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Abstract— Adversarial attacks on Markov decision processes
(MDPs) and reinforcement learning (RL) have been studied in
the literature in the context of robust learning and adversarial
game theory. In this paper, we introduce a new notion of
adversarial attacks on MDP and RL computation that is
motivated by the emergence of edge computing. The large-
scale computation of MDP and RL models in the form of
value/policy iteration and Q-learning is being offloaded from
agents to distributed servers, giving rise to edge reinforcement
learning. By the inherently distributed nature of edge RL, the
MDP/RL computation can be prone to adversarial attacks in
different forms. We analyze a probabilistic model of adversarial
attacks on the computation of the modified policy iteration
method in which the principal contraction property of the
Bellman operator is undermined with a certain probability in
iterations of the policy evaluation step of the aforementioned
method. This can result in luring the agent to search among sub-
optimal policies without improving the true values of policies.
We prove that under certain conditions, the attacked modified
policy iteration method can still converge to the vicinity of
the optimal policy with high probability if the number of
policy evaluation iterations is larger than a threshold that is
logarithmic in the inverse of a desired precision. We also provide
an upper bound on the number of iterations needed for the
attacked modified policy iteration method to terminate, which
holds with an associated confidence level.

Index Terms— Adversarial Reinforcement Learning; Markov
Decision Process; Contraction-expansion Mapping.

I. INTRODUCTION AND RELATED WORK

Markov Decision Processes and Reinforcement Learning
frameworks are adopted in a myriad of applications spanning
autonomous vehicles [1], [2], healthcare [3], [4], finance
[5], [6], energy [7], and cybersecurity [8]–[11]. Given the
widespread success of such models in the aforementioned
and akin applications, MDP and RL frameworks are potential
targets for adversarial attacks with the goal of compromising
their performance, which can have catastrophic consequences
[12]–[15]. Consequently, adversarial attacks on MDP and
RL frameworks in the form of systematic injected pertur-
bations/disturbances by a destabilizing adversary have been
the focus of numerous researchers in recent years [16]–[20].
A classical approach to overcoming the effect of adversarial
disturbances is to train the MDP and RL models on a set
of randomized environments, such as adding noise to state
observations [21]–[23]. In a related line of research, the
work [24] has used Bayesian optimisation and Bayesian
quadrature to make RL robust to presence of rare events.
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Another popular approach is to formulate training as a two-
player game between the agent and the adversary, which is
referred to as robust adversarial reinforcement learning [25],
[26]. In this paper, we focus on another type of adversarial
attack on the computation of MDP and RL models.

By the emergence of cloud, edge, and fog computing,
the large-scale computation of MDP and RL models is
offloaded from agents to distributed servers, giving rise to
edge reinforcement learning [27]–[30]. The computation of
these models can be in the form of value iteration, policy
iteration, Q-learning, and their variants, which can become
vulnerable to adversarial attacks when deployed on the edge.
For details on adversarial attacks on edge-deployed com-
puting, the reader can refer to [31]–[33] and the references
therein. The convergence of the value/policy iteration and Q-
learning methods relies heavily on the contraction property of
the Bellman operator. As a result, a natural malevolent attack
would be to contaminate the RL computation such that the
contraction property of the Bellman operator is undermined.
The cause of such disturbances can be a malicious adversary
or approximation errors utilized to deal with the intensive RL
computation.

The main sources of computation errors can be approx-
imation errors in computing expectation and maximization,
as well as utilizing parametric feature-based approximation
methods in MDP and RL models [34]. In particular, comput-
ing the expectation can be costly, so certainty equivalence,
Monte Carlo tree search, and adaptive simulation are utilized
to circumvent the issue [35]–[38]. MDP and RL models
also deal with maximizing over spaces with a possibly large
number of elements, so discretization of the space, linear and
nonlinear programming techniques are made use of in order
to approximate the optimization of interest. Furthermore, if
the number of MDP and RL states and actions are relatively
large, tabular methods are substituted with approximation
methods, such as neural network architectures [39]–[42]. All
the above approximation errors can aggregate and act as an
adversary in computation of MDP and RL models.

In this paper, we study a probabilistic model of adversarial
attacks on the computation of the modified policy iteration
method. The modified policy iteration method consists of a
policy evaluation step and a policy improvement step. In the
policy evaluation step, the Bellman operator is applied to
the value function for a finite number of times. Due to the
contraction property of the Bellman operator, the distance
between the value function and the true value function of the
policy of interest contracts by at least a known factor in each
iteration. In the presence of an adversary though, the policy



evaluation step is contaminated with a certain probability
in each iteration such that the contraction of the Bellman
operator is reversed to an expansion up to a constant. This
can result in luring the agent to alternate between sub-optimal
policies without improving the true values of policies. We
prove that for adversarial expansions up to a particular
factor, the attacked modified policy iteration method can
still converge to the vicinity of the optimal policy with high
probability if the number of policy evaluation iterations is
larger than a threshold that is logarithmic in the inverse of
a desired precision. We also provide an upper bound on the
number of iterations needed for the attacked modified policy
iteration method to terminate, which holds with an associated
confidence level. This paper is related to our recent work [43]
that studies the contraction-expansion attack for the value
iteration method, rather than the policy iteration method that
turns out to be a more challenging problem.

The rest of the paper is outlined as follows. In Section
II, the Markov decision process is described and some
preliminaries on the policy iteration method and its modified
version are provided. The adversarial attack on the modified
policy iteration method is formally introduced in Section III,
followed by theoretical results on the convergence of the
modified policy iteration method in the presence of an
adversary. Concluding remarks are given in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a Markov Decision Process (MDP) with the state
space S consisting of a finite number of states, the action
space A with a finite number of actions, and the immediate
reward function r(st, at, wt), where st ∈ S and at ∈ A
are the state of the system and the taken action at time t ∈
{0, 1, 2, . . . }, respectively, and the randomness in the system
is modeled by the sequence of independent and identically
distributed random variables wt for t ∈ {0, 1, 2, . . . }. The
absolute value of the reward function is assumed to be upper
bounded by R > 0. Furthermore, the time-invariant state
transition function h determines the evolution of the system
as st+1 = h(st, at, wt).

Consider a deterministic policy space P . Given a policy
µ : S → A in P mapping states to actions in a deterministic
manner together with a discount factor q ∈ (0, 1), the real-
valued value function V µ : S → R is defined as the expected
discounted sum of rewards over an infinite horizon, i.e.,

V µ(s) = E

[ ∞∑
t=0

qt · r(st, µ(st), wt)
∣∣∣∣s0 = s

]
, ∀s ∈ S

(1)
where the expectation is taken over wt for t ∈ {0, 1, 2, . . . }.
Then, the optimal value function V ∗ is given by

V ∗(s) = max
µ

V µ(s), ∀s ∈ S. (2)

The objective is to find an optimal policy µ∗ in the sense
that V µ

∗
(s) = V ∗(s) for all s ∈ S . It is straightforward to

verify that given the optimal value function V ∗, we have

µ∗(s) = argmax
a∈A

E
[
r(s, a, w)+q·V ∗(h(s, a, w))

]
, ∀s ∈ S,

(3)

where the expectation is taken over the random variable w
that has the same distribution as wt for some t ∈ {0, 1, . . . }.
Equations (1), (2), and (3) lead to the Bellman equation

V ∗(s) = max
a∈A

E
[
r(s, a, w) + q · V ∗(h(s, a, w))

]
∀s ∈ S.

(4)
Utilizing the Banach fixed-point theorem [44], the
Bellman equation has a unique solution since the
Bellman operator T (·) defined as (T (V ))(s) =
maxa∈A E [r(s, a, w) + q · V (h(s, a, w))] for all s ∈ S
is a contraction mapping with respect to the infinity norm,
‖ · ‖∞, so it has a unique fixed point.

There are various methods for finding the optimal policy
such as the value iteration method, the policy iteration
method, Q-learning, multi-step look-ahead, and their vari-
ants. The focus of this work is on the policy iteration
method, which will be described below after presenting some
preliminaries. Given a policy µ, Equation (1) provides a
system of linear equations in terms of V µ(s) for all s ∈ S.
To make this clear, we can rewrite (1) as

V µ(s) = rµ(s) + q
∑
s′∈S

p (s′|s, µ(s)) · V µ(s′), ∀s ∈ S,

(5)
where given that the policy µ is employed at the initial
state s, the term rµ(s) is the expected immediate reward
and p (s′|s, µ(s)) is the probability that the next state is s′.
The terms p (s′|s, µ(s)) for all s, s′ ∈ S are derived from the
transition function h. By appropriately defining the matrix Pµ
using p (s′|s, µ(s)) for all s, s′ ∈ S, Equation (5) in vector
notation is given by

V µ = rµ + q · PµV µ, (6)

where V µ and rµ denote the vectors associated with the
sets {V µ(s)|s ∈ S} and {rµ(s)|s ∈ S}, respectively. The
policy iteration method starts with an arbitrary policy µ0 and
alternates between two steps, namely the policy evaluation
step and the policy improvement step, as follows for n ∈
{0, 1, 2, . . . }:
• Policy Evaluation: Using (6), the value function associ-

ated with policy µn at iteration n is evaluated as

V µn = (I − q · Pµn)−1rµn , (7)

where I is the card(S) × card(S) identity matrix with
card(·) denoting the cardinality of the input space.

• Policy Improvement: Given the value function V µn in
the policy evaluation step, the policy µn can potentially
be improved to another policy µn+1 as

µn+1(s) = argmax
a∈A

(
ra(s) + q(PaV

µn)(s)
)
, ∀s ∈ S,

(8)
where it is guaranteed that V µn+1 ≥ V µn element-
wise. If V µn+1 = V µn , it implies that V µn is the
unique solution of the Bellman equation in (4), so
µ∗ = µn and the iterations stop; otherwise, the policy
evaluation and improvement steps repeat.

Note that the policy evaluation step of the policy iteration
method is computationally costly since it involves calculation
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of the inverse of a matrix. In particular, the computation cost
of the policy evaluation step is as high as O(card(S)3). In
order to reduce the cost per iteration, a modified/optimistic
version of the policy iteration method is proposed in the
literature. Starting with an arbitrary policy µ0 and value
function V µ0

0 , the two steps of the modified policy iteration
method are as follows for n ∈ {0, 1, 2, . . . }:
• Modified Policy Evaluation: A partial policy evaluation

is performed for policy µn by using the simplified value
iteration (which does not involve matrix inversion or
exact computation of the value function):

V µn
k+1 = Bµn(V µn

k ) = rµn + qPµnV
µn
k (9)

for k ∈ {0, 1, . . . ,K − 1}, where K is the number
of times that the Bellman backup operator Bµn(V ) =
rµn + qPµnV is applied. If K goes to infinity, V µn

k

converges to the unique fixed point of the operator,
V µn = Bµn(V µn), by the Banach fixed-point theorem.
In practice, K is chosen as a relatively small number
to reduce the computation cost of policy evaluation.

• Modified Policy Improvement: Given V µn
K , the policy

µn is updated as

µn+1(s) = argmax
a∈A

(ra(s) + q(PaV
µn
K )(s)) , ∀s ∈ S

(10)
and the value function V

µn+1

0 is set correspondingly as

V
µn+1

0 = max
a∈A

(ra(s) + q(PaV
µn
K )(s)) , ∀s ∈ S.

(11)
If ‖V µn+1

0 − V µn
K ‖∞ < ε for a pre-selected precision

ε > 0, the modified policy iteration is terminated; other-
wise, the modified policy evaluation and improvement
steps repeat.

From [45], after the termination of the modified policy
iteration, we have ‖V µn+1

0 − V ∗‖∞ < ε
1−q and ‖V µn+1 −

V ∗‖∞ < 2ε
1−q . In the next section, a model for adversarial

attacks on the computation of the simplified value iteration
step is presented and analyzed.

III. ADVERSARIAL ATTACK MODEL AND ANALYSIS FOR
MODIFIED POLICY ITERATION METHOD

The computation of the modified policy evaluation step is
expensive for large-scale systems. As a result, the workload
is offloaded to the edge and clouds, giving rise to edge
reinforcement learning. The distributed nature of edge rein-
forcement learning brings a host of new adversarial attacks
on the aforementioned computation. Note that the principal
component of the simplified value iteration method that
guarantees improvements in all K iterations, in the sense
that the updated value function becomes closer to the true
value function of the policy of interest by a factor q, is the
contraction property of the Bellman backup operator Bµn .
In particular, for all k ∈ {0, 1, . . . ,K − 1}, we have∥∥Bµn(V µn

k )− V µn
∥∥
∞ =

∥∥V µn
k+1 − V µn

∥∥
∞

≤ q ·
∥∥V µn

k − V µn
∥∥
∞.

(12)

The existing theoretical convergence results on policy/value
iteration methods are mainly based on the contraction prop-
erty of the underlying mappings. As a result, an adversary
may attempt to undermine this essential contraction property
of the Bellman backup operator by contaminating the compu-
tation of the simplified value iteration such that an expansion
up to a factor Q ≥ 1 occurs with probability (w.p.) 1 − p
in the K iterations of the modified policy evaluation step
independently from each other, where p ∈ (0, 1] . In other
words, (9) is modified as

V
µn
k+1 = Bµn(V µn

k )

=


rµn + qPµnV

µn
k , w.p. p

V :
‖V−V µn‖∞

≤Q·‖V µn
k −V

µn‖∞
and ‖V ‖∞≤ R

1−q

, otherwise

(13)

for k ∈ {0, 1, . . . ,K − 1}, where {V µn
k }Kk=0 is the com-

promised stochastic sequence of value functions due to the
adversary and Bµn(·) is the compromised Bellman backup
operator. Note that |r(s, a, w)| ≤ R for all a ∈ A and
s ∈ S, where | · | is the absolute value function, and
therefore ‖V µ‖∞ ≤ R

1−q for all µ ∈ P . Correspondingly, the
adversary causes an expansion up to a factor Q in (13) such
that ‖V µn

k+1‖∞ ≤ R
1−q is satisfied for all µn ∈ P and k ∈

{0, 1, . . . ,K} so that the attack remains indistinguishable.
Equation (13) results in∥∥Bµn(V µn

k )− V µn
∥∥
∞ =

∥∥V µn
k+1 − V µn

∥∥
∞

≤

{
q · ‖V µn

k − V µn‖∞, w.p. p
Q · ‖V µn

k − V µn‖∞, otherwise
,

(14)

for k ∈ {0, 1, . . . ,K − 1}. We name the compromised oper-
ator Bµn(·) a probabilistic contraction-expansion mapping.

It is not known whether the modified policy iteration
method converges to a close vicinity of the value function of
the optimal policy under an adversarial attack. In particular,
even with infinite iterations of the simplified value itera-
tion, the Banach fixed-point theorem cannot be utilized to
guarantee convergence of the compromised sequence {V µn

k }
to {V µn} since the compromised operator Bµn(·) is not a
contraction mapping. In this work, we consider a slightly
modified variant of the policy iteration method subject to an
adversary for which we develop theoretical results. Starting
with an arbitrary policy µ0 and a value function V

µ0

0 , the
two steps of the modified policy iteration in the presence of
an adversary are as follows for n ∈ {0, 1, 2, . . . }:
• Modified Policy Evaluation in the Presence of an Adver-

sary: The partial policy evaluation is contaminated by
an adversary such that the contaminated stochastic value
function sequence {V µn

k }Kk=1 is generated according to
(13) with the property in (14).

• Modified Policy Improvement: Given V
µn
K , the policy

µn+1 is derived in the same way as (10) and the
value function V

µn+1

0 is set accordingly as in (11). If
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‖V µn+1

0 − V
µn
K ‖∞ < ε, the loop is terminated; other-

wise, the modified policy evaluation and improvement
steps repeat.

In the following, we present two theorems characterizing the
condition under which the modified policy iteration method
converges to the vicinity of the optimal policy in the presence
of an adversary with an associated confidence level. We also
provide an upper bound on the number of iterations needed
by the contaminated modified policy iteration method to
guarantee a user-defined confidence level. Prior to developing
the technical results, we define a parameter δ that captures
the inherent difficulty of the Markov decision process of
interest. Let

δ = min
µ∈P,s∈S

(
max
a∈A

(ra(s) + q(PaV
µ)(s))

− max
a∈A\Aµ(s)

(ra(s) + q(PaV
µ)(s))

)
,

(15)

where Aµ(s) = argmaxa∈A (ra(s) + q(PaV
µ)(s)) for all

s ∈ S.
Theorem 1: Consider the Markov Decision Process

(S,A, r, p, q) and the contaminated policy iteration method
whose policy evaluation step is according to the probabilistic
contraction-expansion mapping in (13) with the expansion
factor Q such that p · log(q) + (1− p) · log(Q) < 0. Let K,
the number of iterations in the contaminated modified policy
evaluation step, satisfy

K ≥ max

{
log
(
1
a

)
·
(
log
(
Q
q

))2
2
(
L+ p · log(q) + (1− p) · log(Q)

)2 ,
log

(
2R

(1−q)·min{ δ2q ,
ε

1+q }

)
L

}
,

(16)

where L ∈
(
0,−p · log(q)− (1−p) · log(Q)

)
, a ∈ (0, 1], and

δ is defined in (15). Let n denote the iteration at which the
contaminated policy iteration method terminates and µn+1

denote the associated policy. Then, ‖V µn+1

0 −V ∗‖∞ < 2ε
1−q

and ‖V µn+1 − V ∗‖∞ < 4ε
1−q with the confidence level

(1− a).
Proof: Given the definition of the probabilistic

contraction-expansion mapping Bµn(·) in (13) and its prop-
erty in (14), we have∥∥V µn

K − V µn
∥∥
∞ =

∥∥Bµn(V µn
K−1)− V µn

∥∥
∞

≤BK ·
∥∥V µn

K−1 − V µn
∥∥
∞ =

∥∥Bµn(V µn
K−1)− V µn

∥∥
∞

≤BK ·BK−1 ·
∥∥V µn

K−2 − V µn
∥∥
∞

≤
K∏
i=1

Bi ·
∥∥V µn

0 − V µn
∥∥
∞,

(17)
where the independent and identically distributed random
variables Bi for i ∈ {1, 2, . . . ,K} have the distribution

Bi =

{
q, w.p. p

Q, otherwise
. (18)

Taking logarithm of both sides of (17) leads to

log
(∥∥V µn

K − V µn
∥∥
∞

)
≤

K∑
i=1

log (Bi) + log
(∥∥V µn

0 − V µn
∥∥
∞

)
≤K · SK + log

(∥∥V µn
0 − V µn

∥∥
∞

)
,

(19)

where the random variable SK is defined as SK =∑K
i=1 log(Bi)

K . Note that random variables log(Bi) for
i ∈ {1, 2, . . . ,K} are strictly restricted to the interval
[log(q), log(Q)] and using the law of the unconscious statis-
tician (LOTUS), we have E[log(Bi)] = p · log(q) + (1− p) ·
log(Q). As a result, it results from Hoeffding’s inequality
that

P
{
SK − p · log(q)− (1− p) · log(Q) < L

}
>1− exp

(
− 2KL

2

(log(Q)− log(q))2

)
,

(20)

where L > 0 and P{·} takes the probability of the input
events. Combining (19) and (20) gives rise to

P
{
log
(∥∥V µn

K − V µn
∥∥
∞

)
< −KL+ log

(∥∥V µn
0 − V µn

∥∥
∞

)}
> 1− exp

(
−
2K
(
L+ p · log(q) + (1− p) · log(Q)

)2
(log(Q)− log(q))2

)
,

(21)
where L = −L− p · log(q)− (1− p) · log(Q). Taking expo-
nential of both sides of the inequality inside the probability
in Equation (21) results in

P
{∥∥V µn

K − V µn
∥∥
∞ <

∥∥V µn
0 − V µn

∥∥
∞ · exp(−KL)

}
>1− exp

(
−
2K
(
L+ p · log(q) + (1− p) · log(Q)

)2
(log(Q)− log(q))2

)
.

(22)
As a result, for δ defined in (15) and a ∈ (0, 1], we have

P
{∥∥V µn

K − V µn
∥∥
∞ < min

{ δ

2q
,

ε

1 + q

}}
> 1− a (23)

if K satisfies the two inequalities

exp

(
− 2K

(
L+p·log(q)+(1−p)·log(Q)

)2
(log(Q)−log(q))2

)
≤ a, (24a)∥∥V µn

0 − V µn
∥∥
∞ · exp(−KL) ≤ min

{
δ
2q ,

ε
1+q

}
. (24b)

Assume that ‖V µn
0 − V µn‖∞ 6= 0; otherwise, V

µn
K =

V
µn
0 = V µn is used for policy improvement, resulting

in the policy improvement step being unaffected by the
adversary. If p · log(q) + (1 − p) · log(Q) < 0 and L ∈(
0,−p · log(q)− (1− p) · log(Q)

)
, then the two inequalities

4



in (24a) and (24b) are satisfied when

K ≥ max

{
log
(
1
a

)
·
(
log
(
Q
q

))2
2
(
L+ p · log(q) + (1− p) · log(Q)

)2 ,
log

(
‖V µn

0 −V
µn‖∞

min{ δ2q ,
ε

1+q }

)
L

}
.

(25)

Given that ‖V µn
0 −V µn‖∞ ≤ ‖V

µn
0 ‖∞+‖V µn‖∞ ≤ 2R

1−q ,
the second argument of the max function in (25) can be

written as
log(2R/((1−q)·min{ δ2q ,

ε
1+q }))

L . Consequently, if the
simplified value iteration method in the policy evaluation step
is performed for the number of times determined in (25), we
obtain the following relations with the associated confidence
level 1− a for all s ∈ S:

max
a∈A

∣∣(ra(s) + q(PaV
µn
K )(s)

)
−
(
ra(s) + q(PaV

µn)(s)
)∣∣

=max
a∈A

∣∣q((PaV µn
K )(s)− (PaV

µn)(s)
)∣∣

≤ q ·
∥∥Pa(V µn

K − V µn
)∥∥
∞ ≤ q ·

∥∥V µn
K − V µn

∥∥
∞

(a)

≤ q ·min
{ δ

2q
,

ε

1 + q

}
≤ δ

2
,

(26)
where (a) holds true with the associated confidence level
given in (23). As a result, leveraging the assumption in
(15), the policy improvement step is unaffected by the
adversary with an associated confidence level if K satisfies
the inequality in (25).

If the condition ‖V µn+1

0 − V
µn
K ‖∞ < ε is satisfied at

iteration n, with the confidence level (1− a), we have

‖V µn+1

0 − V µn‖∞
=
∥∥V µn+1

0 − V
µn
K + V

µn
K − V µn

∥∥
∞

(a)

≤
∥∥V µn+1

0 − V
µn
K ‖∞ + ‖V µn

K − V µn
∥∥
∞

(b)

≤ε+min
{ δ

2q
,

ε

1 + q

}
< 2ε,

(27)

where (a) follows from the triangular inequality and (b) is
due to the termination condition of the modified policy itera-
tion and (23). In light of [45], Since ‖V µn+1

0 −V µn‖∞ < 2ε

with probability at least (1−a), we have ‖V µn+1

0 −V ∗‖∞ <
2ε
1−q and ‖V µn+1 −V ∗‖∞ < 4ε

1−q with the same confidence
level.

Theorem 2: Given a natural number N and under the
assumptions of Theorem 1, the policy iteration method in the
absence of an adversary terminates in at most N iterations
over all the choices of µ0, then the number of iterations of
the contaminated modified policy iteration Na satisfies

P
{
Na <

(1− a)−N − 1

a
+ k

}

≥1−
a · (1− a)−N ·N3 +

2((1−a)−N−1)
2

a2

k2
,

(28)

where k is a natural number.
Proof: In Theorem 1, it is proved that upon the

termination of the modified policy iteration method in the
presence of an adversary, the obtained value function is in
the vicinity of the optimal value function if the number of
iterations of the policy evaluation is large enough. In the
following, we present a confidence interval for the number
of iterations in the modified policy iteration method with an
associated confidence level in the presence of the adversary.
Assume that the maximum number of policy improvement
steps in the policy iteration method in the absence of the
adversary is N over all the choices of µ0. On the other
hand, given (16) in the presence of the adversary, we have
P
{
‖V µn

K − V µn‖∞ < min{ δ2q ,
ε

1+q}
}
> 1 − a. Due to

(15), this inequality implies that iteration n of the modified
policy iteration in the presence of the adversary results
in a policy improvement that is the same as the policy
improvement applied to µn in the absence of the adversary
with the associated confidence level. As a result, if the
event

{
‖V µn

K − V µn‖∞ < min{ δ2q ,
ε

1+q}
}

occurs in N
consecutive iterations, n ∈ {na−N+1, na−N+2, . . . , na},
the modified policy iteration in the presence of the adversary
ends up with the optimal policy µna = µ∗. Furthermore,

‖V µna+1

0 − V
µna
K ‖∞

≤ ‖V µna+1

0 − V ∗‖∞ + ‖V ∗ − V
µna
K ‖∞

< q ·min{ δ
2q
,

ε

1 + q
}+min{ δ

2q
,

ε

1 + q
} < ε.

(29)

As a result, the termination condition of the modified policy
iteration in the presence of the adversary is satisfied if the
aforementioned event occurs in N consecutive iterations.

In order to find an upper bound on the expectation and
variance of the number of iterations for the modified policy
iteration in the presence of an adversary, consider a Bernoulli
process {X1, X2, X3, . . . } with E[Xi] = 1 − a for all
i ∈ {1, 2, . . . }. Define the random variable Na as the
first time i such that Xi = Xi−1 = · · · = Xi−N+1 =
1. Then, the expectation and variance of the number of
iterations for modified policy iteration in the presence of an
adversary are upper bounded by E[Na] and E[N2

a ] − N2,
respectively. Note that the set of sequences of possible
outcomes for the Bernoulli process is partitioned by events
E1, E2, . . . , EN+1, where E1 = {X1 = 0}, E2 = {X1 =
1, X2 = 0}, E3 = {X1 = 1, X2 = 1, X3 = 0}, . . . ,
EN = {X1 = 1, . . . , XN−1 = 1, XN = 0}, and EN+1 =
{X1 = 1, . . . , XN−1 = 1, XN = 1}. Using the law of total
probability, we obtain that

E[Na] =E[Na|E1] · P{E1}+ E[Na|E2] · P{E2}
+ · · ·+ E[Na|EN ] · P{EN}+N · P{EN+1}

(a)
=E[N1

a + 1] · P{E1}+ E[N2
a + 2] · P{E2}

+ · · ·+ E[NN
a +N |EN ] · P{EN}+N · P{EN+1}

=a · (E[Na] + 1) + a · (1− a) · (E[Na] + 2) + · · ·+
a · (1− a)N−1 · (E[Na] +N) + (1− a)N ·N
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(b)
=
(
1− (1− a)N

)
· E[Na] +

1− (1− a)N

a
, (30)

where (a) holds because conditioned on Ei occurring for i ∈
{1, . . . , N}, the first i components of the Bernoulli process
do not contribute to the observation of N consecutive ones
and the excess number of trials to observe N consecutive
ones, denoted by N i

a, has the same distribution as Na,
and (b) follows from the geometric series summation and
differentiation of the geometric series summation formulas.
By solving (30) for E[Na], we have

E[Na] =
(1− a)−N − 1

a
. (31)

The second moment of Na can also be computed as

E[N2
a ] = a · E[(Na + 1)2] + a · (1− a) · E[(Na + 2)2]

+ · · ·+ a · (1− a)N−1 · E[(Na +N)2] + (1− a)N ·N2.
(32)

The second moment of Na can be derived by solving (32),
and then be used to upper bound Var (Na) as

Var (Na) =N
2 + a · (1− a)−N ·

N∑
i=1

(
i2 · (1− a)i−1

)
+ 2a·E[Na]·

N∑
i=1

(
i·(1− a)i−N−1

)
− (E[Na])2

≤ a · (1− a)−N ·N3 +
2
(
(1− a)−N − 1

)2
a2

.

(33)
Using Chebyshev’s inequality together with (31) and (33),
we have

P
{
Na <

(1− a)−N − 1

a
+ k

}

≥1−
a · (1− a)−N ·N3 +

2((1−a)−N−1)
2

a2

k2
.

(34)

IV. NUMERICAL EXAMPLE

To illustrates our results on robustness against adversarial
attacks, consider the MDP illustrated in Figure 1. The set of
states includes the feasible positions in the grid. The agent
can take any of the four actions Up, Down, Right, and Left
in each of the non-terminal states. By taking an action, the
agent moves one block toward the desired action 90% of the
time, or moves one block to one of the remaining directions
uniformly at random 10% of the time. The agent bounces
back to its original state before taking an action if movement
in the direction described above is not possible due to the
walls marked with diagonal strips or exiting the environment.
The agent is incurred a cost of 0.02 by each move, and
there are two terminal states in which the agent receives an
immediate reward of +1 or −1. Therefore, the maximum
reward is bounded by R = 1. We consider the special case
where the number of immediate blocks is s = 8. For the
parameters of the problem, we set p = 0.9, q = 0.9, and Q =
1.5. Those parameters satisfy the relation (1 − p) log(Q) +

+1

-1

(1, 1)

s number of intermediate blocks

Up:

90%

5%5%

Down:

90%

5%5%

90%

5%

5%

5%

5%

Right:

Left:

90%

Actions

(1, 2)

(1, 3)

(2, 1)

(2, 3)

(s+1, 1)

(s+1, 3)

(s+2, 1)

(s+2, 3)

(s+3, 1)

(s+2, 2)

Fig. 1. Settings of the MDP Problem.
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Fig. 2. Convergence of value function when there are 8 intermediate blocks.
The difference in value functions is measured in ‖·‖∞. The solid line shows
the median and the 90% confidence region is shaded.

p log(q) ≈ −0.054 < 0. To implement the compromised
Bellman operator in (13), we add uniform noise to the value
functions with probability 1− p. The noises are re-scaled so
that the inequality in (13) is satisfied. We let the number of
policy evaluation steps be K = 4.

Figure 2 and Figure 3 plot the difference of value function
and policy against the number of iterations for the case
with 8 intermediate blocks. The difference between the value
function and the optimal value function is measured in ‖·‖∞,
which is the maximum difference in value function across
all states. The difference in policy is measured with ‖ · ‖0,
which counts the difference of two policies’ actions across all
states. The experiment is repeated 100 times. The solid line
shows the median (both for value function and policy) and
the 90% confidence region is shaded. The figure shows that
the policies often converge quickly, even though the errors
persist in the value function due to the compromised Bellman
operator.

Figure 4 and Figure 5 illustrate the number of iterations
necessary for the value function and the policy to converge.
The experiment is repeated 100 times. The solid line shows
the median and the 90% confidence region is shaded. The
existence of adversarial attacks can dramatically change
the number of iterations necessary for convergence, and
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Fig. 3. Convergence of policy when there are 8 intermediate blocks. The
difference in policy is measured with ‖ · ‖0, which counts the difference of
two policies’ actions across all states. The solid line shows the median and
the 90% confidence region is shaded.
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Fig. 4. The number of iterations for the value function to reach ε = 0.01
neighborhood of the optimal value function. The difference between the
value function and the optimal value function is measured in ‖ · ‖∞. The
solid line shows the median and the 90% confidence region is shaded.

convergence can be slowed further as the number of states
increases.

V. CONCLUSION AND FUTURE WORK

Motivated by the emerging challenges of edge comput-
ing, this paper studies the adversarial attack on the policy
evaluation steps of the modified policy iteration algorithm.
The attack is modeled by undermining the contraction prop-
erty of the Bellman operator. As shown in our numerical
experiments, the attack can render the convergence of policy
evaluation highly uncertain. We prove convergence to the
vicinity of the optimal policy with high probability with
a suitable number of modified policy evaluation iterations.
Under a pre-specified confidence level, we provide an upper
bound on the number of iterations needed for the attacked
modified policy iteration method to terminate. Future work
includes extending the attack model to model-free reinforce-
ment learning algorithms.
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Fig. 5. The number of iterations for the policy to converge to the optimal
policy. The difference in policy is measured with ‖ · ‖0, which counts the
difference of two policies’ actions across all states. The solid line shows
the median and the 90% confidence region is shaded.
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