sequence of step-sizes {ηt}t≥0 in the learning process. In Section 7.1, we extend our

results to a more general setting where each firm i can adopt different step-sizes {ηt
i}t≥0.

Algorithm 1: Online Projected Gradient Ascent (OPGA)

1 Input: Initial reference price r0, initial price p0, and step-sizes {ηt}t≥0.

2 for t= 0,1,2, . . . do

3 for i∈N do

4 Compute the derivative from price and market share of firm i at period t:

Dt
i←

∂ log
(
Πi(p

t,rt)
)

∂pi
=

1

pti
+(bi + ci) · di(pt,rt)− (bi + ci). (10)

5 Update posted price: pt+1
i ← ProjP (pti + ηtDt

i).

6 end

7 Update reference price: rt+1← αrt +(1−α)pt.

8 end

While our problem is related to two research topics—multi-player online games and discrete

nonlinear systems, the existing theories and techniques in those areas are insufficient for the con-

vergence analysis of the OPGA algorithm. Below, we briefly introduce how our problem can be

transformed into these more standard formulations and highlight the analytical challenges involved.

For a more comprehensive explanation, we direct readers to Appendix B.

• Standard 2n-player Online Game. By adding n virtual firms to represent the reference

price updates, we can convert the original n-player game with underlying dynamic states (i.e.,

reference prices are non-stationary in time) into a standard 2n-player without such states. However,

analyzing this 2n-player game poses a great challenge due to the absence of certain favorable

properties in the objective functions of the real firms (i.e., revenues). These properties, such as

strong monotonicity (Lin et al. 2020) or variational stability (Mertikopoulos and Zhou 2019), are

typically crucial in proving the convergence of online games. Moreover, while the real firms have the

flexibility to dynamically adjust their step-sizes, the learning rate for the virtual firms is fixed to the

constant (1−α), where α is the memory parameter for reference price updates. This disparity also

hinders the direct application of the existing results from multi-agent online learning literature, as

their results typically require the step-sizes of all agents to either diminish at comparable rates or

remain at a sufficiently small constant (e.g., Mertikopoulos and Zhou (2019)). For details on the

transformation to the standard 2n-player game and further discussions on the two main difficulties

in the analysis, please refer to Appendix B.1.
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• Nonlinear Dynamical System. The second approach involves translating the OPGA algo-

rithm into a discrete nonlinear dynamical system by treating (pt+1,rt+1) as a vector-valued function

of (pt,rt), i.e., (pt+1,rt+1) = f(pt,rt) for some function f(·). In this context, analyzing the conver-

gence of the OPGA is equivalent to examining the stability of the fixed point of f(·), which is related

to the spectral radius of the Jacobian matrix ∇f(p⋆,p⋆) (see Arrowsmith et al. (1990)). Never-

theless, the SNE lacks a closed-form expression, making it difficult to calculate the eigenvalues of

∇f(p⋆,p⋆). In addition, function f(·) is non-smooth due to the presence of the projection operator

and can become non-stationary when the firms adopt time-varying step-sizes, such as diminish-

ing step-sizes. Finally, typical results in dynamical systems only guarantee the local convergence

(Khalil 2002), i.e., the asymptotic stability of the fixed point, whereas our goal is to establish the

global convergence of both the price and reference price. We provide more details on the transition

to a dynamical system and its challenges in Appendix B.2.

Despite the aforementioned challenges, we manage to show the global convergence of Algorithm

1 by developing a novel analysis distinct from all existing approaches. Our result is based on

the last iterate of the algorithm, i.e., limt→∞pt = limt→∞ rt = p⋆. This last-iterate (or point-wise)

convergence indicates that the OPGA algorithm provably achieves no-regret learning, i.e., in the

long run, the algorithm performs at least as well as the best fixed action in hindsight. However, we

remark that the reverse direction is not necessarily true: being no-regret does not guarantee the

convergence at all, let alone the convergence to an equilibrium (Mertikopoulos et al. 2018, 2019). In

fact, the players may exhibit entirely unpredictable and chaotic behaviors under a no-regret policy

(Palaiopanos et al. 2017), with the only exception being the finite games where players compete

for finitely many rounds, a category that our problem does not fall into.

5.1. Convergence Results for OPGA

In this section, we investigate the convergence properties of the OPGA algorithm. We first establish

the global last-iterate convergence to the unique SNE in Theorem 1. Subsequently, we show in

Theorem 2 that this convergence exhibits a rate of Õ(1/t2) in terms of squared distance, given that

the step-sizes are selected appropriately. Lastly, in Theorem 3, we demonstrate that Algorithm 1

achieves a constant regret.

Theorem 1 (Global Convergence of OPGA). In the loss-neutral scenario, suppose all firms

adopt Algorithm 1 with non-increasing step-sizes {ηt}t≥0 such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞.

Then, their price and reference price paths converge to the unique stationary Nash equilibrium.

As discussed above, the existing techniques for online games and dynamical systems are not

applicable to our problem. In response, we develop an original method that leverages the equilib-

rium structure of the MNL model. Below, we provide a high-level proof sketch of Theorem 1, with
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the full proof deferred to Appendix D. To measure the convergence, we introduce the following

metrics:

κ(p) :=
∑
i∈N

|p⋆i − pi|
bi + ci

, κϵ(p) :=
∑
i∈N

max

{
|p⋆i − pi|
bi + ci

− ϵ,0

}
, (11)

where ϵ can take any positive value. By definition, κ(p) is a weighted ℓ1-distance function that

directly measures the proximity of p to p⋆, and κϵ(p) is the soft version of κ(p) that allows some

tolerance ϵ > 0 for each product i ∈ N , which satisfies that κ(p) ≤ κϵ(p) + nϵ for all p ∈ Pn.

Due to the choice of diminishing step-sizes, we demonstrate that the reference price path always

approaches the price path in the long run. Then, using the characteristic property of the MNL

demand, we show that the gradient ascent step of the price moves toward the SNE in terms of

κϵ(·) for sufficiently large t, i.e., when the reference price and price are reasonably close. This

helps us establish a recursive relation between κϵ(p
t+1) and κϵ(p

t), which further guarantees that

limt→∞ κ(pt)≤ limt→∞ κϵ(p
t)+nϵ=O(ϵ). Since ϵ can be arbitrarily close to zero, we conclude the

global convergence of the price path to the SNE. Finally, as the reference price results from the

exponential smoothing of historical prices, its convergence follows from that of the price path.

We note that the only prerequisite for the convergence is the diminishing step-sizes satisfying

limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞. This condition is widely seen in the online game literature (see,

e.g., Mertikopoulos and Zhou (2019), Ba et al. (2021)). Since the firms are likely to become more

acquainted with their competitors through repeated interactions, it is reasonable to assume that

they would be more conservative in price adjustments over time, leading to a gradual reduction in

learning rates. Though a uniform sequence of step-sizes is used here, we generalize Theorem 1 to

accommodate firm-differentiated step-sizes in Section 7.1.

While Theorem 1 shows the asymptotic convergence of the OPGA under general diminishing step-

sizes, it does not tell the relation between the convergence rate and the choice of step-sizes. In the

next theorem, we demonstrate that under specified step-sizes, the OPGA achieves a non-asymptotic

convergence rate of Õ(1/t2) in terms of squared distance, where the symbol Õ(·) hides the logarithm
terms. Note that the notation ∥·∥ specifically refers to ℓ2-norm.

Theorem 2 (Convergence Rate of OPGA). In the loss-neutral scenario, suppose all firms

adopt Algorithm 1 with step-sizes ηt =
Cη log(t+1)

t+1
for t≥ 2. Then, there exist constants T1 and Ĉκ

such that when Cη > 2p2/ log 2, it holds for all t >max{2T1,10} that

κ(pt) =
∑
i∈N

|p⋆i − pti|
bi + ci

≤ Ĉκ

log t

t
= Õ

(
1

t

)
. (12)

Furthermore, in terms of the squared distance, there exist constants Cp and Cr such that for all

t >max{2T1,10}, it holds that∥∥p⋆−pt
∥∥2 ≤Cp

(
log t

t

)2

= Õ
(
1

t2

)
,
∥∥p⋆− rt

∥∥2 ≤Cr

(
log t

t

)2

= Õ
(
1

t2

)
. (13)
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The constants T1, Ĉκ, Cp, and Cr are explicitly defined in Table EC.1.

The proof of Theorem 2 refines that of Theorem 1 by optimizing the choice of step-sizes. In

particular, we separate the learning process into two stages, where the first stage accounts for the

convergence of reference price to price, and the second stage refers to the latter periods when the

recursion on {κϵ(p
t)}t≥0 is applicable. Utilizing an inductive argument, we first show in Lemma

EC.2 that the difference ∥pt− rt∥ decreases at a similar rate as the step-sizes. Then, during the

second stage where the reference price and price are close, we unroll the recursion and establish

a convergence rate of Õ(1/t) for {κ(pt)}t≥0, which further implies ∥p⋆−pt∥2 = Õ(1/t2) since κ(·)

is a weighted ℓ1-norm. Finally, the convergence rate of the reference price path can be determined

through a triangular inequality, i.e., ∥p⋆− rt∥2 ≤ 2∥p⋆−pt∥2+2∥pt− rt∥2. The full proof of The-

orem 2 is relegated to Appendix E.

For the convergence rate in Eq. (13), we remark that the requirement t > max{2T1,10} can

be further relaxed by taking larger constants Cp and Cr, since both ∥p⋆−pt∥2 and ∥p⋆− rt∥2

are upper-bounded by n(p− p)2. Additionally, the omission of step-sizes condition Cη > 2p2/ log 2

would not change the order of the convergence rate but only impact the constants Cp and Cr.

Theorem 2 demonstrates a faster convergence rate compared to the rate of O(1/t) in Golrezaei

et al. (2020) for their duopoly competition with reference effects under linear demand. Besides,

despite the absence of many desirable properties such as concavity and variational stability, our

Õ(1/t2) rate is better than the results for standard games with such properties, e.g., Mertikopoulos

and Zhou (2019), Lin et al. (2020).

Remark 1 (Constant step-sizes). The convergence analysis presented in this work can be

readily extended to accommodate constant step-sizes, i.e., ηt ≡ η for some η > 0. Specifically, we

can show that the price and reference price converge to a O(η)-neighborhood of the SNE, which is

slightly weaker than the precise convergence under diminishing step-sizes. The reason is that, due

to the reference price update, constant step-sizes would allow oscillations of the price path around

the SNE, a phenomenon that has already been illustrated in Figure 2b. The magnitude of such

oscillations is bounded by the size of η.

We conduct numerical experiments to illustrate the convergence behavior of the OPGA algorithm.

Without loss of generality, we consider the two-product case with N = {1,2}. Figures 2a and 2b

present a pair of examples that only differ in the step-sizes. Their long-run behaviors highlight

the crucial role of {ηt}t≥0 in attaining convergence. In particular, Figures 2a verifies Theorem 1

by demonstrating that the price and reference price paths converge to the unique SNE when the

chosen diminishing step-sizes fulfill the criteria specified by Theorem 1. By contrast, the over-large

constant step-sizes in Figure 2b impede convergence and lead to cyclic patterns in the long run.
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Figure 2 Price and Reference Price Paths Under OPGA

(Parameters: (a1, b1, c1) = (8.70,2.00,0.82), (a2, b2, c2) = (4.30,1.20,0.32), (r01, r
0
2) = (0.10,2.95),

(p01, p
0
2) = (4.50,5.00), and α= 0.90.)

(a) Convergence with ηt = log(t+1)

t+1
. (b) Cyclic pattern with ηt = 1.

In the remaining part of this section, we derive the regret of Algorithm 1. The standard (static)

regret compares an online algorithm with the best fixed decision in hindsight. The rationale behind

the static metric is that this best fixed decision performs adequately well across all iterations.

Nevertheless, given the evolving underlying state (i.e., reference price) in our context, such an

assumption becomes overly optimistic. To address this limitation, we choose the dynamic regret

as the performance measure, defined as the difference between cumulative revenue attained by

an online algorithm and a sequence of best decisions in hindsight. The dynamic regret is strictly

stronger than the static regret in a non-stationary environment, as the latter only benchmarks

against the single best fixed action over all rounds. Let D-Regreti(T ) denote the dynamic regret

for firm i over T periods, which is defined as

D-Regreti(T ) :=
T∑

t=1

[
max
pi∈P

{
Πi

(
(pi,p

t
−i),r

t
)}
−Πi(p

t,rt)

]
. (14)

Theorem 3 (Dynamic Regret Bound). In the loss-neutral scenario, if all firms adopt Algo-

rithm 1 with step-sizes {ηt}t≥0 satisfying limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞, the dynamic regret of

each firm grows in a sublinear rate, i.e.,

lim
T→∞

1

T
×D-Regreti(T ) = 0, ∀i∈N. (15)

Furthermore, if the step-sizes are specified as ηt =
Cη log(t+1)

t+1
for t ≥ 2, there exist constants T1

and CR,i such that when Cη > 2p2/ log 2, it holds that

D-Regreti(T )≤ p ·max{2T1,10}+2CR,i =O (1) , ∀T ≥ 1, ∀i∈N, (16)

where constants T1 and CR,i are explicitly defined in Table EC.1.
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Theorem 3 shows that the OPGA algorithm yields a sublinear dynamic regret for any non-

increasing step-sizes satisfying limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞, the same condition as described in

Theorem 1. Moreover, it achieves a constant regret when the step-sizes are selected as ηt =
Cη log(t+1)

t+1

for all t≥ 2, which is in accordance with the specifications in Theorem 2. In proving Theorem 3,

we let pB,t
i := argmaxpi∈P

{
Πi

(
(pi,p

t
−i),r

t
)}

. Then, using the smoothness of the revenue function,

we can upper-bound the regret at period t through

max
pi∈P

{
Πi

(
(pi,p

t
−i),r

t
)}
−Πi(p

t,rt)≤
∂Πi

(
(pB,t

i ,pt
−i),r

t
)

∂pi
·
(
pti− pB,t

i

)
+
hi

2
(pB,t

i −pti)2 ≤
hi

2
(pB,t

i −pti)2,

where hi denotes the smoothness parameter and the second inequality is due to the single-period

optimality of pB,t
i . We further upper-bound the quadratic term (pB,t

i −pti)
2 by the squared distance

∥pt−p⋆∥2 and ∥rt−p⋆∥2, which allows us to apply the results from Theorems 1 and 2. This also

confirms that the convergence to SNE is stronger than purely being no-regret. The complete proof

of Theorem 3 can be found in Appendix F.

6. Loss-averse: Conservative Online Projected Gradient Ascent

As demonstrated in Proposition 1, the presence of any gain-seeking reference effect precludes the

existence of SNE, making it impossible to obtain the equilibrium and market stability at the

same time (some numerical experiments are provided in Appendix K). Therefore, this section

concentrates on the loss-averse scenario, where consumers exhibit loss-aversion toward at least one

product, i.e., c−i ≥ c+i for all i∈N , with at least one inequality being strict.

From Proposition 2, the set of SNEs under loss-averse reference effects is not confined to a

single point but forms a continuum that can be non-convex. Thus, while it is natural to assess

the convergence using the distance between the current price and the unique SNE point p⋆ in the

loss-neutral case, such distance-based metrics are no longer well-defined in the loss-averse scenario

due to the non-convexity of the set S. Inspired by the criteria for stationarity found in the non-

convex non-smooth optimization literature (see, e.g., Li et al. (2020)), we propose a novel metric to

evaluate the convergence under loss-averse reference effects, taking both price and reference price

into account. For any given pair of (p,r), we define the metric κ̃(p,r) as follows

κ̃(p,r) := ∥p− r∥+
∑
i∈N

dist
(
0,Hull

{
D−

i (p,r),D
+
i (p,r)

})
, (17)

where dist(·, ·) denotes the Euclidean distance function, Hull{·, ·} refers to the convex hull of the

input points, and the functions D−
i (·, ·) and D+

i (·, ·) are defined as

D−
i (p,r) :=

1

pi
+(bi + c−i ) · di(p,r)− (bi + c−i ), (18a)

D+
i (p,r) :=

1

pi
+(bi + c+i ) · di(p,r)− (bi + c+i ). (18b)
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In the loss-averse scenario, given that c−i ≥ c+i , the term dist
(
0,Hull{D−

i (p,r),D
+
i (p,r)}

)
actually

measures the distance between 0 and the interval
[
D−

i (p,r),D
+
i (p,r)

]
. The metric κ̃(p,r) consists

of two components, where the first part quantifies the distance between the price and the reference

price, and the second part evaluates the stationarity of the current price. For any specified pair of

(p,r) with pi ̸= ri, it is evident from Eq. (18) that exactly one of D+
i (p,r) and D−

i (p,r) is equal

to the derivative of log-revenue for firm i. Meanwhile, the other quantity can be regarded as the

virtual derivative assuming the opposite reference price sensitivity (with di(p,r) still being the true

market share). For instance, when pi < ri, the effective reference price sensitivity should be c+i , and

thereby D+
i (p,r) = ∂ log

(
Πi(p,r)

)/
∂pi is the true derivative. The other function D−

i (p,r) is the

virtual derivative and can be obtained by differentiating log
(
Πi(p,r)

)
as if the effective reference

price sensitivity is c−i . We remark that when pi = ri, the terms D+
i (p,r) and D−

i (p,r) correspond

to the left-hand and right-hand derivatives of its log-revenue, respectively.

In the next proposition, we show that κ̃(p,r) is a well-defined metric for determining the con-

vergence to SNEs. The proof of this proposition can be found in Appendix C.3.

Proposition 3. The set of SNEs can be equivalently expressed as S = {p ∈ Pn | κ̃(p,p) = 0},

where κ̃(·, ·) is the metric defined in Eq. (17).

Thus, given the compactness of Pn and the continuity of κ̃(·, ·), Proposition 3 ensures that a

price vector p is sufficiently close to S if and only if κ̃(p,p) is being small enough. Motivated by

this implication, we introduce the concept of ϵ-approximated SNE, abbreviated as ϵ-SNE.

Definition 3 (ϵ-SNE). For any ϵ > 0, a price vector p is an ϵ-SNE if κ̃(p,p)< ϵ.

Below, we focus on designing an algorithm to find an ϵ-SNE for any given ϵ > 0. According

to Proposition 3, when ϵ is sufficiently small, the identified point is guaranteed to be a good

approximation for SNEs. To deal with the non-smoothness induced by the loss-averse reference

effects, we propose a modified algorithm called Conservative Online Projected Gradient Ascent

(C-OPGA), as detailed in Algorithm 2. The name of this algorithm reflects its more conservative

approach compared to the original OPGA, where the C-OPGA incorporates pausing criteria (see Line

5 in Algorithm 2) to refine the process of price updates.

Next, we walk through the details of the C-OPGA algorithm. During each period, the firm computes

both true and virtual derivatives of its log-revenue (see Eq. (19)). We note that even though firm i

may not discern whether Dt,+
i or Dt,−

i is the true derivative in the partial information environment,

it can still compute both quantities through the feedback di(p
t,rt) with the knowledge of reference

price sensitivities. These derivatives are then input into the pausing criteria in Line 5, where the

mechanism can be understood as follows: When the term dist
(
0,Hull{Dt,−

i ,Dt,+
i }

)
falls below a
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Algorithm 2: Conservative Online Projected Gradient Ascent (C-OPGA)

1 Input: Initial reference price r0, initial price p0, step-sizes {ηt}t≥0, and threshold ϵ.

2 for t= 0,1,2, . . . do

3 for i∈N do

4 Compute the true and virtual derivatives from price and market share at period t:

Dt,+
i ←D+

i (p
t,rt) =

1

pti
+(bi + c+i ) · di(pt,rt)− (bi + c+i ), (19a)

Dt,−
i ←D−

i (p
t,rt) =

1

pti
+(bi + c−i ) · di(pt,rt)− (bi + c−i ). (19b)

5 if Dt,+
i >−ϵ and Dt,−

i < ϵ then // Pausing criteria.

6 Maintain posted price: pt+1
i ← pti.

7 else

8 Construct the update direction as an arbitrary convex combination of the true

and virtual derivatives at period t:

Dt
i←wt

iD
t,+
i +(1−wt

i)D
t,−
i , (20)

where the coefficient wt
i takes any value within the interval [0,1].

9 Update posted price: pt+1
i ← ProjP (pti + ηtDt

i).

10 end

11 end

12 Update reference price: rt+1← αrt +(1−α)pt.

13 end

predetermined threshold ϵ, it triggers a pausing mechanism that stops the price update for the

current round (see Lines 5–6). Otherwise, when the pausing criteria are not met, the firm adjusts

its price according to the convex combination of the true and virtual derivatives (see Lines 7–9).

Finally, the algorithm concludes with the market performing the reference price updates.

There are several benefits of introducing the pausing mechanism in the C-OPGA algorithm. First

and foremost, in the case of non-smooth objective functions, the standard vanilla sub-gradient

ascent algorithm, which updates the price using the true sub-derivative without any pausing crite-

ria, is not an ascent method even under sufficiently small step-sizes (Boyd et al. 2003). In addition,

acquiring this true sub-derivative mandates firms to collect additional information about their ref-

erence prices to determine the effective sensitivity between c+i and c−i . We further illustrate the

advantage of the pausing mechanism by the following two examples in Figure 3, which compares

the vanilla sub-gradient ascent to the C-OPGA algorithm under the same set of parameters and
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Figure 3 Comparison of Trajectories Between Vanilla Sub-gradient Ascent and C-OPGA

(Parameters: (a1, b1, c
+
1 , c

−
1 ) = (8.19,1.48,0.34,1.50), (a2, b2, c

+
2 , c

−
2 ) = (4.59,1.80,0.31,1.14),

(r01, r
0
2) = (0.24,2.19), (p01, p

0
2) = (2.50,2.75), α= 0.90, and ηt = 1/

√
t+1.)

(a) Cyclic pattern with vanilla sub-gradient ascent. (b) Convergence with C-OPGA.

initializations. The price and reference price paths generated by the vanilla sub-gradient ascent (see

Figure 3a) initially display signs of convergence, but start to oscillate in a cyclic pattern around the

90th period. This instability is typically observed when the price and the reference price are in close

proximity. Under such conditions, the sign of the difference (rti − pti) may alternate in consecutive

periods, thereby inducing a jump discontinuity in the derivative due to the discrepancy between

c+i and c−i . By contrast, in Figure 3b, the convergence of price and reference price paths under the

C-OPGA highlights the effectiveness of its pausing criteria. Indeed, it is easy to verify that the paths

generated by the C-OPGA converge to an interior point of the SNE set.

Remark 2. In Algorithm 2, while all firms are assumed to use a uniform threshold ϵ, such an

assumption is made only for the brevity of presentation. It is worth mentioning that the convergence

results in Section 6.1 extend directly to cases with product-specific and time-varying thresholds.

6.1. Convergence Results for C-OPGA

Compared to the loss-neutral scenario, the loss-averse reference effects introduce additional chal-

lenges in convergence analysis due to the non-smoothness of the revenue function. Despite these

complexities, we successfully develop an original method that achieves global last-iterate conver-

gence of the C-OPGA, as presented in the following theorem.

Theorem 4 (Global Convergence of C-OPGA). In the loss-averse scenario, let the step-sizes

{ηt}t≥0 be a non-increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞. Then, for any
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reasonably small ϵ > 0, the price and reference price paths generated by Algorithm 2 with the step-

sizes {ηt}t≥0 and threshold ϵ converge to an C̃κϵ-SNE, where constant C̃κ is explicitly defined in

Table EC.2.

We summarize the core idea behind the proof of Theorem 4 below, with full details relegated to

Appendix G. Note that the diminishing step-sizes ensure the reference price path converges to the

price path in the long run. Hence, the bottleneck of the convergence lies in the second portion of

κ̃(p,r) defined in Eq. (17), i.e., whether p in the current iterate is close to the stationarity. This

motivates us to study the following surrogate metric based only on the price

κ̃(p) =
∑
i∈N

dist
(
0,Hull

{
G−

i (p,p),G
+
i (p,p)

})
, (21)

where G−
i (p,r) :=D−

i (p,r)/(bi+c−i ) and G+
i (p,r) :=D+

i (p,r)/(bi+c+i ) are the scaled true/virtual

derivatives. We demonstrate that there exists some period Tϵ > 0 such that the sequence {κ̃(pt)}t≥Tϵ

is non-increasing. Moreover, for any t≥ Tϵ, if the pausing criteria are not triggered for all products,

there must exist a strict decrement from κ̃(pt) to κ̃(pt+1). Otherwise, when all firms pause their

price update, we show that pt is already close to the set of SNEs, i.e., κ̃(pt,rt) =O(ϵ). Together,

we conclude that Algorithm 2 converges globally to an approximate SNE.

Several insights can be drawn from Theorem 4. Firstly, since C̃κ is merely a constant, Theorem

4 implies that the C-OPGA algorithm can converge to any desired level of accuracy by selecting a

sufficiently small threshold ϵ. Recall that firms can use time-variant thresholds ϵ for their pausing

criteria (see Remark 2). Therefore, a pragmatic strategy for firms to achieve a highly accurate

approximation is to gradually decrease their thresholds along the competition. Secondly, we note

that the “reasonably small” condition for ϵ is explicitly specified in Eq. (G.25). Lastly, though the

C-OPGA adopts a common sequence of step-sizes for all firms, the convergence result remains valid

even when firms have different step-sizes. This generalization is formalized in Section 7.1.

In the next theorem, we optimize the step-sizes to obtain the rate of convergence for the C-OPGA.

Theorem 5 (Convergence Rate of C-OPGA). In the loss-averse scenario, suppose all firms

adopt Algorithm 2 with step-sizes ηt =
Cη√
t+1

and a reasonably small threshold ϵ, where Cη is some

general constant. Then, there exists T̃ =O(1/ϵ2) such that

κ̃(pt,rt)≤

(
1

2maxi∈N

{
(bi + c−i )ℓ̃r,i

} +
∑
i∈N

2maxk∈N

{
bk + c−k

}
bi + c+i

)
ϵ, ∀t≥ T̃ , (22)

where κ̃(·) is defined in Eq. (17), and constants T̃ and ℓ̃r,i are explicitly defined in Table EC.2.

The main idea of the proof for Theorem 5 is outlined as follows. We first consider general

sublinear step-sizes taking the form of ηt = Cη(t + 1)−β with β ∈ (0,1]. Under these step-sizes,
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we can explicitly determine the period Tϵ, after which the sequence {κ̃(pt)}t≥Tϵ
becomes non-

increasing, along with the amount of decrement from κ̃(pt) to κ̃(pt+1) for any t≥ Tϵ. Finally, by

balancing between the size of Tϵ and the decreasing speed of {κ̃(pt)}t≥Tϵ
, we conclude that β = 1/2

yields the best convergence rate. The formal proof is deferred to Appendix H.

Theorem 5 demonstrates that an O(ϵ)-SNE can be found in O(1/ϵ2) iterations, equivalently

suggesting a convergence rate of O(1/
√
t) for C-OPGA in terms of metric κ̃(p,r). This is slower than

the rate established in Theorem 2 for OPGA in the loss-neutral scenario. We speculate the reasons

to be two-folded. First, since loss-averse reference effects result in non-smooth revenue functions,

it is typical for non-smooth problems to exhibit a slower rate. Second, in the loss-averse case where

the SNEs are no longer unique, the sub-gradients in different iterations may point toward different

SNEs in S, leading to potential oscillations in the price and reference price trajectories (an example

of severe oscillations under the small step-sizes is illustrated in Figure 3a).

Remark 3. Given the convergence rate in Theorem 5, we can similarly show its dynamic regret

as Theorem 3. For a fixed and reasonably large value of T , Theorem 5 implies a cumulative regret

of O(1/ϵ2 + ϵT ), where the first part corresponds to the regret before period T̃ = O(1/ϵ2), and

the second part comes from the regret after period T̃ , i.e., when C-OPGA already converges to an

O(ϵ)-SNE. Therefore, the optimal choice is ϵ = T−1/3, yielding the cumulative regret of O(T 2/3)

over T periods.

7. Extensions

In this section, we examine two extensions of our algorithms that can enhance their applicability

in realistic environments. The rigorous proofs for this section can be found in Appendices I and J.

7.1. Firm-differentiated Step-sizes

Previously, we assumed that firms adopt a common sequence of step-sizes {ηt}t≥0, which implies the

need for some initial communication among the firms. Below, we show that our theoretical findings

for algorithms OPGA and C-OPGA can be extended to the case where each firm i uses its own private

step-sizes {ηt
i}t≥0. This gives firms the flexibility to implement the algorithm without sharing the

choice of step-sizes with their competitors, thereby preserving the privacy of such information.

Theorem 6 (Convergence with Firm-differentiated Step-sizes). Suppose that each firm

i ∈ N takes its own non-increasing step-sizes {ηt
i}t≥0 such that limt→∞ ηt

i = 0 and
∑∞

t=0 η
t
i =∞.

Then, it follows that:

• In the loss-neutral scenario, the price and reference price paths generated by Algorithm 1

converge to the unique SNE, where the convergence rate is determined by the slowest decay rate

among the step-size sequences.
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• In the loss-averse scenario, the price and reference price paths generated by Algorithm 2 with

threshold ϵ converge to an O(ϵ)-SNE, where the convergence rate is determined by both the slowest

and fastest decay rates among the step-size sequences.

While Theorem 6 addresses the convergence for general scenarios of firm-differentiated step-

sizes, we use the example of sublinear step-sizes to illustrate how the convergence rate depends

on the slowest and fastest decay rates among the step-size sequences. Consider the step-sizes ηt
i =

Cη,i(t+1)−βi with 0< β1 ≤ β2 · · · ≤ βn < 1, i.e., firm 1 takes the step-sizes with the slowest decay

rate and firm n takes the step-sizes with the fastest decay rate. Then, in the loss-neutral scenario,

the convergence rate of OPGA has the order O
(
t−β1

)
. In the loss-averse scenario, the total number

of iterations required to achieve an ϵ-SNE has the order O
(
ϵ−1/β1 + ϵ−1/(1−βn)

)
. Additionally, we

also comment on the special case where the step-sizes of firms only differ by a constant multiplier,

i.e., there exist {ηt}t≥0 and (Cη,i)i∈N such that ηt
i = ηtCη,i for every t≥ 0 and i ∈N . In this case,

the orders of the convergence rates remain the same as those stated in Theorems 2 and 5 for the

corresponding loss-neutral and loss-averse scenarios.

To complement the theorem, we draw the price and reference price paths under firm-differentiated

step-sizes. Figure 4a showcases the paths generated by the OPGA algorithm in the loss-neutral

scenario, which represents the firm-differentiated counterpart of Figure 2a. Instead of the uniform

step-sizes seen in Figure 2a, two firms adopt ηt
1 =

log(t+1)

t+1
and ηt

2 =
5√
t+1

, respectively. Likewise,

Figure 4b corresponds to the loss-averse scenario, which follows the same setup as the example

in Figure 3b but with firm 2 having step-sizes ηt
2 =

log(t+1)

t+1
. Together, these two plots validate the

convergence of both price and reference price to the SNE(s) under firm-differentiated step-sizes.

Figure 4 Convergence Under Firm-differentiated Step-sizes

(Sub-figure (a) shares parameters with Figure 2; sub-figure (b) shares parameters with Figure 3.)

(a) Loss-neutrality with ηt
1 =

log(t+1)

t+1
and ηt

2 =
5√
t+1

. (b) Loss-aversion with ηt
1 =

1√
t+1

and ηt
2 =

log(t+1)

t+1
.
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7.2. Inexact First-order Oracle

In the preceding sections, we assume that firms can access the exact first-order oracle. Now, we

consider a more practical setting where computing this oracle may require the knowledge of the

sensitivity parameters and overall market size. While it is feasible to obtain (bi, c
+
i , c

−
i ) through

the perturbation approach (see Appendix A) and approximate market size using historical data,

such estimations would bring additional errors to the first-order derivative, rendering the previous

convergence results not directly applicable. Indeed, if the errors are disruptive enough, they could

impede the convergence of our algorithms. However, if the errors are uniformly bounded by some

small threshold δ, the following theorem demonstrates the convergence of both price and reference

price paths to a neighborhood of the SNE(s).

Theorem 7 (Convergence with Inexact First-order Oracle). Suppose that the firms can

only access an inexact first-order oracle such that the errors are uniformly bounded by some δ > 0.

Let the step-sizes {ηt}t≥0 be a non-increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞.

Then, the price and reference price paths generated by Algorithm 1 (or Algorithm 2 with threshold

ϵ) converge to an O(δ)-neighborhood of the unique SNE in the loss-neutral scenario (or an O(δ+ϵ)-

SNE in the loss-averse scenario), where the convergence rate has the same order as the setting of

exact first-order oracle.

We remark that the inexact first-order oracle studied in our work is different from the stochastic

gradient, which generally assumes a zero-mean white noise with finite variance. In stochastic gra-

dient case, it is possible to derive the convergence to a limiting point in expectation or with high

probability. By contrast, in our case, the noise in the first-order derivative is a kind of approxima-

tion errors without distributional properties. For instance, assuming the loss-neutral scenario, if

firm i over-estimates the value of bi+ci, then the derivative computed by firm i would be constantly

smaller than the true derivative (see the expression in Eq. (10)). Thus, under the step-sizes speci-

fied in Theorem 7, we expect the price and reference price paths to approach the neighborhood of

the SNE(s) but might continue to fluctuate around that area without admitting a limiting point.

Our experiments demonstrate the behaviors of Algorithms 1 and 2 under inexact first-order

oracles, where we manually add noises to the derivatives used by the two firms. The noises are

independently sampled from a normal distribution with a mean of 0.5 and a variance of 1, which

are then truncated by certain threshold δ. Figure 5a focuses on the loss-neutral scenario, where we

run OPGA twice on the same instance with truncation thresholds set at 0.5 and 0.05, respectively.

Comparing the two cases, we find that the volatility of the paths is proportional to the magnitude

of gradient noises. Moreover, we observe that the price paths under the inexact gradient oracle
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approach the SNE at a similar rate as those in the exact case depicted in Figure 2a. For the loss-

averse scenario, Figure 5b shows the performances of C-OPGA with the inexact and exact oracles.

The resulting patterns align with those in the loss-neutral scenario. Finally, it is important to note

that since the noises have non-zero mean, the paths in both sub-figures do not converge to SNE in

expectation; rather, they consistently remain either above or below the SNE.

Figure 5 Convergence of OPGA and C-OPGA Under Inexact First-order Oracles

(Sub-figure (a) considers the loss-neutral scenario with parameters and step-sizes same as Figure 2a;

sub-figure (b) considers the loss-averse scenario with parameters and step-sizes same as Figure 3b.)

(a) OPGA: Two instances with gradient noises

bounded by 0.5 and 0.05, respectively.

(b) C-OPGA: One instance under exact oracle and the

other under inexact oracle with noises bounded by 0.4.

8. Conclusion

Despite the growing attention given to reference effects, this well-established consumer behavior

remains relatively unexplored in competitive frameworks, particularly within partial information

settings. Our paper bridges this gap by examining the oligopoly price competition with the first-

order gradient feedback. The problem is structured as an online game with an underlying dynamic

state—reference price. We analyze the gradient-based algorithms, i.e., OPGA and its variant C-OPGA,

and provide theoretical guarantees for their global last-iterate convergence to the SNE(s), which

indicates that firms can simultaneously achieve the equilibrium and market stability in the long

run. With loss-neutral reference effects, we show that the OPGA algorithm has the convergence rate

of Õ(1/t2) in terms of squared distance and attains a constant regret given proper step-sizes. For

the loss-averse scenario, the price and reference price paths generated by the C-OPGA converge to

the set of SNEs in the rate of O(1/
√
t). We further demonstrate the robustness of our algorithms by

showing that those findings can be extended to more practical scenarios where firms use different

step-sizes and operate with inexact gradients.
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This work sheds light on the long-run behavior of gradient-based algorithms in price competitions

with reference effects, and it paves the way for several exciting future research directions. First, this

paper unfolds within a deterministic strategy profile, i.e., considering only the pure strategy Nash

equilibrium, which is a more common notion found in the literature and proves to be more practical

and straightforward for firms to implement. However, it is also worthwhile to investigate mixed-

strategy learning in online games. Another interesting direction is to consider different reference

price models, such as the stimulus-based reference price. This perspective argues that the price

judgment is formed at the point of purchase by using the current external information such as

the price of other products. Finally, the reference effect as a strategic behavior can appear in

other sequential decision-making problems such as repeated auctions (Han et al. 2020) and multi-

period inventory control (Qin et al. 2022). Investigating how reference effects influence the optimal

strategies in these applications presents an intriguing research topic.
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The supplemental materials are structured as follows. In Appendix A, we present a detailed

discussion on the partial information structure, specifically focusing on the feasibility of accessing

the first-order oracle. In Appendix B, we elaborate on the reasons why the alternative methods

mentioned in Section 5 do not apply to our problem, and some supporting proofs are deferred

to Appendix M. In Appendix C, we provide the proofs for all propositions. Then, Appendices D,

E, and F correspond to the proofs for Theorems 1, 2, and 3, respectively, all of which pertain

to the OPGA algorithm in the loss-neutral scenario. For the loss-averse scenario, Appendices G

and H are dedicated to the proofs for Theorems 4 and 5, respectively. Next, Appendices I and J

show the convergence of our algorithms with firm-differentiated step-sizes and inexact gradients,

corresponding to Theorems 6 and 7, respectively. In Appendix K, we provide numerical experiments

to illustrate the performance of OPGA in gain-seeking scenarios. In Appendix L, we present all

supporting lemmas used in proofs. Finally, in Appendix N, we provide a summary for all constants

used in the paper.

Appendix A Discussion on Partial Information Structure

In Section 3.3, we have introduced the partial information setting considered in this paper, where

each firm i can access a first-order oracle but does not necessarily know the information about its

competitors. The oracle for firm i outputs the derivative of its log-transformed revenue function,

i.e., ∂ log
(
Πi(p,r)

)
/∂pi = 1/pi+(bi+ci) [di(p,r)− 1] in the loss-neutral scenario. Below, we provide

further discussions and discuss the feasibility of obtaining the first-order information.

Since each firm i naturally knows its realized revenue Πi(p
t,rt) after period t, firm i can directly

deduce its market share through di(p
t,rt) =Πi(p

t,rt)/pti. Therefore, if firm i precisely knows bi+ci

as prior knowledge, it can compute the derivative ∂ log
(
Πi(p

t,rt)
)
/∂pi solely based on the market

feedback, making our partial information setting equivalent to the bandit feedback. Even when the

sensitivity parameters are not known prior, it is feasible for firm i to estimate bi + ci through

temporary collaboration with other firms. Below, we describe the estimation scheme.

First, it is legitimate to assume that each firm has insights into its reference price, inferred from

the historical pricing data. Then, let firms engage in the following two-period cooperation:

Period 1: Let every firm set the price equal to its current reference price, i.e., pk = rk, ∀k ∈N .
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Period 2: Let firm i slightly perturb its price to pi = ri + δ with small δ, whereas other firms

retain the previous prices, i.e., pj = rj, ∀j ∈N\{i}.

We remark that during the cooperation, firms do not need to disclose their prices to the com-

petitors if they prefer to preserve confidentiality. Below, we provide a detailed explanation of why

this two-step approach is sufficient for parameter estimation. First, the left-hand and right-hand

derivatives of the market share with respect to price change can be computed as follows

lim
δ→0

di
(
(pi + δ,p−i),r

)
− di(p,r)

δ
=

{
−(bi + c−i ) · di(p,r)

(
1− di(p,r)

)
if δ→ 0+,

−(bi + c+i ) · di(p,r)
(
1− di(p,r)

)
if δ→ 0−.

(A.1)

Due to the structural property of the MNL model, we observe that the derivatives in Eq. (A.1)

only involve firm i’s own information. In our partial information setting, the market share di(p,r)

is accessible to firm i, as it can be derived from the realized sales volumes. Thus, firm i can

approximate its sensitivity parameters using its market shares from periods 1 and 2, i.e., di
(
r,r
)

and di
(
(ri + δ,r−i),r

)
, such that

di(r,r)− di
(
(ri + δ,r−i),r

)
δ · di(r,r)

(
1− di(r,r)

) ≈
{
bi + c−i if δ > 0,
bi + c+i if δ < 0.

(A.2)

Since the first-order oracle used in Algorithms 1 and 2 only relies on the sensitivity parameters

through bi + c−i and bi + c+i , knowing these two sums through Eq. (A.2) is sufficient for the firms.

In this two-period cooperation, firms are not required to disclose their proprietary information

to competitors, thereby ensuring confidentiality and competitive advantage are upheld. Moreover,

it would be considered reasonable for all firms to set their prices equal to the current reference

prices, as these prices mirror consumers’ price expectations, indicating a practical pricing strategy.

Furthermore, even when the reference price is unknown, firms can still employ this procedure,

albeit with extended collaboration periods necessary to gather enough data for the reference price.

However, when all firms need to estimate their sensitivity parameters, it is also worth mentioning

that a total number of O(n) periods are required for executing the above cooperation mechanism.

If the number of firms involved is large, these additional periods are not negligible in the final

complexity bound.

Appendix B Discussion on Alternative Methods

As briefly mentioned in Section 3, our problem can also be translated into a standard 2n-player

online game or a dynamical system. In this appendix, we will discuss these alternative methods and

explain why existing tools from the literature on online games and nonlinear dynamical systems

cannot be applied.
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B.1 Standard 2n-player Online Game Formulation

The oligopoly competition in our study involves a varying underlying state, i.e., reference price,

which depends on firms’ price decisions and changes every period. To convert this problem to a

standard game without the varying state, we can view the reference price r= (ri)i∈N as the decision

variables of n additional virtual players with carefully designed objective functions. In each period,

these virtual players update its decision variable, i.e., the reference price, using gradient ascent

with fixed step-sizes. Specifically, for each virtual player i∈N , its objective function Ri(pi, ri) and

step-sizes {ηt
r}t≥0 are defined as follows

Ri(pi, ri) =−
1

2
r2i + ripi, ∀i∈N ;

ηt
r ≡ ηr := 1−α, ∀t≥ 0, ∀i∈N.

(B.1)

To summarize, in this standard 2n-player game, each real firm i ∈ N has its log-revenue

log
(
Πi(p,r)) as the objective function and updates its variable pi via projected gradient ascent

with step-size {ηt}t≥0; each virtual firm i ∈ N has the objective function Ri(pi, ri) and updates

its variable ri using the standard gradient ascent with fixed step-size ηr. Below, we detail the

update rule for this 2n-player game in Algorithm 3, which essentially generates the same sequence

{(pt,rt)}t≥0 as Algorithm 1.

Algorithm 3: Standard 2n-player Game with No Varying State

1 Input: Initial reference price r0, initial price p0, and step-sizes {ηt}t≥0 and ηr = 1−α.

2 for t= 0,1,2, . . . do

3 for i∈N do

4 Update posted price: pt+1
i = ProjP

(
pti + ηt ·

∂ log
(
Πi(p

t,rt)
)

∂pi

)
= ProjP

(
pti + ηtDt

i

)
.

5 Update reference price: rt+1
i = rti + ηr ·

∂Ri(p
t
i, r

t
i)

∂ri
= αrti +(1−α)pti.

6 end
7 end

It can be easily seen that the pure strategy Nash equilibrium of this 2n-player static game is

equivalent to the SNE (see Definition 2) of the original n-player dynamic game. However, even

after converting to the static game, no general convergence results are readily applicable in this

problem, primarily for the following two reasons.
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B.1.1 Lack of Variational Stability for 2n-player Game. The first obstacle comes from

the lack of critical properties in our 2n-player game, such as monotonicity (Lin et al. 2020) or

variational stability (Mertikopoulos and Zhou 2019), where the latter is a strictly weaker version

of the former. Without loss of generality, we demonstrate the absence of the variational stability

using a duopoly competition (i.e., n= 2), which can be transformed to a standard 4-player game,

with the price and reference price updating via Algorithm 3. To show this standard 4-player game

is not variationally stable, it suffices to demonstrate that the second-order test for variational

stability, outlined in Mertikopoulos and Zhou (2019, Table 1), is not consistently satisfied. This

test essentially requires the negative definiteness of a 4× 4 symmetric matrix HG, which will be

formally defined below. First, let x= (p,r) be the 4-dimensional decision variable for all players,

and let fk(x) be the objective functions where k ∈ {1,2, v1, v2}. Specifically, indices 1,2 represent

two real firms and index vi represents the virtual firm that corresponds to the reference price of

product i∈ {1,2}. By construction, we have that

fk(x) =

{
log
(
Πi(p,r)) if k= i,

Ri(pi, ri) if k= vi,
where i∈ {1,2}. (B.2)

Next, we define the 4×4 matrix HG, where we let 1,2, v1, v2 correspond to matrix indices 1,2,3,4,

respectively. Then, the (m, l)-th entry of HG are defined as follows(
HG)

ml
:=

∂2fm(x
⋆)

∂xm∂xl

+
∂2fl(x

⋆)

∂xm∂xl

, ∀1≤m, l≤ 4, (B.3)

where we denote x⋆ = (p⋆,p⋆). Using direct computation and the optimality condition in Eq.

(C.16), it holds that

HG =


−2(b̃1)2(1− d⋆1) 2b̃1b̃2d

⋆
1d

⋆
2 1+ b̃1c1d

⋆
1(1− d⋆1) −b̃1c2d⋆1d⋆2

2b̃1b̃2d
⋆
1d

⋆
2 −2(b̃2)2(1− d⋆2) −b̃2c1d⋆1d⋆2 1+ b̃2c2d

⋆
2(1− d⋆2)

1+ b̃1c1d
⋆
1(1− d⋆1) −b̃2c1d⋆1d⋆2 −2 0

−b̃1c2d⋆1d⋆2 1+ b̃2c2d
⋆
2(1− d⋆2) 0 −2

 , (B.4)

where we use the shorthand notations b̃i := bi + ci and d⋆i = di(p
⋆,p⋆). Consider the principal

minor of HG formed by removing the first row and the first column of HG. Its determinant can be

computed as follows

det



−2(b̃2)2(1− d⋆2) −b̃2c1d⋆1d⋆2 1+ b̃2c2d

⋆
2(1− d⋆2)

−b̃2c1d⋆1d⋆2 −2 0

1+ b̃2c2d
⋆
2(1− d⋆2) 0 −2




=−8(b̃2)2(1− d⋆2)+ 2
[
1+ b̃2c2d

⋆
2(1− d⋆2)

]2
+2
(
b̃2c1d

⋆
1d

⋆
2

)2

> 2− 8(b̃2)
2.

(B.5)
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If HG is negative definite, then the above determinant should be negative. Yet, from Eq. (B.5),

it is evident that determinant must be positive when b̃2 = b2+ c2 ≤ 1/2. Consequently, this implies

that the second-order test for variational stability does not always hold, which indicates that our

2n-player game is not variationally stable.

B.1.2 Inflexible Step-sizes for Virtual Players. The other obstacle stems from the asyn-

chronous updates for the real firms (price players) and the virtual firms (reference price players).

While the real firms have the flexibility in adopting time-varying step-sizes, the virtual firms must

stick to the constant step-size of (1− α). As a result, this inflexibility perplexes the analysis, as

the typical convergence results of online games require the step-sizes of multiple players to have

the same pattern (all diminishing or sufficiently small constant step-sizes) (see, e.g., Nagurney and

Zhang (1995), Scutari et al. (2010), Bravo et al. (2018), Mertikopoulos and Zhou (2019)).

We are aware that Golrezaei et al. (2020) also have the same challenge. Below, we would like to

elaborate on how Golrezaei et al. (2020) handle the issue of heterogeneous step-sizes and clarify

why this approach is not applicable to the oligopoly competition studied in this paper. The central

lemma in their analysis is Golrezaei et al. (2020, Lemma 9.1), which essentially shows that

∑
i=1,2

(p⋆i − pi) ·
∂πi(p, r)

∂pi

∣∣∣∣
r=θ1p1+θ2p2

> 0, ∀p∈Pn, (B.6)

where πi(p, r) denotes their revenue function for firm i and p⋆ denotes their SNE. Note that

under their reference price update model, the condition r= θ1p1+θ2p2 indicates that the reference

price already converges to the price. The inequality in Eq. (B.6) basically demonstrates a similar

property as variational stability for their duopoly competition, except for requiring r= θ1p1+θ2p2.

When the real firms adopt decreasing step-sizes, the reference price would gradually converge

towards the price. Then, together with Eq. (B.6), Golrezaei et al. (2020) manage to derive the

global convergence of their algorithm. It is worth mentioning that both two parts of the proof for

Golrezaei et al. (2020, Theorem 5.1) rely on Eq. (B.6).

For our oligopoly game with logit demand, we are able to prove a property analogous to Eq.

(B.6) but only holds locally around p⋆. The proof of Lemma EC.1 is deferred to Appendix M.1.

Lemma EC.1. In the loss-neutral scenario, define function H(p) as follows:

H(p) :=
∑
i∈N

(p⋆i − pi) ·
∂ log

(
Π(p,r)

)
∂pi

∣∣∣∣
r=p

=
∑
i∈N

[
1

pi
+(bi + ci)

(
di(p,p)− 1

)]
(p⋆i − pi), (B.7)

where p⋆ is the unique SNE. Then, there exist γ > 0 and a open set Uγ ∋ p⋆ such that

H(p)≥ γ · ∥p−p⋆∥2, ∀p∈Uγ . (B.8)
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Leveraging Lemma EC.1, we proceed to establish local convergence in the subsequent proposi-

tion (see Appendix M.2 for its proof). It is important to note that Proposition EC.1 guarantees

convergence only in the vicinity of p⋆, since Lemma EC.1 is only applicable on a local scale.

Proposition EC.1 (Local Convergence of OPGA). In the loss-neutral scenario, let the step-

sizes {ηt}t≥0 be a non-increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞ hold. Then,

there exists some neighborhood B of p⋆ such that when the price path {pt}t≥0 enters B with a

sufficiently small step-size, the price path will stay in B during subsequent periods.

Furthermore, suppose the step-sizes satisfy ηt =
Cη

t
for all t≥ 1, where Cη is some general con-

stant. Then, the local convergence rate of {(pt,rt)}t≥0 after the path stays in B satisfies that∥∥p⋆−pt
∥∥2 ≤O(1

t

)
,
∥∥p⋆− rt

∥∥2 ≤O(1

t

)
. (B.9)

Since Lemma EC.1 does not always hold for general p∈Pn, we are unable to derive the global

convergence via a similar two-step analysis employed in Golrezaei et al. (2020), which makes it

necessary for us to devise new techniques. In our proofs for Theorems 1 and 2, we introduce a

weighted ℓ1-distance (defined in Eq. (11)) to measure the convergence, and our analysis mainly

leverages a structural property of the SNE under the MNL model, as shown in Lemma EC.3.

Moreover, it should be highlighted that the analyses based on the variational stability itself

(Mertikopoulos and Zhou 2019) or its variant (Golrezaei et al. 2020) achieve, at their best, an

O(1/t) convergence rate in the noise-free setting. In comparison, by exploiting characteristics of the

MNL model, we manage to derive a faster rate of O(1/t2) in Theorem 2. This improvement further

sets apart our convergence results in the loss-neutral scenario from those reported by Mertikopoulos

and Zhou (2019) and Golrezaei et al. (2020).

B.2 Nonlinear Dynamical System Formulation

The study of the limiting behavior of a competitive gradient-based learning algorithm is related

to dynamical system theories (Mazumdar et al. 2020). In fact, the update of Algorithm 1 can be

viewed as a nonlinear dynamical system. Assume a constant step-size is employed, i.e., ηt ≡ η,

∀t≥ 0. Then, Lines 5 and 7 in Algorithm 1 are equivalent to the dynamical system

(pt+1,rt+1) = f(pt,rt), ∀t≥ 0, (B.10)

where f(·) is a vector-valued function defined as

f(p,r) :=



ProjP

(
p1 + η

(
1/p1 +(b1 + c1) · d1(p,r)− (b1 + c1)

))
. . .

ProjP

(
pn + η

(
1/pn +(bn + cn) · dn(p,r)− (bn + cn)

))
αr1 +(1−α)p1

. . .

αrn +(1−α)pn


. (B.11)
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Under the assumption that p⋆ ∈ Pn, it is evident that p⋆ is the unique fixed point of the system

in Eq. (B.10). Generally, fixed points can be categorized into three classes:

• Asymptotically stable when all nearby solutions converge to it.

• Stable when all nearby solutions remain in close proximity.

• Unstable when almost all nearby solutions diverge away from the fixed point.

Hence, if we can demonstrate the asymptotic stability of p⋆, we can at least prove the local

convergence of the price and reference price.

Standard dynamical systems theory (Arrowsmith et al. 1990) states that p⋆ is asymptotically

stable if the spectral radius of the Jacobian matrix ∇f(p⋆,p⋆) is strictly less than one. Yet, com-

puting the spectral radius is not straightforward. The primary challenge stems from the fact that

the entries of ∇f(p⋆,p⋆) contain p⋆ and di(p
⋆,p⋆), but there is no closed-form expression for p⋆.

Apart from the above issue, it is worth noting that the function f(·, ·) is not globally smooth

due to the presence of the projection operator. Furthermore, the function f(·, ·) also depends on

the step-size η. When the firms adopt time-varying step-sizes, the dynamical system in Eq. (B.10)

becomes non-stationary, i.e., (pt+1,rt+1) = f t(pt,rt). Although the sequence of functions {f t(·, ·)}t≥0

shares the same fixed point, verifying the convergence (stability) of the system requires examining

the spectral radius of ∇f t(p⋆,p⋆) for all t≥ 0.

Most significantly, even if asymptotic stability holds, it can only guarantee local convergence

of Algorithm 1. Our goal, however, is to prove global convergence, such that both the price and

reference price converge to the SNE for arbitrary initializations.

Appendix C Proofs of Propositions

C.1 Proof of Proposition 1

Proposition 1 (Restated). Let S be the set of SNE(s). Then, the following statements hold:

• If there exists any gain-seeking product, an SNE never exists, i.e., S is empty.

• Otherwise, with only loss-averse and loss-neutral products, an SNE always exists, and S can

be expressed as

S =

{
p⋆

∣∣∣∣∣ p⋆i ∈
[

1(
bi + c−i

)
·
(
1− di(p⋆,p⋆)

) , 1(
bi + c+i

)
·
(
1− di(p⋆,p⋆)

)] , ∀i∈N} . (C.1)

Proof of Proposition 1. We prove the two parts of the proposition separately.

Part 1. In this part where there is one or more gain-seeking product(s), i.e., ∃i ∈N such that

c+i > c−i , we show the non-existence of SNE by contradiction-based arguments. Suppose that there

exists an SNE p⋆ under gain-seeking reference effects. By Definition 2, p⋆ must satisfy pE (p⋆) = p⋆,

i.e., the price at SNE is equal to the corresponding reference price. This implies that the revenue
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function is non-smooth at an SNE as a result of gain-seeking reference effects. For a non-smooth

point to be a Nash equilibrium, its left-hand derivative must be non-negative, and its right-hand

derivative must be non-positive, implying the left-hand derivative is no greater than the right-hand

derivative. Below, we take the left-hand and right-hand derivatives of Πi(p,r) with respect to pi

at its SNE, i.e., (p,r) = (p⋆,p⋆)

lim
∆pi→0−

Πi

(
(p⋆i +∆pi,p

⋆
−i),p

⋆
)
−Πi

(
p⋆,p⋆

)
∆pi

= di(p
⋆,p⋆) ·

[
1− p⋆i (bi + c+i )

(
1− di(p

⋆,p⋆)
)]

, (C.2a)

lim
∆pi→0+

Πi

(
(p⋆i +∆pi,p

⋆
−i),p

⋆
)
−Πi

(
p⋆,p⋆

)
∆pi

= di(p
⋆,p⋆) ·

[
1− p⋆i (bi + c−i )

(
1− di(p

⋆,p⋆)
)]

, (C.2b)

where the left-hand derivative Eq. (C.2a) has the effective reference price sensitivity c+i because

when pi approaches p
⋆
i from left, it follows that pi ≤ ri = p⋆i . For the similar reason, the right-hand

derivative Eq. (C.2b) uses c−i as the effective reference price sensitivity. We notice that the left-hand

derivative is smaller than the right-hand derivative since product i has the gain-seeking reference

effect, i.e., c+i > c−i . This conflicts with the necessary condition for p⋆ to be an NE. We conclude

that no SNE exists in the gain-seeking scenario; hence, the price and reference price paths are

cyclic in the long run for any given initial reference price.

Part 2. In this part where there are only loss-averse and loss-neutral products, our first step

is to show that any SNE price must satisfy the characterization in Eq. (C.1). In the second step,

we demonstrate that for any given pseudo sensitivities (c̃i)i∈N where c̃i ∈ [c+i , c
−
i ], there exists a

unique price vector p that satisfies

pi =
1

(bi + c̃i) · (1− di(p,p))
, ∀i∈N, (C.3)

and p is also an SNE. Together, these two steps prove the existence of SNE and show that S admits

the expression in Eq. (C.1).

We start with the first step. According to Definition 2, it holds that pE(p⋆) = p⋆ for any SNE

p⋆ ∈ S, i.e., the price output by the equilibrium pricing policy is the same as the input reference

price. As the SNE is a special case of NE, each firm’s revenue needs to satisfy the first-order

condition. By expanding the derivative and incorporating the sub-gradient at non-smooth points,

we find that equilibrium pE(r) = (pE1 (r), . . . , p
E
n (r)) for the given reference price r admits that

∂Πi(p,r)

∂pi

∣∣∣∣
(pE(r),r)

= 0 ⇔ pEi (r) ·
(
1− di(p

E(r),r)
)
− 1

bi + ci
(
pEi (r), ri

) = 0, ∀i∈N, (C.4)

where ci(pi, ri) := 1{pi < ri} · c+i + 1{pi > ri} · c−i + 1{pi = ri} · c̃i represents the effective reference

price sensitivity for product i at (pi, ri), and c̃i take the unique value between c+i and c−i that makes
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the equality in Eq. (C.4) holds. For any SNE p⋆ ∈ S, since pE(p⋆) = p⋆, we evaluate Eq. (C.4) at

(pE(r),r) = (p⋆,p⋆) to obtain that

p⋆i =
1(

bi + ci(p⋆i , p
⋆
i )
)
· (1− di(p⋆,p⋆))

, ∀i∈N. (C.5)

Since the ci(p
⋆
i , p

⋆
i ) ∈ [c+i , c

−
i ], this proves that S must be a subset of the set characterized by the

right-hand side of Eq. (C.1). This completes the proof for the first step.

Now, we proceed to the second step and begin by showing that given any pseudo sensitivities

(c̃i)i∈N where c̃i ∈ [c+i , c−i ], Eq. (C.3) produces a unique price vector p. By definition of the market

share, we have that

di(p,p) =
exp(ai− bipi)

1+
∑

k∈N exp(ak− bkpk)
= d0(p,p) · exp

(
ai−

bi

(bi + c̃i)
(
1− di(p,p)

)) , (C.6)

where the last equality follows from substituting pi with the right-hand side of Eq. (C.3), and

d0(p,p) :=
1

1+
∑

k∈N exp(ak−bkpk)
, which is the no-purchase probability. Rearranging Eq. (C.6), we

move all terms containing di(p,p) to the left-hand side to obtain that

di(p,p) · exp
(

bi
bi + c̃i

· 1

1− di(p,p)

)
= d0(p,p) · exp(ai). (C.7)

Define function Vc̃i(x) : (0,∞)→ (0,1) as the unique real solution v to the following equation:

v · exp
(

bi
bi + c̃i

· 1

1− v

)
= x. (C.8)

Then, from Eq. (C.7), we can express di(p,p) in terms of Vc̃i(·) as

di(p,p) = Vc̃i

(
d0(p,p) · exp(ai)

)
. (C.9)

Since d0(p,p)+
∑

i∈N di(p,p) = 1, together with Eq. (C.9), we have that

d0(p,p)+
∑
i∈N

Vc̃i

(
d0(p,p) · exp(ai)

)
= 1. (C.10)

We observe that function Vc̃i(x) is strictly increasing, i.e., v is monotone increasing in x in Eq.

(C.8). Hence, the left-hand side of Eq. (C.10) is monotone increasing in d0(p,p), and its range

clearly contains one as d0(p,p) increases from zero to one. So, there exist a unique solution d0(p,p)

that satisfies Eq. (C.10). Together with Eq. (C.9), we observe that the demand for every product i is

uniquely determined from Eq. (C.3). Due to the one-to-one mapping between p and {di(p,p)}i∈N ,

we conclude that there must exist a unique price vector that satisfies both Eqs. (C.9) and (C.10),

equivalently Eq. (C.3). Below, we denote this unique solution as ps.
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Next, we show that ps is an SNE. Since Eq. (C.5) arises from the first-order condition for NE,

we know ps is a stationary point. Then, to prove ps is indeed an SNE, it suffices to show that for

all i∈N

lim
∆pi→0

Πi

(
(pi,p

s
−i),p

s
)
−Πi

(
(pi−∆pi, ,p

s
−i),p

s
)

∆pi
≥ 0, ∀pi ≤ psi , (C.11a)

lim
∆pi→0

Πi

(
(pi +∆pi,p

s
−i),p

s
)
−Πi

(
(pi,p

s
−i),p

s
)

∆pi
≤ 0, ∀pi ≥ psi . (C.11b)

If Eq. (C.11) holds, then for every firm i ∈ N , the revenue always increases in pi when pi ≤ psi

and decreases in pi when pi ≥ psi , assuming the prices for all other products remain at ps
−i. This

implies that firm i can never achieve a higher revenue by deviating from the stationary price psi ,

and thereby ps is an SNE. We compute the left-hand derivative and observe that Eq. (C.11a) is

equivalent to

pi ·
[
1− di

(
(pi,p

s
−i),p

s
)]
− 1

bi + c+i
≤ 0, ∀pi ≤ psi , (C.12)

where we use c+i because the ri = psi ≥ pi. It is clear that the left-hand side of Eq. (C.12) is monotone

increasing in pi. Together with c+i ≤ c̃i, we have for all pi ≤ psi

pi ·
[
1− di

(
(pi,p

s
−i),p

s
)]
− 1

bi + c+i
≤ psi ·

[
1− di(p

s,ps)
]
− 1

bi + c̃i
= 0, (C.13)

where the last equality stems from the fact that ps is the unique solution to Eq. (C.3). Similarly,

we validate Eq. (C.11b) by showing that

pi ·
[
1− di

(
(pi,p

s
−i),p

s
)]
− 1

bi + c−i
≥ psi ·

[
1− di(p

s,ps)
]
− 1

bi + c̃i
= 0, ∀pi ≥ psi , (C.14)

as Eq. (C.11b) is equivalent to pi

[
1− di

(
(pi,p

s
−i),p

s
)]
− 1/(bi + c−i )≥ 0. Since both conditions in

(C.11) are satisfied, we conclude that ps is an SNE.

Combining the results in both parts, we finally complete the proof of Proposition 1. □

C.2 Proof of Proposition 2

Proposition 2 (Restated). In loss-averse and loss-neutral scenarios where SNE(s) always

exists, its uniqueness depends on the presence of any loss-averse product. Specifically,

• The SNE is unique, i.e., S is a singleton, if and only if all products are loss-neutral.

• Otherwise, with any loss-averse product, there always exists a continuum of SNEs, and S can

be a non-convex set.

Furthermore, any SNE p⋆ ∈ S can be bounded as

1

bi + c−i
< p⋆i <

1

bi + c+i
+

1

bi
W

(
bi

bi + c+i
exp

(
ai−

bi
bi + c+i

))
, ∀i∈N, (C.15)

where W (·) is the Lambert W function (see definition in Eq. (C.25)).
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Proof of Proposition 2. First, the uniqueness of SNE when all products are loss-neutral directly

follows from the characterization of SNE in Eq. (C.1). As c+i = c−i := ci in the loss-neutral scenario,

the interval in Eq. (C.1) reduces to a single value, and thus there only exists a unique price vector,

denoted by p⋆, such that

p⋆i =
1

(bi + ci) · (1− di(p⋆,p⋆))
, ∀i∈N, (C.16)

where the uniqueness follows from the same reasoning as Eqs. (C.6) to Eq. (C.10).

Next, to prove the reverse direction (S is a singleton only if all products are loss-neutral), we

show that in the presence of any loss-averse product, there always exist infinitely many SNEs that

form a continuum. Without loss of generality, suppose consumers are loss-averse towards product

i0 ∈ N , i.e., c+i0 < c−i0 . Then, going back to Eq. (C.3), it suffices to show that for two different

c̃i0,1, c̃i0,2 ∈ [c
+
i0
, c−i0 ], the pseudo sensitivities (c̃i0,1, c̃−i0) and (c̃i0,2, c̃−i0) produce two different SNEs.

Note that we use c̃−i to denote the vector (c̃j)j ̸=i.

Let p̃⋆,1 be the SNE that satisfies Eq. (C.3) with pseudo sensitivities (c̃i0,1, c̃−i0), and p̃⋆,2 be the

SNE with pseudo sensitivities (c̃i0,2, c̃−i0). Below, we show that p̃⋆,1 ̸= p̃⋆,2. Suppose by contradiction

that p̃⋆,1 = p̃⋆,2, which implies that d0(p̃
⋆,1, p̃⋆,1) = d0(p̃

⋆,2, p̃⋆,2). Since the two SNEs share the

same pseudo sensitivities for all products except i0, we deduce from Eq. (C.9) that for all i ̸= i0

di(p̃
⋆,1, p̃⋆,1) = Vc̃i(d0(p̃

⋆,1, p̃⋆,1) · exp(ai)) = Vc̃i(d0(p̃
⋆,2, p̃⋆,2) · exp(ai)) = di(p̃

⋆,2, p̃⋆,2). (C.17)

Since d0(p,r)+
∑

i∈N di(p,r) = 1, it also holds that

di0(p̃
⋆,1, p̃⋆,1) = 1− d0(p̃

⋆,1, p̃⋆,1)−
∑
i ̸=i0

di(p̃
⋆,1, p̃⋆,1) = 1− d0(p̃

⋆,2, p̃⋆,2)−
∑
i ̸=i0

di(p̃
⋆,2, p̃⋆,2)

= di0(p̃
⋆,2, p̃⋆,2).

(C.18)

Together with Eq. (C.3), Eq. (C.18) indicates that

bi + c̃i0,1 =
1

p̃⋆,1i0

(
1− di0(p̃

⋆,1, p̃⋆,1)
) = 1

p̃⋆,2i0

(
1− di0(p̃

⋆,2, p̃⋆,2)
) = bi + c̃i0,2, (C.19)

which contradicts with the assumption that c̃i0,1 ̸= c̃i0,2. Therefore, we must have p̃⋆,1 ̸= p̃⋆,2. Since

[c+i , c
−
i ] is a continuous interval, we conclude that there exist infinitely many SNEs in the presence

of any loss-averse product. Finally, it is clear from Eqs. (C.3) to (C.10) that the dependency of the

SNE price p̃⋆ on the pseudo sensitivities (c̃i)i∈N is continuous. Thus, the set of SNEs must form a

continuous area, i.e., S is a continuum. The non-convexity of set S has already been confirmed by

Figure 1.

Below, we show the boundedness of set S. By performing a transformation on the relation in

Eq. (C.1), we obtain the following inequalities for any i∈N and p∈ S:

pi(bi + c−i )≥ 1+
exp(ai− bipi)

1+
∑

k ̸=i exp(ak− bkpk)
, pi(bi + c+i )≤ 1+

exp(ai− bipi)

1+
∑

k ̸=i exp(ak− bkpk)
. (C.20)



ec12 e-companion to Guo et al.: Last-iterate Convergence in Games with Reference Effects

Then, it immediately follows that

1

bi + c−i
< pi <

1+ exp(ai− bipi)

bi + c+i
, ∀i∈N, ∀p∈ S. (C.21)

Now, we derive the upper bound in Eq. (C.15) from the second inequality in Eq. (C.21). Since the

quantity on the right-hand side of Eq. (C.21) is monotone decreasing in pi, any price that satisfies

Eq. (C.21) must be upper-bounded by the unique solution yi to the following equation

yi =
1+exp(ai− biyi)

bi + c+i
. (C.22)

Define xi :=−bi/(bi+ c+i )+ biyi. Then, one can easily verify that Eq. (C.22) can be converted into

xi exp(xi) =
bi

bi + c+i
exp

(
ai−

bi
bi + c+i

)
, (C.23)

which implies that

xi =W

(
bi

bi + c+i
exp

(
ai−

bi
bi + c+i

))
, (C.24)

where W (·) is known as the Lambert W function (Weisstein 2002). For any value z ≥ 0, W (z) is

defined to be the unique real solution w to the equation

w · exp
(
w
)
= z. (C.25)

Hence, we have that

pi < yi =
1

bi + c+i
+

1

bi
W

(
bi

bi + c+i
exp

(
ai−

bi
bi + c+i

))
, ∀i∈N, ∀p∈ S. (C.26)

Together with the lower bound provided in Eq. (C.21), this completes the proof. □

C.3 Proof of Proposition 3

Proposition 3 (Restated). The set of SNEs can be equivalently expressed as S = {p ∈ Pn |
κ̃(p,p) = 0}, where κ̃(·, ·) is the metric defined in Eq. (17).

Proof of Proposition 3. By Eq. (C.1) and the definition of functions D+
i (p,p),D

−
i (p,p) in Eq. (18),

we observe that the set of SNE(s) can be equivalently written as

S =
{
p∈Pn

∣∣ D+
i (p,p)≥ 0, D−

i (p,p)≤ 0, ∀i∈N
}
. (C.27)

Therefore, since D+
i (p,r) is consistently greater than D−

i (p,r) in the loss-averse scenario, we can

derive that
κ̃(p,p) = 0 ⇔

∑
i∈N

dist
(
0,Hull

{
D−

i (p,p),D
+
i (p,p)

})
= 0

⇔ dist
(
0, Ii(p)

)
= 0, ∀i∈N

⇔ D+
i (p,p)≥ 0, D−

i (p,p)≤ 0, ∀i∈N,

(C.28)

where we use the notation Ii(p) to denote the interval [D−
i (p,p),D

+
i (p,p)]. This completes the

proof of the proposition. □
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Appendix D Proof of Theorem 1

Theorem 1 (Restated). In the loss-neutral scenario, suppose all firms adopt Algorithm 1 with

non-increasing step-sizes {ηt}t≥0 such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞. Then, their price and

reference price paths converge to the unique stationary Nash equilibrium.

Proof of Theorem 1. We will leverage the metrics κ(·) and κϵ(·) defined in Eq. (11). It is clear that

κϵ(p)≤ κ(p)≤ κϵ(p)+nϵ, ∀p∈Pn. (D.1)

In our proof, we will show that for every ϵ > 0, it holds that limt→∞ κ(pt)≤O(ϵ), thereby proving

the convergence of the price path {pt}t≥0. As the reference price is updated through the exponential

smoothing scheme (see Eq. (4)), the convergence of {pt}t≥0 also implies the convergence of the

reference path {rt}t≥0.

Before the proof, we introduce some helpful definitions. Let Gi(p,r) be the scaled partial deriva-

tive of the log-revenue, defined as

Gi(p,r) :=
1

bi + ci
·
∂ log

(
Πi(p,r)

)
∂pi

=
1

(bi + ci)pi
+ di(p,r)− 1, ∀i∈N. (D.2)

For the ease of notation, we denote Pi := {p/(bi + ci) | p∈P} as the scaled price range. Then, the

price update in Line 5 of Algorithm 1 is equivalent to

pt+1
i

bi + ci
= ProjPi

(
pti

bi + ci
+ ηt Dt

i

bi + ci

)
= ProjPi

(
pti

bi + ci
+ ηtGi(p

t,rt)

)
. (D.3)

Let sign(·) be the sign function defined as

sign(x) :=


1 if x> 0,

0 if x= 0,

−1 if x< 0.

(D.4)

An essential observation from Eq. (D.3) is that: if sign(p⋆i − pti) · Gi(p
t,rt) > 0, we have that

sign(p⋆i − pti) = sign
(
Gi(p

t,rt)
)
= sign(pt+1

i − pti), i.e., the update from pti to pt+1
i is toward the

direction of the SNE price p⋆i . Conversely, if sign(p
⋆
i − pti) ·Gi(p

t,rt) < 0, the update from pti to

pt+1
i is deviating from p⋆i . Finally, for every t≥ 0, we define

N t
ϵ :=

{
i∈N

∣∣∣∣ |p⋆i − pti|
bi + ci

< ϵ

}
, N

t

ϵ :=N\N t
ϵ . (D.5)

By definition, N t
ϵ is the set of products whose prices are close to their SNE prices at period t, and

N
t

ϵ is its complement.

Now, we are ready to present the proof. By Lemma EC.2, when {ηt}t≥0 is non-increasing and

limt→∞ ηt = 0, the difference between reference price and price converges to zero as t goes to infinity,

i.e., limt→∞
(
pt− rt

)
= 0. Hence, for every ϵ > 0, there exists Tϵ > 0 such that ∀t≥ Tϵ, it holds that
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ηtMG < ϵ and ∥pt− rt∥< ϵ, where MG is an upper bound on |Gi(p,r)| defined in Eq. (L.30). For

every t≥ Tϵ, it follows from the definition of N
t+1

ϵ in Eq. (D.5) that

κϵ(p
t+1) =

∑
i∈N

max

{∣∣p⋆i − pt+1
i

∣∣
bi + ci

− ϵ,0

}
=
∑

i∈N
t+1
ϵ

(∣∣p⋆i − pt+1
i

∣∣
bi + ci

− ϵ

)
. (D.6)

For every i∈N t+1

ϵ , we have
∣∣p⋆i − pt+1

i

∣∣/(bi + ci)≥ ϵ. Then, since

∣∣pt+1
i − pti

∣∣
bi + ci

≤ ηtDt
i

bi + ci
= ηtGi(p

t,rt)≤ ηtMG < ϵ, (D.7)

it follows that sign
(
p⋆i − pt+1

i

)
= sign (p⋆i − pti), and therefore

∣∣p⋆i − pt+1
i

∣∣
bi + ci

= sign
(
p⋆i − pt+1

i

) p⋆i − pt+1
i

bi + ci

≤ sign
(
p⋆i − pt+1

i

) p⋆i − pti− ηtDt
i

bi + ci

= sign (p⋆i − pti)
p⋆i − pti− ηtDt

i

bi + ci

=
|p⋆i − pti|
bi + ci

− ηtsign (p⋆i − pti)Gi(p
t,rt),

(D.8)

where the inequality is due to the property of the projection operator. We substitute Eq. (D.8)

into the right-hand side of Eq. (D.6) to derive that

κϵ(p
t+1)≤

∑
i∈N

t+1
ϵ

[
|p⋆i − pti|
bi + ci

− ϵ− ηtsign (p⋆i − pti)Gi(p
t,rt)

]

≤
∑
i∈N

max

{
|p⋆i − pti|
bi + ci

− ϵ,0

}
− ηt

∑
i∈N

t+1
ϵ

sign (p⋆i − pti)Gi(p
t,rt)

= κϵ(p
t)− ηt

∑
i∈N

t+1
ϵ

sign (p⋆i − pti)Gi(p
t,rt).

(D.9)

Thus, finding a lower bound for the summation term on the right-hand side of Eq. (D.9) is the

key to the proof. Based on N t+1
ϵ , we construct a price vector p̂t as follows: p̂ti = pti if i∈N

t+1

ϵ , and
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p̂ti = p⋆i if i∈N t+1
ϵ . Then, it holds that∑

i∈N
t+1
ϵ

sign (p⋆i − pti)Gi(p
t,rt)

≥
∑

i∈N
t+1
ϵ

[
sign (p⋆i − pti)Gi(p

t,pt)−max
r∈Pn

{∥∥∇rGi(p
t,r)

∥∥}∥∥pt− rt
∥∥]

(∆1)

≥
∑

i∈N
t+1
ϵ

[
sign (p⋆i − p̂ti)Gi(p̂

t, p̂t)−max
r∈Pn

{∥∥∇rGi(p
t,r)

∥∥}∥∥pt− rt
∥∥− ∣∣di(pt,pt)− di(p̂

t, p̂t)
∣∣]

≥
∑

i∈N
t+1
ϵ

[
sign (p⋆i − p̂ti)Gi(p̂

t, p̂t)−max
r∈Pn

{∥∥∇rGi(p
t,r)

∥∥}∥∥pt− rt
∥∥−max

p∈Pn
{∥∇pdi(p,p)∥}

∥∥pt− p̂t
∥∥]

(∆2)

≥
∑

i∈N
t+1
ϵ

[
sign (p⋆i − p̂ti)Gi(p̂

t, p̂t)− ℓr,i
∥∥pt− rt

∥∥− ℓd,i
∥∥pt− p̂t

∥∥]
≥
∑
i∈N

sign (p⋆i − p̂ti)Gi(p̂
t, p̂t)−

∑
i∈N

[
ℓr,i
∥∥pt− rt

∥∥+ ℓd,i
∥∥pt− p̂t

∥∥] ,
(D.10)

where inequality (∆1) uses the definition of Gi(p,r) in Eq. (D.2). Since p̂ti = pti when i ∈ N
t+1

ϵ ,

it follows that |Gi(p̂
t, p̂t)−Gi(p

t,pt)|= |di(pt,pt)− di(p̂
t, p̂t)|. Note that this difference does not

equal to zero in general, since the demand di(·, ·) depends on the prices and reference prices of all

products. Then, step (∆2) in Eq. (D.10) applies the Lipschitz continuity of Gi(p, ·) and di(p,p)

from Lemmas EC.4 and EC.5, respectively. Then, the last inequality holds because sign (p⋆i − p̂ti) =

sign (0) = 0 for all i∈N t+1
ϵ . Next, using Lemma EC.3, we have that

∑
i∈N

sign (p⋆i − p̂ti)Gi(p̂
t, p̂t) = G(p̂t)≥ κ(p̂t)

p∥p⋆∥∞
. (D.11)

To relate Eq. (D.11) with the original inequality in Eq. (D.9), we observe that

κ(p̂t) =
∑
i∈N

|p⋆i − p̂ti|
bi + ci

(∆)
=

∑
i∈N

t+1
ϵ

|p⋆i − pti|
bi + ci

≥
∑

i∈N
t+1
ϵ

max

{
|p⋆i − pti|
bi + ci

− ϵ,0

}

≥
∑
i∈N

t
ϵ

max

{
|p⋆i − pti|
bi + ci

− ϵ,0

}
−

∑
i∈N

t
ϵ

∖
N

t+1
ϵ

max

{
|p⋆i − pti|
bi + ci

− ϵ,0

}

= κϵ(p
t)−

∑
i∈N

t
ϵ

∖
N

t+1
ϵ

max

{
|p⋆i − pti|
bi + ci

− ϵ,0

}
,

(D.12)
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where equality (∆) follows from the definition of p̂t. Since i∈N t

ϵ

∖
N

t+1

ϵ means that |p⋆i − pti|/(bi+

ci) ≥ ϵ and
∣∣p⋆i − pt+1

i

∣∣/(bi + ci) < ϵ, we deduce from Eq. (D.7) that |p⋆i − pti|/(bi + ci) ≤ ϵ +

ηtGi(p
t,rt)≤ 2ϵ. Thus, Eq. (D.12) further implies that

κ(p̂t)≥ κϵ(p
t)−

∑
i∈N

t
ϵ

∖
N

t+1
ϵ

MGη
t ≥ κϵ(p

t)−nϵ. (D.13)

We use the shorthand notation λ := 1/ (p∥p⋆∥∞). Then, by substituting Eq. (D.11) and Eq. (D.13)

back into Eq. (D.10), we derive that∑
i∈N

t+1
ϵ

sign (p⋆i − pti)Gi(p
t,rt)≥ λ (κϵ(p

t)−nϵ)−
∑
i∈N

[
ℓr,i
∥∥pt− rt

∥∥+ ℓd,i
∥∥pt− p̂t

∥∥]
(∆)

≥ λκϵ(p
t)−

nλ+
∑
i∈N

ℓr,i +2

√∑
i∈N

(bi + ci)2 ·
∑
i∈N

ℓd,i

 ϵ,

(D.14)

where inequality (∆) is due to ∥pt− rt∥ ≤ ϵ and

∥∥pt− p̂t
∥∥=√ ∑

i∈Nt+1
ϵ

(p⋆i − pti)
2 ≤
√ ∑

i∈Nt+1
ϵ

[2(bi + ci)ϵ]
2 ≤ 2ϵ

√∑
i∈N

(bi + ci)2. (D.15)

Let Cκ := nλ+
∑

i∈N ℓr,i+2
√∑

i∈N(bi + ci)2 ·
∑

i∈N ℓd,i. By combining Eq. (D.9) with Eq. (D.14),

we have that

κϵ(p
t+1)≤ (1−ληt)κϵ(p

t)+Cκϵη
t, ∀t≥ Tϵ. (D.16)

Therefore, by unrolling the recursion in Eq. (D.16), we deduce that for all t > Tϵ

κϵ(p
t)≤ κϵ(p

Tϵ)
t−1∏
t′=Tϵ

(1−ληt′)+Cκϵ
t−1∑
t′=Tϵ

ηt′
t−1∏

t′′=t′+1

(1−ληt′′)

(∆)

≤ κϵ(p
Tϵ) exp

(
−λ

t−1∑
t′=Tϵ

ηt′

)
+Cκϵ

t−1∑
t′=Tϵ

ηt′
t−1∏

t′′=t′+1

(1−ληt′′),

(D.17)

where we apply the elementary inequality 1 − x ≤ exp(−x) in (∆). We remark that
∏t−1

t′′=t(1 −

ληt′′) = 1 by default. Since
∑∞

t=0 η
t =∞, the exponential term in Eq. (D.17) clearly converges to

zero as t→∞. Hence, the key is the second term, denoted as Xt−1 :=
∑t−1

t′=Tϵ
ηt′
∏t−1

t′′=t′+1(1−ληt′′).

For every t > Tϵ, we observe that Xt = ηt +(1−ληt)Xt−1, and thereby

Xt− 1

λ
= ηt +(1−ληt)Xt−1− 1

λ

= (1−ληt)

(
Xt−1− 1

λ

)
=

(
XTϵ − 1

λ

) t∏
t′=Tϵ+1

(1−ληt′),

(D.18)
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which implies Xt − 1/λ always has the same sign as XTϵ − 1/λ and converges to zero as t→∞.

Thus, together with the relation κ(p)≤ κϵ(p)+nϵ in Eq. (D.1), Eqs. (D.17) and (D.18) imply that

lim
t→∞

κ(pt)≤ lim
t→∞

κϵ(p
t)+nϵ

≤ lim
t→∞

[
κϵ(p

Tϵ) exp

(
−λ

t−1∑
t′=Tϵ

ηt′

)
+CκϵX

t−1

]
+nϵ

=

(
Cκ

λ
+n

)
ϵ.

(D.19)

Since ϵ can take any non-negative value, and both Cκ and λ depend only on the problem parameters,

we conclude that limt→∞ κ(pt) = 0. Therefore, both the price and reference paths converge to p⋆,

which completes the proof of Theorem 1. □

Appendix E Proof of Theorem 2

Theorem 2 (Restated). In the loss-neutral scenario, suppose all firms adopt Algorithm 1 with

step-sizes ηt =
Cη log(t+1)

t+1
for t ≥ 2. Then, there exist constants T1, Cp, and Cr such that when

Cη > 2p2/ log 2, it holds for all t >max{2T1,10} that∥∥p⋆−pt
∥∥2 ≤Cp

(
log t

t

)2

= Õ
(
1

t2

)
,
∥∥p⋆− rt

∥∥2 ≤Cr

(
log t

t

)2

= Õ
(
1

t2

)
, (E.1)

where constants T1, Cp, and Cr are explicitly defined in Table EC.1.

Proof of Theorem 2. We note that the choice of ηt =
Cη log(t+1)

t+1
for t ≥ 2 satisfies the step-size

condition specified in Theorem 1. Hence, all analyses in the proof of Theorem 1 are applicable. We

first prove the convergence rate in terms of the metric κ(p) defined in Eq. (11).

By Lemma EC.2, we have ∥pt− rt∥ ≤ ηtCrp for all t≥ T1, where the constants Crp and T1 are

defined in Eq. (L.1). Hence, for every ϵ > 0, we can take Tϵ as the smallest integer greater than T1

such that ϵ >max{ηTϵMG, η
TϵCrp}, so that we have ηtMG < ϵ and ∥pt− rt∥< ϵ for every t≥ Tϵ.

Equivalently, Tϵ is the smallest integer such that

ϵ

CηĈrp

≥ log(Tϵ +1)

Tϵ +1
and Tϵ ≥ T1, (E.2)

where Ĉrp :=max{Crp,MG}. For every t > Tϵ, we have from Eq. (D.17) that

κ(pt)≤ κϵ(p
t)+nϵ≤ κϵ(p

Tϵ) exp

(
−λ

t−1∑
t′=Tϵ

ηt′

)
+CκϵX

t−1 +nϵ, (E.3)

where we recall that Xt−1 =
∑t−1

t′=Tϵ
ηt′
∏t−1

t′′=t′+1(1− ληt′′). From the recursion in Eq. (D.18), we

observe that if XTϵ < 1/λ, then Xt ≤ 1/λ for every t > Tϵ. Otherwise, it still holds that

Xt−1 =
1

λ
+

(
XTϵ − 1

λ

) t−1∏
t′=Tϵ+1

(1−ληt′)≤ 1

λ
+ ηTϵ ≤ 1

λ
+Cη < 2Cη, ∀t > Tϵ, (E.4)
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where the first inequality is because XTϵ = ηTϵ by definition, and the last inequality is due to the

choice Cη > 2p2/ log 2> 2/(λ log 2), as λ= 1/ (p∥p⋆∥∞). Thus, it remains to control the exponential

term on the right-hand side of Eq. (E.3). Using the integration lower bound, we deduce that

t−1∑
t′=Tϵ

ηt′ ≥Cη

∫ t

Tϵ

log(t′ +1)

t′ +1
dt′ =

Cη

2

[
log2(t+1)− log2(Tϵ +1)

]
. (E.5)

Therefore, it follows that for any t > Tϵ

exp

(
−λ

t−1∑
t′=Tϵ

ηt′

)
≤ exp

(
−λCη

2

[
log2(t+1)− log2(Tϵ +1)

])

=

[
exp

(
log2(Tϵ +1)

)
exp

(
log2(t+1)

) ]
λCη
2

=

[
(Tϵ +1)log(Tϵ+1)

(t+1)log(t+1)

]λCη
2

=

(
Tϵ +1

t+1

)λCη log(Tϵ+1)
2

·
(

1

t+1

)λCη
2 ·log( t+1

Tϵ+1)
.

(E.6)

Hence, when t≥ 2Tϵ +1, it holds that

exp

(
−λ

t−1∑
t′=Tϵ

ηt′

)
≤
(

1

t+1

)λCη
2 ·log 2

(∆1)

≤ 1

t+1

(∆2)

≤ 1

2(Tϵ +1)
· CrpCη log(Tϵ +1)√

n(p− p)

≤ ϵ

2
√
n(p− p)

,

(E.7)

where step (∆1) is due to Cη > 2p2/ log 2 > 2/(λ log 2), and step (∆2) uses the premise that t ≥
2Tϵ + 1. We note that by the definition of Crp in Eq. (L.1), it is easy to observe that the second

fraction in (∆2) is clearly greater than one. Finally, the last inequality in Eq. (E.7) applies the

definition of Tϵ in Eq. (E.2). Together, Eqs. (E.3), (E.4), and (E.7) imply that

κ(pt)≤
(
2CκCη +n+

κϵ(p
Tϵ)

2
√
n(p− p)

)
ϵ≤
(
2CκCη +n+

Mκ

2
√
n(p− p)

)
ϵ, (E.8)

where we replace κϵ(p
Tϵ) by its universal upper bound Mκ :=

∑
i∈N(p−p)/(bi+ci). By far, we have

shown that κ(pt) =O(ϵ) when t≥ 2Tϵ +1. To obtain the convergence rate that explicitly depends

on t, we consider the definition of Tϵ in Eq. (E.2). We claim that it suffices to choose

Tϵ =max

{
T1,

⌈
2CηĈrp

ϵ
log

(
CηĈrp

ϵ

)
− 1

⌉}
. (E.9)

To validate that such a choice satisfies the condition in Eq. (E.2), we compute that

log(Tϵ +1)

Tϵ +1
≤

log
(
2CηĈrp/ϵ

)
+ log

(
log
(
CηĈrp/ϵ

))
(
2CηĈrp/ϵ

)
· log

(
CηĈrp/ϵ

) (∆)

<
ϵ

CηĈrp

, (E.10)
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where step (∆) uses the inequality maxx>0

(
log 2x+log(logx)

)
/(2 logx) = 1/2+1/e < 1. Thus, Eq.

(E.8) holds true as long as

t≥ 2Tϵ +1≥max

{
2T1 +1,

⌈
4CηĈrp

ϵ
log

(
CηĈrp

ϵ

)⌉}
. (E.11)

We observe the following equivalence

t=
(
4CηĈrp/ϵ

)
· log

(
CηĈrp/ϵ

)
⇔ log

(
CηĈrp/ϵ

)
=W (t/4), (E.12)

where W (·) is the Lambert W function defined in Eq. (C.25). Using the lower bound of the Lambert

function W (x)≥ logx− log (logx) for all x≥ e, we find that for all t≥ 4e≈ 10.9

log

(
CηĈrp

ϵ

)
≥ log

(
t

4

)
− log

(
log

(
t

4

))
, (E.13)

which is equivalent to

ϵ≤ CηĈrp log(t/4)

t/4
≤ 4CηĈrp log t

t
. (E.14)

Together with requirements t≥ 2T1 +1 and t≥ 11, we conclude from the bound in Eq. (E.8) that

κ(pt)≤
(
2CκCη +n+

Mκ

2
√
n(p− p)

)
ϵ≤ Ĉκ

log t

t
, ∀t > {2T1,10} , (E.15)

where we define Ĉκ := 4CηĈrp

(
2CκCη +n+ Mκ

2
√
n(p−p)

)
. Finally, to obtain the upper bounds in Eq.

(13), we observe that for all t > {2T1,10}

∥∥p⋆−pt
∥∥2 ≤(∑

i∈N

max
k∈N
{bk + ck} ·

|p⋆i − pti|
bi + ci

)2

≤max
i∈N

{
(bi + ci)

2
}
· [κ(pt)]

2 ≤Cp

(
log t

t

)2

, (E.16)

where Cp :=maxi∈N {(bi + ci)
2} · (Ĉκ)

2. For the reference price path, we can similarly deduce that∥∥p⋆− rt
∥∥2 = ∥∥p⋆−pt +pt− rt

∥∥2
≤ 2

∥∥p⋆−pt
∥∥2 +2

∥∥pt− rt
∥∥2

≤ 2Cp

(
log t

t

)2

+2(ηtCrp)
2

≤ 2
(
Cp +(CηCrp)

2
)
·
(
log t

t

)2

.

(E.17)

The proof of Theorem 2 is completed by letting Cr := 2
(
Cp +(CηCrp)

2
)
. □
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Appendix F Proof of Theorem 3

Theorem 3 (Restated). In the loss-neutral scenario, if all firms adopt Algorithm 1 with step-

sizes {ηt}t≥0 satisfying limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞, the dynamic regret of each firm grows in a

sublinear rate, i.e.,

lim
T→∞

1

T
×D-Regreti(T ) = 0, ∀i∈N. (F.1)

Furthermore, if the step-sizes are specified as ηt =
Cη log(t+1)

t+1
for t ≥ 2, there exist constants T1

and CR,i such that when Cη > 2p2/ log 2, it holds that

D-Regreti(T )≤ p ·max{2T1,10}+2CR,i =O (1) , ∀T ≥ 1, ∀i∈N, (F.2)

where constants T1 and CR,i are explicitly defined in Table EC.1.

Proof of Theorem 3. We begin by demonstrating an auxiliary result on the smoothness of revenue

function Πi(p,r) with respect to pi, which would be useful in the following proof. Note that

∂Πi(p,r)

∂pi
= di(p,r)− (bi + ci)pi · di(p,r)

(
1− di(p,r)

)
= di(p,r) ·

[
1− (bi + ci)pi ·

(
1− di(p,r)

)]
.

(F.3)

Then, the second-order derivative of Πi(p,r) with respect to pi can be computed as follows

∂2Πi(p,r)

∂p2i
=− (bi + ci) · di(p,r)

(
1− di(p,r)

) [
1− (bi + ci)pi ·

(
1− di(p,r)

)]
+ di(p,r)

[
−(bi + ci)

(
1− di(p,r)

)
− (bi + ci)

2pi · di(p,r)
(
1− di(p,r)

)]
=− 2(bi + ci) · di(p,r)

(
1− di(p,r)

)
+(bi + ci)

2pi · di(p,r)
(
1− di(p,r)

)2
− (bi + ci)

2pi ·
(
di(p,r)

)2(
1− di(p,r)

)
=(bi + ci) · di(p,r)

(
1− di(p,r)

)
·
[
−2+ (bi + ci)pi ·

(
1− 2di(p,r)

)]
,

(F.4)

and thereby this second-order derivative can be bounded as∣∣∣∣∂2Πi(p,r)

∂p2i

∣∣∣∣≤ 1

4
(bi + ci)

(
2+ (bi + ci)p

)
=: hi, ∀p∈Pn, ∀r∈Pn. (F.5)

Hence, we have that Πi(p,r) is hi-smooth with respect to pi.

Now, we proceed to prove the theorem. For brevity, we denote the regret of firm i at period

t as Rt
i, i.e., R

t
i := maxpi∈P

{
Πi

(
(pi,p

t
−i),r

t
)}
−Πi(p

t,rt), and therefore the total regret over the

entire T periods can be expressed as D-Regreti(T ) =
∑T

t=1R
t
i. Let p

B
i (·, ·) be a function defined as

pBi
(
ri,u−i(p−i,r−i)

)
:= argmaxpi∈P

{
Πi

(
(pi,p−i),r

)}
, where u−i(p−i,r−i) is the vector of utilities

for all firms other than i, as defined in Eq. (L.41). The function pBi
(
ri,u−i(p−i,r−i)

)
represents the

best-response price for firm i that achieve the optimal single-period revenue, given the reference

price r and the price of other products p−i.
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We observe that Rt
i can be upper-bounded as follows

Rt
i =max

pi∈P

{
Πi

(
(pi,p

t
−i),r

t
)}
−Πi(p

t,rt)

=Πi

(
(pB,t

i ,pt
−i),r

t
)
−Πi (p

t,rt)

(∆1)

≤
∂Πi

(
(pB,t

i ,pt
−i),r

t
)

∂pi
·
(
pti− pB,t

i

)
+

hi

2

(
pB,t
i − pti

)2
(∆2)

≤ hi

2

(
pB,t
i − pti

)2
,

(F.6)

where we use the shorthand notation pB,t
i := pBi

(
rti ,u−i(p

t
−i,r

t
−i)
)
to denote the best-response

price for firm i at period t. The step (∆1) utilizes the hi-smoothness of Πi(p,r) with respect

to pi, as shown in Eq. (F.5). In step (∆2), since pB,t
i is the best-response price, it holds that

∂Πi

(
(pB,t

i ,pt
−i),r

t
)
/∂pi = 0 by the first-order condition.

In the following part, we evaluate term
(
pB,t
i − pti

)2
in Eq. (F.6), which can be decomposed as

(
pB,t
i − pti

)2
=
(
pB,t
i − p⋆i + p⋆i − pti

)2 ≤ 2
(
pB,t
i − p⋆i

)2
+2(p⋆i − pti)

2
, (F.7)

where the last step is due to the basic inequality (x+ y)2 ≤ 2x2 +2y2. Since the reference price at

SNE is also equal to p⋆, we can further upper-bound the first term on the right-hand side of Eq.

(F.7) as follows

(
pB,t
i − p⋆i

)2
=
[
pBi
(
rti ,u−i(p

t
−i,r

t
−i)
)
− pBi

(
p⋆i ,u−i(p

⋆
−i,p

⋆
−i)
)]2

=
[
pBi
(
rti ,u−i(p

t
−i,r

t
−i)
)
− pBi

(
p⋆i ,u−i(p

t
−i,r

t
−i)
)

+ pBi
(
p⋆i ,u−i(p

t
−i,r

t
−i)
)
− pBi

(
p⋆i ,u−i(p

⋆
−i,p

⋆
−i)
)]2

≤ 2
[
pBi
(
rti ,u−i(p

t
−i,r

t
−i)
)
− pBi

(
p⋆i ,u−i(p

t
−i,r

t
−i)
)]2

(F.8)

+ 2
[
pBi
(
p⋆i ,u−i(p

t
−i,r

t
−i)
)
− pBi

(
p⋆i ,u−i(p

⋆
−i,p

⋆
−i)
)]2

(∆1)

≤ 2
( ci
bi + ci

)2

(rti − p⋆i )
2 +2p2

∥∥u−i

(
pt

−i,r
t
−i

)
−u−i

(
p⋆

−i,p
⋆
−i

)∥∥2
(∆2)

≤ 2
( ci
bi + ci

)2

(rti − p⋆i )
2 +4p2

(
max
j ̸=i

{
(bj + cj)

2
}∥∥pt

−i−p⋆
−i

∥∥2 +max
j ̸=i

{
c2j
}∥∥rt−i−p⋆

−i

∥∥2 ),
where in step (∆1), we use the ci/(bi + ci)-Lipschitz continuity of pBi

(
·,u−i(p−i,r−i)

)
and the p-

Lipschitz continuity of pBi (ri, ·) from Eq. (L.43) in Lemma EC.6. In step (∆2), by the definition of

utility in Eq. (1), for all j ∈N\{i}, it holds that uj(p
t
j, r

t
j)−uj(p

⋆
j , p

⋆
j ) =−(bj + cj) · (ptj − p⋆j )+ cj ·

(rtj − p⋆j ). Therefore, it holds that∥∥u−i

(
pt

−i,r
t
−i

)
−u−i

(
p⋆

−i,p
⋆
−i

)∥∥2 ≤ 2max
j ̸=i
{(bj + cj)

2}
∥∥pt

−i−p⋆
−i

∥∥2 +2max
j ̸=i
{c2j}

∥∥rt−i−p⋆
−i

∥∥2 .
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Combining Eqs. (F.6) and (F.7), we have that Rt
i ≤ hi

(
pB,t
i − p⋆i

)2
+ hi (p

⋆
i − pti)

2
, where recall

that hi is a constant defined in Eq. (F.5). Then, substituting the term
(
pB,t
i − p⋆i

)2
with its bound

in Eq. (F.8), Rt
i evolves as

Rt
i ≤

2hic
2
i · (rti − p⋆i )

2

(bi + ci)2
+4hip

2
(
max
j ̸=i

{
(bj + cj)

2
}∥∥pt

−i−p⋆
−i

∥∥2 +max
j ̸=i

{
c2j
}∥∥rt−i−p⋆

−i

∥∥2 )+hi (p
⋆
i − pti)

2

≤2hi ·max

{(
ci

bi + ci

)2

, 2p2max
j ̸=i

{
c2j
}}∥∥p⋆− rt

∥∥2 +hi ·max

{
4p2max

j ̸=i

{
(bj + cj)

2
}
,1

}∥∥p⋆−pt
∥∥2 ,

(F.9)

where we apply the basic inequality k1x
2 + k2y

2 ≤max{k1, k2} (x2 + y2) in the last step.

When the step-sizes {ηt}t≥0 are non-increasing with limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞, we have

from Theorem 1 that pt→ p⋆ and rt→ p⋆. Hence, the dynamic regret grows in a sublinear rate,

which completes the proof of Eq. (15).

When the step-sizes are specified as ηt =
Cη log(t+1)

t+1
for t≥ 2, we can further quantify the regret

using the convergence rate in Theorem 2. In the case of t > T̂1, where T̂1 := max{2T1,10} and T1

can be found in Table EC.1, we can bound terms ∥p⋆−pt∥ and ∥p⋆− rt∥ by Eq. (13). Then, Eq.

(F.9) becomes that for all t > T̂1,

Rt
i ≤

[
2hiCr ·max

{(
ci

bi + ci

)2

, 2p2max
j ̸=i

{
c2j
}}

+hiCp ·max

{
4p2max

j ̸=i

{
(bj + cj)

2
}
,1

}](
log t

t

)2

.

(F.10)

We use CR,i to denote the multiple of (log t/t)2 in Eq. (F.10), i.e.,

CR,i := 2hiCr ·max

{(
ci

bi + ci

)2

, 2p2max
j ̸=i

{
c2j
}}

+hiCp ·max

{
4p2max

j ̸=i

{
(bj + cj)

2
}
,1

}
. (F.11)

In the case of t≤ T̂1, we use the plain bound on Rt
i, i.e.,

Rt
i ≤max

pi∈P

{
Πi

(
(pi,p

t
−i),r

t
)}
≤ p. (F.12)

Finally, combining Eqs. (F.10) and (F.12), we are ready to derive the regret bound as follows

D-Regreti(T ) =

T̂1∑
t=1

Rt
i +

T∑
t=T̂1+1

Rt
i

≤ p · T̂1 +CR,i

T∑
t=T̂1+1

(
log t

t

)2

≤ p · T̂1 +CR,i

∫ ∞

1

(
log t

t

)2

dt

= p · T̂1 +2CR,i, ∀T ≥ T̂1, ∀i∈N.

(F.13)

Since Eq. (F.13) has already upper-bounded the regrets during the first T̂1 =max{2T1,10} periods,
this upper bound also holds for all 1≤ T < T̂1, which completes the proof of Theorem 3. □
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Appendix G Proof of Theorem 4

Theorem 4 (Restated). In the loss-averse scenario, let the step-sizes {ηt}t≥0 be a non-

increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞. Then, for any reasonably small

ϵ > 0, the price and reference price paths generated by Algorithm 2 with the step-sizes {ηt}t≥0 and

threshold ϵ converge to a C̃κϵ-SNE, where constant C̃κ is explicitly defined in Table EC.2.

Proof of Theorem 4. As we have mentioned, instead of directly working on κ̃(p,r), we will leverage

the surrogate metric defined in Eq. (21), i.e., κ̃(p) =
∑

i∈N dist
(
0,Hull

{
G−

i (p,p),G
+
i (p,p)

})
,

where G−
i (p,r) and G+

i (p,r) are the scaled true/virtual derivatives defined as

G−
i (p,r) :=

1

(bi + c−i )pi
+ di(p,r)− 1, G+

i (p,r) :=
1

(bi + c+i )pi
+ di(p,r)− 1. (G.1)

In the loss-averse scenario, it is clear that G−
i (p,r)≤G+

i (p,r) for all i∈N with the equality only

holds true if c−i = c+i , i.e., the consumer is loss-neutral towards this specific product. Below, we

show that limt→∞ κ̃(pt) =O(ϵ), where ϵ is the pre-specified threshold in Algorithm 2.

Since D−
i (p,r) = (bi + c−i ) ·G−

i (p,r) and D+
i (p,r) = (bi + c+i ) ·G+

i (p,r), the pausing criteria in

line 5 of Algorithm 2 is equivalent to G+
i (p

t,rt)>−ϵ/(bi+ c+i ) and G−
i (p

t,rt)< ϵ/(bi+ c−i ). Hence,

we can classify the relation between pt+1
i and pti into the following three possibilities:

• If G+
i (p

t,rt)≥G−
i (p

t,rt)≥ ϵ/(bi + c−i ), then

pt+1
i = ProjP

(
pti + ηt · (wt

i ·D
t,+
i +(1−wt

i) ·D
t,−
i )
)
≥ ProjP

(
pti + ηt ·Dt,−

i

)
≥ pti, (G.2)

where we recall that Dt,+
i =D+

i (p
t,rt)≥D−

i (p
t,rt) =Dt,−

i by Eq. (18).

• If G−
i (p

t,rt)≤G+
i (p

t,rt)≤−ϵ/(bi + c+i ), then

pt+1
i = ProjP

(
pti + ηt · (wt

i ·D
t,+
i +(1−wt

i) ·D
t,−
i )
)
≤ ProjP

(
pti + ηt ·Dt,+

i

)
≤ pti. (G.3)

• Otherwise, we must have G+
i (p

t,rt)>−ϵ/(bi + c+i ) and G−
i (p

t,rt)< ϵ/(bi + c−i ), and thereby

the pausing criterion is triggered, i.e., pt+1
i = pti.

We remark that it is also possible for pt+1
i = pti in the first two cases. This happens when pti is on

the boundary of P = [p, p], and the price update is deprecated by the projection operation.

By Lemma EC.2, under the non-increasing step-sizes {ηt}t≥0 with limt→∞ ηt = 0, there must

exist Tϵ such that

max
i∈N

(bi + c−i ) · ℓ̃r,i
∥∥pt− rt

∥∥ , (bi + c−i ) · ηtℓ̃p,iM̃G

√∑
k∈N

(bk + c−k )
2

≤ ϵ

2
, ∀t≥ Tϵ, (G.4)

where the definitions of ℓ̃r,i, ℓ̃p,i, and M̃G can be found in Table EC.2. Now, for any t≥ Tϵ, consider

the following separation of N :

N t
− :=

{
i∈N |pti < pt+1

i

}
, N t

+ :=
{
i∈N |pti > pt+1

i

}
, N t

c :=N\
(
N t

− ∪N t
+

)
. (G.5)
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We claim that if N t
− is not empty, then for any i ∈ N t

−, it holds that G−
i (p

t,pt) ≥ ϵ

2(bi+c−i )
and

G−
i (p

t+1,pt+1) ≥ 0. Specifically, since pti < pt+1
i for any i ∈ N t

−, we have G−
i (p

t,rt) ≥ ϵ/(bi + c−i ),

and thereby

G−
i (p

t,pt) =G−
i (p

t,rt)+
[
G−

i (p
t,pt)−G−

i (p
t,rt)

]
≥ ϵ

bi + c−i
− ℓ̃r,i

∥∥pt− rt
∥∥

≥ ϵ

2(bi + c−i )
,

(G.6)

where we use the Lipschitz continuity of G−
i (p, ·) from Lemma EC.7 and the choice of Tϵ in Eq.

(G.4). In addition, using the Lipschitz continuity of G−
i (p,p) with respect to p from Lemma EC.7,

we derive that

G−
i (p

t+1,pt+1) =G−
i (p

t,pt)+
[
G−

i (p
t+1,pt+1)−G−

i (p
t,pt)

]
≥ ϵ

2(bi + c−i )
− ℓ̃p,i

∥∥pt+1−pt
∥∥

(∆1)

≥ ϵ

2(bi + c−i )
− ηtℓ̃p,i

√∑
k∈N

(Dt
k)

2

(∆2)

≥ ϵ

2(bi + c−i )
− ηtℓ̃p,i

√∑
k∈N

(bk + c−k )
2(M̃G)2

≥ 0,

(G.7)

where step (∆1) follows from the price update rule, and inequality (∆2) is because

|Dt
k| ≤ max

{
(bk + c−k )

∣∣G−
k (p

t,rt)
∣∣ , (bk + c+k )

∣∣G+
k (p

t,rt)
∣∣} ≤ (bk + c−k )M̃G, using the upper bound∣∣G−

i (p,r)
∣∣ ≤ M̃G from Lemma EC.7. Hence, combining Eqs. (G.6) and (G.7) with the fact

G−
i (p,r)≤G+

i (p,r), we have that

dist
(
0,Hull

{
G−

i (p
t′ ,pt′),G+

i (p
t′ ,pt′)

})
=G−

i (p
t′ ,pt′), ∀t′ ∈ {t, t+1}, ∀i∈N t

−. (G.8)

Similarly, we can show that if N t
+ ̸=Ø, then for any i ∈N t

+, it holds that G+
i (p

t,pt)≤− ϵ

2(bi+c+i )

and G+
i (p

t+1,pt+1)≤ 0, and thus

dist
(
0,Hull

{
G−

i (p
t′ ,pt′),G+

i (p
t′ ,pt′)

})
=−G+

i (p
t′ ,pt′), ∀t′ ∈ {t, t+1}, ∀i∈N t

+. (G.9)
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Next, we assess the improvement κ̃(pt+1)− κ̃(pt) by breaking down the summation over N using

the definitions of N t
−, N

t
+, and N t

c in Eq. (G.5).

κ̃(pt+1)− κ̃(pt)

=
∑
i∈N

[
dist

(
0,Hull

{
G−

i (p
t+1,pt+1),G+

i (p
t+1,pt+1)

})
− dist

(
0,Hull

{
G−

i (p
t,pt),G+

i (p
t,pt)

})]
(∆)
=
∑
i∈Nt

−

[
G−

i (p
t+1,pt+1)−G−

i (p
t,pt)

]
+
∑
i∈Nt

+

[
G+

i (p
t,pt)−G+

i (p
t+1,pt+1)

]
+
∑
i∈Nt

c

[
dist

(
0,Hull

{
G−

i (p
t+1,pt+1),G+

i (p
t+1,pt+1)

})
− dist

(
0,Hull

{
G−

i (p
t,pt),G+

i (p
t,pt)

})]
=
∑
i∈Nt

−

[
1

bi + c−i

(
1

pt+1
i

− 1

pti

)
+ di(p

t+1,pt+1)− di(p
t,pt)

]

+
∑
i∈Nt

+

[
1

bi + c+i

(
1

pti
− 1

pt+1
i

)
+ di(p

t,pt)− di(p
t+1,pt+1)

]
+
∑
i∈Nt

c

[
dist

(
0,Hull

{
G−

i (p
t+1,pt+1),G+

i (p
t+1,pt+1)

})
− dist

(
0,Hull

{
G−

i (p
t,pt),G+

i (p
t,pt)

})]
,

(G.10)

where step (∆) uses the equalities in Eqs. (G.8) and (G.9). Although the right-hand side of Eq.

(G.10) seems involved due to the presence of the summation over N t
c , we make the following key

observation: since pt+1
i = pti for all i∈N t

c , the difference between the two distance terms only arises

from the change of the demand function (see the definitions in Eq. (G.1)). Based on the relative

size of di(p
t+1,pt+1) and di(p

t,pt) for i∈N t
c , we enlarge sets N t

− and N t
+ as follows:

N̂ t
− :=N t

− ∪{i∈N t
c |di(pt+1,pt+1)− di(p

t,pt)≥ 0},

N̂ t
+ :=N t

+ ∪{i∈N t
c |di(pt+1,pt+1)− di(p

t,pt)< 0}.
(G.11)

By definition, it is clear that N̂ t
−∪ N̂ t

+ =N t
−∪N t

+∪N t
c =N . Then, we can further deduce from Eq.

(G.10) that

κ̃(pt+1)− κ̃(pt)

≤
∑
i∈Nt

−

[
1

bi + c−i

(
1

pt+1
i

− 1

pti

)
+ di(p

t+1,pt+1)− di(p
t,pt)

]

+
∑
i∈Nt

+

[
1

bi + c+i

(
1

pti
− 1

pt+1
i

)
+ di(p

t,pt)− di(p
t+1,pt+1)

]
+
∑
i∈Nt

c

∣∣di(pt+1,pt+1)− di(p
t,pt)

∣∣
=
∑
i∈Nt

−

1

bi + c−i

(
1

pt+1
i

− 1

pti

)
+
∑
i∈Nt

+

1

bi + c+i

(
1

pti
− 1

pt+1
i

)
+
∑
i∈N̂t

−

[
di(p

t+1,pt+1)− di(p
t,pt)

]
+
∑
i∈N̂t

+

[
di(p

t,pt)− di(p
t+1,pt+1)

]
.

(G.12)
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Since pt+1
i ≥ pti for all i∈ N̂ t

− and pt+1
i ≤ pti for all i∈ N̂ t

+, it holds that

∑
i∈N̂t

−

di(p
t+1,pt+1) =

∑
i∈N̂t

−
exp

(
ui(p

t+1
i , pt+1

i )
)

1+
∑

i∈N̂t
−
exp

(
ui(p

t+1
i , pt+1

i )
)
+
∑

j∈N̂t
+
exp

(
uj(p

t+1
j , pt+1

j )
)

≤

∑
i∈N̂t

−
exp (ui(p

t
i, p

t
i))

1+
∑

i∈N̂t
−
exp (ui(pti, p

t
i))+

∑
j∈N̂t

+
exp

(
uj(p

t+1
j , pt+1

j )
)

≤

∑
i∈N̂t

−
exp (ui(p

t
i, p

t
i))

1+
∑

i∈N̂t
−
exp (ui(pti, p

t
i))+

∑
j∈N̂t

+
exp

(
uj(ptj, p

t
j)
) = ∑

i∈N̂t
−

di(p
t,pt),

(G.13)

where we use the fact that ui(pi, pi) = ai − bipi is monotone decreasing pi. Similarly, we have∑
i∈N̂t

+
di(p

t+1,pt+1)≥
∑

i∈N̂t
+
di(p

t,pt). These two relations, together with Eq. (G.12), imply that

κ̃(pt+1)− κ̃(pt)≤
∑
i∈Nt

−

1

bi + c−i

(
1

pt+1
i

− 1

pti

)
+
∑
i∈Nt

+

1

bi + c+i

(
1

pti
− 1

pt+1
i

)
(∆)
= −

∑
i∈Nt

−

1

pti · pt+1
i

∣∣pt+1
i − pti

∣∣
bi + c−i

−
∑
i∈Nt

+

1

pti · pt+1
i

∣∣pt+1
i − pti

∣∣
bi + c−i

≤ −1
p2

∑
i∈Nt

−

∣∣pt+1
i − pti

∣∣
bi + c−i

+
∑
i∈Nt

+

∣∣pt+1
i − pti

∣∣
bi + c−i


≤ −1

p2
max

{
max
i∈Nt

−

{∣∣pt+1
i − pti

∣∣
bi + c−i

}
,max
i∈Nt

+

{∣∣pt+1
i − pti

∣∣
bi + c−i

}}
,

(G.14)

where we apply the definitions of N t
− and N t

+ from Eq. (G.5) in (∆). It is worth noting that, when

both N t
− and N t

+ are empty sets, i.e., N t
c =N , then Eq. (G.14) reduces to κ̃(pt+1)− κ̃(pt) = 0, since

N t
c =N implies pt+1 = pt. Therefore, we find that the sequence {κ̃(pt)}t≥Tϵ

is non-increasing.

We first consider the situation N t
c =N and demonstrate that when ϵ is reasonably small, N t

c =N

implies that κ̃(pt) =O(ϵ). Note that pt+1
i = pti can only happen for the following two reasons:

• The pausing criterion is triggered for product i, i.e., G+
i (p

t,rt)>−ϵ/(bi+c+i ) and G−
i (p

t,rt)<

ϵ/(bi + c−i ), and thus no price update occurs.

• The price pti is at the boundary of the feasible range P, i.e., pti = p or pti = p, and the price

update is towards the outside direction, which is then deprecated by the projection operator.

Below, we show that for any t≥ Tϵ and any reasonably small ϵ, the second scenario cannot happen

when pt+1 = pt. We argue from the reverse direction: if there exists i0 ∈N with pti0 = p, then we

must have pt+1 ̸= pt (the case when pti0 = p is equivalent). Denote ξi0 :=min
{
p− p⋆i0 |p

⋆ ∈ S
}
, i.e.,

the minimum distance between the SNE set S and the price upper bound in the i0-th dimension.

We consider the following new separation of N based on pt:

Ñ t
− :=

{
i∈N |G−

i (p
t,pt)> 0

}
, Ñ t

+ :=
{
i∈N |G+

i (p
t,pt)< 0

}
, Ñ t

c =N\
(
Ñ t

− ∪ Ñ t
+

)
. (G.15)
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Equivalently, we can write Ñ t
c =

{
i∈N |G−

i (p
t,pt)≤ 0≤G+

i (p
t,pt)

}
. Then, we define the pseudo

sensitivities (c̃i)i∈N as follows: for i ∈ Ñ t
−, let c̃i = c−i ; for i ∈ Ñ t

+, let c̃i = c+i ; for i ∈ Ñ t
c , let c̃i be

the unique value that satisfies

1

(bi + c̃i)pti
+ di(p

t,pt)− 1 = 0. (G.16)

By the definitions of scaled derivatives in Eq. (G.1), since G−
i (p

t,pt)≤ 0≤G+
i (p

t,pt) for all i∈ Ñ t
c ,

such a c̃i must exist and c̃i ∈ [c+i , c−i ]. Given (c̃i)i∈N , let p̃
⋆ ∈ S be the unique SNE that satisfies

p̃⋆i =
1

(bi + c̃i) · (1− di(p̃⋆, p̃⋆))
, ∀i∈N, (G.17)

whose existence is guaranteed by the expression of S (see Eq. (6) and the proofs below Eq. (C.3)).

Next, for every i∈N , we further introduce that

G̃i(p,r) :=
1

(bi + c̃i)pi
+ di(p,p)− 1, G̃(p) :=

∑
i∈N

sign (p̃⋆i − pi) G̃i(p,p). (G.18)

We note that, since c̃i ∈ [c+i , c−i ], it always holds G−
i (p,r)≤ G̃i(p,r)≤G+

i (p,r). By Lemma EC.8,

G̃(pt) satisfies that

G̃(pt) =
∑
i∈N

sign (p̃⋆i − pti) G̃i(p
t,pt)≥ 1

p∥p̃⋆∥∞
·
∑
i∈N

|p̃⋆i − pti|
bi + c̃i

≥ ξi0
(bi0 + c̃i0)p∥p̃⋆∥∞

, (G.19)

where the last inequality holds because
∣∣p̃⋆i0 − pti0

∣∣ = ∣∣p̃⋆i0 − p
∣∣ ≥min

{
p− p⋆i0 |p

⋆ ∈ S
}
= ξi0 . Hence,

by the definition of G̃(p), if
ξi0 ≥

[n(bi0 + c̃i0)p∥p̃⋆∥∞]

mini∈N

{
bi + c+i

} · 3ϵ
2
, (G.20)

we can deduce from the lower bound in Eq. (G.19) that

max
i∈N

{
sign (p̃⋆i − pti) G̃i(p

t,pt)
}
≥ 1

n
· ξi0
(bi0 + c̃i0)p∥p̃⋆∥∞

≥ 3ϵ

2mini∈N

{
bi + c+i

} . (G.21)

Denote i1 := argmaxi∈N

{
sign (p̃⋆i − pti) G̃i(p

t,pt)
}
. Then, Eq. (G.21) implies that∣∣∣G̃i1(p

t,pt)
∣∣∣≥ 3ϵ

2mini∈N

{
bi + c+i

} ≥ 3ϵ

2(bi1 + c+i1)
. (G.22)

Since G̃i(p
t,pt) = 0 for all i ∈ Ñ t

c by Eq. (G.16), we must have i1 ∈ Ñ t
− ∪ Ñ t

+. Now, we prove that

pt+1
i1
̸= pti1 . Without loss of generality, suppose i1 ∈ Ñ t

−, i.e., G
−
i1
(pt,pt)> 0. Then, by the definition

of (c̃i)i∈N above Eq. (G.16), it follows that G̃i1(p
t,pt) = G−

i1
(pt,pt) > 0. Hence, we must have

sign
(
p̃⋆i1 − pti1

)
> 0, i.e., pti1 < p̃⋆i1 , which implies that G+

i1
(pt,pt) ≥ G−

i1
(pt,pt) ≥ 3ϵ

2(bi1+c+i1
)
. In the

meantime, since t≥ Tϵ, we deduce that

G−
i1
(pt,rt) =G−

i1
(pt,pt)+

[
G−

i1
(pt,rt)−G−

i1
(pt,pt)

]
≥G−

i1
(pt,pt)− ℓ̃r,i1

∥∥pt− rt
∥∥

≥ 3ϵ

2(bi1 + c+i1)
− ϵ

2(bi1 + c−i1)

≥ ϵ

bi1 + c−i1
,

(G.23)
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where the inequalities follow from the Lipschitz continuity of G−
i1
(p, ·) in Lemma EC.7 and the

definition of Tϵ in Eq. (G.4). Therefore, we conclude that the update pt+1
i1
← ProjP

(
pti1 + ηt ·Dt

i1

)
is towards the SNE price p̃⋆i1 , i.e., sign

(
p̃⋆i1 − pti1

)
= sign

(
pt+1
i1
− pti1

)
, and thereby pt+1

i1
̸= pti.

Based on the arguments above, we can provide a sufficient condition for the size of ϵ such that

N t
c =N always implies that the pausing criteria are triggered for all products. We define that

ξi =min
{
p− pi, pi− p|p∈ S

}
, ∀i∈N, (G.24)

which stands for the minimum distance from S to the boundaries of the feasible region P in the

i-th dimension. Then, the derivations in Eqs. (G.19) to (G.23) imply that it is sufficient to have

ϵ≤
2mini∈N

{
bi + c+i

}
3np ·maxp∈S {∥p∥∞}

·min
i∈N

{
ξi

bi + c−i

}
. (G.25)

When ϵ satisfies Eq. (G.25), then if there exists any product i0 ∈ N with pti0 = p or pti0 = p, we

can always follow the derivations in Eqs. (G.19) to (G.23) to show that pt+1 is different from pt

for at least one product. We remark that according to Proposition 1, the value of maxp∈S {∥p∥∞}

has roughly linear (or inversely linear) dependence on problem parameters. Hence, even when p is

excessively large, the condition in Eq. (G.25) would not be restrictive because limp→∞ ξi/p= 1.

By far, from Eqs. (G.15) to (G.25), we have demonstrated that for reasonably small ϵ and t≥ Tϵ,

N t
c = N will happen only if the pausing criteria are triggered for all products. Below, suppose

N t0
c =N for some t0 ≥ Tϵ, we show that pt0 is already close to the set of SNEs. By the definition

of κ̃(·) from Eq. (21), it follows that

κ̃(pt0) =
∑
i∈N

dist
(
0,Hull

{
G−

i (p
t0 ,pt0),G+

i (p
t0 ,pt0)

})
(∆1)

≤
∑
i∈N

[
dist

(
0,Hull

{
G−

i (p
t0 ,rt0),G+

i (p
t0 ,rt0)

})
+

ϵ

2(bi + c−i )

]
(∆2)

≤
∑
i∈N

(
ϵ

bi + c+i
+

ϵ

2(bi + c−i )

)

≤

[∑
i∈N

3

2(bi + c+i )

]
ϵ,

(G.26)

where inequality (∆1) applies the Lipschitz properties from Lemma EC.7 and follows the same

derivations as Eqs. (G.6) and (G.23). Step (∆2) leverages the presumption that pausing criteria

are triggered for all products, i.e., G−
i (p

t0 ,rt0)< ϵ/(bi + c−i ) and G+
i (p

t0 ,rt0)>−ϵ/(bi + c+i ), and

since c−i ≥ c+i , we have

dist
(
0,Hull

{
G−

i (p
t0 ,rt0),G+

i (p
t0 ,rt0)

})
≤ ϵ

bi + c+i
. (G.27)
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Therefore, since {κ̃(pt)}t≥Tϵ
is non-increasing and limt→∞ ∥pt− rt∥= 0, we conclude that

lim
t→∞

κ̃(pt,rt) = lim
t→∞

[
∥pt− rt∥+

∑
i∈N

dist
(
0,Hull

{
D−

i (p
t,rt),D+

i (p
t,rt)

})]

= lim
t→∞

[∑
i∈N

dist
(
0,Hull

{
D−

i (p
t,pt),D+

i (p
t,pt)

})]

≤ lim
t→∞

[
max
k∈N

{
bk + c−k

}
·
∑
i∈N

dist
(
0,Hull

{
G−

i (p
t,pt),G+

i (p
t,pt)

})]
=max

k∈N

{
bk + c−k

}
· lim
t→∞

κ̃(pt)

≤
[∑

i∈N

3maxk∈N

{
bk + c−k

}
2(bi + c+i )︸ ︷︷ ︸
=:C̃κ

]
ϵ,

(G.28)

where we use the fact that D⋄
i (p,r) = (bi + c⋄i )G

⋄
i (p,r) ≤ maxk∈N

{
bk + c−k

}
· G⋄

i (p,r) for every

⋄ ∈ {+,−} and all i∈N . Eq. (G.28) indicates that Algorithm 2 converges to a C̃κϵ-SNE, where we

define C̃κ :=
∑

i∈N 3maxk∈N

{
bk + c−k

}
/
[
2(bi + c+i )

]
.

Now, we show by contradiction that there always exists such a period t0 ≥ Tϵ with N t0
c = N .

Suppose N t
−∪N t

+ ̸=Ø for all t≥ Tϵ. Then, Eq. (G.14) non-trivially holds true throughout the entire

horizon of t ≥ Tϵ. For the similar reasoning as Eqs. (G.19) to (G.23), we observe that for every

t≥ Tϵ, there must exist a product it ∈N t
− ∪N t

+ such that
∣∣pt+1

it
− ptit

∣∣= ηt
∣∣Dt

it

∣∣, i.e., the projection

operation is not in effect. Without loss of generality, assume that it ∈N t
−. Then, we further deduce

from Eq. (G.14) that

κ̃(pt+1)− κ̃(pt)≤ −1
p2
·
ηt
∣∣Dt

it

∣∣
bit + c−

it

=
−1
p2
·
ηt
(
wt

it ·D
t,+

it
+(1−wt

it) ·D
t,−
it

)
bit + c−

it

≤ −1
p2
·
ηtDt,−

it

bit + c−
it

≤ −ηtϵ

p2 · (bit + c−
it
)
,

(G.29)

where we use the fact that Dt,+
i ≥Dt,−

i = (bi+c−i )G
−
i (p

t,rt)≥ ϵ for any i∈N t
−, due to the definition

of N t
− in Eq. (G.5). The same argument applies to the situation where it ∈N t

+. Thus, by applying

a telescoping sum to Eq. (G.29), it follows that for any t > Tϵ

κ̃(pt)≤ κ̃(pTϵ)−

(∑t−1

t′=Tϵ
ηt′
)
ϵ

p2 ·maxi∈N

{
bi + c−i

} . (G.30)

Since the step-sizes satisfy
∑∞

t=0 η
t =∞, we deduce that limt→∞ κ̃(pt) = −∞, which contradicts

with the definition of κ̃(·). Therefore, there must exist t0 ≥ Tϵ such that N t0
c =N , which, together

with Eq. (G.28), completes the proof of Theorem 4. □
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Appendix H Proof of Theorem 5

Theorem 5 (Restated). In the loss-averse scenario, suppose all firms adopt Algorithm 2 with

step-sizes ηt =
Cη√
t+1

and a reasonably small threshold ϵ, where Cη is some general constant. Then,

there exists T̃ =O(1/ϵ2) such that

κ̃(pt,rt)≤

(
1

2maxi∈N

{
(bi + c−i )ℓ̃r,i

} +
∑
i∈N

2maxk∈N

{
bk + c−k

}
bi + c+i

)
ϵ, ∀t≥ T̃ , (H.1)

where κ̃(·) is defined in Eq. (17), and constants T̃ and ℓ̃r,i are explicitly defined in Table EC.2.

Proof of Theorem 5. Consider the decreasing step-sizes of the form ηt =Cη(t+1)−β with β ∈ (0,1],
which satisfy the conditions limt→∞ ηt = 0 and

∑∞
t=0 η

t =∞. Hence, all analyses in the proof of

Theorem 4 are applicable, and we will use them as the basis for the proof of the convergence rate.

By Lemma EC.2, we have ∥pt− rt∥ ≤ ηtCrp,β for all t≥ Tβ, where the constants Crp,β and Tβ

are defined in Eq. (L.2). Hence, to satisfy Eq. (G.4), it suffices to choose Tϵ as the smallest integer

greater than Tβ such that

ηTϵ ·max
i∈N

(bi + c−i ) · ℓ̃r,iCrp,β, (bi + c−i ) · ℓ̃G,iM̃G

√∑
k∈N

(
bk + c−k

)2≤ ϵ

2
. (H.2)

Denote C̃β := maxi∈N

{
(bi + c−i ) · ℓ̃r,iCrp,β, (bi + c−i ) · ℓ̃G,iM̃G

√∑
k∈N

(
bk + c−k

)2}
. Then, since

ηTϵ =Cη(Tϵ +1)−β, we observe from Eq. (H.2) that Tϵ can be expressed as

Tϵ :=max

Tβ,


(
2CηC̃β

ϵ

) 1
β

− 1

 . (H.3)

Next, recall the separation introduced in Eq. (G.5). According to Eq. (G.26), if there exists t0 ≥ Tϵ

with N t0
c =N , i.e., the pausing criteria are triggered for all products, it follows that for all t≥ t0

κ̃(pt,rt) = ∥pt− rt∥+
∑
i∈N

dist
(
0,Hull

{
D−

i (p
t,rt),D+

i (p
t,rt)

})
(∆1)

≤ ηtCrp,β +max
k∈N

{
bk + c−k

}
·
∑
i∈N

dist
(
0,Hull

{
G−

i (p
t,rt),G+

i (p
t,rt)

})
(∆2)

≤ ηtCrp,β +max
k∈N

{
bk + c−k

}
·
∑
i∈N

[
dist

(
0,Hull

{
G−

i (p
t),G+

i (p
t)
})

+
ϵ

2(bi + c−i )

]

= ηtCrp,β +max
k∈N

{
bk + c−k

}(
κ̃(pt)+

∑
i∈N

ϵ

2(bi + c−i )

)
(∆3)

≤ ϵ

2maxi∈N

{
(bi + c−i )ℓ̃r,i

} +

[∑
i∈N

2maxk∈N

{
bk + c−k

}
bi + c+i

]
ϵ

=

 1

2maxi∈N

{
(bi + c−i )ℓ̃r,i

} +
∑
i∈N

2maxk∈N

{
bk + c−k

}
bi + c+i

 ϵ,

(H.4)
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where in step (∆1), we leverage the bound ∥pt− rt∥ ≤ ηtCrp,β for all t≥ Tβ and use the relation

D⋄
i (p,r) = (bi + c⋄i )G

⋄
i (p,r) ≤ maxk∈N

{
bk + c−k

}
· G⋄

i (p,r) for every ⋄ ∈ {+,−}. Next, step (∆2)

uses the Lipschitz continuity of G⋄
i (p, ·) in a similar manner as Eq. (G.6). In step (∆3), we first

apply the upper bound ηtCrp,β ≤ ηTϵCrp,β ≤ ϵ/(2maxi∈N{(bi+ c−i )ℓ̃r,i}) from Eq. (H.2). Then, since

{κ̃(pt)}t≥Tϵ
is non-increasing from Eq. (G.14), we have

κ̃(pt)≤ κ̃(pt0)≤

[∑
i∈N

3

2(bi + c+i )

]
ϵ, (H.5)

where the last inequality follows from Eq. (G.26). Thus, Eq. (H.4) shows that Algorithm 2 converges

to an

(
1

2maxi∈N{(bi+c−i )ℓ̃r,i} +
∑

i∈N

2maxk∈N{bk+c−
k }

bi+c+i

)
ϵ-SNE after t0 iterations.

Therefore, it remains to determine when would such a period t0 occur. Let T̃ be some integer

greater than Tϵ such that

ϵ

p2 ·maxi∈N

{
bi + c−i

}
 T̃−1∑

t=Tϵ

ηt

>nM̃G. (H.6)

Since
∑∞

t=0 η
t =∞, the existence of T̃ is guaranteed. We observe that t0 ≤ T̃ must hold true,

otherwise, we can deduce from Eq. (G.30) that

κ̃(pT̃ )≤ κ̃(pTϵ)− ϵ

p2 ·maxi∈N

{
bi + c−i

}
 T̃−1∑

t=Tϵ

ηt

 (∆)

≤ nM̃G−
ϵ

p2 ·maxi∈N

{
bi + c−i

}
 T̃−1∑

t=Tϵ

ηt

< 0,

(H.7)

where we apply the upper bound |G⋄
i (p,r)| ≤ M̃G for ⋄ ∈ {+,−} from Lemma EC.7 in step (∆) to

derive that κ̃(p) =
∑

i∈N dist
(
0,Hull

{
G−

i (p,p),G
+
i (p,p)

})
≤ nM̃G. Since κ̃(·) is a non-negative

metric, Eq. (H.7) is a clear contradiction.

Next, we compute T̃ under the step-size choice ηt =Cη(t+1)−β and determine the optimal value

of β. Using the integration lower bound, we have that

T̃−1∑
t=Tϵ

ηt ≥Cη

∫ T̃

Tϵ

(t+1)−βdt=
Cη

1−β

[
(T̃ +1)1−β − (Tϵ +1)1−β

]
. (H.8)

Hence, by Eqs. (H.6) and (H.8), we can choose T̃ to be any positive integer such that

Cη

1−β

[
(T̃ +1)1−β − (Tϵ +1)1−β

]
>

nM̃Gp
2 ·maxi∈N

{
bi + c−i

}
ϵ

, (H.9)

which is further equivalent to

T̃ ≥
[
(1−β)nM̃Gp

2 ·maxi∈N

{
bi + c−i

}
Cηϵ

+(Tϵ +1)1−β

] 1
1−β

=

[
(1−β)nM̃Gp

2 ·maxi∈N

{
bi + c−i

}
Cηϵ

+

(
max

{
Tβ +1,

⌈(2CηC̃β

ϵ

) 1
β

⌉})1−β] 1
1−β

,

(H.10)
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where we substitute in the expression of Tϵ from Eq. (H.3). We observe that the quantity on

the right-hand side of Eq. (H.10) has the order O
(
ϵ

−1
1−β + ϵ

−1
β

)
and attains its minimum when

β = 1/2. Therefore, combining Eqs. (H.4) and (H.10), we conclude that under the step-size choice

ηt = Cη/
√
t+1, Algorithm 2 achieves an

(
1

2maxi∈N{(bi+c−i )ℓ̃r,i} +
∑

i∈N

2maxk∈N{bk+c−
k }

bi+c+i

)
ϵ-SNE in

T̃ =O(1/ϵ2) iterations, where

T̃ :=

nM̃Gp
2 ·maxi∈N

{
bi + c−i

}
2Cηϵ

+

√
max

{
T1/2 +1,

⌈(2CηC̃1/2

ϵ

)2
⌉} 2

. (H.11)

In particular, we use T1/2 and C̃1/2 to denote the previously defined constants Tβ and C̃β in the

special case of β = 1/2. By Eq. (L.2) and the definition of C̃β below Eq. (H.2), we have that

T1/2 =

⌈
2 · (3+α2)− 4

4− (3+α2)

⌉
=

⌈
2+2α2

1−α2

⌉
,

C̃1/2 =max
i∈N

{
(bi + c−i ) · ℓ̃r,iC̃rp, (bi + c−i ) · ℓ̃G,iM̃G

√∑
i∈N

(
bi + c−i

)2}
,

C̃rp =max

{
2M̃G

√
(1+α2)

∑
i∈N(bi + c−i )

2

1−α2
,

√
n(p− p)

√
T1/2 +1

Cη

}
.

(H.12)

This completes the proof of Theorem 5. □

Appendix I Proof of Theorem 6

Theorem 6 (Restated). Suppose that each firm i∈N takes its own non-increasing step-sizes

{ηt
i}t≥0 such that limt→∞ ηt

i = 0 and
∑∞

t=0 η
t
i =∞. Then, it follows that:

• In the loss-neutral scenario, the price and reference price paths generated by Algorithm 1

converge to the unique SNE, where the convergence rate is determined by the slowest decay rate

among the step-size sequences.

• In the loss-averse scenario, the price and reference price paths generated by Algorithm 2 with

threshold ϵ converge to an O(ϵ)-SNE, where the convergence rate is determined by both the slowest

and fastest decay rates among the step-size sequences.

Proof of Theorem 6. The proof is built upon the current proofs for Theorems 1, 2, 4, and 5.

We first consider the loss-neutral scenario. Since all the step-size sequences {ηt
i}t≥0 are non-

increasing, there exist a non-increasing sequence {ηt}t≥0 and non-decreasing sequences
{
Ct

η,i

}
t≥0

for every i∈N such that ηt
i = ηtCt

η,i for every t≥ 0 and i∈N . The sequence {ηt}t≥0 approximately

measures the smallest step-sizes among all firms, i.e., the sequence with the fastest decay rates.

For example, in a two-firm setting where ηt
1 = 1/(t+ 1) and ηt

2 = 1/(t+ 1)2, we can take ηt = ηt
2,
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Ct
η,1 = t + 1, and Ct

η,2 = 1. We note that our proofs for Theorems 1 and 2 are built upon two

key results, the inequality in Eq. (D.9) and Lemma EC.3. To accommodate the firm-differentiated

step-sizes, we first modify the distance metrics κ(·) and κϵ(·), defined in Eq. (11), to the following

non-stationary metrics

κt(p) :=
∑
i∈N

|p⋆i − pi|
Ct

η,i(bi + ci)
, κt

ϵ(p) :=
∑
i∈N

max

{
|p⋆i − pi|

Ct
η,i(bi + ci)

− ϵ,0

}
. (I.1)

Then, it is easy to verify that Eq. (D.9) holds under the new metric κϵ(·). For Lemma EC.3, we

also observe that

G(p)≥ 1

p∥p⋆∥∞
·
∑
i∈N

|p⋆i − pi|
bi + ci

≥
mini∈N

{
Ct

η,i

}
p∥p⋆∥∞

∑
i∈N

|p⋆i − pi|
Ct

η,i(bi + ci)
=

mini∈N

{
Ct

η,i

}
p∥p⋆∥∞

κt(p). (I.2)

Using Eq. (I.2) and following the derivations from Eqs. (D.6) to (D.16), we can deduce that

κt
ϵ(p

t+1)≤
(
1−min

i∈N

{
Ct

η,i

}
ληt
)
κt
ϵ(p

t)+Cκϵη
t, (I.3)

where λ= 1/ (p∥p⋆∥∞) and Cκ is defined above Eq. (D.16). In the special scenario where Ct
η,i ≡Cη,i

for all t≥ 0 and i∈N , i.e., the step-sizes for any two firms i and j only differ by a fixed multiplier

Cη,i/Cη,j, Eq. (I.3) demonstrates a similar contraction property as Eq. (D.16), and thus the entire

proofs for Theorems 1 and 2 can be adapted. We conclude that the price and reference price paths

must converge to the unique SNE, where the convergence rate has the same order as the scenario

of uniform step-sizes.

For the more general scenario described in Theorem 6, Eq. (I.3) is not a recursion yet, because

we have κt
ϵ(·) on both sides of the inequality. Nevertheless, since Ct+1

η,i ≥ Ct
η,i, it naturally holds

from Eq. (I.3) that

κt+1
ϵ (pt+1)≤ κt

ϵ(p
t+1)≤

(
1−min

i∈N

{
Ct

η,i

}
ληt
)
κt
ϵ(p

t)+Cκϵη
t, (I.4)

which implies a similar convergence behavior for {κt(pt)}t≥0 as Eqs. (D.19) and (E.8). The differ-

ence lies in the conversion from κt(pt) to ∥p⋆−pt∥. Similar as Eq. (E.16), we have that∥∥p⋆−pt
∥∥2 ≤ (max

i∈N

{
Ct

η,i(bi + ci)
})2

· [κt(pt)]
2
. (I.5)

Hence, instead of only differing by a constant multiplier as that in Eq. (E.16), the bound in Eq.

(I.5) depends on the non-decreasing sequences
{
Ct

η,i

}
t≥0

. We observe that, although it might hold

limt→∞Ct
η,i =∞ for some i∈N , Eq. (I.5) still implies the convergence of {∥p⋆−pt∥}t≥0 to zero. In

fact, since ϵ can be an arbitrary positive number, one consequence of Eq. (I.4) is that κt(pt) =O(ηt)

for reasonably large t. This can be seen from the proof of Theorem 2 (from Eqs. (E.3) to (E.15)).

Therefore, since limt→∞ ηt
i = limt→∞Ct

η,iη
t = 0 for all i ∈ N , we conclude that ∥p⋆−pt∥ → 0 as
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t→∞ and the convergence rate is dominated by slowest decay rate among the step-size sequences

of all firms. This completes the proof of the first part of the theorem.

Now, for the loss-averse scenario, since the convergence is measured by the stationary metrics

κ̃(p,r) in Eq. (17) and κ̃(p) in Eq. (21), the extension to the firm-differentiated step-sizes is more

straightforward. Firstly, since the step-sizes for all firms decrease to zero as t→∞, there exists Tϵ

such that

max
i∈N

(bi + c−i ) · ℓ̃r,i
∥∥pt− rt

∥∥ , (bi + c−i ) · ηt
i ℓ̃p,iM̃G

√∑
k∈N

(bk + c−k )
2

≤ ϵ

2
, ∀t≥ Tϵ. (I.6)

By definition, the size of Tϵ is determined by the slowest decay rate among the step-size sequences.

Following the derivations in the proof of Theorem 4 (see Appendix G), we find that for all t≥ Tϵ,

either pt is already an O(ϵ)-SNE, or it holds that

κ̃(pt+1)− κ̃(pt)≤−min
i∈N

{
ηt
i

bi + c−i

}
· ϵ
p2

, (I.7)

Therefore, the decrease speed of {κ̃(pt)}t≥Tϵ
is dominated by the fastest decay rate among the

step-size sequences. Together, we conclude that Algorithm 2 still converges to an O(ϵ)-SNE, and

the convergence rate is dominated by both the slowest and fastest decay rates among the step-size

sequences. This completes the proof of Theorem 6. □

Appendix J Proof of Theorem 7

Theorem 7 (Restated). Suppose that the firms can only access an inexact first-order oracle

such that the errors are uniformly bounded by some δ > 0. Let the step-sizes {ηt}t≥0 be a non-

increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞. Then, the price and reference price

paths generated by Algorithm 1 (or Algorithm 2 with threshold ϵ) converge to an O(δ)-neighborhood
of the unique SNE in the loss-neutral scenario (or an O(δ+ ϵ)-SNE in the loss-averse scenario),

where the convergence rate has the same order as the setting of exact first-order oracle.

Proof of Theorem 7. The proof is based on the existing proofs of Theorems 1, 2, 4, and 5. The

extensions for the loss-neutral scenario and the loss-averse scenario essentially follow the same idea.

Below, we consider the loss-neutral scenario (Algorithm 1) for illustration.

In the inexact setting, each firm updates its price by a noisy derivative D̂t
i , where we assume

the difference between D̂t
i and the true derivative Dt

i is bounded by δ, i.e.,
∣∣∣D̂t

i −Dt
i

∣∣∣ < δ. Since

Dt
i = (bi + ci)Gi(p

t,rt) by the definition in Eq. (D.2), we follow the derivations from Eqs. (D.3) to

(D.9) to show that

κϵ(p
t+1)≤ κϵ(p

t)− ηt
∑

i∈N
t+1
ϵ

sign (p⋆i − pti)Gi(p
t,rt)+ ηt

∑
i∈N

δ

bi + ci
, (J.1)
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where κϵ(·) is the metric defined in Eq. (11). Then, by applying Eqs. (D.9) to (D.13), we have

κϵ(p
t+1)≤ (1−ληt)κϵ(p

t)+

(
Cκϵ+

∑
i∈N

δ

bi + ci

)
ηt, ∀t≥ Tϵ, (J.2)

where the definitions of λ and Cκ can be found in Table EC.1, and Tϵ is the break point defined

above Eq. (D.6). Hence, by unrolling Eq. (J.2) in a similar manner as Eqs. (D.17) to (D.19), we

deduce that

lim
t→∞

κ(pt)≤
(
Cκ

λ
+n

)
ϵ+
∑
i∈N

δ

λ(bi + ci)
. (J.3)

Since Eq. (J.3) holds for any ϵ > 0, we conclude that the price and reference price paths converge

to an O(δ)-neighborhood of the unique SNE.

Now, in the loss-neutral scenario, suppose all firms adopt the step-sizes ηt =
Cη log(t+1)

t+1
for t≥ 2

with Cη > 2p2/ log 2. Similar as Eq. (E.3) in the proof of Theorem 2, we have from Eq. (J.2) that

κ(pt)≤ κϵ(p
Tϵ) exp

(
−λ

t−1∑
t′=Tϵ

ηt′

)
+

(
Cκϵ+

∑
i∈N

δ

bi + ci

)
Xt−1 +nϵ, (J.4)

where Xt−1 =
∑t−1

t′=Tϵ
ηt′
∏t−1

t′′=t′+1(1−ληt′′). Then, following the same process as Eqs. (E.4) to (E.8),

we first find that

κ(pt)≤
(
2CκCη +n+

Mκ

2
√
n(p− p)

)
ϵ+
∑
i∈N

2Cηδ

bi + ci
, ∀t≥ 2Tϵ +1, (J.5)

where Mκ =
∑

i∈N(p− p)/(bi + ci) is the universal upper bound on κ(·) and Tϵ is specified by Eq.

(E.2). Next, to convert the upper bound in Eq. (J.5) to a bound that explicitly depends on t, we

follow Eqs. (E.9) to (E.15) to conclude that

κ(pt)≤ Ĉκ

log t

t
+
∑
i∈N

2Cηδ

bi + ci
, ∀t > {2T1,10} , (J.6)

where Ĉκ and T1 are defined in Table EC.1. Hence, with inexact first-order oracles, the convergence

rate of Algorithm 1 remains the same as the exact setting.

Finally, for loss-averse scenarios, we note that although the inexact first-order oracle affects the

evaluation of the true/virtual derivatives, i.e., Dt,+
i and Dt,+

i , a similar analysis as Eqs. (G.2) to

(G.29) still holds true if there exists some product i0 with Dt,−
i0

= D−
i0
(pt,rt) > (bi0 + c−i0)ϵ + δ

or Dt,+
i0

=D+
i0
(pt,rt) < −(bi0 + c+i0)ϵ− δ, i.e., being at least δ “away” from incurring the pausing

criterion. If there does not exist such a product, then we can show that the algorithm has already

arrived at an O(δ+ ϵ)-SNE. □



ec36 e-companion to Guo et al.: Last-iterate Convergence in Games with Reference Effects

Appendix K Illustration of OPGA in the Gain-seeking Scenario

In this section, we illustrate the convergence behavior of OPGA (Algorithm 1) in the gain-seeking

scenario. Note that with the non-smooth revenue function under gain-seekingness, OPGA is equiva-

lent to the online projected sub-gradient ascent. The reason that we do not plot C-OPGA (Algorithm

2) is due to its similarity with OPGA in gain-seeking scenarios. Recall the true and virtual deriva-

tives D−
i (p,r) and D+

i (p,r) defined in Eq. (18). In contrast to the loss-averse scenario, it always

holds that D+
i (p,r)<D−

i (p,r) for any gain-seeking product i. Hence, the pausing criterion can be

triggered only if −ϵ <D+
i (p

t,rt)<D−
i (p

t,rt)< ϵ, which is unlikely to happen for small ϵ.

Figure EC.1 Cyclic Pattern of OPGA in Gain-seeking Scenario

(Parameters: (a1, b1, c
+
1 , c

−
1 ) = (4.70,1.55,4.25,3.38), (a2, b2, c

+
2 , c

−
2 ) = (4.20,1.15,5.25,4.50),

(r01, r
0
2) = (3.76,0.80), (p01, p

0
2) = (2.95,1.30), α= 0.90, and ηt = 1/

√
t+1.)

(a) Initial stage. (b) Long-run behavior.

Figures EC.1, EC.2, and EC.3 show the price and reference price paths of OPGA in three gain-

seeking scenarios. In Figure EC.1, we observe that the paths oscillate indefinitely without admitting

limiting points. Figures EC.2 and EC.3 share the same model parameters and only differ in initial

reference prices and prices. Both figures show a convergent pattern in the long run, but have differ-

ent limiting points. However, we highlight that neither limiting point represents an equilibrium, and

both firms can achieve a higher revenue by unilaterally deviating from the limiting point. Indeed,

such a convergence results from the monotonicity of price paths when approaching the limiting

points. This ensures the effective reference sensitivity stays unchanged during the learning process,

thereby leading the paths to converge to the SNE in the loss-neutral scenario. We can verify that the

limiting point in Figure EC.2 is the same as the SNE in the loss-neutral scenario with parameters

(a1, b1, c1) = (4.80,1.30,1.12) and (a2, b2, c2) = (4.22,1.70,1.27). The limiting point in Figure EC.3
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corresponds to the SNE under parameters (a1, b1, c1) = (4.80,1.30,2), (a2, b2, c2) = (4.22,1.70,1.27).

Together, the experiments in Figures EC.1, EC.2, and EC.3 demonstrate that equilibrium and

market stability cannot be simultaneously achieved in gain-seeking scenarios.

Figure EC.2 Convergent Pattern of OPGA in Gain-seeking Scenario

(Parameters: (a1, b1, c
+
1 , c

−
1 ) = (4.80,1.30,2.00,1.12), (a2, b2, c

+
2 , c

−
2 ) = (4.22,1.70,2.12,1.27),

(r01, r
0
2) = (0.18,1.82) and (p01, p

0
2) = (1.07,2.50), α= 0.90, and ηt = 1/

√
t+1.)

(a) Initial stage. (b) Long-run behavior.

Figure EC.3 Convergent Pattern of OPGA in Gain-seeking Scenario with Different Initialization

(Parameters are the same as Figure EC.2 except for the initializations, which are at (r01, r
0
2) =

(4.18,0.82) and (p01, p
0
2) = (1.07,0.50).)

(a) Initial stage. (b) Long-run behavior.
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Appendix L Supporting Lemmas

L.1 Lemma EC.2

Lemma EC.2 (Convergence of Price to Reference Price). Let {pt}t≥0 and {rt}t≥0 be the

price path and reference path generated by Algorithms 1 or 2 with non-increasing step-sizes {ηt}t≥0

such that limt→∞ ηt = 0. Then, it holds that limt→∞ ∥pt− rt∥= 0. In particular:

1. In the loss-neutral scenario, if ηt =
Cη log(t+1)

t+1
for t≥ 2, then there exist Crp, T1 > 0, such that

∥pt− rt∥ ≤ ηtCrp for all t≥ T1, where

Crp =max

{
2MG

√
(1+α2)

∑
i∈N(bi + ci)2

1−α2
,

√
n(p− p)(T1 +1)

Cη log(T1 +1)

}
,

T1 =

⌈
2
√
3+α2− 2

2−
√
3+α2

⌉
.

(L.1)

2. In the loss-averse scenario, if ηt =Cη(t+1)−β where β ∈ (0,1], then there exist Crp,β, Tβ > 0,

such that ∥pt− rt∥ ≤ ηtCrp,β for all t≥ Tβ, where

Crp,β =max

2M̃G

√
(1+α2)

∑
i∈N(bi + c−i )

2

1−α2
,

√
n(p− p)(Tβ +1)β

Cη

 ,

Tβ =

⌈
2(3+α2)

1
2β − 2

1
β

2
1
β − (3+α2)

1
2β

⌉
.

(L.2)

It is worth mentioning that the reason we limit the scope of Lemma EC.2 to the above two special

cases is merely because they are sufficient for the proof of our main results.

Proof of Lemma EC.2. We first prove the general convergence result under non-increasing step-

sizes {ηt}t≥0 such that limt→∞ ηt = 0. Without loss of generality, we focus on the loss-neutral case

and consider a trajectory {(pt,rt)}t≥0 generated by Algorithm 1. The proof is the same for the

loss-averse scenario.

First, recall that Dt
i = (bi + ci) ·Gi(p

t,rt), where Gi(p,r) is the scaled partial derivative of the

log-revenue defined in Eq. (D.2). Then, it follows from Eq. (L.30) in Lemma EC.4 that |Dt
i | ≤

(bi + ci)MG. Since {ηt}t≥0 is a non-increasing sequence with limt→∞ ηt = 0, for any constant η > 0,

there exists Tη ∈N such that |ηtDt
i | ≤ η for every t≥ Tη and for all i∈N . Thus, it holds that

∣∣pt+1
i − pti

∣∣= ∣∣ProjP (pti + ηtDt
i)− pti

∣∣ ≤ ∣∣ηtDt
i

∣∣≤ η, ∀t≥ Tη, ∀i∈N, (L.3)
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where the first inequality is due to the property of the projection operator. Then, by the reference

price update rule in Eq. (4), it follows that∣∣pt+1
i − rt+1

i

∣∣= ∣∣pt+1
i −αrti − (1−α)pti

∣∣
=
∣∣(pt+1

i − pti
)
+α (rti − pti)

∣∣
≤
∣∣pt+1

i − pti
∣∣+α

∣∣pti− rti
∣∣

≤ η+α
∣∣pti− rti

∣∣ , ∀t≤ Tη, ∀i∈N,

(L.4)

where the last line results from the upper bound in Eq. (L.3). Applying Eq. (L.4) recursively from

period t to period Tη, we further derive that

∣∣pt+1
i − rt+1

i

∣∣≤ η
( t∑

τ=Tη

ατ−Tη

)
+αt+1−Tη ·

∣∣∣pTη

i − r
Tη

i

∣∣∣
≤ η

1−α
+αt+1−Tη · (p− p), ∀i∈N,

(L.5)

which implies that ∥∥pt+1− rt+1
∥∥≤√n( η

1−α
+αt+1−Tη · (p− p)

)
. (L.6)

Since η can be arbitrarily close to 0, we have that ∥pt− rt∥ → 0 as t→∞, which completes the

proof for the general convergence of price to reference price with non-increasing step-sizes.

In the next part, we consider two specific choices of step-sizes and explicitly quantify the con-

vergence rate. This part of the proof relies on an important recursion, shown as follows∥∥pt+1− rt+1
∥∥2 =

∥∥pt+1−αrt− (1−α)pt
∥∥2

=
∥∥α(pt− rt)+ (pt+1−pt)

∥∥2
= α2

∥∥pt− rt
∥∥2 +∥∥pt+1−pt

∥∥2 +2α(pt− rt)⊤(pt+1−pt)
(∆1)

≤ α2
∥∥pt− rt

∥∥2 +∥∥ηtDt
∥∥2 +2α

∥∥pt− rt
∥∥∥∥ηtDt

∥∥
(∆2)

≤ α2
∥∥pt− rt

∥∥2 +∥∥ηtDt
∥∥2 + 1−α2

2

∥∥pt− rt
∥∥2 + 2α2

1−α2

∥∥ηtDt
∥∥2

=
1+α2

2

∥∥pt− rt
∥∥2 + 1+α2

1−α2

∥∥ηtDt
∥∥2 ,

(L.7)

whereDt :=
(
Dt

1, . . .D
t
n

)
in (∆1) and the inequality holds due to the Cauchy-Schwarz inequality and

the property of the projection operator. Then, step (∆2) stems from the inequality of arithmetic

and geometric means.

1. Loss-neutral Scenario. We first focus on the loss-neutral scenario, where the step-size is

specified as ηt =
Cη log(t+1)

t+1
for t ≥ 2. We adopt an induction-based argument. At some period t,

suppose that there exists a constant Crp such that

∥∥pt− rt
∥∥2 ≤ (ηtCrp)

2
=C2

rpC
2
η

(
log(t+1)

t+1

)2

. (L.8)
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Together with Eq. (L.7), we have that at period t+1

∥∥pt+1− rt+1
∥∥2 ≤ 1+α2

2

∥∥pt− rt
∥∥2 + 1+α2

1−α2

∥∥ηtDt
∥∥2

≤ 1+α2

2
(ηtCrp)

2
+

1+α2

1−α2

(∑
i∈N

(bi + ci)
2 [Gi(p

t,rt)]
2
)
· (ηt)2

(∆)

≤ 1+α2

2
(ηtCrp)

2
+

(
1+α2

1−α2
·M 2

G

∑
i∈N

(bi + ci)
2

)
︸ ︷︷ ︸

=:CD

·(ηt)2

≤C2
η

(
log(t+1)

t+1

)2

·
[
1+α2

2
C2

rp +CD

]
=C2

η

(
log(t+2)

t+2

)2

·
[
1+α2

2
C2

rp +CD

]
·
(
t+2

t+1

)2

·
(
log(t+1)

log(t+2)

)2

≤C2
η

(
log(t+2)

t+2

)2

·
[
1+α2

2
C2

rp +CD

]
·
(
t+2

t+1

)2

≤ (ηt+1)2 ·
[
1+α2

2
C2

rp +CD

](
t+2

t+1

)2

,

(L.9)

where step (∆) applies the upper bound on function Gi(·, ·) in Eq. (L.30) of Lemma EC.4. For the

simplicity of notation, we denote the coefficient of (ηt)2 in line (∆) as CD.

Since our goal is to have ∥pt+1− rt+1∥2 ≤ (ηt+1 ·Crp)
2, based on the inequality in Eq. (L.9), we

only need to ensure that[
1+α2

2
C2

rp +CD

](
t+2

t+1

)2

≤C2
rp ⇔ C2

rp

[(
t+1

t+2

)2

− 1+α2

2

]
≥CD. (L.10)

As (t+1)/(t+2) increases with respect to t, we choose T1 to be the smallest integer that satisfies(
T1 +1

T1 +2

)2

− 1+α2

2
≥ 1−α2

4
⇔

(
T1 +1

T1 +2

)2

≥ 3+α2

4

⇔
(
1+

1

T1 +1

)2

≤ 4

3+α2

⇔ T1 =

⌈
2
√
3+α2− 2

2−
√
3+α2

⌉
.

(L.11)

Given T1 as specified above, it follows that for all t≥ T1(
t+1

t+2

)2

− 1+α2

2
≥
(
T1 +1

T1 +2

)2

− 1+α2

2
≥ 1−α2

4
. (L.12)

Hence, to ensure Eq. (L.10) hold true for all t≥ T1, it suffices to choose Crp that satisfies

Crp ≥ 2

√
CD

1−α2
, (L.13)
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where CD is defined in Eq. (L.7).

Lastly, the base case of the induction requires that ∥pT1 − rT1∥ ≤ CrpCη
log(T1+1)

T1+1
. Since

∥pT1 − rT1∥ ≤
√
n(p− p), it suffices to choose

√
n(p− p)≤CrpCη

log(T1 +1)

T1 +1
⇔ Crp ≥

√
n(p− p)(T1 +1)

Cη log(T1 +1)
. (L.14)

Combining the requirements for the base case in Eq. (L.14) and for the induction step in Eq.

(L.13), we conclude that it is sufficient to choose

Crp =max

{
2MG

√
(1+α2)

∑
i∈N(bi + ci)2

1−α2
,

√
n(p− p)(T1 +1)

Cη log(T1 +1)

}
, (L.15)

which completes the proof for the loss-neutral scenario.

2. Loss-averse Scenario. We use a similar induction method to prove the loss-averse case,

where the step-size is ηt =Cη(t+1)−β with β ∈ (0,1]. At some period t, suppose that there exists

a constant Crp,β such that ∥∥pt− rt
∥∥2 ≤ (ηtCrp,β)

2
=C2

rp,βC
2
η · (t+1)−2β. (L.16)

Then, from the recursion in Eq. (L.7), we derive that∥∥pt+1− rt+1
∥∥2 ≤ 1+α2

2

∥∥pt− rt
∥∥2 + 1+α2

1−α2

∥∥ηtDt
∥∥2

(∆)

≤ 1+α2

2
(ηtCrp,β)

2
+

(
1+α2

1−α2
· M̃ 2

G

∑
i∈N

(bi + c−i )
2

)
︸ ︷︷ ︸

=:C̃D

·(ηt)2

≤
(

Cη

(t+1)β

)2

·
[
1+α2

2
C2

rp,β + C̃D

]
=

(
Cη

(t+2)β

)2

·
(
t+2

t+1

)2β

·
[
1+α2

2
C2

rp,β + C̃D

]
= (ηt+1)2 ·

[
1+α2

2
C2

rp,β + C̃D

](
t+2

t+1

)2β

,

(L.17)

where we apply the upper bound |Dt
i | ≤max⋄∈{+,−} {(bi + c⋄i )G

⋄
i (p

t,rt)} ≤ (bi+ c−i )M̃G in step (∆)

with the constant M̃G coming from Eq. (L.51) of Lemma EC.7. Then, to ensure ∥pt+1− rt+1∥2 ≤
(ηt+1 ·Crp,β)

2, we need the following condition to be satisfied[
1+α2

2
C2

rp,β + C̃D

](
t+2

t+1

)2β

≤C2
rp,β ⇔ C2

rp,β

[(
t+1

t+2

)2β

− 1+α2

2

]
≥ C̃D. (L.18)

Adopting the same approach used for the loss-neutral case described in Eq. (L.11), we choose Tβ

as the smallest integer such that(
Tβ +1

Tβ +2

)2β

− 1+α2

2
≥ 1−α2

4
⇔ Tβ =

⌈
2(3+α2)

1
2β − 2

1
β

2
1
β − (3+α2)

1
2β

⌉
. (L.19)
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With Tβ as specified in Eq. (L.19) and (t+1)/(t+2) increasing in t, it follows that for all t≥ Tβ(
t+1

t+2

)2β

− 1+α2

2
≥
(
Tβ +1

Tβ +2

)2

− 1+α2

2
≥ 1−α2

4
. (L.20)

The above inequality implies that the condition in Eq. (L.18) is held when Crp,β satisfies

Crp,β ≥ 2

√
C̃D

1−α2
, (L.21)

where C̃D is defined in Eq. (L.17).

Finally, the base case of this induction requires that
∥∥pTβ − rTβ

∥∥≤ Crp,βCη

(Tβ+1)β
. Since

∥∥pTβ − rTβ
∥∥≤

√
n(p− p), it suffices to choose

√
n(p− p)≤ Crp,βCη

(Tβ +1)β
⇔ Crp,β ≥

√
n(p− p)(Tβ +1)β

Cη

. (L.22)

Merging the requirements for Crp,β in both Eqs. (L.21) and (L.22), we complete the proof by

showing the sufficient condition as follows

Crp,β =max

2M̃G

√
(1+α2)

∑
i∈N(bi + c−i )

2

1−α2
,

√
n(p− p)(Tβ +1)β

Cη

 . (L.23)

□

L.2 Lemma EC.3

Lemma EC.3. In the loss-neutral scenario, define the function G(p) as

G(p) :=
∑
i∈N

sign (p⋆i − pi)Gi(p,p) =
∑
i∈N

sign (p⋆i − pi)

[
1

(bi + ci)pi
+ di(p,p)− 1

]
, (L.24)

where p⋆ is the unique SNE, Gi(p,r) is the scaled derivative defined in Eq. (D.2), and function

sign(·) is defined in Eq. (D.4). Then, it holds that

G(p)≥ κ(p)

p∥p⋆∥∞
=

1

p∥p⋆∥∞
·
∑
i∈N

|p⋆i − pi|
bi + ci

, ∀p∈Pn, (L.25)

where κ(·) is the weighted ℓ1-metric function defined in Eq. (11).

Proof of Lemma EC.3.We first consider the following separation ofN based on relative size between

p and p⋆:

N1(p) := {i∈N |pi > p⋆i }, N2(p) := {i∈N |pi < p⋆i }, Nc(p) := {i∈N |pi = p⋆i }. (L.26)
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Then, since sign (p⋆i − pi) = sign(0) = 0 for all i∈Nc(p), we rewrite G(p) to deduce that

G(p) =
∑
i∈N

sign (p⋆i − pi)Gi(p,p)

=
∑

i∈N1(p)

[
1− di(p,p)−

1

(bi + ci)pi

]
+

∑
i∈N2(p)

[
1

(bi + ci)pi
+ di(p,p)− 1

]
(∆1)
=

∑
i∈N1(p)

{[
1− di(p,p)−

1

(bi + ci)pi

]
−
[
1− di(p

⋆,p⋆)− 1

(bi + ci)p⋆i

]}
+
∑

i∈N2(p)

{[
1

(bi + ci)pi
+ di(p,p)− 1

]
−
[

1

(bi + ci)p⋆i
+ di(p

⋆,p⋆)− 1

]}
(∆2)
=

∑
i∈N1(p)

1

bi + ci

(
1

p⋆i
− 1

pi

)
+

∑
i∈N2(p)

1

bi + ci

(
1

pi
− 1

p⋆i

)
+

∑
i∈N1(p)

di(p
⋆,p⋆)−

∑
i∈N1(p)

di(p,p)︸ ︷︷ ︸
≥0

+
∑

i∈N2(p)

di(p,p)−
∑

i∈N2(p)

di(p
⋆,p⋆)︸ ︷︷ ︸

≥0

≥
∑
i∈N

1

bi + ci
· |pi− p⋆i |

p⋆i pi
≥ 1

p∥p⋆∥∞

∑
i∈N

|pi− p⋆i |
bi + ci

=
κ(p)

p∥p⋆∥∞
.

(L.27)

In step (∆1), we introduce two dummy terms, which are equal to zero by Eq. (C.16). To derive

step (∆2), using the facts that pi > p⋆i for i∈N1 and pi < p⋆i for i∈N2, we have that

∑
i∈N1(p)

di(p
⋆,p⋆) =

∑
i∈N1(p)

exp(ai− bip
⋆
i )

1+
∑

i∈N1(p)
exp(ai− bip⋆i )+

∑
i∈N2(p)

exp(ai− bip⋆i )+
∑

i∈Nc(p)
exp(ai− bip⋆i )

≥
∑

i∈N1(p)
exp(ai− bipi)

1+
∑

i∈N1(p)
exp(ai− bipi)+

∑
i∈N2(p)

exp(ai− bipi)+
∑

i∈Nc(p)
exp(ai− bipi)

=
∑

i∈N1(p)

di(p,p).

(L.28)

By similar analysis, we show that the second under-brace term in Eq. (L.27) is also no less than

zero, i.e.,
∑

i∈N2(p)
di(p,p)>

∑
i∈N2(p)

di(p
⋆,p⋆). This completes the proof of Lemma EC.3. □

L.3 Lemma EC.4

Lemma EC.4. In the loss-neutral scenario, let Gi(p,r) be the scaled partial derivative defined

in Eq. (D.2). Then, it holds that

∂Gi(p,r)

∂pj
=

−
1

(bi + ci)p2i
− (bi + ci) · di(p,r) ·

(
1− di(p,r)

)
if j = i,

(bj + cj) · di(p,r) · dj(p,r) if j ̸= i.

(L.29a)
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∂Gi(p,r)

∂rj
=

∂di(p,r)

∂rj
=

 ci · di(p,r) ·
(
1− di(p,r)

)
if j = i,

−cj · di(p,r) · dj(p,r) if j ̸= i.
(L.29b)

Meanwhile, Gi(p,r) and its gradient are bounded as follows:

∣∣Gi(p,r)
∣∣≤MG,

∥∥∇rGi(p,r)
∥∥≤ ℓr,i, ∀p,r∈Pn, ∀i∈N, (L.30)

where the upper bound MG and the Lipschitz constant ℓr,i are defined as

MG :=max
i∈N

{
1

(bi + ci)p

}
+1, ℓr,i :=

1

4

√
c2i +max

j ̸=i

{
c2j
}
. (L.31)

Proof of Lemma EC.4. We first verify the partial derivatives in Eqs. (L.29a) and (L.29b):

∂Gi(p,r)

∂pi
=− 1

(bi + ci)p2i
+

∂di(p,r)

∂pi

=− 1

(bi + ci)p2i
−

(bi + ci) · exp
(
ui(pi, ri)

)
·
(
1+

∑
j ̸=i exp

(
uj(pj, rj)

))
(
1+

∑
k∈N exp

(
uk(pk, rk)

))2

=− 1

(bi + ci)p2i
− (bi + ci) · di(p,r) ·

(
1− di(p,r)

)
.

(L.32)

For product j ̸= i, its partial derivative can be computed as

∂Gi(p,r)

∂pj
=

∂di(p,r)

∂pj

=
(bj + cj) · exp

(
ui(pi, ri)

)
· exp

(
uj(pj, rj)

)(
1+

∑
k∈N exp

(
uk(pk, rk)

))2

= (bj + cj) · di(p,r) · dj(p,r).

(L.33)

Then, the partial derivatives with respect to r, as shown in Eq. (L.29b), can be similarly computed.

In the next part, we show that Gi(p,r) (see its definition in Eq. (D.2)) is bounded for all p,r∈Pn

and all product i∈N . ∣∣Gi(p,r)
∣∣= ∣∣∣∣ 1

(bi + ci)pi
+ di(p,r)− 1

∣∣∣∣
≤
∣∣∣∣ 1

(bi + ci)pi

∣∣∣∣+ ∣∣di(p,r)− 1
∣∣

≤ 1

(bi + ci)p
+1

≤max
k∈N

{
1

(bk + ck)p

}
+1=:MG,

(L.34)

where the maximum operation in the last line is to ensure the validity of the bound for all i∈N .
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Finally, we demonstrate that
∥∥∇rGi(p,r)

∥∥ is also bounded for all p,r ∈ Pn and all product

i∈N . From Eq. (L.29b), we have that∥∥∇rGi(p,r)
∥∥2 =

(
ci · di(p,r) ·

(
1− di(p,r)

))2

+
∑
j ̸=i

(
− cj · di(p,r) · dj(p,r)

)2

≤ c2i ·
(
di(p,r) ·

(
1− di(p,r)

))2

+max
j ̸=i
{c2j} ·

(
di(p,r)

)2∑
j ̸=i

(
dj(p,r)

)2
(∆1)

≤ c2i ·
(
di(p,r) ·

(
1− di(p,r)

))2

+max
j ̸=i
{c2j} ·

(
di(p,r) ·

(
1− di(p,r)

))2

(∆2)

≤ 1

16

(
c2i +max

j ̸=i
{c2j}

)
,

(L.35)

where step (∆1) results from the fact that
∑

j ̸=i

(
dj(p,r)

)2 ≤ (∑j ̸=i dj(p,r)
)2 ≤ (1 − di(p,r)

)2
.

The inequality (∆2) follows from the fact that x · y ≤ 1/4 for any two numbers such that x, y > 0

and x+ y≤ 1. Therefore, it follows that
∥∥∇rGi(p,r)

∥∥
2
≤ (1/4)

√
c2i +maxj ̸=i{c2j}=: ℓr,i. □

L.4 Lemma EC.5

Lemma EC.5. In the loss-neutral scenario, the revenue and demand function satisfy that

∥∇pΠi(p,r)∥ ≤ ℓp,i, ∥∇rΠi(p,r)∥ ≤ p · ℓr,i, ∥∇pdi(p)∥ ≤ ℓd,i, ∀p,r∈Pn, ∀i∈N, (L.36)

where di(p) := di(p,p), constant ℓr,i is defined in Eq. (L.31), and the Lipschitz constants ℓp,i, ℓd,i

are defined as

ℓp,i :=
1

4

√
16+ p2

[
(bi + ci)2 +max

j ̸=i
{(bj + cj)2}

]
, ℓd,i :=

1

4

√
b2i +max

j ̸=i

{
b2j
}
. (L.37)

Proof of Lemma EC.5. We begin with showing the first bound in Eq. (L.36). Since we have that

∂Πi(p,r)

∂pj
=

 di(p,r)− pi(bi + ci) · di(p,r) ·
(
1− di(p,r)

)
if j = i,

pi(bj + cj) · di(p,r) · dj(p,r) if j ̸= i.
(L.38)

Using the partial derivatives in Eq. (L.38), we compute that

∥∇pΠi(p,r)∥2 ≤ 1+ p2

{[
(bi + ci) · di(p,r) ·

(
1− di(p,r)

)]2
+
∑
j ̸=i

[
(bj + cj) · di(p,r) · dj(p,r)

]2}

≤ 1+
p2

16

[
(bi + ci)

2 +max
j ̸=i
{(bj + cj)

2}
]
, ∀p,r∈Pn, ∀i∈N,

where 1/16 in the last line follows from the same reasoning as Eq. (L.35). Taking the square root

on both sides of the above inequality yields the desired upper bound for ∥∇pΠi(p,r)∥.
Next, we show the bound for ∥∇rΠi(p,r)∥. According to the definition of Gi(p,r) in Eq. (D.2),

it holds that ∥∇rGi(p,r)∥= ∥∇rdi(p,r)∥ ≤ ℓr,i, where the last inequality stems from Eq. (L.30).

Since Πi(p,r) = pi · di(p,r), it follows that ∥∇rΠi(p,r)∥= pi ∥∇rdi(p,r)∥ ≤ p · ℓr,i.
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Finally, we derive the last bound in Eq. (L.36). Recall that di(p) := di(p,p).

∂di(p)

∂pj
=

−bi · di(p) ·
(
1− di(p)

)
if j = i,

bj · di(p) · dj(p) if j ̸= i.
(L.39)

Then, the above partial derivatives indicate that

∥∇pdi(p)∥2 ≤ b2i

(
di(p) ·

(
1− di(p)

))2

+max
j ̸=i
{b2j} ·

(
di(p)

)2∑
j ̸=i

(
dj(p)

)2
≤ 1

16

(
b2i +max

j ̸=i
{b2j}

)
, ∀p∈Pn, ∀i∈N,

(L.40)

where the last inequality uses a similar reasoning in Eq. (L.35) again. Lastly, we take the square

root of both sides to obtain ∥∇pdi(p)∥ ≤ (1/4)
√
b2i +maxj ̸=i{b2j}=: ℓd,i. □

L.5 Lemma EC.6

We observe from Eqs. (2) and (3) that the revenue Πi(p,r) depends on p−i and r−i through their

utility functions. Recall that p−i :=
(
pj
)
j∈N\{i} and r−i :=

(
rj
)
j∈N\{i}. We use u−i(p−i,r−i) to

denote the vector of utilities for all products except i, i.e.,

u−i(p−i,r−i) :=
(
u1(p1, r1), . . . , ui−1(pi−1, ri−1), ui+1(pi+1, ri+1), . . . , un(pn, rn)

)
. (L.41)

Given p−i and r = (ri,r−i), we use pBi
(
ri,u−i(p−i,r−i)

)
to denote the best-response price that

achieve the optimal single-period revenue for product i, defined as

pBi
(
ri,u−i(p−i,r−i)

)
:= argmax

pi∈P

{
Πi

(
(pi,p−i),r

)}
= argmax

pi∈P

{
pi · di

(
(pi,p−i),r

)}
. (L.42)

In the following lemma, we demonstrate the Lipschitz continuity of pBi
(
ri,u−i(p−i,r−i)

)
.

Lemma EC.6. In the loss-neutral scenario, let pBi
(
ri,u−i(p−i,r−i)

)
be the best-response price

for product i given p−i and r, as defined in Eq. (L.42). Then, it holds that∣∣∣∣∣∂pBi
(
ri,u−i(p−i,r−i)

)
∂ri

∣∣∣∣∣≤ ci
bi + ci

,
∥∥∇u−i

pBi
(
ri,u−i(p−i,r−i)

)∥∥≤ p, (L.43)

for all p−i ∈Pn−1 and r∈Pn.

Proof of Lemma EC.6. Given p−i and r, we use ΠB
i (ri,u−i (p−i,r−i)) to denote the optimal single-

period revenue for product i, defined as ΠB
i (ri,u−i (p−i,r−i)) :=maxpi∈P

{
Πi

(
(pi,p−i),r

)}
.

Similar as the Part 2 proof of Proposition 1, we can actually show that the first order-condition

(i.e., ∂Πi(p,r)/∂pi = 0) is necessary and sufficient for the best-response price (see Eqs. (C.11) to

(C.14) in Appendix C.1). We refer the readers to Theorems 1 and 2 in Guo et al. (2022) for a more
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detailed discussion. Hence, ΠB
i (·, ·) is the optimal single-period revenue if and only if the following

first-order condition is satisfied

∂Πi

(
p,r
)

∂pi

∣∣∣∣
pi=pBi (ri,u−i(p−i,r−i))

= 0

⇔ dBi − (bi + ci) · pBi (ri,u−i(p−i,r−i)) · dBi
(
1− dBi

)
= 0

⇔ 1 = (bi + ci) ·
(
pBi (ri,u−i(p−i,r−i))−ΠB

i (ri,u−i(p−i,r−i))
)

⇔ pBi (ri,u−i(p−i,r−i)) =ΠB
i

(
ri,u−i(p−i,r−i)

)
+

1

bi + ci
,

(L.44)

where we use dBi to denote the demand at the best-response price, i.e., dBi := di
(
(pBi ,p−i),r

)
. From

Eq. (L.44), we observe that pBi (ri,u−i(p−i,r−i)) and ΠB
i

(
ri,u−i(p−i,r−i)

)
only differs by a constant

1/(bi + ci). Hence, it is equivalent to derive the Lipschitz continuity of ΠB
i

(
ri,u−i(p−i,r−i)

)
.

As the information of p−i and r−i is already absorbed in their utility functions, we adopt the

shorthand notation u−i := u−i(p−i,r−i) and uj := uj(pj, rj) for all j ∈N\{i}. In addition, when

it is clear from the context, we may also use the simplified notations pBi := pBi (ri,u−i) and ΠB
i :=

ΠB
i

(
ri,u−i

)
. Using the definition of the revenue function and the relation in Eq. (L.44), we can

express ΠB
i using an implicit equation:

ΠB
i = pBi d

B
i

(∆1)
=
(
ΠB

i +
1

bi + ci

) exp
(
ui(p

B
i , ri)

)
1+ exp

(
ui(pBi , ri)

)
+
∑

j ̸=i exp
(
uj

)
⇔ ΠB

i

(
1+

∑
j ̸=i

exp
(
uj

))
=

1

bi + ci
exp

(
ui(p

B
i , ri)

)
(∆2)⇔ (bi + ci) ·ΠB

i

(
1+

∑
j ̸=i

exp
(
uj

))
= exp

(
ai− (bi + ci) ·ΠB

i + ciri− 1
)
,

(L.45)

where the expressions in (∆1) and (∆2) are obtained by substituting pBi with the first-order con-

dition in the last line of Eq. (L.44).

With the goal of computing the Lipschitz coefficients, we use the implicit function theorem to

derive the partial derivatives of ΠB
i

(
ri,u−i

)
with respect to ri and u−i. To begin with, we first

define a function Ψ(Πi, ri,u−i) as below

Ψ
(
Πi, ri,u−i

)
= (bi + ci) ·Πi ·

(
1+

∑
j ̸=i

exp(uj)
)
− exp

(
ai− (bi + ci)Πi + ciri− 1

)
. (L.46)

Since Ψ
(
ΠB

i , ri,u−i

)
= 0 by Eq. (L.45), we apply the implicit function theorem to derive that

∂ΠB
i (ri,u−i)

∂ri
=−

∂

∂ri
Ψ
(
ΠB

i , ri,u−i

)
∂

∂Πi

Ψ
(
ΠB

i , ri,u−i

)
=

ci exp
(
ai− (bi + ci)Π

B
i + ciri− 1

)
(bi + ci) ·

(
1+

∑
j ̸=i exp(uj)

)
+(bi + ci) · exp

(
ai− (bi + ci)ΠB

i + ciri− 1
) .

(L.47)
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Hence, we can upper-bound the above partial derivative as detailed below∣∣∣∣∂ΠB
i (ri,u−i)

∂ri

∣∣∣∣=
∣∣∣∣∣ ci exp

(
ai− (bi + ci)Π

B
i + ciri− 1

)
(bi + ci) ·

(
1+

∑
j ̸=i exp(uj)

)
+(bi + ci) · exp

(
ai− (bi + ci)ΠB

i + ciri− 1
)∣∣∣∣∣

(∆)
=

∣∣∣∣∣∣ ci exp
(
ui(p

B
i , ri)

)
(bi + ci) ·

[
1+ exp

(
ui(pBi , ri)

)
+
∑

j ̸=i exp(uj)
]
∣∣∣∣∣∣

=
ci

bi + ci
· dBi ≤

ci
bi + ci

,

(L.48)

where in step (∆), we use the fact that ΠB
i = pBi − 1/(bi + ci) from Eq. (L.44).

Next, to bound the gradient of ΠB
i (ri,u−i) with respect to u−i, we first calculate its partial

derivative for product j ∈N\{i} by the implicit function theorem

∂ΠB
i (ri,u−i)

∂uj

=−

∂

∂uj

Ψ
(
ΠB

i , ri,u−i

)
∂

∂Πi

Ψ
(
ΠB

i , ri,u−i

)
=

−(bi + ci) ·ΠB
i · exp(uj)

(bi + ci) ·
(
1+

∑
k ̸=i exp(uk)

)
+(bi + ci) · exp

(
ai− (bi + ci)ΠB

i + ciri− 1
)

=−ΠB
i · dj

(
(pBi ,p−i),r

)
.

(L.49)

Then, we can bound the gradient as follows∥∥∇u−i
ΠB

i

(
ri,u−i

)∥∥≤ΠB
i ·
√∑

j ̸=i

(
dj
(
(pBi ,p−i),r

))2 ≤ΠB
i = pBi · dBi ≤ p. (L.50)

where the last inequality results from the fact that dBi = di
(
(pBi ,p−i),r

)
≤ 1 and pBi ∈ [p, p]. As

pBi =ΠB
i +1/(bi+ ci) from Eq. (L.44), calculations in Eqs. (L.48) and (L.49) conclude the proof. □

L.6 Lemma EC.7

Lemma EC.7. In the loss-averse scenario, let G⋄
i (p,r) be the scaled true/virtual derivative

defined in Eq. (G.1), where ⋄ ∈ {+,−}. Then, G⋄
i (p,r) and its (sub)-gradients are bounded as

follows

|G⋄
i (p,r)| ≤ M̃G, ∥∇rG

⋄
i (p,r)∥ ≤ ℓ̃r,i, ∥∇pG

⋄
i (p)∥ ≤ ℓ̃p,i, ∀⋄ ∈ {+,−}, ∀p,r∈Pn, ∀i∈N, (L.51)

where G⋄
i (p) :=G⋄

i (p,p). The upper bound M̃G and the Lipschitz constants ℓ̃r,i, ℓ̃p,i are defined as

M̃G :=max
i∈N

{
1

(bi + c+i )p

}
+1, ℓ̃r,i :=

1

4

√
(c−i )

2 +max
j ̸=i

{
(c−j )

2
}
, (L.52)

ℓ̃p,i :=

√
1

(bi + c+i )
2p4

+
bi

2(bi + c+i )p
2
+

b2i +maxj ̸=i

{
b2j
}

16
. (L.53)
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Proof of Lemma EC.7. The first two bounds presented in Eq. (L.51) are analogous to their loss-

neutral equivalents found in Eq. (L.30). It is straightforward to show that |G⋄
i (p,r)| ≤ M̃G and

∥∇rG
⋄
i (p,r)∥ ≤ ℓ̃r,i by similar procedures outlined in Eq. (L.34) and Eq. (L.35), respectively.

Now, we are left to show the last bound in Eq. (L.51). We start with computing the following

partial derivative

∂G⋄
i (p)

∂pj
=

−
1

bi + c⋄i
· 1
p2i
− bi · di(p) ·

(
1− di(p)

)
if j = i,

bj · di(p) · dj(p) if j ̸= i,

(L.54)

where we recall that di(p) := di(p,p). With the information in Eq. (L.54), we are ready to derive

the final bound:

∥∇pG
⋄
i (p)∥

2 ≤ 1

(bi + c⋄i )
2p4

+
2bidi(p)

(
1− di(p)

)
(bi + c⋄i )p

2
+ b2i

(
di(p)

(
1− di(p)

))2

+
∑
j ̸=i

(
bjdi(p)dj(p)

)2

(∆)

≤ 1

(bi + c⋄i )
2p4

+
bi

2(bi + c⋄i )p
2
+

b2i +maxj ̸=i

{
b2j
}

16

≤ 1

(bi + c+i )
2p4

+
bi

2(bi + c+i )p
2
+

b2i +maxj ̸=i

{
b2j
}

16
,

(L.55)

where the second term in step (∆) follows from the fact that di(p)
(
1− di(p)

)
≤ 1/4, and the last

term is derived via the same method used in (∆2) of Eq. (L.35). In the last line, we replace c⋄i with

c+i to ensure the bound works for both ⋄ ∈ {+,−}, as c+i ≤ c−i in the loss-averse scenario. Taking

the square root of both sides in Eq. (L.55) yields the final result, and this completes the proof of

Lemma EC.7. □

L.7 Lemma EC.8

Lemma EC.8. In the loss-averse scenario, let p̃⋆ be the unique SNE that satisfies

p̃⋆i =
1

(bi + c̃i) · (1− di(p̃⋆, p̃⋆))
, ∀i∈N, (L.56)

where c̃i ∈ [c+i , c−i ]. Define the function G̃(p) as

G̃(p) :=
∑
i∈N

sign (p̃⋆i − pi)

[
1

(bi + c̃i)pi
+ di(p,p)− 1

]
, (L.57)

where the function sign(·) is defined in Eq. (D.4). Then, it holds that

G̃(p)≥ 1

p∥p̃⋆∥∞
·
∑
i∈N

|p̃⋆i − pi|
bi + c̃i

, ∀p∈Pn. (L.58)

Proof of Lemma EC.8. This lemma is the loss-averse version of Lemma EC.3. Its proof follows a

similar scheme as that of Lemma EC.3. □
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Appendix M Proofs for Local Convergence of OPGA

M.1 Proof of Lemma EC.1

Lemma EC.1(Restated). In the loss-neutral scenario, define function H(p) as follows:

H(p) :=
∑
i∈N

(p⋆i − pi) ·
∂ log

(
Π(p,r)

)
∂pi

∣∣∣∣
r=p

=
∑
i∈N

[
1

pi
+(bi + ci) (di(p,p)− 1)

]
(p⋆i − pi), (M.1)

where p⋆ is the unique SNE. Then, there exist γ > 0 and a open set Uγ ∋ p⋆ such that

H(p)≥ γ · ∥p−p⋆∥2, ∀p∈Uγ . (M.2)

Proof of Lemma EC.1. We consider the second-order Taylor expansion of H(p) at p⋆. For all

p∈Pn, there exists p̂ on the line segment between p and p⋆ such that

H(p) =H(p⋆)+∇H(p⋆) ·
(
p−p⋆

)
+

1

2

(
p−p⋆

)⊤∇2H(p̂) ·
(
p−p⋆

)
=∇H(p⋆) ·

(
p−p⋆

)
+

1

2

(
p−p⋆

)⊤∇2H(p̂) ·
(
p−p⋆

)
,

(M.3)

where the second equality arises from H(p⋆) = 0. We first compute the the gradient ∇H(p) =

(∂H(p)/∂p1, . . . , ∂H(p)/∂pn), where we adopt the shorthand notation di(p) := di(p,p) and use the

partial derivative of di(p) in Eq. (L.39):

∂H(p)
∂pi

=−
[
1

pi
+(bi + ci)

(
di(p)− 1

)]
+(p⋆i − pi)

[
− 1

p2i
− (bi + ci)bi · di(p)

(
1− di(p)

)]
+
∑
j ̸=i

(p⋆j − pj) · (bj + cj)bi · dj(p)di(p)

=−
[
1

pi
+(bi + ci)

(
di(p)− 1

)]
+ bi · di(p)

∑
k∈N

(p⋆k− pk) · (bk + ck)dk(p)

− (p⋆i − pi)

[
1

p2i
+(bi + ci)bi · di(p)

]
.

(M.4)

When this partial derivative evaluates at p⋆, the first term becomes 1/p⋆i +(bi+ci)
(
di(p

⋆)−1
)
= 0,

since p⋆ satisfies the first-order condition in Eq. (C.16). Hence, it follows that ∇H(p⋆) = 0, and

Eq. (M.3) simplifies to H(p) = 1
2

(
p−p⋆

)⊤∇2H(p̂) ·
(
p−p⋆

)
.

Below, we aim to show that there exists γ > 0 such that ∇2H(p)≻ 2γIn when p belongs to some

neighborhood Uγ of p⋆, where In is the n×n identity matrix. Then, for any p∈Uγ , it follows that

H(p) = 1

2

(
p−p⋆

)⊤∇2H(p̂) ·
(
p−p⋆

)
≥ γ ∥p−p⋆∥2 . (M.5)
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We first compute the Hessian matrix ∇2H(p) evaluated at p⋆. The second-order partial derivatives

can be calculated as follows

∂2H(p⋆)

∂p2i
=

1

(p⋆i )
2
+(bi + ci)bi · di(p⋆)

(
1− di(p

⋆)
)
− (bi + ci)bi ·

(
di(p

⋆)
)2

+
1

(p⋆i )
2
+(bi + ci)bi · di(p⋆)

=
2

(p⋆i )
2
+2(bi + ci)bi · di(p⋆)

(
1− di(p

⋆)
)

(∆)
= 2(bi + ci)

2
(
1− di(p

⋆)
)2

+2(bi + ci)bi · di(p⋆)
(
1− di(p

⋆)
)

= 2(bi + ci) ·
(
1− di(p

⋆)
)(
bi + ci− cidi(p

⋆)
)

= (bi + ci)
2 · 2
(
1− di(p

⋆)
)(

1− ci
bi + ci

di(p
⋆)

)
,

(M.6)

were step (∆) utilizes the first-order condition in Eq. (C.16) and substitutes 1/p⋆i with (bi+ ci)
(
1−

di(p
⋆)
)
. Similarly, we can compute the second-order cross derivatives as

∂2H(p⋆)

∂pi∂pj
=− (bi + ci)bj · di(p⋆)dj(p

⋆)− bi(bj + cj) · di(p⋆)dj(p
⋆)

=−
[
(bj + cj)bi +(bi + ci)bj

]
· di(p⋆)dj(p

⋆)

=− (bi + ci)(bj + cj) ·
(

bi
bi + ci

+
bj

bj + cj

)
di(p

⋆)dj(p
⋆).

(M.7)

Based on Eqs. (M.6) and Eq. (M.7), we observe that the Hessian matrix can be decomposed as

∇2H(p⋆) =AQA, where A is a diagonal matrix defined as

A :=

b1 + c1 0 0

0
. . . 0

0 0 bn + cn

 ,

and matrix Q is defined such that its (i, j)-th entry is equal to

Qij =


2
(
1− di(p

⋆)
)(

1− ci
bi + ci

di(p
⋆)

)
if i= j,

−
(

bi
bi + ci

+
bj

bj + cj

)
di(p

⋆)dj(p
⋆) if i ̸= j.

(M.8)

Since A is clearly an invertible matrix, demonstrating ∇2H(p⋆) is positive definite is equivalent to

proving Q is positive definite. Then, it suffices to show for any vector x, x⊤Qx> 0. Without loss
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of generality, we assume ∥x∥= 1, and it follows that

x⊤Qx = 2
∑
i∈N

[
x2
i

(
1− di(p

⋆)
)(

1− ci
bi + ci

di(p
⋆)

)
− 1

2

∑
j ̸=i

xixj

(
bi

bi + ci
+

bj
bj + cj

)
di(p

⋆)dj(p
⋆)

]

≥ 2
∑
i∈N

[
x2
i

(
1− di(p

⋆)
)(

1− ci
bi + ci

di(p
⋆)

)
− 1

2

∑
j ̸=i

|xi| |xj|
(

bi
bi + ci

+
bj

bj + cj

)
di(p

⋆)dj(p
⋆)

]

> 2
∑
i∈N

[
x2
i

(
1− di(p

⋆)
)2−∑

j ̸=i

|xi| |xj|di(p⋆)dj(p
⋆)

]

= 2
∑
i∈N

{
x2
i

[(
1− di(p

⋆)
)2

+
(
di(p

⋆)
)2]−∑

j∈N

|xi| |xj|di(p⋆)dj(p
⋆)

}
(∆1)
= 2

{∑
i∈N

x2
i

[(
1− di(p

⋆)
)2

+
(
di(p

⋆)
)2]−(∑

i∈N

|xi|di(p⋆)
)2
}

(∆2)

> 2

{∑
i∈N

x2
i

[(∑
j ̸=i

dj(p
⋆)
)2

+
(
di(p

⋆)
)2]−∑

i∈N

(
di(p

⋆)
)2}

> 2

{∑
i∈N

x2
i ·
∑
i∈N

(
di(p

⋆)
)2−∑

i∈N

(
di(p

⋆)
)2}

= 0,

where step (∆1) follows from
∑

i∈N

∑
j∈N |xi| |xj|di(p⋆)dj(p

⋆) =
(∑

i∈N |xi|di(p⋆)
)2

. In step (∆2),

we first use the fact that 1 − di(p
⋆) = d0(p

⋆) +
∑

j ̸=i dj(p
⋆) >

∑
j ̸=i dj(p

⋆), where d0(p
⋆) is the

no-purchase probability. Then, we use the Cauchy-Schwarz inequality, i.e.,
(∑

i∈N |xi|di(p⋆)
)2 ≤

∥x∥2
∑

i∈N

(
di(p)

)2
.

As a result, we conclude that ∇2H(p⋆) is positive definite. By the continuity of ∇2H(p), there
exists some constant γ > 0 and a open set Uγ ∋ p⋆ such that ∇2H(p⋆) ≻ 2γIn for all p ∈ Uγ .

Together with Eq. (M.5), this completes the proof of Lemma EC.1. □

M.2 Proof of Proposition EC.1

Proposition EC.1. (Restated) In the loss-neutral scenario, let the step-sizes {ηt}t≥0 be a

non-increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞ hold. Then, there exists some

neighborhood B of p⋆ such that when the price path {pt}t≥0 enters B with a sufficiently small

step-size, the price path will stay in B during subsequent periods.

Furthermore, suppose the step-sizes satisfy ηt =
Cη

t+1
for all t ≥ 1, where Cη is some general

constant. Then, the local convergence rate of {(pt,rt)}t≥0 after the path stays in B satisfies that∥∥p⋆−pt
∥∥2 ≤O(1

t

)
,
∥∥p⋆− rt

∥∥2 ≤O(1

t

)
. (M.9)

Proof of Proposition EC.1. Let {pt}t≥0 be the price path generated by Algorithm 1 with step-

sizes {ηt}t≥0 such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞. In the following, we use Lemma EC.1
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demonstrate that when the price path {pt}t≥0 enters the ℓ2-neighborhood Bϵ0 :=
{
p ∈ Pn | ∥p−

p⋆∥< ϵ0
}
for some sufficiently small ϵ0 > 0 with small enough step-sizes, the price path will stay in

Bϵ0 during subsequent periods. In particular, we prove it by induction, where we show that when

pt ∈ Bϵ0 for some sufficiently large t, then it also holds that pt+1 ∈ Bϵ0 . The value of ϵ0 will be

specified later in the proof.

By the update rule of Algorithm 1, it follows that∣∣p⋆i − pt+1
i

∣∣2 =
∣∣p⋆i − ProjP (pti + ηtDt

i)
∣∣2

≤
∣∣p⋆i − (pti + ηtDt

i)
∣∣2

(∆1)
=
∣∣(p⋆i − pti

)
− ηt(bi + ci)Gi(p

t,rt)
∣∣2

=
∣∣p⋆i − pti

∣∣2− 2
(
p⋆i − pti

)
· ηt(bi + ci)Gi(p

t,rt)+
[
ηt(bi + ci)Gi(p

t,rt)
]2

=
∣∣p⋆i − pti

∣∣2− 2
(
p⋆i − pti

)
· ηt(bi + ci)Gi(p

t,pt)+
[
ηt(bi + ci)Gi(p

t,rt)
]2

+2
(
p⋆i − pti

)
· ηt(bi + ci)

[
Gi(p

t,pt)−Gi(p
t,rt)

]
(∆2)

≤
∣∣p⋆i − pti

∣∣2− 2
(
p⋆i − pti

)
· ηt(bi + ci)Gi(p

t,pt)+
(
ηt(bi + ci)MG

)2
+2
∣∣p⋆i − pti

∣∣ · ηt(bi + ci) · ℓr,i
∥∥pt− rt

∥∥ ,

(M.10)

where step (∆1) uses the definition of the scaled derivative Gi(p,r) in Eq. (D.2) and the equivalence

that Dt
i = (bi + ci)Gi(p

t,rt) from Eq. (D.3). In step (∆2), we use |Gi(p,r)| ≤MG and the mean

value theorem with the fact that
∥∥∇rGi(p,r)

∥∥≤ ℓr,i (see Lemma EC.4).

Let H(p) be the function defined as

H(p) :=
∑
i∈N

(p⋆i − pi) ·
∂ log

(
Π(p,r)

)
∂pi

∣∣∣∣
r=p

=
∑
i∈N

(bi + ci) ·Gi(p,p) · (p⋆i − pi). (M.11)

Then, by summing Eq. (M.10) over all products i∈N , we have that∥∥p⋆−pt+1
∥∥2 ≤ ∥∥p⋆−pt

∥∥2− 2ηt
∑
i∈N

(
p⋆i − pti

)
· (bi + ci)Gi(p

t,pt)

+ (ηtMG)
2
∑
i∈N

(bi + ci)
2 +2ηt

∥∥pt− rt
∥∥∑

i∈N

ℓr,i(bi + ci)
∣∣p⋆i − pti

∣∣
=
∥∥p⋆−pt

∥∥2− 2ηtH(pt)+ (ηtMG)
2
∑
i∈N

(bi + ci)
2

+2ηt
∥∥pt− rt

∥∥∑
i∈N

ℓr,i(bi + ci)
∣∣p⋆i − pti

∣∣
≤
∥∥p⋆−pt

∥∥2− ηt
(
2H(pt)− ηtω1−ω2

∥∥pt− rt
∥∥),

(M.12)

where we denote ω1 :=M 2
G ·
∑

i∈N(bi + ci)
2 and ω2 = 2|p− p| ·

∑
i∈N ℓr,i(bi + ci).
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By Lemma EC.1, there exist γ > 0 and a open set Uγ ∋ p⋆ such thatH(p)≥ γ ·∥p−p⋆∥2, ∀p∈Uγ .

Consider ϵ0 > 0 such that the ℓ2-neighborhood Bϵ0 =
{
p ∈ Pn | ∥p−p⋆∥< ϵ0

}
⊂ Uγ . Furthermore,

let Tγ be some period such that for all t∈ Tγ , it holds that

ηt
(
ηtω1 +

√
nω2(p− p)

)
≤ ϵ20

4
and ηtω1 +ω2

∥∥pt− rt
∥∥≤ γϵ20

2
. (M.13)

The existence of such a Tγ follows from the fact that limt→∞ ηt = 0 and limt→∞ ∥pt− rt∥= 0 (see

Lemma EC.2). Below, we discuss two cases depending on the location of pt in Bϵ0 .

Case 1. pt ∈Bϵ0/2 ⊂Bϵ0 , i.e., ∥p⋆−pt∥< ϵ0/2.

Since H(p)≥ 0, ∀p∈Uγ by Lemma EC.1, it follows from Eq. (M.12) and Eq. (M.13) that∥∥p⋆−pt+1
∥∥2 ≤ ∥∥p⋆−pt

∥∥2 + ηt
(
ηtω1 +ω2

∥∥pt− rt
∥∥)

(∆)

≤ ϵ20
4
+ ηt

(
ηtω1 +

√
nω2(p− p)

)
≤ ϵ20

4
+

ϵ20
4
< ϵ20,

(M.14)

where inequality (∆) is due to ∥pt− rt∥ ≤
√
n(p− p). Eq. (M.14) implies that pt+1 ∈Bϵ0 .

Case 2. pt ∈Bϵ0\Bϵ0/2, i.e., ∥p⋆−pt∥ ∈ [ϵ0/2, ϵ0).
By Lemma EC.1, we have that H(pt)≥ γ ∥p⋆−pt∥2 ≥ γϵ20/4. Thus, again by Eq. (M.12) and Eq.

(M.13), we have that∥∥p⋆−pt+1
∥∥2 ≤ ∥∥p⋆−pt

∥∥2− ηt
(
2H(pt)− ηtω1−ω2

∥∥pt− rt
∥∥)

≤
∥∥p⋆−pt

∥∥2− ηt
(γϵ20

2
− ηtω1−ω2

∥∥pt− rt
∥∥)

≤
∥∥p⋆−pt

∥∥2 ≤ ϵ20,

(M.15)

which implies pt+1 ∈Bϵ0 . Therefore, we conclude by induction that the price path will stay in the

ℓ2-neighborhood Bϵ0 .

Next, we proceed to show the local convergence rate in Eq. (M.9). Using the fact that H(p)≥
γ · ∥p−p⋆∥2 for all p∈Uγ from Lemma EC.1, we can further derive from Eq. (M.12) that∥∥p⋆−pt+1

∥∥2 ≤ ∥∥p⋆−pt
∥∥2− 2ηtγ

∥∥p⋆−pt
∥∥2 +ω1(η

t)2 +2ηt
∥∥pt− rt

∥∥∑
i∈N

ℓr,i(bi + ci)
∣∣p⋆i − pti

∣∣
(∆1)

≤
∥∥p⋆−pt

∥∥2− 2ηtγ
∥∥p⋆−pt

∥∥2 +ω1(η
t)2 +2ηt

∥∥pt− rt
∥∥ · k̂ ∥∥p⋆−pt

∥∥
(∆2)

≤
∥∥p⋆−pt

∥∥2− 2ηtγ
∥∥p⋆−pt

∥∥2 +ω1(η
t)2 + ηtk̂

[
k̂

γ

∥∥pt− rt
∥∥2 + γ

k̂

∥∥p⋆−pt
∥∥2]

(∆3)

≤
∥∥p⋆−pt

∥∥2− ηtγ
∥∥p⋆−pt

∥∥2 +ω1(η
t)2 + ηtk

∥∥pt− rt
∥∥2 ,

(M.16)

where (∆1) utilizes the fact that
∑

i∈N ℓr,i(bi + ci) |p⋆i − pti| ≤ maxi∈N {ℓr,i(bi + ci)}∥p⋆−pt∥1 ≤√
nmaxi∈N {ℓr,i(bi + ci)}∥p⋆−pt∥, and we define k̂ :=

√
nmaxi∈N {ℓr,i(bi + ci)}. Step (∆2) follows
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from the inequality of arithmetic and geometric means, i.e., 2xy≤Ax2+(1/A)y2 for any constant

A> 0. The value of constant k in (∆4) is given by k := k̂2/γ = n
(
maxi∈N {ℓr,i(bi + ci)}

)2
/γ.

Our goal is to upper-bound the right-hand side of Eq. (M.16). By a similar technique used in Case

1 of Lemma EC.2, we can demonstrate that ∥pt− rt∥2 =O(1/t2) for reasonably large t. Together

with the step-sizes of ηt =Cη/(t+1), we can further bound Eq. (M.16) as

∥∥p⋆−pt+1
∥∥2 ≤(1− γCη

t+1

)∥∥p⋆−pt
∥∥2 + ω1C

2
η

(t+1)2
+

kCη

t+1
· O
(
1

t2

)
≤
(
1− γCη

t+1

)∥∥p⋆−pt
∥∥2 + ω3

t(t+1)
,

(M.17)

where ω3 in the last line is some constant that satisfies ω3
t(t+1)

≥ ω1C
2
η

(t+1)2
+

kCη

t+1
· O
(

1
t2

)
.

Then, we inductively show that ∥p⋆−pt∥2 =O(1/t) when pt ∈ Bϵ0 . According to the first part

of Proposition EC.1, there exists Tϵ0 > 0 such that t ∈ Bϵ for every t≥ Tϵ0 . Suppose there exists a

constant dp such that for a fixed period t≥ Tϵ0 , it holds that∥∥p⋆−pt
∥∥2 ≤ dp

t
. (M.18)

To establish the induction, it is sufficient to show that

∥∥p⋆−pt+1
∥∥2 ≤(1− γCη

t+1

)
dp
t
+

ω3

t(t+1)
≤ dp

t+1
, (M.19)

where the first inequality follows from Eq. (M.17). Then, Eq. (M.19) is further equivalent to

(γCη − 1)dp ≥ ω3. (M.20)

Hence, as long as γCη − 1 > 0, there exists dp > 0 such that the induction in Eq. (M.19) holds.

For example, when Cη = 2/γ, we can take dp =max
{
nTϵ0(p− p)2, ω3

}
, where the first term in the

maximization bracket ensures the base case of the induction. This completes the proof of the local

convergence rate for the price path. Finally, the convergence rate of the reference price path can

be deduced from the following triangular inequality

∥∥p⋆− rt
∥∥2 =

∥∥p⋆−pt +pt− rt
∥∥2 ≤ 2

∥∥p⋆−pt
∥∥2 +2

∥∥pt− rt
∥∥2 =O(1

t

)
, (M.21)

which completes the proof of Proposition EC.1. □
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Appendix N Summary of Constants

In the following Table EC.1 and Table EC.2, we summarize the definitions of all constants used in

the paper, along with references to their initial occurrences.

Table EC.1 Summary of Constants for the Loss-neutral Scenario

Notation Definition Location

λ 1/(p∥p⋆∥∞) Eq. (D.14)

MG maxi∈N

{
1

(bi+ci)p

}
+1 Eq. (L.31)

Mκ (p− p)
∑

i∈N
1

bi+ci
Eq. (E.8)

ℓr,i
1

4

√
c2i +maxj ̸=i

{
c2j
}

Eq. (L.31)

ℓd,i
1

4

√
b2i +maxj ̸=i

{
b2j
}

Eq. (L.37)

ℓp,i
1

4

√
16+ p2

[
(bi + ci)2 +maxj ̸=i {(bj + cj)2}

]
Eq. (L.37)

T1

⌈
2
√

3+α2−2

2−
√

3+α2

⌉
Eq. (L.1)

Crp max

{
2MG

√
(1+α2)

∑
i∈N (bi+ci)

2

1−α2 ,
√
n(p−p)(T1+1)

Cη log(T1+1)

}
Eq. (L.1)

Ĉrp max{Crp,MG} Eq. (E.2)

Cκ nλ+
∑

i∈N ℓr,i +2
√∑

i∈N(bi + ci)2 ·
∑

i∈N ℓd,i Eq. (D.16)

Ĉκ 4CηĈrp

(
2CκCη +n+ Mκ

2
√
n(p−p)

)
Eq. (E.15)

Cp maxi∈N {(bi + ci)
2} · (Ĉκ)

2 Eq. (E.16)

Cr 2
(
Cp +(CrpCη)

2
)

Eq. (E.17)

hi
1
4
(bi + ci)

(
2+ (bi + ci)p

)
Eq. (F.5)

CR,i

hiCr ·max
{(

ci
bi+ci

)2

, 2p2maxj ̸=i

{
c2j
}}

+hiCp ·max
{
4p2maxj ̸=i {(bj + cj)

2} ,1
} Eq. (F.11)
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Table EC.2 Summary of Constants for the Loss-averse Scenario

Notation Definition Location

M̃G maxi∈N

{
1

(bi+c+i )p

}
+1 Eq. (L.52)

ℓ̃r,i
1
4

√
(c−i )

2 +maxj ̸=i

{
(c−j )

2
}

Eq. (L.52)

ℓ̃p,i

√
1

(bi+c+i )2p4
+ bi

2(bi+c+i )p2
+

b2i+maxj ̸=i{b2j}
16

Eq. (L.53)

C̃κ

∑
i∈N

3maxk∈N{bk+c−
k }

2(bi+c+i )
Eq. (G.28)

T1/2

⌈
2+2α2

1−α2

⌉
Eq. (H.12)

C̃rp max

{
2M̃G

√
(1+α2)

∑
i∈N (bi+c−i )2

1−α2 ,
√
n(p−p)

√
T1/2+1

Cη

}
Eq. (H.12)

C̃1/2 maxi∈N

{
(bi + c−i )ℓ̃r,iC̃rp, (bi + c−i )ℓ̃G,iM̃G

√∑
i∈N

(
bi + c−i

)2}
Eq. (H.12)

T̃

[
nM̃Gp2·maxi∈N{bi+c−i }

2Cηϵ
+

√
max

{
T1/2 +1,

⌈( 2CηC̃1/2

ϵ

)2⌉}]2
Eq. (H.11)
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