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Abstract

It is well-known that the Burer-Monteiro (B-
M) factorization approach can efficiently solve
low-rank matrix optimization problems under
the RIP condition. It is natural to ask whether
B-M factorization-based methods can succeed
on any low-rank matrix optimization problems
with a low information-theoretic complexity,
i.e., polynomial-time solvable problems that
have a unique solution. In this work, we pro-
vide a negative answer to the above question.
We investigate the landscape of B-M factor-
ized polynomial-time solvable matrix comple-
tion (MC) problems, which are the most pop-
ular subclass of low-rank matrix optimization
problems without the RIP condition. We con-
struct an instance of polynomial-time solvable
MC problems with exponentially many spu-
rious local minima, which leads to the fail-
ure of most gradient-based methods. Based on
those results, we define a new complexity met-
ric that potentially measures the solvability of
low-rank matrix optimization problems based
on the B-M factorization approach. In addi-
tion, we show that more measurements of the
ground truth matrix can deteriorate the land-
scape, which further reveals the unfavorable
behavior of the B-M factorization on general
low-rank matrix optimization problems.

1 INTRODUCTION

The low-rank matrix optimization problem aims to re-
cover a low-rank ground truth matrix M* through some
measurements modeled as A(M™), where the measure-
ment operator A is a function from R”*" to R%. The op-
erator A can be either linear as in the linear matrix sens-
ing problem and the matrix completion problem (Can-
deés & Recht, 2009; Recht et al., 2010), or nonlinear as
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in the one-bit matrix sensing problem (Davenport et al.,
2014) and the phase retrieval problem (Shechtman et al.,
2015). There are two variants of the problem, known as
symmetric and asymmetric problems. The first one as-
sumes that M* is a positive semi-definite (PSD) matrix,
whereas the second one makes no such assumption and
allows M* to be non-symmetric or sign indefinite. Since
the asymmetric problem can be equivalently transformed
into a symmetric problem (Zhang et al., 2021), we focus
on the latter one.

There are in general two different approaches to over-
come the non-convex low-rank constraint. The first ap-
proach is to design a convex penalty function that prefers
low-rank matrices and then optimize the penalty func-
tion under the measurement constraint (Candes & Recht,
2009; Recht et al., 2010; Candes & Tao, 2010). However,
this approach works in the matrix space R™*" and has
a high computational complexity. The other widely ac-
cepted technique is the Burer-Monteiro (B-M) factoriza-
tion approach (Burer & Monteiro, 2003), which converts
the original problem into an unconstrained one by replac-
ing the original PSD matrix variable M € R™*" with the
product of a low-dimensional variable X € R™*" and its
transpose. The optimization problem based on the B-M
factorization approach can be written as

. T *
(Din g [AXXT) - AM )} ,
where g(-) is a loss function that penalizes the mismatch
between XX and M*. Using the B-M factorization,
the objective function is generally non-convex even if
the loss function g(-) is convex. Nonetheless, it has
been proved that under certain strong conditions, such as
the Restricted Isometry Property (RIP) condition, saddle-
escaping methods can converge to the ground truth so-
lution with a random initialization (Zhang et al., 2021;
Bi et al., 2021) and first-order methods with spectral ini-
tialization converge locally (Tu et al., 2016; Bhojanapalli
et al., 2016); see Chi et al. (2019) for an overview.

Then, it is natural to ask whether optimization methods
based on the B-M factorization approach can succeed on
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general low-rank matrix optimization problems with a
low information-theoretic complexity (i.e., problems that
have a unique global solution and can be solved in poly-
nomial time), especially when the RIP condition does not
hold. In this work, we focus on a common class of prob-
lems without the RIP condition, namely the matrix com-
pletion (MC) problem. For the MC problem, the mea-
surement operator Ag : R™*™ — R™*" is given by

Mij if (Z,j) e
0 otherwise,

AQ(M)” = {

where () is the set of indices of observed entries. We
denote the measurement operator as Mg, := Aq (M) for
simplicity. An instance of the MC problem, denoted as
Pm= ,0,n,r» can be formulated as

find M e R™*"
s.t. rank(M) <r,

(PM*,Q,n,r)

M =0, Mg =M.

If M* is the only solution of this problem, we will say
that Pni- 0., has a unique solution. Using the B-M
factorization approach, the MC problem can be solved
via the optimization problem
i X 1

(Din f(X), M
where f(X) := g[(XX” — M*)q]. For example, if the
£5-loss function is used, the problem becomes

2

min |[(xx7 - M*)QH . )
XecRnXT F
Contributions. We provide a negative answer to the

preceding question by constructing MC problem in-
stances for which the optimization complexity of lo-
cal search methods using the B-M factorization does
not align with the information-theoretic complexity of
the underlying MC problem instance. The information-
theoretic complexity refers to the minimum number of
operations that the best possible algorithm takes to find
the ground truth matrix, while the optimization complex-
ity refers to the minimum number of operations that a
given optimization method takes to find the ground truth
matrix. In general, the optimization complexity of local
search methods depends on the properties of spurious so-
lutions of the optimization problem, e.g., the number, the
sharpness and the regions of attraction of spurious solu-
tions. The optimization complexity predicts the perfor-
mance of an algorithm and provides a hint on which al-
gorithm to use for a given problem. Therefore, the results
in this work imply that the popular B-M factorization ap-
proach is not able to capture the benign properties of the
low-rank problem when the RIP condition does not hold.
We summarize our contributions as follows:

i) Given natural numbers n and r with n > 2r,
we construct a class of MC problem instances
L(G,n,r), whose ground matrix M* € S has
rank r. For every instance in this class, there ex-
ists a unique global solution and the solution can be
found in polynomial time via graph-theoretic algo-
rithms.

ii) Next, we show the existence of an instance in
L(G,n,r) whose B-M factorization formulation (2)
has at least O(2"~2") equivalent classes of spuri-
ous' local solutions. Note that this claim holds for
general loss functions under a weak assumption.

iii) Moreover, for the rank-1 case, we prove that most
gradient-based methods with a random initialization
converge to a spurious local minimum with prob-
ability at least 1 — O(27"/2). Numerical studies
verify that the failure of the gradient-based methods
also happens for general rank cases.

iv) We present an instance that has no spurious solution
under the B-M factorization formulation (2), but
introducing additional observations of the ground
truth matrix leads to at least exponentially many
spurious solutions. This example further reveals
the unfavorable behavior of the B-M factorization
approach on general low-rank matrix optimization
problems.

Based on these results, we define a new complexity met-
ric that potentially captures the optimization complexity
of optimization methods based on the B-M factorization.

Related Work. The low-rank optimization problem
has been well studied under the RIP condition (Recht
et al., 2010). Several recent works (Zhang et al., 2019; Bi
& Lavaei, 2021; Zhang et al., 2021) showed that the non-
convex formulation has no spurious local minima with a
small RIP parameter. To understand how conservative
the RIP condition is, we consider a class of polynomial-
time solvable problems without the RIP condition and
study the behavior of optimization methods on this class.
Specifically, we consider the polynomial-time solvable
MC problems. Most existing literature on the MC prob-
lem is based on the assumption that the measurement set
is randomly constructed and the global solution is co-
herent (Candes & Recht, 2009; Candes & Tao, 2010; Ge
et al., 2016, 2017; Ma et al., 2019; Chen et al., 2020). In
comparison, there is a small range of works that have fo-
cused on the deterministic MC problem (Bhojanapalli &
Jain, 2014; Kirdly et al., 2015; Pimentel-Alarcén et al.,
2016; Li et al., 2016). Furthermore, efficient graph-
theoretic algorithms utilizing the special structures of
a deterministic measurement set can be designed (Ma

'A solution is called spurious if it is a local minimum but
has a larger objective value than the optimal objective value.
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et al., 2018). Existing works on a deterministic measure-
ment set case have focused on the completability prob-
lem and the convex relaxation approach, while the B-M
factorization approach has not been analyzed. Moreover,
there are several existing works that also provided nega-
tive results on the low-rank matrix optimization problem.
The counterexamples in Candes & Tao (2010); Bhojana-
palli & Jain (2014) have non-unique global solutions,
which make the recovery of the ground truth matrix im-
possible. The counterexamples in Waldspurger & Waters
(2020) have a unique global solution but the objective
function must be a linear function. We refer the reader
to Chi et al. (2019) for a review of the low-rank matrix
optimization problem. Our work is the first one in the
literature that studies the optimization complexity in the
case when the information-theoretic complexity is low.

Notations. The set [n] represents the set of integers
from 1 to n. We use lower case bold letters x to rep-
resent vectors and capital bold letters X to represent ma-
trices. ||X|| and | X|| are the 2-norm and the Frobe-
nius norm of the matrix X, respectively. Let (A, B) =
Tr(ATB) be the inner product between matrices. The
notations X > 0 and X = 0 mean that the matrix X
is PSD and positive definite, respectively. The set of
n X n PSD matrices is denoted as S/. For a function
[ R™*™ — R, we denote the gradient and the Hessian
as Vf(-) and V2 f(-), respectively. The Hessian is a four-
2
dimensional tensor with [V2f(X)]; jx1 = %
for all i,5 € [m] and k,l € [n]. The quadratic form
of the Hessian in the direction A € R™*" is defined as
A VQf(X) A= Zi,j,k,l[v2f(X)]i7]}k,lAijAkl' We
use [-] and |-] to denote the ceiling and flooring func-
tions, respectively. The cardinality of a set S is shown as
|S].

2 EXPONENTIAL NUMBER OF
SPURIOUS LOCAL MINIMA

In this section, we show that MC problem instances with
a low information-theoretic complexity may have expo-
nentially many spurious local minima if the B-M factor-
ization is employed. We first construct a class of MC
problem instances with a low information-theoretic com-
plexity and then identify the problematic instances.

2.1 Low-complexity Class of MC Problems

Suppose that » > 1 and n > 2r are two given integers.
We construct a class of MC problem instances whose
ground truth matrix M* € S% is rank-r. For every in-
stance in this class, the global solution is unique and can
be found in polynomial time in terms of n and r. Let

m := |n/r| > 2. We divide the first mr rows and the
first mr columns of the matrix M* into m x m block ma-
trices, where each block has dimension r x r. For every
i,j € [m], we denote the block matrix at position (3, j)
as M7 ;. We now define the block measurement patterns
induced by a given graph.

Definition 1 (Induced measurement set). Let G =
(G1,G2) = (V,&1,&2) be a pair of undirected graphs
with the node set V = [m] and the disjoint edge sets
&1,E C [m] x [m)], respectively. The induced measure-
ment set Q)(G) is defined as follows: if (i,7) € &, then
the entire block M} ; are observed; if (i,5) € &Eo, then
all nondiagonal entries of the block M ; are observed;
otherwise, none of the entries of the block is observed.
In addition, the last n — mr rows and the last n — mr
columns of the matrix M* are fully observed. We refer
to the graph G as the block sparsity graph.

The following definition introduces a low-complexity
class of MC problem instances.

Definition 2 (Low-complexity class of MC problems).
Define L(G,n,r) to be the class of low-complexity MC
problems P+ o n,» With the following properties:

i) The ground truth M* € S} is rank-r.
ii) The matrix M ; € R™" is rank-r for all i, j € [m].
iii) The measurement set Q = Q(G) is induced by G =
(G1,G2), where Gy is connected and non-bipartite.

The next proposition states that every MC problem in-
stance in £(G, n,r) is polynomial-time solvable.

Proposition 1. For an arbitrary instance Pyix q.n,r in
L(G,n,r), the ground truth M* is the unique solution of
this problem and can be found in O(n? /r% + nr?) time.

2.2 Intuition for Rank-1 Case with /5-loss Function

We start with the case when the rank r is equal to 1
and the loss function g(-) is the ¢3-loss. We study two
instances in the class £(G,n,1) with O(n) and O(n?)
observations, respectively. The B-M formulation (2) of
both instances contains exponentially many spurious lo-
cal minima. Since the decomposition variable X is a col-
umn vector in the rank-1 case, we write it as x.

Example 1. We first provide an instance with O(n) ob-
servations. Note that the number of blocks, namely m,
is equal to n in the rank-1 case. Let the graph G =
(V,&1,&2) be chosen as V) := [n] and
Er={@,4) li,j€n], li—jl <1}, &:=0.
The measurement set is the induced set Q) = §(G).

Namely, we observe the diagonal, sub-diagonal and
super-diagonal entries of the ground truth matrix. One
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can verify that the subgraph G, = (V,&1) is connected
and non-bipartite. Now, we construct a specific ground
truth matrix. We define the vector x* € R" by

Xopyr =1, Ve € [[n/2]], x5, :=0, Vk e [|n/2]],

and let M* := x*(x*)T. For the B-M factorization for-
mulation (2), the set of global minima is given by

X* = {XGR“|X§k+1:17 vk € [|—Tl/2‘|]7
vk € [[n/2]] },

which has cardinality 2131, For every global solution
X € X* and every A € R™\{0}, the Hessian satisfies

Xok = 07

A:V2fR) A =2]|(3AT + A%T) ||
= 8J|A|]> — 1[n is even]4A? > 0,

where 1[-] is the indicator function. Therefore, the Hes-
sian is positive definite at every global minimum. Then,
we perturb the ground truth solution M* to

M*(e) = x"(¢) [x*(6)] " = (x" + €)(x" + )7,

where x*(€) := x* + € and € € R" is a small perturba-
tion. We denote the associated problem (2) as

min f(x;e), (€)
where f(x;€) == ||(xxT — M(e)*)q||%. For a generic

perturbation €, all components of € are nonzero and
problem Pyp- (o) qn1 belongs to the class L(G,n,1).
This implies that the global solution of problem (3) is
unique up to a sign flip.

We analyze the relation between the local minima of the
original problem and those of the perturbed problem.
Consider the equation Vyf (x;€) = 0 near an unper-
turbed global minimum x € X*. Since (%X;0) is a so-
lution to the gradient equation and the Jacobian matrix
with respect to x is equal to the positive definite Hessian
V2 f(X), the Implicit Function Theorem (IFT) states that
there exists a unique solution X(€) in a neighbourhood of
x for all values of € with a small norm. In addition, the
continuity of Hessian implies that Vxx f (X*(€);€) > 0.
Thus, x(€) is a local minimum of the perturbed problem
(3). As a result, we have proved the existence of a lo-
cal minimum for the perturbed problem corresponding
to each of the 2!"/?1 global minima of the unperturbed
problem. Hence, the problem (3) has at least 2!"/?1 o-
cal minima, while only two of them are global minima. In
summary, we have constructed an instance in £L(G,n, 1)
that has exponentially many spurious local solutions.

Example 2. Next, we construct an MC problem in-
stance with exponentially many spurious local minima
and O(n?) observations. We choose the same ground

truth matrix M*(€) as in the last example, but assume
that the measurement set ) is induced by the graph
G=(W,&,E)withV :=[n], & = 0 and

& = {(i,1), (i, 2k), (2k, ) | Vi € [n], k € [[n/2]]} .

Since the subgraph G, = (V, &1) is connected and non-
bipartite, the perturbed problem Py« (¢) a0 n,1 belongs to
the class £L(G,n,1). Moreover, one can verify that the
set of global minima of this problem is still X* and the
Hessian at every global solution is positive definite. By
the same argument, IFT implies that problem (3) has at
least 21/21 — 2 spurious local minima for a generic and
small perturbation e.

Note that the instances analyzed in this section, as well
as those in the remainder of this paper, satisfy the inco-
herence condition (Candes & Recht, 2009) with the pa-
rameter ; = O(1). The results in this subsection will be
formalized with a unified framework next.

2.3 Rank-1 Case with General Measurement Sets

In this subsection, we estimate the largest lower bound
on the number of spurious local minima for the given pa-
rameters n and . We address the problem by first finding
a lower bound on the number of spurious local minima
given a general measurement set €2, and then maximizing
the lower bound over (2. The following theorem utilizes
the topology of G to quantify a lower bound on the num-
ber of spurious solutions for the measurement set 2(G).

Theorem 1. Let G = (V,&1,0) such that G; = (V, &)
is connected and non-bipartite with n vertices. Assume
that there exists a maximal independent set* S(G1) of G
such that every vertex in the set has a self-loop. There
exists an instance in L(G,n,1) for which the problem
(2) has at least 215Gl _ 2 spurious local minima.

In both Examples 1 and 2, a maximal independent set is
S = {2k + 1| Vk € [[n/2]]} 3. Hence, Theorem 1
implies that there are 2("/21 — 2 spurious local minima,
which is consistent with our analysis. Since a maximal
independent set of a connected and non-bipartite graph
can have up to n — 1 vertices, the number of spurious
local minima can be as large as 2" ! — 2.

Corollary 1. There exist a graph G and an instance in
L(G,n, 1) such that problem (2) has 2"~! — 2 spurious
solutions. In addition, there exist a graph G and an in-
stance in L(G,n,1) with |Q| = n? — 2 such that the
problem (2) has spurious solutions.

*For a graph G = (V, &), the set S C V is called an in-
dependent set if no two nodes in S are adjacent. The set S is
called a maximal independent set if it is an independent set and
is not a strict subset of another independent set.

38 is shorthand notation for S (G1).
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Corollary 1 implies that the B-M factorization may not
be an efficient approach to the MC problem, since it has
a spurious solution even in the highly ideal case when
almost all entries of the matrix are measured. Generally,
the proof of Theorem 1 implies that, as a necessary con-
dition for not having a spurious solution in formulation
(2), the elements of x* associated with the nodes outside
of the maximal independent set S should not be much
smaller than those associated with the nodes in S.

Corollary 2. Under the setting of Theorem 1, there ex-
ists a function hs(-) : (0,00) — (0,00) such that
P (x*)T ,(G),n,1 has at least 2181 — 2 spurious local
minima in formulation (2) for every generic x* € R”
satisfying

x5l < hs(minies|ai]) - x5l
where 8¢ := [n]\S and xgc := (x; : 1 ¢ S).

Because the maximal independent set of a graph G is
not necessarily unique, the set of functions hgs s (-) over
all maximal independent sets S designates a necessary
condition for the nonexistence of spurious local minima
given a measurement set (G).

2.4 Extension to General Rank-r Case

We generalize the results to the case when the ground
truth matrix has a general rank. Eisenberg-Nagy et al.
(2013) showed that the rank-r MC problem is N/P-hard
in the worst case for every » > 2. However, we focus
on instances in the low-complexity class £(G,n,r) and
show that there are instances in this class whose B-M fac-
torization formulation (2) has a highly undesirable land-
scape. We cannot simply extend the proof of the rank-1
case to the rank-r case since there exist an infinite num-
ber of matrices X* such that M* = X*(X*)T when
r > 1. The global optimality of a solution X* is not lost
under any orthogonal transformation. This implies that
the Hessian at the global solutions of problem (2) cannot
be positive definite, which fails the applicability of IFT.
Therefore, we consider the quotient manifold R"*"/0O,.,
where O,. is the lie group of r x r orthogonal matrices. To
simplify the analysis, we instead consider the following
lower-diagonal subspace

W ={XeR""|X;; =0, Vien], jer

st i<j}.
We define an embedding of the manifold R"*" /O, into
W™ and composite it with the quotient map.

Definition 3 (Restriction map). Given a matrix X €
R™*", we define the embedding ¢°™°([X]) == R €
WnXT where X = RQ is the RQ decomposition with Q
being an orthogonal matrix and R having non-negative
diagonal elements. The restriction map is defined as

P(X) = ¢“*([X]).

When the RQ decomposition is not unique, we choose
an arbitrary decomposition for the embedding ¢¢™(-).
However, the properties of the RQ decomposition ensure
that ¢°™(-) is a bijection in a small neighborhood of
each matrix X whose first r rows are linearly indepen-
dent. Consider the restricted version of problem (2):
min  f(X), 4)
Xewnxr
Results in Section 2.3 can be extended to the problem
(4), and then be translated back to the problem (2).
Lemma 1. Consider a graph G = (V, &1, &) withm =
|n/r| vertices for which the subgraph G, = (V,&1) is
connected and non-bipartite. Assume that there exists
a maximal independent set S(G1) of G1 whose vertices
each have a self-loop. If the induced subgraph* G,[S] is
connected, then there exists an instance in L(G,n,r) for
which the problem (4) has at least 27159 — 2 spurious
local minima. In addition, the first v rows of each local
minimum are linearly independent.

The Hessian at each local minimum of the unperturbed
problem is positive definite along the tangent space of
Wn*T where the off-diagonal observations of Q(G) play
a key role. If the first » rows of a local minimum X
are linearly independent, the diagonal elements of X are
nonzero. Therefore, by flipping the signs of columns, we
can find an equivalent local minimum X with positive
diagonal elements, i.e., X lies in the range of ¢¢™(-).
By symmetry, the total number of such local minima is
2r(IS(91)I=1) _ 1. Since the restriction map ¢<™°(-) is
a bijection in a neighborhood of X, the equivalent class
[X] € R"™*" /O, is a local minimum of problem (2) on
the quotient manifold and thus X is a local minimum of
problem (2). The above argument leads to Theorem 2.

Theorem 2. Consider a graph G = (V, &1, &) satis-
fying the conditions of Lemma 1. There exists an in-
stance in L(G,n,r) for which problem (2) has at least
2r(IS@I=1) _1 equivalent classes of spurious solutions.

Finally, we give an estimate on the largest lower bound
for the number of spurious local minima.

Corollary 3. There exists an instance in L(G,n,r) for
which the problem (2) has at least 2"~2" — 1 equivalent
classes of spurious solutions. In addition, there exists an
instance in L(G,n,r) with |Q| = n? — 2r for which the
problem (2) has spurious solutions.

2.5 General Loss Functions

In this part, we generalize the preceding results to the
problem (1). To extend the constructions to a general
loss function g(-), we require a few weak assumptions
on the loss function g(-).

4See Harary (2018) for the definition.
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Assumption 1. The following conditions hold for the
Sunction g(-):

i) g(-) is twice continuously differentiable;
ii) the matrix 0,y is the unique minimizer of g(-);
iii) the Hessian of g(-) at 0, is positive definite.

Now, we can extend the results in Section 2.4 to the gen-
eral loss function case under the above assumption.

Theorem 3. Consider a graph G = (V,&1,&2) satis-
fying the conditions of Lemma 1 and suppose that As-
sumption 1 holds. There exists an instance in L(G, n,r)
for which the problem (1) has at least 27(15(91)1=1) _ |
equivalent classes of spurious local minima.

We note that the ¢>-loss function g(-) = || - ||% satisfies
the conditions in Assumption 1. As another example,
regularizers are ubiquitously used in the low-rank matrix
optimization literature (Ge et al., 2016, 2017; Fattahi &
Sojoudi, 2020). As a corollary to Theorem 3, the regu-
larized version of the problem (2) also suffers from the
same issue. In this case, the loss function is equal to

9(%) = x|+ @),

where Q(X) := A (||X;|| — «) is from Ge et al. (2016),
()4 := max{z,0} and o, A > 0 are constants. Since
the regularizer does not change the landscape around
global solutions with a large o, Assumption 1 is satisfied
and Theorem 3 is applicable to the regularized problem.

3 MORE OBSERVATIONS LEAD TO
SPURIOUS LOCAL MINIMA

In Section 2, we showed that the B-M factorization for-
mulation (2) has an exponential number of spurious lo-
cal minima on low-complexity MC problem instances.
In this section, we exhibit another unfavorable behaviour
of the B-M factorization. We identify an MC problem
instance in £(G, n,r) with some pattern (2 that has no
spurious solution while adding observations to {2 leads
to spurious solutions. Let m and r be natural numbers
with m > 2r. We define n := mr and let the graph be
G := (V, &) where k € [m] is an arbitrary index and
Vi=Im], & :=A{(k,j), (k) |Vj€[m]}.

In the measurement set €2, we observe the blocks M ;
for all (i,7) € &; see Figure 1. € contains only full
block observations induced by Gi. The next proposi-

tion states that if the ground truth matrix is generic, every
SOCP? of the problem (2) is a global minimum.

>Second-order critical points are defined as those points that
satisfy the first-order and the second-order necessary optimality
conditions.

Y S
0 . 0
Mg, = My 1 My, i Mi.m
0 : 0
Mm,k

Figure 1: Measurement operator Ag, on matrix M.

Proposition 2. Given an index k € [m], let the measure-
ment set () be equal to (Y. Assume that the block M ; of
the ground truth matrix M* has rank r for all i, j € [m].
Then, every SOCP of problem (2) is a global minimum.

Next, we construct a graph Gy = v, Ei, &s), where
E = E,U{(i,1) | Vi € [m]},

& = {(7’7]) ‘V’L,] € [m]7 7’7&]}
Namely, we have included all self-loops and nondiago-
nal observations of each block in the new graph. A max-
imal independent set for the subgraph Gy := (V, &)
is S := [m]\{k}. We define a new measurement set
Qp = Q(g}) Since &, is a superset of &, the mea-

surement set (2, is larger than ;. Using Theorem 2, we
obtain the following result.

Corollary 4. Every instance of the MC problem with the
measurement set (Y, and Jull rank blocks M ; for all
i,j € [m] belongs to L(G,n,r). The formulation (2) of
an instance of the problem has at least 27" ~2) —1 equiv-
alent classes of spurious local minima, while all spurious
solutions disappear when using the smaller set Qy.

Results of Proposition 2 and Corollary 4 conclude that
the landscape of the problem (2) deteriorates when the
number of observations is increased. This phenomenon
further reveals the unfavorable behavior of the B-M fac-
torization on low-rank matrix optimization problems,
even if the information-theoretic complexity is low.

4 MEASURE OF COMPLEXITY FOR
FACTORIZATION APPROACH

In Section 2, we showed that if there is an MC problem
with a non-unique completion, a slightly perturbed prob-
lem will have exponentially many spurious local minima
in the B-M factorization formulation (1). Hence, bifurca-
tion behaviors appear around measurement matrices M,
that are associated with multiple global solutions. For a
given measurement operator .4, a measurement matrix
A(M) that allows multiple global solutions designates
an unacceptable region in the space of ground truth so-
lutions. Based on this intuition, we define a metric to
capture the extent of the bifurcation behavior. We define
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the set of measurements that allow non-unique solutions:
Ta = {AM) : 3%, X; e R
s.t. X XT 4 X, X7,
AM) = AX1 X3 ") = A(X2Xa") .
Then, we define a complexity metric below.

Definition 4 (Complexity metric). The complexity met-
ric for operator A and ground truth MI* is defined as

ist(A(M). Ta) i=  min [LAQM") A -

It is expected that for instances with a large complexity
metric, the optimization complexity of algorithms based
on the B-M factorization approach will be aligned with
the corresponding information-theoretic complexity. For
example, if the RIP condition is satisfied, the set 7T is
empty and therefore the complexity metric is always oo.
Oppositely, the instances studied in Section 2 with spu-
rious solutions all have small complexity metrics. Con-
sequently, the complexity metric is a possible measure
of the optimization complexity for the MC problem with
the B-M factorization: the optimization problem should
be more difficult if the complexity metric is lower.

S GRADIENT-BASED METHODS FAIL
WITH HIGH PROBABILITY

We show that the exponential number of spurious local
minima in preceding instances will make most randomly
initialized gradient-based methods fail with a high prob-
ability. The existence of spurious local minima does not
necessarily imply the failure of gradient-based methods;
see Ma et al. (2018); Chen et al. (2020). The analysis in
this section is based on the gradient flow

X(t) = -Vxf(X(¥), X(0)=Xo. (5
It is known that the trajectories of gradient-based meth-
ods with a small enough step size are close to those of the
gradient flow. We can view a variety of gradient-based
methods as ordinary differential equation (ODE) solvers
applied to the gradient flow (5). Then, the convergence
of the discrete trajectories when the step size goes to 0
can be guaranteed by the consistency and the stability
of the ODE solver. Scieur et al. (2017) proved that the
consistency and stability conditions are satisfied by sev-
eral commonly used gradient-based methods, such as the
gradient descent, the proximal point and the accelerated
gradient descent methods. Although Scieur et al. (2017)
considered minimizing a strongly convex function, the
consistency and stability conditions only depend on the
ODE solver and the Lipschitz continuity of the underly-
ing gradient flow. We need the following assumption on
the loss function to characterize the global landscape.

Assumption 2. The loss function g(-) satisfies the sparse
(0, 7)-RIP condition in the Q-norm for some constant § €
[0, 1) and integer r > 1. Namely, the inequality

(1-0)[Ne|# < N:V?g(Mgq) : N < (1+6)|Ne|%
holds for all matrices M and N with rank at most 2r.

The sparse RIP condition is remarkably different from
the conservative RIP condition. For example, the ¢5-loss
function satisfies the sparse (0, r)-RIP condition for ev-
ery r, while the RIP condition does not hold if 2 is not a
complete graph. Under the above assumption, we show
that for the unperturbed example constructed in Section
2, the gradient flow will converge to each global mini-
mum with equal probability in the rank-1 case. The main
difficulty is to show that all saddle points of the objec-
tive function f(X) are strict and therefore their region of
attractions (ROAs) have measure zero (Lee et al., 2016).

Lemma 2. Suppose that Assumption 2 holds for r = 1
and 6 = O(1/n), where n > 3 is the size of the ground
truth matrix. There exists an MC problem instance such
that the following statements hold for the problem (1):

o there are 2I"/21 equivalent global minima;

* if the gradient flow (5) is initialized with an abso-
lutely continuous radial probability distribution, it
converges to each global minimum with the equal
probability 2~ "/21,

where a probability distribution is called radial if its den-
sity function at point x only depends on ||x|| and the ab-
solute continuity is with respect to the Lebesgue measure.

Examples of absolutely continuous radial probability dis-
tributions include zero-mean Gaussian distributions and
uniform distributions over a ball centered at the origin.
Note that the ¢5-loss function satisfies the assumption of
Lemma 2. Next, we show that with a sufficiently small
perturbation to the previous instance of the problem, the
ROA of each local minimum will not shrink significantly.
Therefore, the gradient flow will converge to each global
minimum or spurious solution with approximately the
same probability.

Theorem 4. Under the setting of Lemma 2, consider
an absolutely continuous radial probability distribution.
There exists an instance in L(G, n, 1) for which the prob-
lem (1) satisfies the following properties:

* the global minima are unique up to a sign flip;

* if the gradient flow (5) is initialized with the given
distribution, it converges to a global minimum as-
sociated with the ground truth solution with proba-

bility at most O(2~m/21),

The results of Theorem 4 imply that, in the rank-1 case,
most gradient-based methods with a small enough step
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size and a suitable random initialization will converge
to a spurious solution with an overwhelming probability.
The proof works for the general rank case if it can be
shown that there is no degenerate saddle points for the
above-mentioned unperturbed instances of the problem.

Remark. We remark that the trajectories of stochas-
tic gradient descent (SGD) methods cannot be approx-
imated by those of the gradient flow. Hence, our analysis
cannot automatically imply the failure of SGD. However,
the proof of Lemma 2 can be adopted to conclude that
SGD methods with a random initialization will converge
to each global minimum with equal probability in the un-
perturbed case. Since the trajectories of SGD methods
will not vary dramatically with a sufficiently small per-
turbation, they still converge to each solution with ap-
proximately the same probability. Therefore, we also ex-
pect the SGD methods to fail with high probability.

6 EXPERIMENTS

Numerical results are presented to support the failure
of the gradient descent algorithm. Each MC problem
with the B-M factorization formulation (2) is solved
by the gradient descent algorithm with a constant step
size, where the step size is chosen to be small enough
to guarantee that the algorithm converges to a station-
ary point. Regarding the measurement set, the graph
Gy := (V, &) is generated randomly by the Erdos—Rényi
model G(m, p), where V := [m] and each edge of the
graph is included independently with probability p. If
G is not connected or a node in the maximal indepen-
dent set S does not have a self-loop, the missed edges
are added to satisfy these conditions. In addition, a con-
nected subtree Go = (S, £2(S)) is generated for nondi-
agonal observations. We define G := (V,&1,&,) and
subsequently the measurement set (G). In addition,
the unperturbed ground truth matrix M* = X*(X*)T
is defined as M7 ; := I, forall 4,j € S, and M ; :=
0, x, otherwise. Lastly, a Gaussian random perturba-
tion matrix e € R™*" is generated and normalized, e.g.
llell= = 1. Then, the perturbed ground truth matrix
M*(e) = (X* 4+ ve)(X* + ve)T is generated, where
~v > 0 is the perturbation size. We evaluate the success
rate of the algorithm at 100 equally distributed values of
v € (0,0.5) with 300 random initializations of the gra-
dient algorithm for each instance and each ~.

The top figure in Figure 2 illustrates the success rate of
the gradient descent algorithm with the rank r = 1, di-
mension n = 20 and various maximum independent set
sizes |S|. The results conform to Theorem 4 implying
that the success rate is less than 1/(2/5/=1) when the
perturbation size 7 is small. The bottom figure in Fig-
ure 2 makes similar observations with different ranks and

Success Rate of Gradient Descent for Rank-1 Completion
— Rank-1, |S| =2
R 3

— Rank-1,[S| =7

% Successful Convergence

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation Size

Success Rate of Gradient Descent for Rank-r Completion
—— Rank-2,|S| =2

3
4
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% Successful Convergence
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Figure 2: Success rate of gradient descent method for
(top) rank-1 and (bottom) rank-r MC problem instances
with randomly generated measurement sets.

maximum independent set sizes |S| when m is equal to
10. These observations imply that Theorem 4 can be ex-
tended to the general rank case, since the success rate is
less than 1/(27(ISI=1)) when ~ is small. We note that the
behavior of the algorithm may change when + is large.
Specifically, significant improvements in success rate are
observed when v > 0.2 for most problem instances. This
is in accordance with our notion of complexity metric.

7 CONCLUSION

In this paper, we provided a negative answer to the ques-
tion of whether the B-M factorization approach can cap-
ture the benign properties of low-complexity MC prob-
lem instances. More specifically, we defined a class of
MC problem instances that could be solved in polyno-
mial time. We showed that there exist MC problem in-
stances in this class that have exponentially many spu-
rious local minima in the B-M factorization formulation
(1). The results hold for a general class of loss functions,
including the commonly used regularized formulation.
In addition, for the rank-1 case, we proved that gradient-
based methods fail with high probability for such in-
stances. Numerical results verify that similar behaviors
also hold for higher rank cases. These results imply that
the optimization complexity of methods based on the fac-
torized problem (1) are not aligned with the information-
theoretic complexity of the MC problem. Furthermore,
we derived a complexity metric that potentially captures
the complexity of the B-M factorization formulation (1).
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A PROOFS IN SECTION 2

A.1 Proof of Proposition 1

Proof. The condition Pan+ qnr € L£(G,n,r) implies that G; = (V, &;) is connected and non-bipartite. Since the
graph is non-bipartite, there exists a cycle with an odd number of vertices Cogq = (Vodd; Eodd) in G1 in which Eyqq C
&;. To numerically find an odd cycle, the breadth first search method requires O(|V| + |£1]) = O(m?) operations.
Without loss of generality, we assume that the set of vertices of the cycle is Voqq = {1,2,...,2k + 1} and the set of
edges is E,aq = {(1,2),(2,3),...,(2k+1,1)}, where k is a nonnegative integer. Suppose that the matrix X* € R™*"
satisfies M* = X*(X*)T. We denote the i-th r x 7 block of X* as X} for all i € [m], i.e.,

M =X (XN = | | [(XDT . (X5)T].

Since Puvix anr € L£(G,n,r), the block X is nonsingular for every ¢ € [m], which further implies that the block
M ; is nonsingular for all i, j € [m]. Using the relation that M} ; = X7 (Xj)T, we can calculate that

k
[H (Mgiq,zi (MSi,2i+1>_T)] M§k+1,1 = XT(XT)T»

i=1

Since the left-hand side only contains observed blocks, the matrix X% (X%)? can be computed via observed blocks.
Since computing the inverse of an 7 x 7 matrix and computing the product of two 7 x 7 matrices both require O(r?)
operations, the total number of operations required for computing X3 (X3%)? is O[(2k +1)r3] = O(mr?). In addition,
computing the Cholesky decomposition of X} (X%)7 requires O(r?) operations, which produces a matrix X*R. for
some orthogonal matrix R € R"*".

With the knowledge of X7 R, we can recursively compute the block X using the connectivity of G;. More specifically,
we use P C [m] to denote the set of vertices ¢ or which we have computed XfR. We start with P = {1}. At each
iteration, we choose indices ¢ € P and j ¢ P such that (¢,5) € &;. Such a pair of indices always exists unless
P = [m], since the graph G, is connected. Then, using the observation

* Nk s\T __ * *R\T
M}, = X(X7)" = (XjR)(X;R)",

we first compute the matrix XR with O(r®) operations and then add j to the set P. We stop the iteration when
P = [m]. After this process, we can concatenate X R for all i € [m] to obtain the matrix X*R. The number of
iterations is m — 1 and thus the total number of operations is O (mz3).

Summarizing the two parts, the total number of operations to compute the matrix X*U is O(m? +mr3) = O[n?/r? +
2
nr?l.

O

A.2 Gradient and Hessian of the Problem (2)

Before proceeding with the analysis for the proofs in the remainder of this paper, we first derive the gradient and the
Hessian of the objective function of the problem (2). We omit the proof since the calculation can be done via basic
calculus. The gradient of the objective function can be written as

VF(X) =2(XXT - M*)oX. (6)

Similarly, the quadratic variant of the Hessian can be written as

A:VEF(X) A= 4(XXT — Mo, AAT) 2| (XAT + AXT) |[2. (7)
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A.3 Proof of Theorem 1

Proof. Let S(G1) be a maximal independent set of G; such that every vertex in the set has a self-loop. We define the
global solution as M* := x*(x*)T, where

=c¢, VieS, z7:=0, Vig$S

7 :
and {c¢; | Vi € S} is a set of nonzero constants. We note that in the case when r = 1, the factor X € R" is a vector.
Therefore, we represent it using the notation for vectors, i.e., x. Considering the problem instance PM*’Q(g)m,l, the

set of global solutions of the problem (2) is given by
X ={xeR"|2f=c,VieS, 2;=0,Vi¢g S},

which has the cardinality |X*| = 2!S|. For every global solution X € X*, we have xX” = M?*. Thus, we know that
X is a first-order critical point of the problem (2). For every A € R", the quadratic form of the Hessian (7) can be
written as

A:VEFR) A =2 (RAT + ART) |0 = Y 2(Auk + #3807+ Y Y [2(8,80)% +2(2:4,)%)

IES JgS €S
(4,5)€&
NS S >2=Z4ﬁ?-A?+Z<Z )A
i€S jgS €S = igs (1,4)€€1

(1,5)€&1

The first term in the above expression corresponds to self-loops in S, while the second term corresponds to the edges
between S and S¢ := V\S. We note that the edges whose endpoints are both in S¢ do not contribute to the quadratic
form. Since S is a maximal independent, we know that

{icS|i.j) ey #0, Vi¢s.

As a result, it holds that
A:V2f(X): A >0, VA eR™{0},

which implies that the Hessian at the global solution X is positive definite. Then, we perturb the global solution of the
above problem to be
M (e) = x* () [x* ()] = (x" + )(x" + )7,

where x*(€) := x* 4 € and € € R" is a small perturbation. We denote the problem (2) after perturbation as

min f(x;e),

where f(x;€) := ||(xx” — M(¢)*)q||%. For a generic perturbation €, all components of ¢ are nonzero and the problem
Pr=(e),0,n,1 belongs to the class L(G,n,1). This implies that the global solution of the problem (3) is unique up to a
sign flip.

The earlier argument implies that V. f(%;0) = 0 and V. f(X;0) > 0. Now, we analyze the relationship between the
local minima of the original problem and those of the perturbed problem. We consider the equation Vy f (x;€) = Onear
an unperturbed global minimum x € X'*. Since (X;0) is a solution to the gradient equation and the Jacobian matrix
with respect to x is equal to the positive definite Hessian V2 f(x), the Implicit Function Theorem (IFT) states that
there exists a unique solution x(¢) in a neighbourhood of % for every e with a small norm. In addition, the continuity
of the Hessian implies that Vxx f (%(€);€) = 0. Otherwise, we can find a sequence of €¥ — 0 and another sequence
{y*} with ||lyg|| = 1 such that (y*)T Vi f(X(€); €)y* < 0. By taking the limit along a convergent subsequence of
{y*}, we arrive at a contradiction. Therefore, every point in X* (¢) still satisfies the second-order sufficient conditions.
Since there are 25! global minima for the unperturbed problem, an analysis through the IFT implies that there are 2!
strict local minima for the problem (3). Hence, there are 25! — 2 spurious local minima for the perturbed problem (3).

O



Yalcin, Zhang, Lavei, Sojoudi

A4 Proof of Corollary 1

Proof. We first prove the claim about the largest lower bound. Theorem 1 implies that there are at least 21591 — 2
spurious local minima for a problem instance in £(G, n, 1). For an arbitrary connected and non-bipartite graph G; with
n vertices, the maximal possible size of a maximal independent set with self-loops is n— 1. More specifically, the graph
G7 that attains this maximal value is the star graph K ,,_; complemented with self-loops for the n» — 1 independent
vertices. Hence, Theorem 1 imples that there exists a problem instance in £(G*,n, 1) with at least 2"~ — 2 local
minima, where we define G* := (G}, 0).

We then consider the second claim of this corollary. Consider the measurement set {2 that observes all entries of the
ground truth M* except M, and M3;. In this case, we have |Q2] = n? — 2. Choose the set of vertices to be V := [n]
and the set of edges to be & := [n] x [n]\{(1,2),(2,1)}. Then, the graph G := (V, &, () satisfies that Q = Q(G)
and the maximal independent set is S := {i, j}. Therefore, Theorem 1 implies that there exists a problem instance in
L£(G,n,1) that has at least 215/ — 2 = 2 spurious local minima. O

A.5 Proof of Corollary 2
Proof. For a generic vector x* € R™, all elements of x* are nonzero and we can decompose x* into x° + x!, where

*
=,

=0, WVies,

X

S S o

Vie S, V=0, VigS,
Ty =], VigS.

T

We first consider the problem Pyo (107 (g),n,1- Using a similar proof as Theorem 1, we can prove that this problem
has 2/5! equivalent global solutions in formulation (2), which are described by the set

X i={xeR" |z} =(2])?, VieS, 2, =0, Vi¢g S}.

In addition, the Hessian is positive definite at every global solution X € X'*. Using a similar argument as the proof of
Theorem 1, we conclude that there exists a small constant 7,0 > 0 such that the conditions

llell < ryo, € #0, Vie[m] 3)

imply that the problem Pyo(c)(x0 ()7, 0(g),n,1 has at least 2181 — 2 spurious local minima in formulation (2), where
x%(e) := x® + €. Moreover, the MC problem is “scale-free” in the sense that the formulation (2) of the problem
Pxr(x)7 ©(G),n,1 has spurious local minima if and only if that of the problem P x/)(cx/) ,0(g),n,1 has spurious local
minima, where x’ € R™ is an arbitrary vector and ¢ # 0 is a constant. Therefore, we have the relation

Texd = C-Txo, Ve #O. )
Hence, it suffices to consider vectors x° € X}, where

Xo={xeR"|z; #0,Vie S, z;,=0,Vi ¢S, |x]|=1}.

Now, we consider a vector X° € R" satisfying

[%° — xY)| < ryo/2.
Then, as long as the generic perturbation e satisfies ||¢|| < 740/2, the condition (8) implies that the problem
P ()[g*(€)]T,02(G),n,1 has at least 2181 — 2 spurious local minima in formulation (2), where x* (€) := % + €. This
verifies the existence of a function h s on the open set

NE) = {xeR"||x—x"|| <rx/2}, Vx’€ X.

Now, we consider the compact set

Xy = {XER"' m1§1|x1| > 1/k3, z; =0, VZ%S, ||X|| = 1}7 k= 1,2,...
€
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The open set family {\V(x°) | x° € Ay} comprises an open covering of the compact set Xj,. Hence, there exists a
finite covering of the compact set X} and thus there exists a small constant €, such that

hs(x°) > e, Vx° € Ay,
Moreover, using the relation
X1 C X, V22, X= ] A
k=1
we can decrease the value of the function hg to be
h(x°) = e, VX" € A \Xp_1, k> 2.

Using this definition, hs reduces to min;es |x;| and, with a little abuse of notations, we still write the new function as
hg (minieg |Iz|)

Now, we can view the problem Py (x)7 (g),n,1 as the perturbed problem, where the generic perturbation is given by
x!. The above analysis implies that the following condition holds

— x| < i 1) 110 = ; N
I < s (smip o) - x7) = hs (] ) - [

which demonstrates the existence of at least 2/°/ — 2 spurious local minima in formulation (2).

||XSC*

A.6 Proof of Lemma 1

Proof. We follow a similar proof construction as in Theorem 1. Let D be the set of full-rank diagonal matrices and
Dy1,1) be the set of diagonal matrices with the diagonal entries being +1 or —1. Suppose that S is a maximal
independent set of G; in which every node has a self-loop. Then, we define the ground truth matrix M* := X* (X*)T,
where X* € R™*" satisfies

X =0, Vigs$S, X eD, Viels,

where X, is the i-th block of X € R"™*"; see the definition in the proof of Proposition 1. Then, the set of global
solutions is given by

P {X ER™T|X, =X;D,VieS, DeDy_qy, X;=0,Vig S},

For every global solution X € X*, we have XX7 = M*. Thus, every global solution is a first-order critical point
of the problem (2). In addition, let A € R™*" be an arbitrary direction matrix with its » block matrices denoted as
A1, Ao, ..., A,,. Then, the quadratic variant of the Hessian (7) in the direction A can be written as

2

A:v2f(X):A:QH(XAT+AXT)QHF (10)

=D X+ XATE+2) | D0 IAXTIE+ D 1AXT nall%
= igs = €S

(1,5)€E&L (i,5)€E2
+23 0 3 AKX + XA ) nallF
JES €S
(4,5)€E2

where (-),q is the projection onto the matrix space with a zero diagonal. We note that the first term in (10) corresponds
to self-loops in G, while the second term corresponds to edges between S and S¢. The edges whose endpoints are
both in 8¢ do not contribute to the quadratic form. Moreover, the last term corresponds to partial observations with
nondiagonal entries within the independent set S.
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Now, we aim to prove that the Hessian at X is positive definite in the tangent space of W™*", namely,
A:V2F(X): A >0, YAeR™)\{0}, A, islower triangular.

We assume that A : V2£(X) : A = 0 for some A € R"*" such that A; is lower triangular. Under this assumption,
all three terms in (10) are equal to zero. Considering the second term, since X; is full-rank, we have

A;j=0, Vjé¢s.

For the first term, ||A; X7 + X;AT |2 is zero only if A; X7 = —X,;AT, ie., A;XT is skew-symmetric. Since X; is
a diagonal matrix with nonzero diagonal entries, the diagonal entries of A; must be zero for all i € S. Without loss of
generality, we assumed that vertex 1 € S. This is because we can equivalently fix the block X; to be lower-diagonal
for any ¢ € S and consider a similarly constrained optimization problem. Then, since A; must be lower triangular, we
have

We define the set
So :{ZES‘AZZO}

We have shown that i € Sy and aim to prove that Sy = S. Since the induced subgraph G5[S] is connected, there exists
avertex j € S such that (1, j) € &. Considering the third term in (10), we have

(A;XT + XA ) g = (8;X] )na = 0,

which implies that A; = 0 because Xj is a diagonal matrix with nonzero diagonal entries. Hence, we have proved
that j € Sp. By the connectivity of G2[S], we can inductively prove that all elements in S belong to Sy. Therefore,
it holds that A = 0 and the quadratic form of Hessian is zero only when A = 0. As a result, the Hessian is positive
definite at every global solution X € X* of the problem (4).

Then, we perturb the ground truth of the above problem instance to be
M (e) = X*(e) X" ()] = (X" +)(X* + ),

where X*(€) := X* + e and e € R™*" is a small perturbation. Similar to Theorem 1, for a generic perturbation e, all
block components of € are nonzero and full-rank. Therefore, the problem Pyg- (), 0.n,» belongs to the class L(G,n,T).
This implies that the global solution of the problem (4) is unique up to a right-multiplication with D € Dy; _1;. Since
there are 271! global minima for the unperturbed problem, IFT implies that there are 275! strict local minima for the
perturbed problem. Hence, there are 2”5 — 27 spurious local minima for the perturbed problem. O

A.7 Proof of Corollary 3

Proof. We first consider the largest lower bound on the number of spurious local minima. Similar to Corollary 1, since
an instance in £(G, n, r) can have a maximum independent set of size at most |S(G1)| = m — 1 = n/r — 1, Theorem
2 implies that the largest lower bound on the number of spurious local solution classes is 27("/7=2) — 1 = 27=2" _ 1,

We prove the second part of this corollary next. We choose G; to be a graph with m vertices and (T;’) — 1 edges, where
(4,7) is the only missing edge. Then, the maximal independent set is S := {4, j}. Since G2[S] must be connected,
the nondiagonal entries of the block M ; are observed. Thus, only 27 entries are not observed and [} = n? — 2r.
Furthermore, Theorem 2 implies that there exists a problem instance in £(G, n, r) with at least or(ISI=1) 1 =92 —1
equivalent classes of spurious local minima. O

A.8 Proof of Theorem 3

Proof. The proof is similar to those of Theorems 1 and 2. We can prove that the Hessian is positive definite at all
global solutions for each loss function g(-) satisfying Assumption 1. O
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B PROOFS IN SECTION 3

B.1 Proof of Proposition 2

Proof. For every matrix X € R™*", we denote X; as the i-th r x r block of X for all ¢ € [m]. Because each block
M*J is assumed to be full rank, the block X} is also full rank for all i € [m], where X* satisfies M* = X*(X*)7.
It is desirable show that every first-order critical point is either a global solution or a saddle point with a strict descent
direction. For every ¢ € [m], the gradient of the problem (2) with respect to the i-th block X is

2(XXT — X5 (X3)T) Xy, ifi# k

S 2K XT - Xp(X) D)X, ifi = k.

Vx, f(X) = {
Let X € R™" be a first-order critical point of problem (2).
We first consider the case when X, is nonsingular. For every i € [m]\{k}, the condition Vx, f(X) = 0 implies that
XX —-xrxp)T =o.
Substituting the above equations into the equation Vx, f(X) = 0, we obtain
(XX = X5(X5) )Xk =0,
which implies that ka(,f = X} (X})T. Therefore, the matrix X is a global solution of the problem (2) in this case.

Now, we consider the case when Xk is singular. We choose a vector y; € R"™ such that

Xyr =0, |yl = 1.

Given a small constant € > 0, the ¢-th block direction A € R™*" is defined as

A ziyr, ifi#k
! eyky{, ifi =k,

where z; € R is arbitrary. The above definition directly implies that X, A7 = 0 for all i € [m)]. Then, we obtain

4 <(XXT - X*(X*)T)Q7AAT> = —atr [X(X)TARAT] - Y ser (X3(X))TAAT)

J=1,j#i
= Z —8tr [X;-(XZ)Tykzﬂ e+ O(e),
=157

and

2[(XAT + AXT)q||F = 8| Xp AL |7 +4 Z IX;A% 17 = O(e)
j=1,j#k
Combining two estimates above, the quadratic form of the Hessian (7) can be written as
A:VIAX) A= Y =8t [X5(X5) vz | e+ O().
Jj=1,j#i

Since X is nonsingular for all i € [m], it holds that X (X})"y4 # 0. Choosing
z; = X;(XZ)Tyk,

we obtain
m

AVIX) A= 30 EIXGXD vl e+ OE).
j=1,j#i
Hence, the quadratic form of the Hessian is negative with a sufficiently small € and X is a strict saddle point.

Combining the two cases, we conclude that every second-order critical point of the problem (2) is a global minimum.

O
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C PROOFS IN SECTION 5

C.1 Proof of Lemma 2

In this proof and the following proofs for Section 5, we consider the instance of the MC problem constructed in
Section 2. For completeness, we repeat the instance here. In the unperturbed case, the ground truth matrix is defined
as M* := x*(x*)T € R"*", where vector x* € R" satisfies

X1 =1, Vk=1,...,[n/2], x5,=0, Vk=1,...,|n/2].
The measurement set (2 is given by
Q:={04,5),2k,5),(5,2k) |j=1,...,n, k=1,...,|n/2|}.
It has been proved in Section 2 that the problem (1) has 2"/21 global solutions, which are given by the set
A ={x€eR" |x0, =0, k=1,...,[n/2], x5, =1, k=1,...,[n/2]}.
For each vector x € R", we denote
X7 1= (21,23, .., T[py21)y  XO = (T2, 24,00, T ny2))-

Before presenting the proof of Lemma 2, we first state three technical lemmas.

Lemma 3. Suppose that Assumption 1 holds with (9, 1), and that X is a first-order critical point of the problem (1).
Then, it holds that
I 1%] < 2v26] (M = M*)g ||

where we define M := *x7.

Proof. Utilizing the first-order optimality condition and the gradient in (6), it holds that
1
(Vg [(xx" —x*x*),, | ,%AT) = / (M —M*): Vg [(M")g+t(M—-M*),]: XA dt =0, VA €R",
0
where the first equality is from Taylor’s expansion. For every fixed number ¢ € [0, 1], the proof of Theorem 1 in Bi &
Lavaei (2021) implies that
(M —M*) : Vg [M*q +t (M — M*),] : XA
> (M =M")g, (XAT) ) = 2V26] (M~ M) |[#]| (A7), |1
Integrating over ¢, it follows that
(M =M, (AT),)) < 225 (M~ M) ||| (KAT),, | . (an

By choosing
A2k+1:0, k:].,...,|_’rl,/2—|7 A2k:§72k; kzl,...,[n/?L

we obtain
(M =M)gq, (xAT) o) = [X°|P%]%, || (%AT)q lIF = [IX°][I%].
Substituting the above two equalities into (11), we have
%12 )% < 2v26]| (M = M*)g, || [1%°] [1%]]-
The above inequality implies that
% < 2v26]| (M = M) |l or x° =0,

since ||x°||||%|| = 0 if and only if X® = 0. In both cases, the claim of this lemma holds. O
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Lemmad4. Let D be the set of 7 X r diagonal matrices and Dy, _1) be set of r X r diagonal matrices with the diagonal
entries +1 or —1. Under the same setting as Lemma 1, consider the n x n ground truth matrix M* := X*(X*)T
such that n = mr, where

XreD, VieS(G), Xi=0, Vi¢gS(G).

Let D € R" ™ be an arbitrary matrix with its diagonal blocks denoted as D1, Do, ..., Dy, such that D; € Dy _1y
for alli € [m]. Then, the problem instance Py« o(g),n,» in formulation (2) satisfies that

Vi(DX)=DVf(X), VXeR"™.
Proof. Since the graph G satisfies the conditions in Lemma 1, the gradient V f(X) for problem (2) can be written as

(XX} = X5 (X)) Xk + 2k gyeer XnXT X+ X jyee, (XX = X (X5 )naXj, ifkeS

Vx, f(DX) =2 { :

' Xkyee Xi X7 X+ Xk pyee, KeXT InaX;, ifk ¢S,
where ()4 is the projection onto the matrix space with the zero diagonals. Note that blocks of the transformed
variable DX are D;X; for all ¢ € [m]. First, we consider the change in the i-th block of the gradient function for
1€S:

Vx, f(DX) = 2((D¢XiX;fF D7 - X:(X))")DX; + > DX, XID'D;X;+ (12)
(i,5)€€1
> DXXID;" - X;‘(X;)T)ndDij)-
(4,5)€E2

Using D!'D; =T and X} € D, the first term in (12) can be written as
(D;X:X'DF — X3 (XH 1D X; = DX XX, — X3(X)TDiX;
= Di(XiXT = X} (X)X,

where the second equality is justified by the commutative property of diagonal matrix multiplication. Similarly, the
second term in (12) can be written as

Z D;X,X'D'D;X; =D, Z X XTX;.
(1,7)€&1 (i,5)€€1

For the last term in (12), we use the relation X € D and the fact that (-),q is nonzero only at positions associated
with the nondiagonal entries to obtain

T * * * *
> DX XDy - X5 (X5))waD; X = Y Di(XiX] - X7 (X))T),aD] D;X;
(4,)€E2 (4,)€E2
=D; Y (XX] - X;(X;)")naX;.
(i,5)€E2

Thus, we have
Vx, f(DX) =D;Vx, f(X), VieS.

Now, we consider the change in the i-th block of the gradient function for i € S:

Vx,fOX)=2( Y DXXIDID;X;+ > (D:X;X]D!),.D;X;
(i,5)€& (i,5)€E

=2D; | > XX[Xj+ ) (XiX])uaX; | =DiVx, f(X),
(i,5)€&E (1,4)EE>
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where the second equality holds by a similar argument as in the case of ¢ € S. Consequently, we have
Vx,f(DX) =D, Vx, f(X), VigS.

Combining the two cases, it follows that
Vf(DX) =DV f(X).

O

Lemma 5. Consider the case r = 1. Given an arbitrary point xy € R", let & € R"™ denote a point with the property
that the gradient flow (5) initialized at X converges to X. For every diagonal matrix D € R™*" that satisfies

D? =1, Vi€ |[n],

the gradient flow initialized at Dx will converge to Dx.

Proof. By the results of Lemma 4, we obtain

Vf(Dx) =DVf(x), VxecR" (13)

Hence, we know that the gradient flow initialized with Dx is equal to Dx(t) at time ¢, for all ¢ > 0. This leads to the
conclusion that the new gradient flow will converge to DX. O

Proof of Lemma 2. Since it is already known that the problem (1) has exponentially many global solutions, it remains
to prove that the gradient flow with a radial random initialization will converge to one of the above global solutions
with equal probability, i.e., with probability 2~["/21_ It has been proved in Lee et al. (2016) that the gradient flow will
only converge to local minima if the objective function does not have degenerate saddle points, i.e., the Hessian of
every saddle point has a negative curvature. Since the global solutions of the problem (1) are symmetric with respect
to a radial probability distribution, it follows from Lemma 5 that we only need to prove that the objective function of
this problem does not have degenerate saddle points. Equivalently, we prove that all second-order critical points are
global minima.

Suppose that X is a second-order critical point of the problem (1) that is not a global minimizer. Let M := xx”. Due
to the symmetry of the landscape, we can assume without loss of generality that

T, >0, k=1,...,n.
We define the direction A € R" as
Aopy1 =Tops1— 1, k=1,...,[n/2], Aox =29, k=1,...,|n/2].
Then, Lemma 7 in Ge et al. (2017) implies that
A:VAfIR] A =AAT Vg [(3xT —x"x") ] : AAT = 3(M - M*) : Vg [(xx" —x*x") ] : (M — M)
<(1+0)|[ (AAT) [ = 3(1 = 8)|| (M — M)g |7,

where the last inequality is from the assumption that g(-) satisfies the sparse RIP condition with (§,1). Combining
with the second-order necessary optimality condition, we obtain

L+ 0 (AAT) o IF = 3(1 =0 (M~ M) || (14)
Using the expression
[n/2]

(M= M) |2 = [ (AAT) 2= S [akss - (Faner — 1)+ [R]2Qanss — 1)]
k=1
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the inequality (14) can be written as

[n/2]

A A se -, 2 *
= 7 b (Bansr — 17 + &) @hain — 1] 2 T2 (M = M) |3 (15)
k=1
The above inequality gives that
9 _ 4§ [n/2]
1535 (M =M")g (17 <= Y [4doks1 - (Barrr — 1)° + [X)P (2R2k41 — 1)]
k=1
[n/2]
< - Z = x?] = [n/2] - |%°)7 < (n+ 1)/2 - ¢
<(n+ 1)/2 %N < V2(n + 1)8] (M~ Mg ||p,

where the second inequality is from the assumption that 22511 > 0 and the second last inequality is from Lemma 3.
The above inequality implies that

V2(n+1)8(1 +9)
_M* <
(VM= M) | < Y
Recalling the condition
n>3 6< i,
2n

we obtain .
| (M= M)g e < 5.
* )T

Checking the diagonal entries of M — M* = xx7 — x*(x*)T, we have

|Tok+1 — 1] < k=1,....[n/2],

| =

which gives

. 1
I2k+125, k:].,,[n/Q—l

Applying this condition to inequality (15), the left-hand side of the inequality is non-positive while the right-hand side
is non-negative, which implies that
[ (M =M")g || = 0.

This contradicts the assumption that X is not a global solution. Hence, we have completed the proof that all second-
order critical points of the problem (1) are global minima.

Furthermore, using Lemma 5, we know that the region of attraction (ROA) of each global minimum is symmetrical.
Since the randomly initialized gradient flow converges to a second-order critical point with probability 1 and all
second-order critical points are global minima, the gradient flow with a radial random initialization will converge to
each global minimum with equal probability. O

C.2  Proof of Theorem 4
Proof. In the unperturbed case, the curvature of the Hessian at each global minimum is given by
A:VZf(x): A > (1-0)] (xAT JrAXT)Q %, VA€ER" xecX*,

which has been proved to be positive in Section 2. Therefore, we know that the Hessian at each global solution is
positive definite and global minima are asymptotically stable for the gradient flow. We choose R > 0 to be a large
enough constant such that

P(lxoll < R] =1 —27 /2],
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where the probability is chosen with respect to the initialization distribution. We consider the level set
Lr:= {X eR" ‘ f(X) < CR},

where cg := max{f(x) | ||x]| < R}. Since the function f(x) is continuous and coercive, the level set L is compact
and the gradient flow will not leave Lp if it is initialized inside it. In addition, it holds that

Plxg € Lg] >1—27"/21,

Conditioning on the event that xg € Lr, Lemma 2 implies that the gradient flow will converge to each global minimum
with the same probability. Let X € X* be an arbitrary global minimum and Rx be its ROA of the gradient flow on
Lp. Therefore, Lemma 2 implies that

]P)[Xo € Rx | x0 € £R] = 2_“1/2]

By Theorem 4.17 in Khalil (2002), there exist a smooth positive definite function V' (x) and a continuous positive
definite function T (x) such that every level set of V' (x) is compact and

V(x) = 400, Vx— 0Rx,

dav

(T2 -9af ) < W), ¥xe Rx,
dx

where x — ORx means that the distance between x and OR 4 goes to zero, and ORy denotes the boundary of the

region of attraction of the solution x. We choose a large enough constant M such that

Plxg € Vi | xo € Ry > 1 —271/21

where we define the level set Vy; := {x € R" | V(x) < M}. Since the level set V;; is compact, there exists a small
enough constant € such that
W(X) > €0, Vx € VM

Now, we consider the perturbed case. We denote the new objective function as f (x;m), where ) € R is the perturbation
to the global solution. More explicitly, the objective function is defined as

Flxm) o= ]| pex” — (o )+ ) ) [5.

It has been proved in Section 2 that the global minimum of the perturbed problem is unique up to a sign flip if the
perturbation is sufficiently small and generic, and that there exist 2/"/21 — 2 spurious local minima. Since the gradient
of f (x;7) is a uniformly continuous function of 7 on the compact set V), there exists a small enough > 0 such that
for any generic 7 satisfying ||no|| < r, it holds that

(&

,—Vf(x;n0)> < —60/2 <0, Vx € V.

This implies that the gradient flow on the perturbed problem will not leave V5, and will converge to a local minimum
inside Vy if xg € Vis. Therefore, if the initial point xg is initialized with the given distribution, we have

2
P { lim x(t) € VM] > 9=[n/2] (1 - Q—Wﬂ) > 9=[n/2] (1 - 2—("/2”1) .
t——+o00

By choosing 7 to be the minimum over all points X € X'*, the gradient flow on the perturbed problem will converge to
a spurious minimum with probability at least

(2[n/21 _ 2) . 9—[n/2] (1 _ 2—[n/21+1) —1-0 (2—[n/21> _

Thus, we can conclude that the gradient flow on the perturbed problem will fail with probability at least 1—O(2~/21).
O



