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Abstract

We study the convergence rate of gradient-based local search methods for solv-
ing low-rank matrix recovery problems with general objectives in both symmetric
and asymmetric cases, under the assumption of the restricted isometry property.
First, we develop a new technique to verify the Polyak–Łojasiewicz inequality in a
neighborhood of the global minimizers, which leads to a local linear convergence
region for the gradient descent method. Second, based on the local convergence
result and a sharp strict saddle property proven in this paper, we present two new
conditions that guarantee the global linear convergence of the perturbed gradi-
ent descent method. The developed local and global convergence results provide
much stronger theoretical guarantees than the existing results. As a by-product,
this work significantly improves the existing bounds on the RIP constant required
to guarantee the non-existence of spurious solutions.

1 Introduction

The low-rank matrix recovery problem is to recover an unknown low-rank ground truth matrix from
certain measurements. This problem has a variety of applications in machine learning, such as
recommendation systems (Koren et al., 2009) and motion detection (Zhou et al., 2013; Fattahi and
Sojoudi, 2020), and in engineering problems, such as power system state estimation (Zhang et al.,
2018c).

In this paper, we consider two variants of the low-rank matrix recovery problem with a general
measurement model represented by an arbitrary smooth function. The first variant is the symmetric
problem, in which the ground truth M∗ ∈ Rn×n is a symmetric and positive semidefinite matrix
with rank(M∗) = r, and M∗ is a global minimizer of some loss function fs. Then, M∗ can be
recovered by solving the optimization problem:

min fs(M)

s. t. rank(M) ≤ r,
M � 0, M ∈ Rn×n.

(1)

Note that minimizing fs(M) over positive semidefinite matrices without the rank constraint would
often lead to finding a solution with the highest-rank possible rather than the rank-constrained solu-
tion M∗. The second variant of the low-rank matrix recovery problem to be studied is the asymmet-
ric problem, in which M∗ ∈ Rn×m is a possibly non-square matrix with rank(M∗) = r, and it is a



global minimizer of some loss function fa. Similarly, M∗ can be recovered by solving

min fa(M)

s. t. rank(M) ≤ r,
M ∈ Rn×m.

(2)

As a special case, the loss function fs or fa can be induced by linear measurements. In this situation,
we are given a linear operatorA : Rn×n → Rp orA : Rn×m → Rp, where p denotes the number of
measurements. To recover M∗ from the vector d = A(M∗), the function fs(M) or fa(M) is often
chosen to be

1

2
‖A(M)− d‖2. (3)

Besides, there are many natural choices for the loss function, such as a nonlinear model associated
with the 1-bit matrix recovery (Davenport et al., 2014).

The symmetric problem (1) can be transformed into an unconstrained optimization problem by fac-
toring M as XXT with X ∈ Rn×r, which leads to the following equivalent formulation:

min
X∈Rn×r

fs(XX
T ). (4)

In the asymmetric case, one can similarly factor M as UV T with U ∈ Rn×r and V ∈ Rm×r.
Note that (UP, V (P−1)T ) gives another possible factorization of M for any invertible matrix P ∈
Rr×r. To reduce the redundancy, a regularization term is usually added to the objective function to
enforce that the factorization is balanced, i.e., UTU = V TV is satisfied (Tu et al., 2016). Since
every factorization can be converted into a balanced one by selecting an appropriate P , the original
asymmetric problem (2) is equivalent to

min
U∈Rn×r,V ∈Rm×r

fa(UV T ) +
φ

4
‖UTU − V TV ‖2F , (5)

where φ > 0 is an arbitrary constant.

To handle the symmetric and asymmetric problems in a unified way, we will use the same notation
X to denote the matrix of decision variables in both cases. In the symmetric case, X is obtained
from the equation M = XXT . In the asymmetric case, X is defined as

X =

[
U
V

]
∈ R(n+m)×r.

To rewrite the asymmetric problem (5) in terms of X , we apply the technique in Tu et al. (2016) by
defining an auxiliary function F : R(n+m)×(n+m) → R as

F

([
N11 N12

N21 N22

])
=

1

2
(fa(N12)+fa(NT

21))+
φ

4
(‖N11‖2F +‖N22‖2F −‖N12‖2F −‖N21‖2F ), (6)

in which the argument of the function F is partitioned into four blocks, denoted as N11 ∈ Rn×n,
N12 ∈ Rn×m, N21 ∈ Rm×n, N22 ∈ Rm×m. The problem (5) then reduces to

min
X∈R(n+m)×r

F (XXT ), (7)

which is a special case of the symmetric problem (4). Henceforth, the objective functions of the two
problems will be referred as to gs(X) = fs(XX

T ) and ga(X) = F (XXT ), respectively.

The unconstrained problems (4) and (5) are often solved by local search algorithms, such as the
gradient descent method, due to their efficiency in handling large-scale problems. Since the objective
functions gs(X) and ga(X) are nonconvex, local search methods may converge to a spurious (non-
global) local minimum. To guarantee the absence of such spurious solutions, the restricted isometry
property (RIP) defined below is the most common condition imposed on the functions fs and fa
(Bhojanapalli et al., 2016b; Ge et al., 2017; Zhu et al., 2018; Zhang et al., 2018b,a, 2019; Ha et al.,
2020; Zhang and Zhang, 2020; Bi and Lavaei, 2020; Zhang et al., 2021; Zhang, 2021).
Definition 1 (Recht et al. (2010); Zhu et al. (2018)). A twice continuously differentiable function
fs : Rn×n → R satisfies the restricted isometry property of rank (2r1, 2r2) for a constant δ ∈ [0, 1),
denoted as δ-RIP2r1,2r2 , if

(1− δ)‖K‖2F ≤ [∇2fs(M)](K,K) ≤ (1 + δ)‖K‖2F
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holds for all matrices M,K ∈ Rn×n with rank(M) ≤ 2r1 and rank(K) ≤ 2r2. In the case when
r1 = r2 = r, the notation RIP2r,2r will be simplified as RIP2r. A similar definition can be also
made for the asymmetric loss function fa.

The state-of-the-art results on the non-existence of spurious local minima are presented in Zhang
et al. (2021); Zhang (2021). Zhang et al. (2021) shows that the problem (4) or (5) is devoid of
spurious local minima if i) the associated function fs or fa satisfies the δ-RIP2 property with δ <
1/2 in case r = 1, ii) the function fs or fa satisfies the δ-RIP2r property with δ ≤ 1/3 in case r > 1.
Zhang (2021) further shows that a special case of the symmetric problem (4) does not have spurious
local minima if iii) fs is in the form (3) given by linear measurements and satisfies the δ-RIP2r

property with δ < 1/2. The absence of spurious local minima under the above conditions does not
automatically imply the existence of numerical algorithms with a fast convergence to the ground
truth. As will be surveyed in Section 2 below, the RIP constant developed in the prior literature to
ensure linear convergence is much smaller than the RIP constant needed to ensure the absence of
spurious local minima. The gap between these two types of bounds will be addressed in this paper.

One common approach to establish fast convergence is to first show that the objective function has
favorable regularity properties, such as strong convexity, in a neighborhood of the global minimiz-
ers, which guarantees that common iterative algorithms will converge to a global minimizer at least
linearly if they are initialized in this neighborhood. Second, given the local convergence result, cer-
tain algorithms can be utilized to reach the above neighborhood from an arbitrary initial point. Note
that randomization and stochasticity are often needed in those algorithms to avoid saddle points that
are far from the ground truth, such as random initialization (Lee et al., 2016) or random perturba-
tion during the iterations (Ge et al., 2015; Jin et al., 2017). In this paper, we deal with the two
above-mentioned aspects for the low-rank matrix recovery problem separately.

1.1 Summary of Main Contributions

For the local convergence, we prove in Section 3 that a regularity property named the Polyak–
Łojasiewicz (PL) inequality always holds in a neighborhood of the global minimizers. The PL
inequality is significantly weaker than the regularity condition used in previous works to study the
local convergence of the low-rank matrix recovery problem, while it still guarantees a linear con-
vergence to the ground truth. Hence, as will be compared with the prior literature in Section 2, not
only are the obtained local regularity regions remarkably larger than the existing ones, but also they
require significantly weaker RIP assumptions. Specifically, if fs satisfies the δ-RIP2r property for
an arbitrary δ, we will show that there exists some constant µ > 0 such that the objective function
gs of the symmetric problem (4) satisfies the PL inequality

1

2
‖∇gs(X)‖2F ≥ µ(gs(X)− fs(M∗))

for all X in the region
{X ∈ Rn×r|dist(X,Z) ≤ C̃}

with

C̃ <

√
2(
√

2− 1)
√

1− δ2σr(M∗)1/2.

Here, dist(X,Z) is the Frobenius distance between the matrixX and the setZ of global minimizers
of the problem (4). A similar result will also be derived for the asymmetric problem (5). Based on
these results, local linear convergence can then be established. Compared with the previous results,
our new results are advantageous for two reasons. First, the weaker RIP assumptions imposed by our
results allow them to be applicable to a much broader class of problems, especially those problems
with nonlinear measurements where the RIP constant of the loss function fs or fa varies at different
points. In this case, the region in which the RIP constant is below the previous bounds may be
significantly small or even empty, while the region satisfying our bounds is much larger since the
radius of the region is increased by more than a constant factor. Second, when the RIP constant is
large and global convergence cannot be established due to the existence of spurious solutions, the
enlarged local regularity regions identified in this work can reduce the sample complexity to find the
correct initial point converging to the ground truth. This has a major practical value in problems like
data analytics in power systems (Jin et al., 2021) in which there is a fundamental limit to the number
of measurements due to the physics of the network.
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For the global convergence analysis, in Section 4, we first study the symmetric problem (4) with an
arbitrary objective and an arbitrary rank r and prove that the objective gs satisfies the strict saddle
property if the function fs has the δ-RIP2r property with δ < 1/2. Note that this result is sharp,
because in Zhang et al. (2018a) a counterexample has been found that contains spurious local minima
under δ = 1/2. Using the above strict saddle property and the local convergence result proven in
Section 3, we show that the perturbed gradient descent method with local improvement will find
an approximate solution X satisfying ‖XXT −M∗‖F ≤ ε in O(log 1/ε) number of iterations for
an arbitrary tolerance ε. Moreover, the convergence result for symmetric problems also implies the
global linear convergence for asymmetric problems under the δ-RIP2r condition with δ < 1/3.

1.2 Notations and Conventions

In this paper, In denotes the identity matrix of size n× n, A⊗B denotes the Kronecker product of
matrices A and B, and A � 0 means that A is a symmetric and positive semidefinite matrix. σi(A)
denotes the i-th largest singular value of the matrix A. A = vec(A) is the vector obtained from
stacking the columns of a matrix A. For a vector A of dimension n2, its symmetric matricization
matS(A) is defined as (A + AT )/2 with A being the unique matrix satisfying A = vec(A). For
two matrices A and B of the same size, their inner product is denoted as 〈A,B〉 = tr(ATB) and
‖A‖F =

√
〈A,A〉 denotes the Frobenius norm of A. Given a matrix M and a set Z of matrices,

define
dist(X,Z) = min

Z∈Z
‖X − Z‖F .

Moreover, ‖v‖ denotes the Euclidean norm of a vector v. The action of the Hessian ∇2f(M) of a
matrix function f on any two matrices K and L is given by

[∇2f(M)](K,L) =
∑
i,j,k,l

∂2f

∂Mij∂Mkl
(M)KijLkl.

1.3 Assumptions

The assumptions required in this work will be introduced below. To avoid using different notations
for the symmetric and asymmetric problems, we use the universal notation f(M) henceforth to
denote either fs(M) or fa(M). Similarly, M∗ denotes the ground truth in either of the cases.
Assumption 1. The function f is twice continuously differentiable. In addition, its gradient ∇f is
ρ1-restricted Lipschitz continuous for some constant ρ1, i.e., the inequality

‖∇f(M)−∇f(M ′)‖F ≤ ρ1‖M −M ′‖F
holds for all matrices M and M ′ with rank(M) ≤ r and rank(M ′) ≤ r. The Hessian of the
function f is also ρ2-restricted Lipschitz continuous for some constant ρ2, i.e., the inequality

|[∇2f(M)−∇2f(M ′)](K,K)| ≤ ρ2‖M −M ′‖F ‖K‖2F
holds for all matrices M,M ′,K with rank(M) ≤ r, rank(M ′) ≤ r and rank(K) ≤ 2r.
Assumption 2. The function f satisfies the δ-RIP2r property. Furthermore, ρ1 in Assumption 1 is
chosen to be large enough such that ρ1 ≥ 1 + 2δ.
Assumption 3. The ground truth M∗ satisfies ‖M∗‖F ≤ D, and the initial point X0 of the local
search algorithm also satisfies ‖X0X

T
0 ‖F ≤ D, whereD is a constant given by the prior knowledge

(every large enough D satisfies this assumption).
Assumption 4. In the asymmetric problem (5), the coefficient φ of the regularization term is chosen
to be φ = (1− δ)/2.

Note that the results of this paper still hold if the gradient and Hessian of the function f are re-
stricted Lipschitz continuous only over a bounded region. Here, for simplicity we assume that these
properties hold for all low-rank matrices.

As mentioned before Definition 1, the RIP-related Assumption 2 is a widely used assumption in
studying the landscape of low-rank matrix recovery problems, which is satisfied in a variety of
problems, such as those for which f is given by a sufficiently large number of random Gaussian
linear measurements (Candès and Plan, 2011). Moreover, in the case when the function f does not
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satisfy the RIP assumption globally, it often satisfies RIP in a neighborhood of the global minimizers,
and the theorems in this paper can still be applied to obtain local convergence results.

For the asymmetric problem, it can be verified that, by choosing the coefficient φ of the regular-
ization term as in Assumption 4, the function F in (7) satisfies the 2δ/(1 + δ)-RIP2r property
after scaling (see Zhang et al. (2021)). Other values of φ can also lead to the RIP property on F ,
but the specific value in Assumption 4 is the one minimizing the RIP constant. Furthermore, if
M∗ = U∗V ∗T is a balanced factorization of the ground truth M∗, then

M̃∗ =

[
U∗

V ∗

] [
U∗T V ∗T

]
∈ R(n+m)×(n+m) (8)

is called the augmented ground truth, which is obviously a global minimizer of the transformed
asymmetric problem (7). M̃∗ is independent of the factorization (U∗, V ∗), and

‖M̃∗‖F = 2‖M∗‖F ≤ 2D, σr(M̃
∗) = 2σr(M

∗).

We include the proofs of the above statements in Appendix A for completeness. In addition, we
prove in Appendix A that the gradient and Hessian of the function gs in the symmetric problem
(4) and those of the function ga in the asymmetric problem (5) share the same Lipschitz property
over a bounded region. Using the above observations, one can translate any results developed for
symmetric problems to similar results for asymmetric problems by simply replacing δ with 2δ/(1 +
δ), D with 2D, and σr(M∗) with 2σr(M

∗).

2 Related Works

The low-rank matrix recovery problem has been investigated in numerous papers. In this section,
we focus on the existing results related to the linear convergence for the factored problems (4) and
(5) solved by local search methods.

The major previous results on the local regularity property are summarized in Table 1. In this table,
each number in the last column reported for the existing works denotes the radius R such that their
respective objective functions g satisfy the (α, β)-regularity condition

〈∇g(X), X − PZ(X)〉 ≥ α

2
dist(X,Z)2 +

1

2β
‖∇g(X)‖2F

for all matrices X with dist(X,Z) ≤ R. Here, Z is the set of global minimizers, and PZ(X) is a
global minimizer Z ∈ Z that is the closest to X . The (α, β)-regularity condition is slightly weaker
than the strong convexity condition, and it can lead to linear convergence on the same region. In
Table 1, we do not include specialized results that are only applicable to a specific objective (Jin
et al., 2017; Hou et al., 2020), or probabilistic results for randomly generated measurements (Zheng
and Lafferty, 2015). Moreover, Li and Lin (2020); Zhou et al. (2020) used the accelerated gradient
descent to obtain a faster convergence rate, but their convergence regions are even smaller than the
ones based on the (α, β)-regularity condition as listed in Table 1. Each number in the last column
reported for our results refers to the radius of the region satisfying the PL inequality, which is
a weaker condition than the (α, β)-regularity condition while offering the same convergence rate
guarantee. It can be observed that we have identified far larger regions than the existing ones under
weaker RIP assumptions by replacing the (α, β)-regularity condition with the PL inequality.

Regarding the existing global convergence results for the low-rank matrix recovery problem, Tu
et al. (2016) proposed the Procrustes flow method with the global linear convergence for the lin-
ear measurement case under the assumption that the function fs satisfies the 1/10-RIP6r property
for symmetric problems or the function fa satisfies the 1/25-RIP6r property for asymmetric prob-
lems under a careful initialization. Zhao et al. (2015) established the global linear convergence for
asymmetric problems with linear measurements under the assumption that fa satisfies δ-RIP2r with
δ ≤ O(1/r) using alternating exact minimization over variables U and V in (5). In addition, the
strict saddle property proven in Ge et al. (2017) leads to the global linear convergence of perturbed
gradient methods for the linear measurement case under the 1/10-RIP2r assumption for symmetric
problems and the 1/20-RIP2r assumption for asymmetric problems. Later, Zhu et al. (2018) proved
a weaker strict saddle property under the 1/5-RIP2r,4r assumption for symmetric problems with
general objectives, while Li et al. (2017) proved the same weaker property under the 1/5-RIP2r,4r
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Table 1: Previous local regularity results for the low-rank matrix recovery problems and the compar-
ison with our results (“S”, “A”, “L” and “G” stand for the symmetric case, asymmetric case, linear
measurement and general nonlinear function)

Paper Objective Assumption Radius of Local Regularity Region

Bhojanapalli et al. (2016a) S/G fs Convex,
δ2r ≤ δ

1

100

1− δ
1 + δ

σr(M
∗)

σ1(M∗)
σr(M

∗)1/2

Tu et al. (2016) S/L δ6r ≤ 1/10
1

4
σr(M

∗)1/2

Tu et al. (2016) A/L δ6r ≤ 1/25
1

4
σr(M

∗)1/2

Park et al. (2018) A/G fa Convex,
δ2r ≤ δ

√
2

10

√
1− δ
1 + δ

σr(M
∗)1/2

Zhu et al. (2021) A/G δ2r,4r ≤ 1/50 σr(M
∗)1/2

Ours S/G δ2r ≤ δ 0.91
√

1− δ2σr(M∗)1/2

Ours A/G δ2r ≤ δ 1.29

√
1 + 2δ − 3δ2

1 + δ
σr(M

∗)1/2

assumption for asymmetric problems with general objectives and nuclear norm regularization. Our
results requiring the δ-RIP2r property with δ < 1/2 for symmetric problems with general objectives
and the δ-RIP2r property with δ < 1/3 for asymmetric problems with general objectives depend on
significantly weaker RIP assumptions and thus can be applied to a broader class of problems, which
is a major improvement over all previous results on the global linear convergence.

Besides local search methods for the factored problems, there are other approaches for tackling the
low-rank matrix recovery. Earlier works such as Candès and Recht (2009); Recht et al. (2010) solved
the original nonconvex problems based on convex relaxations. Although they can achieve good
performance guarantees under the RIP assumptions, they are not suitable for large-scale problems.
Other approaches for solving the low-rank matrix recovery include applying the inertial proximal
gradient descent method directly to the original objective functions without factoring the decision
variable M (Dutta et al., 2020). However, it may converge to an arbitrary critical point, while in
this paper we show that RIP-based local search methods can guarantee the global convergence to a
global minimum.

3 Local Convergence

In this section, we present the local regularity results for problems (4) and (5), which state that the
functions gs and ga satisfy the PL inequality locally, leading to local linear convergence results for
the gradient descent method. The proofs are delegated to Appendix B.

First, we consider the symmetric problem (4). The development of the local PL inequality for this
problem is enlightened by the high-level idea behind the proof of the absence of spurious local
minima in Zhang et al. (2019); Zhang and Zhang (2020); Bi and Lavaei (2020). The objective is to
find a function f∗s corresponding to the worst-case scenario, meaning that it satisfies the δ-RIP2r

property with the smallest possible δ while the PL inequality is violated at a particular matrix X .
This is achieved by designing a semidefinite program parameterized by X with constraints implied
by the δ-RIP2r property and the negation of the PL inequality. Denote the optimal value of the
semidefinite program by δ∗f (X). If a given function fs satisfies δ-RIP2r with δ < δ∗f (X) for all
X ∈ Rn×r in a neighborhood of the global minimizers, it can be concluded that the PL inequality
holds for all matrices in this neighborhood.

Theorem 1. Consider the symmetric problem (4) and an arbitrary positive number C̃ satisfying

C̃ <

√
2(
√

2− 1)
√

1− δ2σr(M∗)1/2. (9)
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There exists a constant µ > 0 such that the PL inequality
1

2
‖∇gs(X)‖2F ≥ µ(gs(X)− fs(M∗))

holds for all matrices in the region
{X ∈ Rn×r|dist(X,Z) ≤ C̃}, (10)

where Z is the set of global minimizers of the problem (4).

Both the (α, β)-regularity condition used in the prior literature and the PL inequality deployed here
guarantee a linear convergence if it is already known that the trajectory at all iterations remains
within the region in which the associated condition holds. However, there is a key difference be-
tween these two conditions. The (α, β)-regularity condition ensures that dist(X,Z) is nonincreas-
ing during the iterations under a sufficiently small step size, and thus the trajectory never leaves the
local neighborhood. In contrast, the weaker PL inequality may not be able to guarantee this property.
To resolve this issue, in our convergence proof we will adopt a different distance function given by
‖XXT −M∗‖F . By Taylor’s formula and the definition of the δ-RIP2r property, we have

1− δ
2
‖M −M∗‖2F ≤ fs(M)− fs(M∗) ≤

1 + δ

2
‖M −M∗‖2F , (11)

for all matrices M ∈ Rn×n with rank(M) ≤ r. Therefore, if M,M ′ ∈ Rn×n are two matrices
such that fs(M) ≤ fs(M ′), then the inequality (11) implies that

‖M −M∗‖F ≤
√

1 + δ

1− δ
‖M ′ −M∗‖F . (12)

Therefore, the distance function ‖XXT−M∗‖F is almost nonincreasing if the function value gs(X)
does not increase. Combining this idea with the local PL inequality proved in Theorem 1, we obtain
the next local convergence result.
Theorem 2. For the symmetric problem (4), the gradient descent method converges to the optimal
solution linearly if the initial point X0 satisfies

‖X0X
T
0 −M∗‖F < 2(

√
2− 1)(1− δ)σr(M∗)

and the step size η satisfies

1/η ≥ 12ρ1r
1/2

(√
1 + δ

1− δ
‖X0X

T
0 −M∗‖F +D

)
.

Specifically, there exists some constant µ > 0 (which depends on X0 but not on η) such that

‖XtX
T
t −M∗‖F ≤ (1− µη)t/2

√
1 + δ

1− δ
‖X0X

T
0 −M∗‖F , ∀t ∈ {0, 1, . . . }, (13)

where Xt denotes the output of the algorithm at iteration t.

Note that since the left-hand side of (13) is nonnegative, we have 0 ≤ 1− µη ≤ 1. As a remark, al-
though our bound on the step size η in Theorem 2 seems complex, it essentially says that η needs to
be small, and the upper bound on the acceptable values of the step size can be explicitly calculated
out routinely after all the parameters of the problem are given. Furthermore, using the transfor-
mation from asymmetric problems to symmetric problems, one can obtain parallel results for the
asymmetric problem (5) as below.
Theorem 3. Consider the asymmetric problem (5). The PL inequality is satisfied in the region

{X ∈ R(n+m)×r|dist(X,Z) ≤ C̃},
where Z denotes the set of global minimizers and

C̃ < 2

√√
2− 1

√
1 + 2δ − 3δ2

1 + δ
σr(M

∗)1/2.

Moreover, local linear convergence is guaranteed for the gradient descent method if the initial point
X0 satisfies

‖X0X
T
0 − M̃∗‖F < 4(

√
2− 1)

1− δ
1 + δ

σr(M
∗)

and the step size η satisfies

1/η ≥ 12ρ1r
1/2

(√
1 + 3δ

1− δ
‖X0X

T
0 − M̃∗‖F + 2D

)
.
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4 Global Convergence

Having developed local convergence results, the next step is to design an algorithm whose trajectory
will eventually enter the local convergence region from any initial point. The major challenge is
to deal with the saddle points outside the local regularity region. One common approach is the
perturbed gradient descent method, which adds random noise to jump out of a neighborhood of a
strict saddle point. Using the symmetric problem as an example, the basic idea is to first use the
analysis in Jin et al. (2017) to show that the perturbed gradient descent method will successfully
find a matrix X that approximately satisfies the first-order and second-order necessary optimality
conditions, i.e.,

‖∇gs(X)‖F ≤ κ, λmin(∇2gs(X)) ≥ −κ, (14)
after a certain number of iterations where the number depends on κ. Here, λmin(∇2gs(X)) denotes
the minimum eigenvalue of the matrix G that satisfies the equation

(vec(U))TG vec(V ) = [∇2gs(X)](U, V ),

for all U, V ∈ Rn×r. The second step is to prove the strict saddle property for the problem, which
means that for appropriate values of κ the two conditions in (14) imply that ‖XXT − M∗‖F is
so small that X is in the local convergence region given by Theorem 2. After this iteration, the
algorithm switches to the simple gradient descent method. This two-phase algorithm is commonly
called the perturbed gradient descent method with local improvement (Jin et al., 2017), whose details
are given by Algorithm 1 in Appendix C. The proofs in this section are also given in Appendix C.

In this section, we will present two conditions that guarantee the global linear convergence of the
above algorithm. For symmetric problems, the next lemma provides the strict saddle property and
fulfills the purpose for the second step mentioned above. Its proof is a generalization of the one for
the absence of spurious local minima under the same assumption in Zhang (2021).
Lemma 4. Consider the symmetric problem (4) with δ < 1/2. For every C > 0, there exists some
κ > 0 such that for everyX ∈ Rn×r the two conditions given in (14) will imply ‖XXT−ZZT ‖F <
C.

The remaining step is to show that the trajectory of the perturbed gradient descent method will al-
ways belong to a bounded region in which the gradient and Hessian of the objective gs are Lipschitz
continuous (see Appendix C). Combining the above results with Theorem 3 in Jin et al. (2017), we
can obtain the following global linear convergence result.
Theorem 5. Consider the symmetric problem (4) with δ < 1/2. For every ε > 0, the perturbed
gradient descent method with local improvement under a suitable step size η and perturbation size
w finds a solution X̂ satisfying ‖X̂X̂T −M∗‖F ≤ ε with high probability in O(log(1/ε)) number
of iterations. Here, η and w are defined in Algorithm 1 in Appendix C.

In the above theorem, the order O(log(1/ε)) of the convergence rate is determined by the number
of iterations spent in the second phase of the algorithm, because the number of iterations in the
first phase is independent of ε. Note that we only show the relationship between the number of
iterations and ε, but the convergence rate also depends on the initial point X0 and the loss function
fs. Moreover, although not being related to the final convergence rate, Theorem 3 in Jin et al. (2017)
also shows that the number of iterations in the first phase is polynomial with respect to the problem
size.

For asymmetric problems with arbitrary objectives and rank r, if we apply the transformation from
asymmetric problems to symmetric problems and replace δ in Theorem 5 with 2δ/(1+δ), Theorem 5
immediately implies the following global linear convergence result.
Theorem 6. Consider the asymmetric problem (5) with δ < 1/3. For every ε > 0, the perturbed
gradient descent method with local improvement under a suitable step size η and perturbation size
w finds a solution X̂ satisfying ‖X̂X̂T − M̃∗‖F ≤ ε with high probability in O(log(1/ε)) number
of iterations.

5 Numerical Illustration

In this section, we conduct numerical experiments to demonstrate the behavior of the perturbed
gradient descent algorithm for solving low-rank matrix recovery problems. The linear convergence
rate observed for the examples below supports our theoretical analyses in Section 3 and Section 4.
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(a) (b)

(c)

Figure 1: The trajectory of the perturbed gradient descent method for solving the low-rank matrix
recovery problem. The marker in each figure shows the boundary of the local convergence region
provided by Theorem 2. (a) A symmetric linear problem with r = 1, n = 40, p = 120 and δ
estimated to be 0.49. (b) An asymmetric linear problem with r = 5, n = 10, m = 8, p = 220 and δ
estimated to be 0.32. (c) The 1-bit matrix recovery problem with r = 5, n = 10.

In the first experiment, we consider the loss function (3) induced by a linear operator A with

A(M) = (〈A1,M〉, . . . , 〈Ap,M〉).
Here, each entry of Ai is independently generated from the standard Gaussian distribution. As
shown in Candès and Plan (2011), such linear operator A satisfies RIP with high probability if the
number of measurements is large enough. Since it is NP-hard to check whether the resulting loss
function fs or fa satisfies the δ-RIP2r for certain δ, the δ parameter is estimated as follows: For
the symmetric problem (4), we first generate 104 random matrices X ∈ Rn×2r with each entry
independently selected from the standard Gaussian distribution, and then find the proper scaling
factor a ∈ R and the smallest δ such that

(1− δ)‖XXT ‖2F ≤ ‖aA(XXT )‖2 ≤ (1 + δ)‖XXT ‖2F
holds for all generated matricesX . The δ parameter for the asymmetric problem (5) can be estimated
similarly. After that, the ground truthM∗ = XXT orM∗ = UV T is generated randomly with each
entry of X or (U, V ) independently selected from the standard Gaussian distribution. The initial
point is generated in the same way.

Figure 1(a) and (b) show the difference between the obtained solution and the ground truth together
with the norm of the gradient of the objective function at different iterations. The convergence be-
havior clearly divides into two stages. The convergence rate is sublinear initially and then switches
to linear when the current point moves into the local region associated with the PL inequality. In
Figure 1(a) and (b), the marker shows the first time when the current point falls into the local con-
vergence region provide in Theorem 2 or Theorem 3. It can be seen that these theorems predict the
boundary of the transition from a sublinear convergence rate to the linear convergence rate fairly
tightly. After this point, O(log(1/ε)) additional iterations are needed to find an approximate solu-
tion with accuracy ε. On the other hand, the occasion when perturbation needs to be added is rare
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in practice since it is unlikely for the trajectory to be very close to a saddle point. However, such
perturbation is necessary theoretically to deal with pathological cases.

Second, we consider the 1-bit matrix recovery (Davenport et al., 2014) with full measurements,
which is a nonlinear low-rank matrix recovery problem. In this problem, there is an unknown
symmetric ground truth matrix M̂ ∈ Rn×n with M̂ � 0 and rank(M̂) = r. One is allowed to
take independent measurements on every entry M̂ij , where each measurement value is a binary
random variable whose distribution is given by Yij = 1 with probability σ(M̂ij) and Yij = 0
otherwise. Here, σ(x) is commonly chosen to be the sigmoid function ex/(ex + 1). After a number
of measurements are taken, let yij be the percentage of the measurements on the (i, j)-th entry that
are equal to 1. The goal is to find the maximum likelihood estimator for the ground truth M̂ , which
can be formulated as finding the global minimizer M∗ of the problem (4) with

fs(M) = −
n∑
i=1

n∑
j=1

(yijMij − log(1 + eMij )).

To establish the RIP condition for the function fs above, consider its Hessian∇2fs(M) that is given
by

[∇2fs(M)](K,L) =

n∑
i=1

n∑
j=1

σ′(Mij)KijLij ,

for every M,K,L ∈ Rn×n. On the region

{M ∈ Rn×n| |Mij | ≤ 2.29, ∀i, j = 1, . . . , n}, (15)

we have 1/12 < σ′(Mij) ≤ 1/4, and thus the function fs satisfies the δ-RIP2r property with
δ < 1/2.

Note that due to the noisy measurements the global minimizer M∗ is not equal to M̂ in general.
However, for demonstration purposes we should know M∗ a priori, and hence we consider the
case when the number of measurements is large enough such that yij = σ(M̂ij) and M∗ = M̂ . In
Figure 1(c), the ground truth and the initial point are generated randomly in the region (15). Here, we
can observe a similar two-stage convergence behavior as in the example with linear measurements.

6 Conclusion

In this paper, we study the local and global convergence behaviors of gradient-based local search
methods for solving low-rank matrix recovery problems in both symmetric and asymmetric cases.
First, we present a novel method to identify a local region in which the PL inequality is satisfied,
which is significantly larger than the region associated with the regularity conditions proven in the
prior literature. This leads to a linear convergence result for the gradient descent method over a
large local region. Second, we develop the strict saddle property for symmetric problems under the
δ-RIP2r property with δ < 1/2. Then, we prove the global linear convergence of the perturbed
gradient descent method for symmetric problems under the δ-RIP2r property with δ < 1/2, and
the same convergence property can also be guaranteed for asymmetric problems with δ < 1/3.
Compared with the existing results, these conditions are remarkably weaker and can be applied to a
larger class of problems.
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A Properties of the Factored Objectives

We first study the smoothness properties for the gradient and Hessian of the objective function gs in
the symmetric problem (4). The following lemma is borrowed from the proof of Theorem 7 in Bi
and Lavaei (2020).

Lemma 7. If Q is a quadratic form satisfying δ-RIP2r, then

|[Q](K,L)− 〈K,L〉| ≤ 2δ‖K‖F ‖L‖F ,

for all matrices K,L ∈ Rn×n of rank at most 2r.

Lemma 8. For a given constant R greater than D, the gradient ∇gs of the function gs in
the symmetric problem (4) is 8ρ1r

1/2R-restricted Lipschitz continuous and the Hessian ∇2gs is
4ρ1r

1/4R1/2(2r1/2Rρ2/ρ1 + 3)-restricted Lipschitz continuous over the region

D = {X ∈ Rn×r|‖XXT ‖F ≤ R}.

Proof. For every U ∈ D, we have

‖U‖F =

√√√√ r∑
i=1

σi(U)2 ≤ 4

√√√√r

r∑
i=1

σi(U)4 = 4

√√√√r

r∑
i=1

λi(UUT )2 = r1/4‖UUT ‖1/2F ≤ r1/4R1/2.

(16)
Furthermore, for every U, V ∈ D, it holds that

‖UUT − V V T ‖F = ‖U(U − V )T + (U − V )V T ‖F ≤ 2r1/4R1/2‖U − V ‖F .

To prove that the gradient∇gs is Lipschitz continuous, one can write

‖∇gs(U)−∇gs(V )‖F = 2‖∇fs(UUT )U −∇fs(V V T )V ‖F
≤ 2‖∇fs(UUT )U −∇fs(V V T )U‖F + 2‖∇fs(V V T )(U − V )‖F
≤ 2ρ1‖UUT − V V T ‖F ‖U‖F + 2ρ1‖V V T −M∗‖F ‖U − V ‖F
≤ 4ρ1r

1/2R‖U − V ‖F + 4ρ1R‖U − V ‖F
≤ 8ρ1r

1/2R‖U − V ‖F .

Similarly, for every W ∈ Rn×r, we have

[∇2gs(U)](W,W )− [∇2gs(V )](W,W )

= [∇2fs(UU
T )](UWT +WUT , UWT +WUT )

− [∇2fs(V V
T )](VWT +WV T , V WT +WV T )

+ 2〈∇fs(UUT )−∇fs(V V T ),WWT 〉
= [∇2fs(UU

T )−∇2fs(V V
T )](UWT +WUT , UWT +WUT )

+ [∇2fs(V V
T )](UWT +WUT , UWT +WUT )

− [∇2fs(V V
T )](VWT +WV T , V WT +WV T )

+ 2〈∇fs(UUT )−∇fs(V V T ),WWT 〉.

There are four terms in the above expression. The first term can be upper bounded as

A1 := [∇2fs(UU
T )−∇2fs(V V

T )](UWT +WUT , UWT +WUT )

≤ ρ2‖UUT − V V T ‖F ‖UWT +WUT ‖2F
≤ 4ρ2‖UUT − V V T ‖F ‖U‖2F ‖W‖2F
≤ 8ρ2r

3/4R3/2‖U − V ‖F ‖W‖2F .
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Similarly, the sum of the second and third terms can be bounded as

A2 := [∇2fs(V V
T )](UWT +WUT , UWT +WUT )

− [∇2fs(V V
T )](VWT +WV T , V WT +WV T )

= [∇2fs(V V
T )](UWT +WUT , (U − V )WT +W (U − V )T )

+ [∇2fs(V V
T )]((U − V )WT +W (U − V )T , V WT +WV T )

≤ (1 + 2δ)(‖UWT +WUT ‖F + ‖VWT +WV T ‖F )‖(U − V )WT +W (U − V )T ‖F
≤ 4(1 + 2δ)(‖U‖F + ‖V ‖F )‖U − V ‖F ‖W‖2F
≤ 8ρ1r

1/4R1/2‖U − V ‖F ‖W‖2F ,

where Lemma 7 is applied in the second step. Moreover, we can upper bound the last term as

A3 := 2〈∇fs(UUT )−∇fs(V V T ),WWT 〉
≤ 2ρ1‖UUT − V V T ‖F ‖W‖2F
≤ 4ρ1r

1/4R1/2‖U − V ‖F ‖W‖2F .

Therefore,

[∇2gs(U)](W,W )− [∇2gs(V )](W,W ) = A1 +A2 +A3

≤ 4ρ1r
1/4R1/2(2r1/2Rρ2/ρ1 + 3)‖U − V ‖F ‖W‖2F ,

which implies that the Hessian∇2gs has the desired Lipschitz property.

Next, we verify some facts about the augmented ground truth M̃∗ for the asymmetric problem,
which will be useful in the transformation from asymmetric problems to symmetric problems.

Lemma 9. The augmented ground truth M̃∗ defined in (8) is independent of the balanced factor-
ization of the ground truth M∗. Furthermore,

‖M̃∗‖F = 2‖M∗‖F , σr(M̃
∗) = 2σr(M

∗).

Proof. By expanding all the terms, it can be checked that the inequality

‖U1U
T
1 − U2U

T
2 ‖2F + ‖V1V T1 − V2V T2 ‖2F ≤ 2‖U1V

T
1 − U2V

T
2 ‖2F

holds for all U1, U2 ∈ Rn×r and V1, V2 ∈ Rm×r with UT1 U1 = V T1 V1 and UT2 U2 = V T2 V2 (see
Appendix F in Zhu et al. (2018)). Then, if (U1, V1) and (U2, V2) are two balanced factorizations of
the ground truth M∗, we must have

U1U
T
1 = U2U

T
2 , V1V

T
1 = V2V

T
2

and thus M̃∗ is unique.

Assume that (U∗, V ∗) is a balanced factorization of M∗, the remaining equalities follow from the
fact that

σi(M
∗)2 = σi(U

∗V ∗TV ∗U∗T ) = σi(U
∗U∗TU∗U∗T )

= σi(U
∗U∗T )2 = σi(U

∗TU∗)2

=
1

4
σi(U

∗TU∗ + V ∗TV ∗)2 =
1

4
σi(M̃

∗)2

for all i ∈ {1, . . . , r}.

In the following, we will show that the gradient and the Hessian of the objective function ga in
the transformed asymmetric problem (7) satisfies the same Lipschitz property as in Lemma 8. This
means that those proofs in the remainder of this paper that depend on the Lipschitz property of gs
can be applied to both the symmetric problem (4) and the transformed asymmetric problem (7).
Lemma 10. The gradient ∇ga and the Hessian ∇2ga in the transformed asymmetric problem (7)
satisfy the same Lipschitz property as in Lemma 8.
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Proof. Consider arbitrary low-rank matrices N,N ′,K ∈ R(n+m)×(n+m) written in block forms in
the same way as in (6), with rank(N) ≤ r, rank(N ′) ≤ r and rank(K) ≤ 2r. First, we will prove
that the gradient ∇F and the Hessian ∇2F of the transformed function F are still ρ1-restricted
Lipschitz continuous and ρ2-restricted Lipschitz continuous, respectively. Given the gradient

∇F (N) =
1

2

[
0 ∇fa(N12)

(∇fa(NT
21))T 0

]
+
φ

2

[
N11 −N12

−N21 N22

]
,

we have

‖∇F (N)−∇F (N ′)‖F

≤ 1

2

√
‖∇fa(N12)−∇fa(N ′12)‖2F + ‖∇fa(NT

21)−∇fa(N ′T21 )‖2F +
φ

2
‖N −N ′‖F

≤ ρ1
2

√
‖N12 −N ′12‖2F + ‖N21 −N ′21‖2F +

φ

2
‖N −N ′‖F

≤ 1

2
(ρ1 + φ)‖N −N ′‖F ≤ ρ1‖N −N ′‖F ,

in which the second inequality is due to the ρ1-restricted Lipschitz continuity of∇fa, while the last
inequality follows from the choice φ = (1−δ)/2 in Assumption 4 and ρ1 ≥ 1+2δ in Assumption 2.
Moreover, since

[∇2F (N)](K,K) =
1

2
([∇2fa(N12)](K12,K12) + [∇2fa(NT

21)](KT
21,K

T
21))

+
φ

2
(‖K11‖2F + ‖K22‖2F − ‖K12‖2F − ‖K21‖2F ),

it is clear that∇2F is ρ2/2-restricted Lipschitz continuous as the second term in the above equation
is independent of N . Next, we can repeat the argument in Lemma 8 with the function fs replaced
with 4F/(1 + δ), noting that the latter function satisfies the 2δ/(1 + δ)-RIP2r property as proven in
Theorem 12 of Zhang et al. (2021).

Using the Lipschitz properties proven in Lemma 8, we will show that the objective value decreases
at each iteration of the gradient descent algorithm with a sufficiently small step size η. Although the
following lemma is stated for the symmetric problem (4), a similar result holds for the transformed
asymmetric problem (7).

Lemma 11. Given a matrix X ∈ Rn×r satisfying

‖XXT −M∗‖F ≤ R,

let X ′ = X − η∇gs(X) be the result of a one-step gradient descent applied to the symmetric
problem (4) with the step size η satisfying

1/η ≥ 12ρ1r
1/2(R+D)

Then, gs(X ′) ≤ gs(X)− η‖∇gs(X)‖2F /2.

Proof. The assumption on η implies that ηρ1R ≤ 1/12. Define X̃(t) = X − tη∇gs(X) for
t ∈ [0, 1]. We have X̃(1) = X ′ and

‖X̃(t)X̃(t)T −M∗‖F ≤ 2tη‖∇gs(X)XT ‖F + t2η2‖∇gs(X)∇gs(X)T ‖F + ‖XXT −M∗‖F
≤ 4tη‖∇fs(XXT )XXT ‖F + 4t2η2‖∇fs(XXT )XXT∇fs(XXT )T ‖+R

≤ 4ηρ1‖XXT −M∗‖F ‖XXT ‖F + 4η2ρ21‖XXT −M∗‖2F ‖XXT ‖F +R

≤ 4ηρ1R(R+D)(1 + ηρ1R) +R ≤ 3

2
(R+D).

By the Lipschitz property of the function gs proven in Lemma 8 and the assumption on η, we have

‖∇gs(X̃(t))−∇gs(X)‖F ≤ 12ρ1r
1/2(R+D)‖X̃(t)−X‖F ≤ t‖∇gs(X)‖F .
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Now, one can write

gs(X
′)− gs(X) =

∫ 1

0

〈∇gs(X̃(t)), X ′ −X〉dt

= −η‖∇gs(X)‖2F + η

∫ 1

0

〈∇gs(X)−∇gs(X̃(t)),∇gs(X)〉dt

≤ −η‖∇gs(X)‖2F +
η

2
‖∇gs(X)‖2F .

As a result, gs(X ′) ≤ gs(X)− η‖∇gs(X)‖2F /2.

B Proofs for Section 3

First, we need to introduce some notations that will be used throughout this section and next two
sections. For every X ∈ Rn×r, define

e := vec(XXT −M∗)

and let X ∈ Rn2×nr be the matrix satisfying

X vec(U) = vec(XUT + UXT ), ∀U ∈ Rn×r.

The following lemma is the key to the analysis of optimality conditions for the spurious local minima
of the symmetric problem (4), which will be used in both this and next sections.

Lemma 12. For every X ∈ Rn×r, there exists a symmetric matrix H ∈ Rn2×n2

satisfying the
δ-RIP2r property such that

‖XTHe‖ ≤ ‖∇gs(X)‖F ,
2Ir ⊗matS(He) + (1 + δ)XTX � λmin(∇2gs(X))Inr.

Proof. For given matrix N ∈ Rn×n, define an auxiliary function hN : Rn×n → R by letting

hN (M) = 〈∇fs(M), N〉, ∀M ∈ Rn×n.

The mean value theorem over the function hN implies that

〈∇fs(XXT ), N〉 = hN (XXT )− hN (M∗)

=

∫ 1

0

〈∇hN ((1− t)XXT + tM∗), XXT −M∗〉dt

=

∫ 1

0

[∇2fs((1− t)XXT + tM∗)](XXT −M∗, N)dt

= eTH vec(N),

(17)

where H ∈ Rn2×n2

is the symmetric matrix that is independent of N and satisfies

(vec(K))TH vec(L) =

∫ 1

0

[∇2fs((1− t)XXT + tM∗)](K,L)dt

for all K,L ∈ Rn×n. Moreover, since ∇2fs((1 − t)XXT + tM∗) satisfies the δ-RIP2r property
for all t ∈ [0, 1], H also satisfies the δ-RIP2r. Now, we will prove the desired inequalities after
choosing H as above.

First, let U ∈ Rn×r be the matrix satisfying vec(U) = XTHe and N = XUT + UXT . Then, by
the equation (17),

‖XTHe‖2 = eTHX vec(U) = eTH vec(N)

= 〈∇fs(XXT ), N〉 = 〈∇gs(X), U〉 ≤ ‖∇gs(X)‖F ‖U‖F ,
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which arrives at the first inequality to be proved. Next, for every U ∈ Rn×r with U = vec(U), the
equation (17) with N = UUT gives

〈∇fs(XXT ), UUT 〉 = eTH vec(UUT ) =
1

2
UT vec((W +WT )U) = UT (Ir ⊗matS(He))U,

in which W ∈ Rn×n is the unique matrix satisfying vec(W ) = He. Therefore,

λmin(∇2gs(X))‖U‖2 ≤ [∇2gs(X)](U,U)

= [∇2fs(XX
T )](XUT + UXT , XUT + UXT ) + 2〈∇fs(XXT ), UUT 〉

≤ (1 + δ)‖XUT + UXT ‖2F + 2〈∇fs(XXT ), UUT 〉
= (1 + δ)UTXTXU + 2UT (Ir ⊗matS(He))U,

in which the second inequality is due to the δ-RIP2r property of the function fs. This leads to the
second inequality to be proved.

The following lemma borrowed from Bhojanapalli et al. (2016b) will also be useful.

Lemma 13. Let X,Z ∈ Rn×r be two arbitrary matrices such that XTZ is symmetric and positive
semidefinite. It holds that

σr(ZZ
T )‖X − Z‖2F ≤

1

2(
√

2− 1)
‖XXT − ZZT ‖2F .

Proof of Theorem 1. Define

q1 =

√
1− C̃2

2(
√

2− 1)σr(M∗)
, q2 =

√
2µ′

σr(M∗)1/2 − C̃
. (18)

The assumption (9) on C̃ implies that δ < q1, and thus one can always find a sufficiently small
µ′ > 0 such that

1− δ
1 + δ

>
1− q1 + q2

1 + q1
. (19)

We choose µ = µ′2/(1 + δ). Assume on the contrary that

1

2
‖∇gs(X)‖2F < µ(gs(X)− fs(M∗))

at a particular matrix X in the region (10). Obviously, XXT 6= M∗. It results from (11) that

1

2
‖∇gs(X)‖2F < µ(fs(XX

T )− fs(M∗)) ≤
µ(1 + δ)

2
‖XXT −M∗‖2F ,

and thus
‖∇gs(X)‖F ≤ µ′‖XXT −M∗‖F .

Therefore, if we define δ∗f (X,µ′) to be the optimal value of the optimization problem

min
δ,H

δ

s. t. ‖XTHe‖ ≤ µ′‖e‖,
H is symmetric and satisfies δ-RIP2r,

(20)

then Lemma 12 shows that δ∗f (X,µ′) ≤ δ. However, Lemma 14 (to be stated next) shows that

1− δ
1 + δ

≤
1− δ∗f (X,µ′)

1 + δ∗f (X,µ′)
≤ 1− q1 + q2

1 + q1
,

which contradicts the inequality (19).
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Lemma 14. If X ∈ Rn×r is a matrix in the region (10) such that XXT 6= M∗, then the optimal
value δ∗f (X,µ′) of the optimization problem (20) satisfies

1− δ∗f (X,µ′)

1 + δ∗f (X,µ′)
≤ 1− q1 + q2

1 + q1
,

where q1 and q2 are defined in (18).

Proof. Let Z ∈ Z be a global minimizer such that ZZT = M∗. The fact thatX is in the region (10)
implies that ‖X − Z‖F ≤ C̃. Without loss of generality, it can be assumed that XTZ is symmetric
and positive semidefinite. If this is not the case, then we use the singular value decomposition
XTZ = PDQT in which P,Q ∈ Rn×n are orthogonal and D ∈ Rn×n is diagonal. By defining
R = QPT , the matrix ZR becomes another global minimizer and

XT (ZR) = PDQTQPT = PDPT � 0,

implying that we can continue the following argument with ZR instead of Z.

The optimal value of the problem (20) is equal to that of the problem

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T µ′2‖e‖2
]
� 0,

(1− δ)In2 � H � (1 + δ)In2 .

(21)

This can be proved by applying Lemma 18 with a = µ′‖e‖ and a sufficiently large b such that both
the optimal solutions of (20) and (21) satisfy the second constraint in (41) and (42). Now, define
η∗f (X,µ′) to be the optimal value of the following optimization problem:

max
η,H

η

s. t.

[
Inr XTHe

(XTHe)T µ′2‖e‖2
]
� 0,

ηIn2 � H � In2 .

(22)

Note that the first constraint in (21) and (22) is actually equivalent to ‖XTHe‖ ≤ µ′‖e‖. Given any
feasible solution (δ,H) to the problem (21),(

1− δ
1 + δ

,
1

1 + δ
H

)
is a feasible solution to the above problem (22). Therefore,

η∗f (X,µ′) ≥
1− δ∗f (X,µ′)

1 + δ∗f (X,µ′)
. (23)

To prove the desired inequality, it is sufficient to upper bound η∗f (X,µ′) by finding a feasible solution
to the dual problem of (22) given below:

min
U1,U2,G,λ,y

tr(U2) + µ′2‖e‖2λ+ tr(G),

s. t. tr(U1) = 1,

(Xy)eT + e(Xy)T = U1 − U2,[
G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0.

(24)

As shown in the first part of the proof of Lemma 19 in Bi and Lavaei (2020), there exists a nonzero
vector y ∈ Rnr such that

‖Xy‖2 ≥ 2σr(XX
T )‖y‖2 (25)
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and
‖e−Xy‖ ≤ ‖X − Z‖2F .

By Lemma 13, we have

‖e−Xy‖
‖e‖

≤ ‖X − Z‖2F
‖XXT −M∗‖F

≤
√

1

2(
√

2− 1)σr(M∗)
C̃ < 1.

If θ is the angle between e and Xy, then the above inequality implies that θ < π/2 and

sin θ ≤ ‖e−Xy‖
‖e‖

≤
√

1

2(
√

2− 1)σr(M∗)
.

Therefore,
cos θ ≥ q1. (26)

On the other hand, the Wielandt–Hoffman theorem implies that

|σr(XXT )1/2 − σr(M∗)1/2| = |σr(X)− σr(Z)| ≤ ‖X − Z‖F ≤ C̃.

Combining the above inequality and (25) gives

‖y‖ ≤ ‖Xy‖√
2(σr(M∗)1/2 − C̃)

. (27)

Let
M = (Xy)eT + e(Xy)T ,

with y given above, and decompose M as

M = [M ]+ − [M ]−

such that [M ]+ � 0 and [M ]− � 0. By Lemma 14 in Zhang et al. (2019), we have

tr([M ]+) = ‖e‖‖Xy‖(1 + cos θ),

tr([M ]−) = ‖e‖‖Xy‖(1− cos θ).

Again, θ is the angle between e and Xy. Then,

U∗1 =
[M ]+

tr([M ]+)
, U∗2 =

[M ]−
tr([M ]+)

,

G∗ =
1

λ∗
y∗y∗T , λ∗ =

‖y∗‖
µ′‖e‖

y∗ =
y

tr([M ]+)

form a feasible solution to the dual problem (24) with the objective value

tr([M ]−) + 2µ′‖e‖‖y‖
tr([M ]+)

=
1− cos θ + 2µ′‖y‖/‖Xy‖

1 + cos θ
.

The inequalities (26) and (27) imply that

η∗f (X, η) ≤ 1− q1 + q2
1 + q1

.

The proof is completed by the above inequality and (23).

Proof of Theorem 2. Define

C̃ =

√
1 + δ

2(
√

2− 1)σr(M∗)(1− δ)
‖X0X

T
0 −M∗‖F .

Then, it follows from Theorem 1 that there exists a constant µ > 0 such that the PL inequality

1

2
‖∇gs(X)‖2F ≥ µ(gs(X)− fs(M∗))
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is satisfied in the region
D = {X ∈ Rn×r|dist(X,Z) ≤ C̃}.

By Lemma 13, in order to prove that a matrix X belongs to D, it suffices to show that

‖XXT −M∗‖F ≤
√

2(
√

2− 1)σr(M
∗)1/2C̃ =

√
1 + δ

1− δ
‖X0X

T
0 −M∗‖F . (28)

Next, we prove by induction that Xt satisfies (28) and gs(Xt) ≤ gs(Xt−1) at each step of the
iteration. Obviously, (28) holds for X0. At step t, by Lemma 11, the induction assumption

‖Xt−1X
T
t−1 −M∗‖F ≤

√
1 + δ

1− δ
‖X0X

T
0 −M∗‖F

and our choice of the step size η imply that gs(Xt) ≤ gs(Xt−1) ≤ · · · ≤ gs(X0). Then, the
inequality (12) immediately implies that Xt satisfies (28).

Finally, since Xt is guaranteed to be contained in a region satisfying the PL inequality for all t, we
can apply Theorem 1 in Karimi et al. (2016) to obtain

gs(Xt)− fs(M∗) ≤ (1− µη)t(gs(X0)− fs(M∗)).

Now, (13) follows from the above inequality and (11).

After the transformation from asymmetric problems to symmetric problems, the proof of Theorem 3
is similar to that of Theorem 2, and thus it is omitted here.

Algorithm 1 Perturbed Gradient Descent Method With Local Improvement
R← 3D(1 + δ)/(1− δ)
`1 ← 8ρ1r

1/2R, `2 ← 4ρ1r
1/4R1/2(2r1/2Rρ2/ρ1 + 3)

ε̂← min{κ, κ2/`2}, ∆← 2(1 + δ)D2

χ← 3 max{log((nr`1∆)/(cε̂2γ)), 4}, η ← c/`1, w ←
√
cε̂/(χ2`1)

gthres ←
√
cε̂/χ2, fthres ← c

√
ε̂3/`2/χ

3, tthres ← χ`1/(c
2
√
`2ε̂)

t← 0, tnoise ← −tthres − 1
loop

if ‖∇gs(Xt)‖F ≤ gthres and t− tnoise > tthres then
X̃t ← Xt, tnoise ← t
Xt ← Xt +W , where W is drawn uniformly from the ball with radius w

end if
if t− tnoise = tthres and gs(Xt)− gs(X̃tnoise) > −fthres then

Xt ← X̃tnoise

break
end if
Xt+1 ← Xt − η∇gs(Xt), t← t+ 1

end loop
loop

Xt+1 ← Xt − η∇gs(Xt), t← t+ 1
end loop

C Proofs for Section 4

We first present the perturbed gradient descent algorithm with local improvement adapted from the
general algorithm in Jin et al. (2017) for solving the symmetric problem (4), which can be also
used to solve (5) after the transformation from asymmetric problems to symmetric problems. In
Algorithm 1, X0 is the initial point and 1−γ is the success probability of the algorithm, while η and
w are respectively the step size and perturbation size which are further determined by the parameter
c. Furthermore, the parameter κ determines at what time the corresponding point is sufficiently
close to the ground truth so that it belongs to the local convergence region and thus perturbations are
no longer necessary in future iterations. After the first loop ends, the current matrix Xt will satisfy
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(14). The choice of the parameters c and κ will be given in the proof of Theorem 5, but they can
also be selected empirically.

The following lemma will be useful in the proof of Lemma 4, which can be obtained by combining
Lemma 6 and Lemma 7 in Zhang et al. (2021).

Lemma 15. For any C > 0, there exist some κ > 0 and ζ > 0 such that for each X ∈ Rn×r the
two inequalities in (14) together with σr(X) ≤ ζ will imply ‖XXT − ZZT ‖F < C.

Proof of Lemma 4. Let ζ be the constant given by Lemma 15. We only need to consider all X ∈
Rn×r satisfying σr(X) > ζ, since the opposite case can be directly handled by applying Lemma 15.
By Lemma 12, if X satisfies the approximate first-order and second-order necessary optimality
conditions (14), we must have δ ≥ δ∗(X,κ), where δ∗(X,κ) is the optimal value of the following
optimization problem:

min
δ,H

δ

s. t. ‖XTHe‖ ≤ κ,
2Ir ⊗matS(He) + (1 + δ)XTX � −κInr,
H is symmetric and satisfies δ-RIP2r.

(29)

On the other hand, both the assumption δ < 1/2 and Lemma 16 imply that

1

3
<

1− δ
1 + δ

≤ 1− δ∗(X,κ)

1 + δ∗(X,κ)
≤ 1

3
+ Γ

κ

‖e‖
,

for some constant Γ, which further implies that

κ ≥ ‖e‖
Γ

(
1− δ
1 + δ

− 1

3

)
.

The strict saddle property can then be proved by choosing a sufficiently small κ.

Lemma 16. Given a constant ζ > 0, if X ∈ Rn×r is a matrix satisfying XXT 6= M∗ and
σr(X) > ζ, then the optimal value δ∗(X,κ) of the optimization problem (29) satisfies

1− δ∗(X,κ)

1 + δ∗(X,κ)
≤ 1

3
+ Γ

κ

‖e‖
,

where Γ =
√
r +
√

2/ζ.

Proof. Let Z ∈ Z be a global minimizer such that ZZT = M∗. By Lemma 18 with a = b = κ and
an argument similar to the one in the proof of Lemma 14, we can introduce a relaxed optimization
problem

max
η,H

η

s. t.

[
Inr XTHe

(XTHe)T κ2

]
� 0,

2Ir ⊗matS(He) + XTX � −κInr,
ηIn2 � H � In2 ,

(30)

whose optimal value η∗(X,κ) satisfies

η∗(X,κ) ≥ 1− δ∗(X,κ)

1 + δ∗(X,κ)
.
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To prove the desired inequality, we need to find an upper bound for η∗(X,κ), which can be achieved
by finding a feasible solution to the dual problem of (30):

min
U1,U2,W,
G,λ,y

tr(U2) + 〈XTX,W 〉+ κ tr(W ) + κ2λ+ tr(G)

s. t. tr(U1) = 1,

(Xy − w)eT + e(Xy − w)T = U1 − U2,[
G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0, W =

W1,1 · · · WT
r,1

...
. . .

...
Wr,1 · · · Wr,r

 � 0,

w =

r∑
i=1

vec(Wi,i).

(31)

Before describing the choice of the dual feasible solution, we need to represent the error vector e
in a different form. Let P ∈ Rn×n be the orthogonal projection matrix onto the range of X , and
P⊥ ∈ Rn×n be the orthogonal projection matrix onto the orthogonal complement of the range of
X . Then, Z can be decomposed as Z = PZ + P⊥Z, and there exists a matrix R ∈ Rr×r such that
PZ = XR. Note that

ZZT = PZZTP + PZZTP⊥ + P⊥ZZTP + P⊥ZZTP⊥.

Thus, if we choose

Ŷ =
1

2
X − 1

2
XRRT − P⊥ZRT , ŷ = vec(Ŷ ), (32)

then it can be verified that

XŶ T + Ŷ XT − P⊥ZZTP⊥ = XXT − ZZT ,
〈XŶ T + Ŷ XT ,P⊥ZZTP⊥〉 = 0.

Moreover, we have

‖XŶ T + Ŷ XT ‖2F = 2 tr(XTXŶ T Ŷ ) + tr(XT Ŷ XT Ŷ ) + tr(Ŷ TXŶ TX)

≥ 2 tr(XTXŶ T Ŷ ) ≥ 2σr(X)2‖Ŷ ‖2F ,
(33)

in which the first inequality is due to

tr(XT Ŷ XT Ŷ ) =
1

4
tr((XTX(Ir −RRT ))2) =

1

4
tr((X(Ir −RRT )XT )2) ≥ 0.

Assume first that Z⊥ = P⊥Z 6= 0. The other case will be handled at the end of this proof. In
the case when Z⊥ 6= 0, we also have XŶ T + Ŷ XT 6= 0. Otherwise, the inequality (33) and the
assumption σr(X) > 0 imply that Ŷ = 0. The orthogonality and the definition of Ŷ in (32) then
give

X −XRRT = 0, P⊥ZRT = 0.

The first equation above implies that R is invertible since X has full column rank, which contradicts
Z⊥ 6= 0. Now, define the unit vectors

û1 =
Xŷ

‖Xŷ‖
, û2 =

vec(Z⊥Z
T
⊥)

‖Z⊥ZT⊥‖F
.

Then, û1 ⊥ û2 and
e = ‖e‖(

√
1− α2û1 − αû2) (34)

with

α =
‖Z⊥ZT⊥‖F

‖XXT − ZZT ‖F
. (35)
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We first describe our choices of the dual variables W and y (which will be scaled later). Let

XTX = QSQT , Z⊥Z
T
⊥ = PGPT ,

with Q,P orthogonal and S,G diagonal, such that S11 = σr(X)2. Fix a constant γ ∈ [0, 1] that is
to be determined and define

Vi = k1/2G
1/2
ii PEi1Q

T , ∀i = 1, . . . , r,

W =

r∑
i=1

vec(Vi) vec(Vi)
T , y = lŷ,

with ŷ defined in (32) and

k =
γ

‖e‖‖Z⊥ZT⊥‖F
, l =

√
1− γ2

‖e‖‖Xŷ‖
.

Here, Eij is the elementary matrix of size n × r with the (i, j)-entry being 1. By our construction,
XTVi = 0, which implies that

〈XTX,W 〉 =

r∑
i=1

‖XV Ti + ViX
T ‖2F = 2

r∑
i=1

tr(XTXV Ti Vi) = 2kσr(X)2
r∑
i=1

Gii = 2βγ, (36)

with

β =
σr(X)2 tr(Z⊥Z

T
⊥)

‖XXT − ZZT ‖F ‖Z⊥ZT⊥‖F
. (37)

In addition,

tr(W ) =

r∑
i=1

‖Vi‖2F = k

r∑
i=1

Gii = k tr(Z⊥Z
T
⊥) ≤

√
r

‖e‖
, (38)

and

w =

r∑
i=1

vec(Wi,i) =

r∑
i=1

ViV
T
i = kZ⊥Z

T
⊥.

Therefore,

Xy − w =
1

‖e‖
(
√

1− γ2û1 − γû2),

which together with (34) implies that

‖e‖‖Xy − w‖ = 1, 〈e,Xy − w〉 = γα+
√

1− γ2
√

1− α2 = ψ(γ). (39)

Next, the inequality (33) and the assumption σr(X) > ζ imply that

‖y‖ ≤
√

1− γ2√
2ζ‖e‖

≤ 1√
2ζ‖e‖

. (40)

Define
M = (Xy − w)eT + e(Xy − w)T

and decompose
M = [M ]+ − [M ]−,

in which both [M ]+ � 0 and [M ]− � 0. Let θ be the angle between e and Xy − w. By Lemma 14
in Zhang et al. (2019), we have

tr([M ]+) = ‖e‖‖Xy − w‖(1 + cos θ),

tr([M ]−) = ‖e‖‖Xy − w‖(1− cos θ).

Now, one can verify that

U∗1 =
[M ]+

tr([M ]+)
, U∗2 =

[M ]−
tr([M ]+)

,

y∗ =
y

tr([M ]+)
, W ∗ =

W

tr([M ]+)
,

λ∗ =
‖y∗‖
κ

, G∗ =
1

λ∗
y∗y∗T
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forms a feasible solution to the dual problem (31) whose objective value is equal to

tr([M ]−) + 〈XTX,W 〉+ κ tr(W ) + 2κ‖y‖
tr([M ]+)

.

Putting (36), (38), (39) and (40) into the above equation, we can obtain

η∗(X,κ) ≤ 2βγ + 1− ψ(γ) + (
√
r +
√

2/ζ)κ/‖e‖
1 + ψ(γ)

≤ 2βγ + 1− ψ(γ)

1 + ψ(γ)
+ Γ

κ

‖e‖
.

Choosing the best γ ∈ [0, 1] to minimize the far right-side of the above inequality leads to

η∗(X,κ) ≤ η0(X) + Γ
κ

‖e‖
,

with

η0(X) =


1−
√

1− α2

1 +
√

1− α2
, if β ≥ α

1 +
√

1− α2
,

β(α− β)

1− βα
, if β ≤ α

1 +
√

1− α2
.

Here, α and β are defined in (35) and (37), respectively. In the proof of Theorem 1.2 in Zhang
(2021), it is shown that η0(X) ≤ 1/3 for every X with XXT 6= ZZT , which gives our desired
inequality.

Finally, we still need to deal with the case when P⊥Z = 0. In this case, we know that Xŷ = e with
ŷ defined in (32). Then, it is easy to check that

U∗1 =
eeT

‖e‖2
, U∗2 = 0,

y∗ =
ŷ

2‖e‖2
, W ∗ = 0,

λ∗ =
‖y∗‖
κ

, G∗ =
1

λ∗
y∗y∗T

forms a feasible solution to the dual problem (31) whose objective value is 2κ‖y∗‖, which is at most
κ/(
√

2ζ‖e‖) by the inequality (33).

Lemma 17. Consider Algorithm 1 for solving the symmetric problem (4). If the initial matrix X0

satisfies
‖X0X

T
0 ‖F ≤ D,

the step size η satisfies

1/η ≥ 48ρ1r
1/2

(
1 + δ

1− δ
D

)
,

and the perturbation size w satisfies

2wr1/4
(

1 + δ

1− δ

)1/4√
3D + w2 ≤

√
1 + δ

1− δ
D,

then during the first loop the trajectory Xt is always confined in the region

D =

{
X ∈ Rn×r

∣∣∣∣‖XXT −M∗‖F ≤ 3

(
1 + δ

1− δ

)
D

}
.

Proof. For convenience, we introduce the set

D1 =

{
X ∈ Rn×r

∣∣∣∣∣‖XXT −M∗‖F ≤ 2

√
1 + δ

1− δ
D

}
.

The iteration is initialized at the point X0 ∈ D1. Assume that at some time instance t the current
matrix Xt ∈ D1, gs(Xt) ≤ gs(X0), and some perturbation needs to be added because ‖∇gs(Xt)‖F
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is small. In this case, a random noise W is generated from the uniform distribution in the ball of
radius w. The algorithm saves the original point Xt to X̃t and replaces Xt with Xt + W . Then,
similar to the inequality (16), the old point X̃t satisfies

‖X̃t‖F ≤ r1/4
(

1 + δ

1− δ

)1/4√
3D,

and thus the new point Xt satisfies

‖XtX
T
t −M∗‖F ≤ ‖X̃tX̃

T
t −M∗‖F + ‖WX̃T

t +XtW̃
T ‖F + ‖WWT ‖F

≤ 2

√
1 + δ

1− δ
D + 2wr1/4

(
1 + δ

1− δ

)1/4√
3D + w2

≤ 3

√
1 + δ

1− δ
D,

by our choice of the parameter w. Due to the design of the perturbed gradient descent algo-
rithm, the perturbation will never be taken in the next tthres number of iterations (tthres is defined
in Algorithm 1). As a result, Lemma 11, Xt ∈ D and our choice of the step size η imply that
gs(Xt+1) ≤ gs(Xt). Hence, the inequality (12) gives

‖Xt+1X
T
t+1 −M∗‖F ≤

√
1 + δ

1− δ
‖XtX

T
t −M∗‖F ≤ 3

(
1 + δ

1− δ

)
D,

which shows that Xt+2 ∈ D. Repeating this argument, it can be concluded that gs(Xt+k) ≤
gs(Xt) and Xt+k ∈ D for all k = 1, . . . , tthres. After Xt+tthres is obtained, the algorithm compares
gs(Xt+tthres) with gs(X̃t), and the iteration continues only if gs(Xt+tthres) ≤ gs(X̃t). When this is
the case, gs(Xt+tthres) ≤ gs(X0), and by the inequality (12) again, we have

‖Xt+tthresX
T
t+tthres

−M∗‖F ≤
√

1 + δ

1− δ
‖X0X

T
0 −M∗‖F ≤ 2

√
1 + δ

1− δ
D,

and thusXt+tthres ∈ D1. Assume that no perturbation is added at steps t+tthres+1, . . . , t+tthres+l−1.
Then, using a similar argument as above, we can prove that

gs(Xt+tthres+k) ≤ gs(Xt+tthres) ≤ gs(X0), Xt+tthres+k ∈ D1, ∀k = 1, . . . , l − 1.

If perturbation needs to be added at step t + tthres + l, we can repeat the above argument with
t+ tthres + l instead of t, which leads to the desired result.

Proof of Theorem 5. In the first stage of the algorithm, the perturbed gradient descent method is
applied. If the parameter c is sufficiently small, then the step size η and the perturbation size w will
satisfy the assumptions in Lemma 17. In this case, Lemma 17 implies that the iterations are taken
within a region in which ∇gs and ∇2gs are Lipschitz continuous. Let κ be the constant given by
Lemma 4 such that the approximate second-order necessary optimality conditions (14) will imply
that ‖XXT − ZZT ‖F < C, where

C = 2(
√

2− 1)(1− δ)σr(M∗)
is the radius of the local linear convergence region provided by Theorem 2. Now, Theorem 3 in Jin
et al. (2017) shows that with probability 1 − γ the first loop will stop with a solution X̃ satisfying
(14), and thus X̃ is within the local convergence region. Note that the number of iterations in this
stage is fixed for a given initial matrix X0, and that this number is independent of ε.

Next, the gradient descent algorithm is run with initialization at the matrix X̃ . Theorem 2 implies
that after an additionalO(log(1/ε)) number of iterations we find a solution X̂ satisfying the accuracy
requirement.

D Reformulation of RIP-Constrained Optimization

In this section, we will prove the following lemma that is used in Appendix B and Appendix C,
which is a generalization of Theorem 8 in Zhang et al. (2019).
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Lemma 18. For every a, b ≥ 0, the following two optimization problems

min
δ,H

δ

s. t. ‖XTHe‖ ≤ a,
2Ir ⊗matS(He) + (1 + δ)XTX � −bInr,
H is symmetric and satisfies δ-RIP2r,

(41)

and
min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + (1 + δ)XTX � −bInr,
(1− δ)In2 � H � (1 + δ)In2 ,

(42)

have the same optimal value.

Proof. Let OPT(X,Z) be the optimal value of (41) and LMI(X,Z) be the optimal value of (42).
Our goal is to prove that OPT(X,Z) = LMI(X,Z) for given X,Z ∈ Rn×r. Let (v1, . . . , vn) be
an orthogonal basis of Rn such that (v1, . . . , vd) spans the column spaces of both X and Z. Note
that d ≤ 2r. Let P ∈ Rn×d be the matrix with the columns (v1, . . . , vd) and P⊥ ∈ Rn×(n−d) be
the matrix with the columns (vd+1, . . . , vn). Then,

PTP = Id, PT⊥P⊥ = In−d, PT⊥P = 0, PTP⊥ = 0,

PPT + P⊥P
T
⊥ = In, PPTX = X, PPTZ = Z.

Define P = P ⊗ P . Consider the auxiliary optimization problem

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + (1 + δ)XTX � −bInr,
(1− δ)Id2 � PTHP � (1 + δ)Id2 ,

(43)

and denote its optimal value as the function LMI(X,Z). Given an arbitrary symmetric matrix H ∈
Rn2×n2

, if H satisfies the last constraint in (42), then it obviously satisfies δ-RIP2r and subsequently
the last constraint in (41). On the other hand, if H satisfies the last constraint in (41), for every matrix
Y ∈ Rd×d with Y = vec(Y ), since rank(PY PT ) ≤ d ≤ 2r and vec(PY PT ) = PY, by δ-RIP2r

property, one arrives at

(1− δ)‖Y‖2 = (1− δ)‖PY‖2 ≤ (PY)THPY ≤ (1 + δ)‖PY‖2 = (1 + δ)‖Y‖2,

which implies that H satisfies the last constraint in (43). Moreover, since the first constraint in (41)
and the first constraint in (42) and (43) are equivalent, the above discussion implies that

LMI(X,Z) ≥ OPT(X,Z) ≥ LMI(X,Z).

Let
X̂ = PTX, Ẑ = PTZ.

Lemma 20 and Lemma 21 to be stated later will show that

LMI(X,Z) ≤ LMI(X̂, Ẑ) ≤ LMI(X,Z),

which gives OPT(X,Z) = LMI(X,Z).

Before stating Lemma 20 and Lemma 21 that were needed in the proof of Lemma 18, we should
first state a preliminary result below.
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Lemma 19. Define ê and X̂ in the same way as e and X, except that X and Z are replaced by X̂
and Ẑ, respectively. Then, it holds that

e = Pê,

X(Ir ⊗ P ) = PX̂,

PTX = X̂(Ir ⊗ P )T .

Proof. Observe that

e = vec(XXT − ZZT ) = vec(P (X̂X̂T − ẐẐT )PT ) = Pê,

X(Ir ⊗ P ) vec(Û) = X vec(PÛ) = vec(XÛTPT + PÛXT )

= vec(P (X̂ÛT + ÛX̂T )PT ) = PX̂ vec(Û),

X̂(Ir ⊗ P )T vec(U) = X̂ vec(PTU) = vec(X̂UTP + PTUX̂T )

= vec(PT (XUT + UXT )P ) = PTX vec(U),

where U ∈ Rn×r and Û ∈ Rd×r are arbitrary matrices.

Lemma 20. The inequality LMI(X̂, Ẑ) ≥ LMI(X,Z) holds.

Proof. Let (δ, Ĥ) be an arbitrary feasible solution to the optimization problem defining LMI(X̂, Ẑ).
It is desirable to show that (δ,H) with

H = PĤPT + (In2 −PPT )

is a feasible solution to the optimization problem defining LMI(X,Z), which directly proves the
lemma. To this end, notice that

H− (1− δ)In2 = P(Ĥ− (1− δ)Id2)PT + δ(In2 −PPT ),

which is positive semidefinite because

In2 −PPT = (PPT + P⊥P
T
⊥ )⊗ (PPT + P⊥P

T
⊥ )− (PPT )⊗ (PPT )

= (PPT )⊗ (P⊥P
T
⊥ ) + (P⊥P

T
⊥ )⊗ (PPT ) + (P⊥P

T
⊥ )⊗ (P⊥P

T
⊥ ) � 0.

Similarly,
H− (1 + δ)In2 � 0,

and therefore the last constraint in (42) is satisfied. Next, since

XTHe = XTHPê = XTPĤê = (Ir ⊗ P )X̂T Ĥê,

we have
‖XTHe‖2 = (X̂T Ĥê)T (Ir ⊗ PT )(Ir ⊗ P )(X̂T Ĥê) = ‖X̂T Ĥê‖2,

and thus the first constraint in (42) is satisfied. Finally, by lettingW ∈ Rd×d be the vector satisfying
vec(W ) = Ĥê, one can write

vec(PWPT ) = P vec(W ) = PĤê.

Hence,
2Ir ⊗matS(He) = 2Ir ⊗matS(HPê) = 2Ir ⊗matS(PĤê) = Ir ⊗ (P (W +WT )PT )

= 2Ir ⊗ (P matS(Ĥê)PT ) = 2(Ir ⊗ P )(Ir ⊗matS(Ĥê))(Ir ⊗ P )T .

In addition,
XTX(Ir ⊗ P ) = XTPX̂ = (Ir ⊗ P )X̂T X̂.

Therefore, by defining

S := 2Ir ⊗matS(He) + (1 + δ)XTX + bInr,

we have
(Ir ⊗ P )TS(Ir ⊗ P ) = 2Ir ⊗matS(Ĥê) + (1 + δ)X̂T X̂ + bIdr � 0,

(Ir ⊗ P⊥)TS(Ir ⊗ P⊥) = (1 + δ)(Ir ⊗ P⊥)TXTX(Ir ⊗ P⊥) + bI(n−d)r � 0,

(Ir ⊗ P⊥)TS(Ir ⊗ P ) = 0.

Since the columns of Ir ⊗ P and Ir ⊗ P⊥ form a basis for Rnr, the above inequalities imply that S
is positive semidefinite, and thus the second constraint in (42) is satisfied.
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Lemma 21. The inequality LMI(X,Z) ≥ LMI(X̂, Ẑ) holds.

Proof. The dual problem of the optimization problem defining LMI(X̂, Ẑ) can be expressed as

max
Û1,Û2,V̂ ,Ĝ,λ̂,ŷ

tr(Û1 − Û2)− tr(Ĝ)− a2λ̂− 〈X̂T X̂, V̂ 〉 − b tr(V̂ )

s. t. tr(Û1 + Û2) + 〈X̂T X̂, V̂ 〉 = 1,X̂ŷ −
r∑
j=1

vec(V̂j,j)

 êT + ê

X̂ŷ −
r∑
j=1

vec(V̂j,j)

T

= Û1 − Û2,

[
Ĝ −ŷ
−ŷT λ̂

]
� 0,

Û1 � 0, Û2 � 0, V̂ =

V̂1,1 · · · V̂r,1
...

. . .
...

V̂ Tr,1 · · · V̂r,r

 � 0.

(44)

Since

Û1 =
1− µ‖X̂‖2

2d2
Id2 −

µr

2
M, Û2 =

1− µ‖X̂‖2

2d2
Id2 +

µr

2
M,

V̂ = µIdr, Ĝ = Idr, λ̂ = 1, ŷ = 0,

where
M = vec(Id)ê

T + ê vec(Id)
T ,

is a strict feasible solution to the above dual problem (44) as long as µ > 0 is sufficiently
small, Slater’s condition implies that strong duality holds for the optimization problem defining
LMI(X̂, Ẑ). Therefore, we only need to prove that the optimal value of (44) is smaller than or equal
to the optimal value of the dual of the optimization problem defining LMI(X,Z) given by:

max
U1,U2,V,G,λ,y

tr(U1 − U2)− tr(G)− a2λ− 〈XTX,V〉 − b tr(V )

s. t. tr(U1 + U2) + 〈XTX,V〉 = 1,Xy −
r∑
j=1

vec(Vj,j)

 eT + e

Xy −
r∑
j=1

vec(Vj,j)

T

= P(U1 − U2)PT ,

[
G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0, V =

V1,1 · · · Vr,1
...

. . .
...

V Tr,1 · · · Vr,r

 � 0.

(45)
The above claim can be verified by noting that given any feasible solution

(Û1, Û2, V̂ , Ĝ, λ̂, ŷ)

to (44), the matrices

U1 = Û1, U2 = Û2, V = (Ir ⊗ P )V̂ (Ir ⊗ P )T ,[
G −y
−yT λ

]
=

[
Ir ⊗ P 0

0 1

] [
Ĝ −ŷ
−ŷT λ̂

] [
(Ir ⊗ P )T 0

0 1

]
form a feasible solution to (45), and both solutions have the same optimal value.
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