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Abstract

This work studies the matrix sensing (MS) prob-
lem through the lens of the Restricted Isometry
Property (RIP). It has been shown in several re-
cent papers that two different techniques of con-
vex relaxations and local search methods for the
MS problem both require the RIP constant to be
less than 0.5 while most real-world problems have
their RIPs close to 1. The existing literature guar-
antees a small RIP constant only for sensing op-
erators having an i.i.d. Gaussian distribution, and
it is well-known that the MS problem could have
a complicated landscape when the RIP is greater
than 0.5. In this work, we address this issue and
improve the optimization landscape by develop-
ing two results. First, we show that any sens-
ing operator with a model not too distant from
i.i.d. Gaussian has a slightly higher RIP than i.i.d.
Gaussian. Second, we show that if the sensing op-
erator has an arbitrary distribution, it can be mod-
ified in such a way that the resulting operator will
act as a perturbed Gaussian with a lower RIP con-
stant. Our approach is a preconditioning/mixing
technique that replaces each sensing matrix with
a weighted sum of all sensing matrices. This ap-
proach does not require taking new measurements
(which is not possible in many applications) and
relies only on mixing existing measurements. We
numerically demonstrate that the RIP constants
for different distributions can be reduced from
almost 1 to less than 0.5 via the preconditioning
of the sensing operator.

1. Introduction
In this paper, we focus on an important class of problems
in non-convex optimization and machine learning, named
matrix sensing. The goal of the matrix sensing problem is to
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recover a low-rank matrix from a set of limited linear mea-
surements. To be more specific, given m sensing matrices
A1, . . . , Am ∈ Rn×n, we define the linear sensing oper-
ator A as A(M) = [⟨A1,M⟩, . . . , ⟨Am,M⟩]T for all M .
The matrix sensing problem is formulated as the following
non-convex optimization problem:

min
M∈Rn×n

1

2
∥A(M)−b∥2 subject to rank(M) = r. (1)

where b = A(M∗) is the observed vector, M∗ is the un-
known ground truth matrix, and r denotes the rank of M∗.
Since the matrix sensing problem for an arbitrary solution
M∗ (being a rectangular matrix or a square sign indefi-
nite matrix) can be converted to an expanded matrix sens-
ing problem whose solution is a symmetric and positive
semidefinite matrix (Zhang et al., 2021), we assume that
M∗ is positive semidefinite and symmetric without loss of
generality.

The matrix sensing problem has a wide range of real-world
applications in signal processing and machine learning, such
as the training of neural networks (Li et al., 2018), recon-
struction of images and videos (Fowler et al., 2012; Bara-
niuk et al., 2017), wireless sensor network (Razzaque et al.,
2013), and quantum computing (Shabani et al., 2011; Ayan-
zadeh et al., 2020). It has attracted significant attention in
recent years as it sheds light on a board range of non-convex
optimization problems, serving as a theoretical guarantee in
deep learning theory (Li et al., 2018; Scarlett et al., 2022).
The complexity of the matrix sensing problem lies in the
low-rank structure that creates spurious solutions, which
makes local search algorithms with a random initialization
become stuck at a wrong second-order critical point rather
than the ground truth (Chen et al., 2019).

To overcome the above-mentioned non-convexity, one line
of research relaxes this problem into a convex semi-definite
program (SDP) (Candès & Recht, 2012; Recht et al., 2010),
by replacing the rank constraint with a nuclear norm con-
straint. However, solving the SDP relaxation requires a
large amount of calculations. Another popular way to deal
with the low-rank constraint is the Burer-Monteiro (BM)
factorization (Burer & Monteiro, 2003), which explicitly
factorizes the low-rank matrix M into the form M = XX⊤

where X ∈ Rn×r (note that this factorization uses the fact
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that M∗ is positive definite and symmetric). Hence, the
matrix sensing problem can be formulated as

min
X∈Rn×r

1

2
∥A(XX⊤)− b∥2 (2)

With this natural reparametrization, the number of param-
eters reduces from O(n2) in M to O(nr) in X , where r is
usually close to 1. Problem (2) is unconstrained, and there-
fore simple first-order methods, such as Gradient Descent
(GD), can be applied to solve the problem. However, the
factorized problem (2) is highly non-convex and NP-hard
to solve. There have been extensive studies on the optimiza-
tion landscape of the matrix sensing problem (Candes &
Tao, 2010; Candès & Recht, 2012; Recht et al., 2010; Ge
et al., 2017; Zhang et al., 2018), and it turns out that the
success of both SDP relaxation and local search methods
relies on a condition named Restricted Isometry Property
(RIP), which is defined below.

Definition 1.1 (RIP (Candès & Recht, 2012)). Given a
natural number s, the linear map A : Rn×n 7→ Rm is said
to satisfy the Restricted Isometry Property (RIP) condition
of rank s for a constant δ, denoted as δs ∈ [0, 1), if the
inequality

(1− δs) ∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δs) ∥M∥2F (3)

holds for all matrices M ∈ Rn×n satisfying rank(M) ≤ s.

Intuitively, the RIP is a condition guaranteeing that linear
measurements approximately preserve the Euclidean geom-
etry of low-rank matrices. Specifically, a sensing operator
satisfies the RIP if it acts nearly as an isometry on the set of
low-rank matrices, ensuring that the distances between these
matrices are preserved after measurement. When δs = 0,
solving the matrix sensing problem is trivial, while δs close
to 1 implies a complicated landscape for the matrix sensing
problem where the number of local minima could be expo-
nential (Yalçın et al., 2023). Note that the RIP constant is
not unique. If δs is an RIP constant, every number greater
than δs is also an RIP constant.

The RIP condition is crucial for the success of various re-
covery algorithms, as it underpins their ability to reconstruct
the original matrix accurately from compressed measure-
ments. Started by the convex relaxation approach, (Recht
et al., 2010) and (Candès & Recht, 2012) demonstrated that
when the RIP constant satisfies the inequality δ5r ≤ 1/10,
the SDP relaxation is exact, allowing for the exact recov-
ery of the ground truth M∗. Later, (Bhojanapalli et al.,
2016) examined the factorized problem (2) and showed that
δ2r ≤ 1/5 suffices to guarantee that all second-order critical
points for (2) correspond to the ground truth solution. (Zhu
et al., 2018) further established that δ4r ≤ 1/5 is sufficient
for the global recovery of the ground truth via a local search
method. The recent paper (Zhang et al., 2021) showed that

δ2r < 1/2 is the tightest bound for guaranteeing such global
properties.

Through the lens of RIP, one can guarantee benign opti-
mization landscape and convergence to global optimality,
solving the matrix sensing problem either using convex re-
laxations such as SDP or using non-convex methods such
as the BM factorization with a random initialization. Fur-
thermore, when the RIP constant is small, local search has
a linear convergence rate for the factorized problem (2)
(Zheng & Lafferty, 2015; Lee & Stöger, 2023). Moreover,
strict-saddle property holds if δ2r < 1/2 , and this result
was developed for general low-rank optimization problems
beyond matrix sensing (Bi et al., 2022). While the bound
δ2r < 1/2 is sharp , it is not satisfied for most real-world
problems except in special cases such as a class of isometric
distributions.

Definition 1.2 (Nearly isometrically distributed (Recht et al.,
2010)). Let A be a random variable that takes values in
linear maps from Rn×n to Rm. We say that A is nearly
isometrically distributed if for all X ∈ Rn×n it holds that

E
[
∥A(X)∥2

]
= ∥X∥2F

and for all 0 < ϵ < 1 we have

P
(∣∣∥A(X)∥2 − ∥X∥2F

∣∣ ≥ ϵ∥X∥2F
)

≤ 2 exp
(
−m

2

(
ϵ2/2− ϵ3/3

))
and for all t > 0 we have

P

(
sup
X ̸=0

∥A(X)∥
∥X∥F

≥ 1 +

√
n2

m
+ t

)
≤ exp

(
−γmt2

)
for some constant γ > 0.

Given 0 < δ < 1 and 1 ≤ r ≤ m, it turns out that A is a
nearly isometric random variable, with high probability, i.e.,
δr(A) ≤ δ if m = Θ(rn/δ2) (Recht et al., 2010; Candès &
Plan, 2011). Independent and identically distributed (i.i.d.)
Gaussian entries with variance 1/m are nearly isometrically
distributed, and the literature of matrix sensing has heavily
relied on the i.i.d. and Gaussian assumptions to justify the
use of RIP. However, in practice we often have no prior
knowledge of the distribution of the sensing matrices, and
in addition the independence assumption is hardly satisfied.

There are many applications for which it is not possible
to collect measurements whose sensing operators are i.i.d.
Gaussian or to increase the number of measurements to
reduce the RIP. An example is the power systems state es-
timation (PSSE) problem where the goal is to learn the
electrical signals of a power grid from sensory data. The
number of measurements cannot go beyond the number of
lines and nodes in the network and each measurement ma-
trix has a structure conforming with the network topology.
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Motivated by such applications for which there is no flexi-
bility in collecting measurements with favorable properties,
the objective of this paper is to study how a given set of
measurements can be manipulated to improve the RIP. To
this end, we first study the case where the problem is not
Gaussian due to small perturbations, and we derive an upper
bound on the change to the RIP constant in terms of the
distance of the distribution of the given operator from a
Gaussian distribution. Next, we study whether an operator
with an arbitrary distribution can be modified so that it acts
as a perturbed Gaussian for which the above result on its
RIP constant can be applied. For the case where the true
distribution deviates significantly from normal distributions,
we introduce a preconditioning algorithm that replaces each
sensing matrix with a weighted sum of all sensing matrices.
We discuss how this technique makes the resulting operator
behave similarly to perturbed Gaussian distributions, lead-
ing to a reduction in the RIP constant and improving the
optimization landscape. Note that our preconditioing tech-
nique mixes existing measurements and does not require
obtaining new measurements.

The paper is organized as follows. In Section 2, we illustrate
the high-level idea of this work through a practical applica-
tion. In Section 3, we demonstrate the robustness of the RIP
constant to small perturbations to the sensing operator. We
show that nearly-isometric measurements under a modest
perturbation continue to satisfy the RIP, thereby ensuring
the reliable recovery of low-rank matrices. This finding is
significant as it broadens the applicability of matrix sensing
techniques to real-world scenarios by relaxing the restrictive
Gaussian assumption.

Furthermore, we investigate the role of orthogonalization in
enhancing the optimization landscape of the matrix sensing
problem. In Section 4, we show that the orthogonalization of
the sensing matrices can improve the RIP constant, making
the landscape more favorable for efficient recovery algo-
rithms. To achieve this, we propose a novel preconditioning
method that optimizes the mixing of the measurements to
reduce the RIP constant. We provide a theoretical analysis
for the proposed method, and empirically show that it is
highly effective on various types of measurement distribu-
tions, including Poisson, uniform, and correlated Gaussian
distributions. In particular, we demonstrate that the original
RIP constants for these distributions could be close to 1 for
which the SDP relaxation and local search methods would
fail to work, while the preconditioning technique reduces
the RIP to less than 0.5 so that both of these optimization
methods can correctly solve the modified problem.

By addressing the above two aspects, our work contributes
to a deeper understanding of the matrix sensing problem
with non-Gaussian models. We propose practical solutions
to enhance recovery performance, paving the way for more

robust and efficient applications in matrix sensing and be-
yond.

Definitions and Notations The symbol ∥v∥ denotes the
Euclidean norm of a vector v. ∥X∥F denotes the Frobe-
nius norm of a matrix X . ∥X∥M = maxi,j |Xij | de-
notes the largest absolute entry of a matrix X . ∥A∥M =
maxk maxi,j |Ak

ij | denotes the largest absolute entry of a
sensing operatorA, where Aij

k denotes the (i, j) entry of the
matrix Ak. σi(X) denotes the i-th largest singular value of
a matrix X . λi(X) denotes the i-th largest eigenvalue of a
symmetric matrix X . ⟨A,B⟩ is defined as the inner product
tr
(
ATB

)
for two matrices A and B of the same size, where

tr stands for trace. E(x) denotes the expectation of a ran-
dom variable x. P(E) denotes the probability of en event
E. f = Θ(g) denotes that there exist constants c1, c2 > 0
such that c1 ∗ g ≤ f ≤ c2 ∗ g. f = O(g) denotes that there
exists a constant c > 0 such that f ≤ c ∗ g. For a matrix
X, vec(X) is the usual vectorization operation by stacking
the columns of the matrix X into a vector and mat(·) is
the inverse operator. VStack(·) denotes concatenating the
rows of a matrix into a vector. [n] denotes the integer set
{1, . . . , n}. δs(A) denotes the smallest value for δs that
satisfies the RIP condition of rank s for the sensing operator
A. The matrix orthogonality and the orthonormal basis are
defined under the standard inner product ⟨·, ·⟩.

2. Illustrative Example
We illustrate the main idea of this work through a real-world
application. The low-rank matrix sensing problem studied in
this paper naturally appears in power systems, where PSSE
is solved every 5 minutes by power system operators (Jin
et al., 2020). A power system is a graph with n nodes and
a set of edges E . Each node of the system has a voltage
parameter xi to be learned. Each measurement j of the
network is in the form of

bj =
∑

i:(j,i)∈E

xj(xj − xi)

zji

where zij is a known line parameter and xj(xj−xi)
zji

is the
power flown over line (j, i). The right-hand side of the
measurement j can be written as

bj = ⟨Aj , xx
T ⟩

for some matrix Ai that depends on the parameters zji
and the topology of the graph (note that x is the vector
of all nodal voltages). We cannot change any measurement
model Aj directly. Changing an entry of Aj means remov-
ing/adding lines to a physical power grid or changing the
reactances of the transmission lines on the streets, which is
impossible (the goal is to learn the voltages from the data
given by the sensors rather than changing the infrastructure).
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The existing methods requiring Aj to be Gaussian are not
applicable at all since Aj is heavily structured for power
systems. We propose the following idea:

• We start with the sensors 1, 2, ...,m returning the mea-
surements b1, ..., bn.

• We design some coefficient P11, ..., P1m, and create
a mixed measurement P11b1 + · · · + P1mbm. We re-
place measurement 1 with this new combined mea-
surement. Then, the new measurement can be written
as ⟨Ã1, xx

T ⟩, where Ã1 is equal to P11A1 + · · · +
P1mAm.

• Note that the mixing idea cannot generate arbitrary
values for Ã1. For example, if there is no physical
line between nodes 2 and 3, then the (2,3) entry of all
matrices A1, ..., Am are zero and so the (2,3) entry of
Ã1 is also zero no matter how we select the coefficients
P1j’s.

• We then proceed and replace measurement 2 with a new
mixed measurement P21b1+· · ·+P2mbm. We proceed
with the replacement of all measurements similarly.

• Using this idea, we exploit the existing measure-
ments/sensors, and do not require new measurements
that are not physically infeasible. The question is: How
can Pij’s be designed so that the process of learning x
becomes simpler?

To explain the above idea in a general context, the above pre-
conditioning technique to be studied in this paper allows us
to make linear combinations of the original sensing matrices,
and we cannot change A to arbitrary Ã such as a Gaussian
i.i.d. sensing operator. We use mixed measurements to
obtain

Ãi =

m∑
j=1

PijAj , ∀i ∈ {1, ...,m}

The new sensing operator can only be in the linear span
space of the original sensing matrices.

3. Perturbed Isometrical distribution
In this section, we investigate the behavior of RIP under
deviations from the standard i.i.d. Gaussian assumption.
The existing literature establishes that if RIP is below 0.5,
the Matrix Sensing problem is easy, and for i.i.d. Gaussian
samples, RIP can decrease below 0.5 as the sample size
grows. However, for non-Gaussian distributions, RIP may
remain above 0.5 even with infinitely many samples, as
RIP may not vary smoothly with changes in measurement
distributions. We aim to show that if the deviation from
Gaussian is modest, increasing the number of samples can
still reduce RIP below 0.5, aligning it with Gaussian-like

behavior. This is significant because for distributions far
from Gaussian, RIP may remain large despite an infinite
number of samples, but our result shows that moderate
deviations still allow for improvement. We prove that given
an arbitrary sensing operatorA, ifA is perturbed via another
operator that is bounded by ε, then its RIP constant will be
increased by at most O(mn2ε).

Theorem 3.1. Consider an arbitrary operator A with the
RIP constant δs ∈ [0, 1). Let ε be a nonnegative constant
such that ε < 1−δs

2mn2∥A∥∞
. For every bounded perturbation

operator N with ∥N∥∞ ≤ ε, the perturbed sensing oper-
ator A +N satisfies the RIP condition of rank s with the
constant δs+(4mn2∥A∥∞ε+mn2ε2(1−δ))/(2+mn2ε2).

See Appendix A for proof.

IfN is chosen as−A, then the RIP condition is not satisfied.
Similarly, if N1, . . . , Nm are chosen in a way that the (i, j)
entries of all matrices A1 +N1, . . . , Am +Nm are zero for
some indices i and j, then the RIP condition again no loner
holds. For these reasons, the existence of an upper bound
on ε in Theorem 3.1 is necessary.
Remark 3.2. With series expansion at ε = 0, the RIP con-
stant derived in Theorem 3.1 can be approximated by δs +
mn2

(
2∥A∥∞ε+ 1

2 (1− δs)ε
2 − ∥A∥∞mn2ε3 +O(ε4)

)
.

On the other hand, since A satisfies the RIP con-
dition with the constant δs, the term ∥A∥∞ can be
bounded by choosing a matrix X whose entry at
the position of the largest element of A is 1 and
whose remaining entries are 0. Hence, ∥X∥2F = 1

and ∥A∥2∞ ≤
∑m

i=1 ⟨Ai, X⟩2 ⩽ (1 + δs) ∥X∥2F ,
indicating that ∥A∥∞ ≤

√
1 + δs. Thus, the RIP

condition for A + N can be upper bounded by
δs + mn2ε[2(1 + δs)

1/2 + 1
2 (1 − δs)ε] up to the

first-order approximation. If we apply the upper bound of
ε to our result, our upper bound on RIP due to first-order
approximation is

δs +
(1− δs)(1 + δs)

1/2

∥A∥∞
+

1− δs
8mn2∥A∥2∞

Theorem 3.1 studies bounded perturbation operators N in
the worst case. We will improve the results by relaxing the
boundedness of the perturbation.

Corollary 3.3. Consider an arbitrary operator A with the
RIP constant δs ∈ [0, 1). Consider also a perturbation
operator N such that ∥N∥∞ is sub-Gaussian with mean
0 and variance proxy σ2/m. For every c > 0 and σ <

1−δs
2c

√
mn2∥A∥∞

, with probability at least 1− 2 exp(−c2), the
operatorA+N satisfies the RIP condition with the constant
δs + c

√
mn2σ[2(1 + δs)

1/2 + c
2
√
m
(1− δs)σ].

See Appendix B for proof.

4



Measurement Manipulation of the Matrix Sensing Problem to Improve Optimization Landscape

Building on Corollary 3.3, we refine the RIP bound for a
nearly isometrically distributed operator A.
Theorem 3.4. Assume that A is nearly isometrically dis-
tributed and ∥N∥∞ is sub-Gaussian with mean 0 and vari-
ance proxy σ2/m. There exist positive constants c1 and
c2, independent of the parameters of N (such as σ) such
that for every c > 0 and σ < 1−δs

2c
√
mn2∥A∥∞

, with prob-
ability at least 1 − 2 exp(−c2) − exp (−c1m), the oper-
ator A + N satisfies the RIP condition with the constant
c2
√
ns log n/m+c

√
mn2σ[2(1+δs)

1/2+ c
2
√
m
(1−δs)σ].

See Appendix C for proof.
Remark 3.5. Due to Theorem 3.4, the RIP constant of the
perturbed operatorA+N compared to the RIP ofA has in-
creased fromO(1/

√
m) toO(1/

√
m)+O(

√
mσ)+O(σ2).

Thus, when the perturbation σ is small, one can compensate
for the influence of the perturbation on the RIP constant by
slightly increasing the number of measurements m, which
will reduce the RIP constant of the perturbed operator to the
RIP constant of the unperturbed operator A. This formula
shows how many additional measurements are needed to
nullify the effect of deviation from a Gaussian distribution.

To summarize the results of this section, Theorem 3.1 pro-
vides an RIP bound for a fixed sensing operator A and a
bounded perturbation N , and Corollary 3.3 extends this
result to a random perturbation N . In Theorem 3.4, we
further derive a high probability bound for any nearly iso-
metric random distributed sensing operator A, and prove
that the impact of a small perturbation on RIP is small and
that increasing the number of measurements m on a small
scale can compensate for the increase in RIP.

4. Preconditioning of Matrix Sensing
In the previous section, we proved that small deviations
from nearly isometrically distributed sensing matrices will
slightly increase the RIP constant. However, real-world
sensing matrices often have unknown probability distribu-
tions that cannot be approximated by Gaussian models, for
which several empirical results have shown that the RIP con-
stant is often close to 1. To address this issue, we consider
a sensing operator A coming from an arbitrary probabil-
ity distribution and develop a preconditioning algorithm to
improve its RIP constant and make it act as a perturbed
Gaussian. Note that our preconditioning technique only
mixes existing measurements and cannot arbitrarily change
the sensing matrices.

It has been proved in (Ma et al., 2023; 2024) that the RIP
constant can be reduced if the optimization complexity of
the matrix sensing problem is increased, e.g., via a tensor-
based lifting technique. However, this incurs a high com-
putational cost and is not applicable to large-scale matrix

sensing problems. To avoid this computational complexity,
we propose a simple and scalable linear preconditioning
method, which replaces every sensing matrix with a lin-
ear combination of all the original sensing matrices. More
precisely, consider a weight matrix P ∈ Rm×m with its
(i, j) entry denoted as Pij . We construct a preconditioned
operator Ã with the components Ã1, ..., Ãm as follows:

Ãi =

m∑
j=1

PijAj , ∀i ∈ {1, ...,m}

Therefore, ∀i ∈ {1, . . . ,m},∀X , we have

⟨Ãi, X⟩ =
m∑
j=1

Pij⟨Aj , X⟩ =
m∑
j=1

Pijbj .

Hence, Ã(X) = Pb. The preconditioning is independent
of the optimization method (such as local search or convex
relaxation) to be used to solve the matrix sensing problem,
and the goal of preconditioning is to create a better structure
for the sensing operator and thus a better RIP constant. In
what follows, we will develop a simple method for designing
P and study its impact on the RIP constant.

4.1. Orthonormal Bases as Sensing Matrices

The following lemma for Haar distribution is the basis of
our method.
Lemma 4.1 ((Frankl & Maehara, 1988)). Let {xj}nj=1 ⊆
Rd, and let P be a k × d random matrix, consisting of the
first k rows of a Haar-distributed random matrix in the or-
thogonal group O(d). Given ϵ > 0 and k = a log(n)

ϵ2 , there
are absolute constants c and C such that with probability at
least 1− Cn2− ac

4 the inequalities

(1− ϵ) ∥xi − xj∥2 ≤
(
d

k

)
∥Pxi − Pxj∥2

≤ (1 + ϵ) ∥xi − xj∥2

hold for all i, j ∈ {1, . . . , n}.

The orthonormal vectors from the unitary matrix in QR
decomposition of i.i.d. Gaussian matrices follow a Haar
distribution (Mezzadri, 2007). Given that those orthonor-
mal bases maintain the distances during projection, we are
inspired to transform our original sensing operator A into a
preconditioned operator Ã with orthonormal bases as vec-
torized sensing matrices. To be more specific, we first write
the sensing operator A into the vectorized form

A = [vec(A1), vec(A2), . . . , vec(Am)]T ∈ Rm×n2

.

Then, since the inner product of two matrices can be defined
as a vector product, it holds that

A vec(X) = A(X), ∀X ∈ Rn×n.

5
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By pre-multiplying the above equation with a weight ma-
trix P ∈ Rm×m, we ideally intend to make the rows of
PA normalized and orthogonal to each other. Since the
individual entries of a random orthogonal matrix are approx-
imately Gaussian for large matrices (Meckes, 2019), as m
increases, these preconditioned operators are likely to act as
i.i.d. Gaussian.

Define the s-sparse set spans(A) as the set of all matrices X
that can be written as X =

∑m
i=1 αiAi for some coefficients

α1, ..., αm such that at most s coefficients are nonzero. We
say that A1, ..., Am are orthonormal if ⟨Ai, Aj⟩ = 0,∀i ̸= j
and ⟨Ai, Ai⟩ = 1 otherwise.

Theorem 4.2. Assume that A1, ..., Am are orthogonal. It
holds that

||A(X)||2

||X||2F
= 1, ∀X ∈ spans(A)

See Appendix D for proof.

The set spans(A) includes matrices that can be written as
the sum of at most s matrices from the set {A1, ..., Am}.
As m increases, if this set continues to include orthonor-
mal matrices, the set spans(A) grows until it completely
covers the low-rank set {X | rank(X) ≤ s}. Thus, it fol-
lows from Theorem 3 that as m grows, the RIP constant
for orthonormal matrices approaches zero (note that RIP
is about taking the minimum and maximum of the ratio
∥A(X)∥2/∥X∥F over matrices of rank at most s). Hence,
Theorem 4.2 justifies the conversion of arbitrary sensing
matrices into orthogonal matrices.

4.2. Preconditioning Algorithm

Based on the idea of using orthonormal bases as sensing
matrices, we propose Algorithm 1, which applies the singu-
lar value decomposition (SVD) to extract unitary sensing
matrices from the given sensing operator.

Algorithm 1 Preconditioned Matrix Sensing

1: for iteration = 1, 2, . . . ,m do
2: ai ← vec(Ai)
3: end for
4: U, S, V ⊤ ← SVD(VStack(a1, a2, . . . , am))
5: for iteration = 1, 2, . . . ,m do
6: Ãi ← mat(V ⊤

i )
7: end for
8: Return Ã = [Ã1, Ã2, . . . , Ãm]

Remark 4.3. The singular value decomposition of A writ-
ten as U [S,0m×(n2−m)]V

⊤ will obtain a unitary matrix
V ⊤ whose rows are the eigenvectors of A⊤A. The new

sensing matrices Ãi obtained by reshaping the rows of
V ⊤ into matrices are perpendicular to each other. For
S = diag([σ1(A), . . . , σm(A)]) ∈ Rm×m, we could as-
sume A to be full rank in practice, and since σm(A) > 0, S
becomes invertible. Since the extraction step can be consid-
ered as a linear transformation, we can easily calculate the
corresponding vector b′ = U⊤S−1b, and the weight matrix
is P = U⊤S−1.

The intuition behind the pre-conditioning algorithm is that
after pre-conditioning, the individual entries of the new
sensing matrix are approximately Gaussian, and hence these
preconditioned operators are likely to act as i.i.d. Gaussian
with small perturbation. As long as the new upper bound af-
ter perturbation is smaller than 0.5, we can obtain favorable
properties such as global optimality for the matrix sensing
problem.
Theorem 4.4. Consider an arbitrary operator A with the
RIP constant δs ∈ [0, 1). Then, the conditioned operator Ã
also satisfies the RIP condition with the constant 1− 1−δs

σ2
1(A)

.

See Appendix E for proof.
Assumption 4.5. Assume that singular values of the matrix
A ∈ Rm×n2

with m < n2 satisfy

Pr
{√

n2/m(1− ϵ)− 1 ≤ σi(A) ≤ 1 +
√

n2/m(1 + ϵ),

i ∈ [m]} ≥ 1− 2 exp
(
−n2ϵ2/2

)
, ∀ϵ > 0.

Assumption 4.6. Consider two constants ϵ and δ such that

0 < ϵ < 1−
√

m

n2
,

[1 +
√

m
n2 (1 + ϵ)]2 − 1

2[1 +
√

m
n2 (1 + ϵ)]2 − 1

< δ <
1

2
.

Theorem 4.7. Let A be a nearly isometrically distributed
operator. Under Assumption 4.5 and Assumption 4.6, there
exist positive constants c0 and c1 depending only on δs
such that, with probability at least 1 − exp (−c1m) −
2 exp (−n2ϵ2/2), as long as m ≥ c2sn log(n), the original
sensing operator satisfies δs(A) ≤ δ and the conditioned

sensing operator satisfies δs(Ã) ≤ 1−(1−δ)/[1+
√

n2

m (1+

ϵ)]2.

See Appendix F for proof.

To shed light on the two assumptions used in Theorem 4.7,
note that Gaussian random matrices satisfy Assumption 4.5
as an example. Regarding Assumption 4.6, when ϵ →
0, δ → 1

2 , and the lower bound of δ is always smaller than
1
2 . As a result, such pair (ϵ, δ) satisfying Assumption 4.6
always exists.
Remark 4.8. As m,n→∞, in the order of m ≳ ns log n,
it follows from the above theorem that the RIP of the percon-
ditioned operator is similar to that of the original operator.
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Figure 1: Empirical RIP comparison before and after preconditioning; the horizontal axis shows that the sensing matrices are
sampled from uniform distribution [0, 1], centered uniform distribution [−1, 1], standard normal distribution, multivariate
correlated normal distribution with ρ = 0.5, and poisson distribution separately. The first row is for general sensing matrices,
and the second row is for matrices with special structures.

This is important since nearly isometrically distributed op-
erators have small RIPs when m is large and our result
says that preconditioning does not transform such optimal
operators to sub-optimal operators. In summary, we have
shown that preconditioning improves those operators far
from nearly isometrically distributed and does not deteri-
orate the RIP when the original operator is already nearly
isometrically distributed. operator. Since Gaussian random
matrices satisfy the concentration inequality of the singular
values naturally, we can simplify the result of Theorem 4.7
below.

Corollary 4.9. Let A1, . . . , Am be i.i.d. Gaussian random
matrices of mean zero and variance 1

m . Under Assump-
tion 4.6, there exist positive constants c0 and c1 such that,
with probability at least 1−exp (−c1m)−2 exp (−n2ϵ2/2),
as long as m ≥ c0s(m + n2 log(mn2)), , it holds that

δs(A) ≤ δ and δs(Ã) ≤ 1− (1− δ)/[1 +
√

n2

m (1 + ϵ)]2.

4.3. Simulation Experiments

In this subsection, we will demonstrate the performance of
the preconditioning Algorithm 1 for s = 2r since δ2r deter-
mines whether or not SDP relaxations or local search meth-
ods succeed to solve the matrix sensing problem. However,
measuring the true RIP value δ2r for any given sensing oper-
atorA requires checking the inequalities (3) for all low-rank
matrices X of rank at most 2r and determining the max-

Figure 2: Empirical RIP curve

imum and minimum possible values of ∥A(X)∥22/∥X∥2F
over all rank-2r matrices. This is equivalent to solving a
non-convex optimization problem, which is known to be
NP−hard. Hence, we will instead measure the empirical
RIP constant in our experiments. By randomly selecting
1000 Gaussian distributed matrices M ∈ Rn×2r (we simply
choose r = 1 in the following experiments), we generate
1000 rank-2r matrices X = M⊤M ∈ Rn×n to be rank-2r
matrices. Afterwards, we calculate ∥A(M)∥22/∥X∥2F for all
those X matrices and compute the smallest and the largest
values, denoted as α and β correspondingly. Hence, we
obtain the following inequalities over the generated samples

7
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of rank-2r matrices:

α∥X∥2F ≤ ∥A(X)∥2 ≤ β∥X∥2F . (4)

Since rescaling (multiplying the sensing operator A by a
constant c) will not affect the landscape of the matrix sens-
ing problem, we multiply all of the above inequalities by

2
α+β and calculate the empirical RIP constant for 2

α+βA,

which is β+α
β−α . Given that the set of simulated X is a sub-

set of all low-rank matrices, the simulated RIP is a lower
bound for true RIP value. We can see in Figure 2 that for
Gaussian distributed sensing matrices, the empirical RIP
value decreases as the number of measurements m increases.
The empirical RIP curve matches the m−1/2 curve, which
is the result of the true RIP bound in (Recht et al., 2010).
Hence, we could treat the empirical RIP value as an accurate
measure of the true RIP constant.

We randomly generate m sensing matrices under different
distributions, including nearly isometric distributions such
as Gaussian and non-isometric distributions such as Pois-
son. Besides, we also generate A with special structures,
including low-rank structures and sparse structures. We
numerically calculate the empirical RIP value before and
after the preconditioning step. We run experiments under
different scenarios from n = 10 to n = 50, and run 100
trials for each scenario to obtain the average empirical RIP
value.

The results are plotted in Figure 1. We can see from the
figure that for uniform, correlated normal and poisson dis-
tribution, the original sensing operator has a RIP constant
close to 1, which means that with the i.i.d. Gaussian assump-
tion violated, these measuring operators are no longer nearly
isometric and thus cannot guarantee a benign optimization
landscape for the matrix sensing problem. However, after
preconditioning, we observe a clear decrease in the corre-
sponding empirical RIP value. The preconditioned sensing
matrices have the same level of RIP constant compared to
the standard normal distribution with the same m,n val-
ues. On the other hand, for centered uniform and standard
normal distribution, we can decrease the RIP constant by
increasing m, and the preconditioning step can still slightly
help to decrease the RIP value. This improvement becomes
more obvious for the cases with a large m/n2.

In addition to unstructured operators A, we also study sens-
ing matrices with special structures. For the low-rank struc-
ture, we generate ai ∈ Rn×1 and define Ai = aia

⊤
i ∈

Rn×n. For the sparse structure, we generate a binomial
distributed mask with p = 0.3, and only 30% elements of
A are likely to be non-zero. The results are similar to the
case of unstructured operators (see Figure 2), and the pre-
conditioning effectively decreases the empirical RIP value
in both low-rank and sparse cases. Even centered uniform
and normal distribution will be affected by these special

structures and show high empirical RIP values. One can
observe that our preconditioning algorithm has a universal
impressive performance in a wide range of situations.

Moreover, we can see that for the same level of (m,n),
whatever the original distribution is, the empirical RIP value
after preconditioning for different types of distributions are
almost the same, which means that in practice we may not
need to make additional assumptions on the distribution
of sensing matrices; the landscape after preconditioning as
well as the RIP constant will mainly depend on the value of
r,m, n. As is shown by simulation experiments, Algorithm
1 makes best use of the current information provided by the
original sensing operator and remains stable under different
scenarios. The computational cost is also not high, only
requiring O(m2n2) for a singular value decomposition of a
matrix of dimension m× n2.

5. Conclusion
The results presented in this paper highlight several critical
insights into the behavior of sensing operators and their
impact on the Restricted Isometry Property (RIP) constant.
When dealing with a nearly isometric operator perturbed
by a sub-Gaussian term, the impact of deviation from the
nearly isometric case can be effectively mitigated by in-
creasing the number of measurements. Specifically, the RIP
constant ensures that a benign optimization landscape can
be preserved even in the presence of perturbations to the
sensing operator. Thus, even in the presence of perturba-
tions, careful adjustment of the number of measurements
provides a practical approach to deal with non-Gaussian dis-
tributions. Our findings also demonstrate both theoretically
and empirically that the proposed preconditioning algorithm
significantly improves the RIP constant for various distribu-
tions. A notable observation is that, after preconditioning,
the RIP constant is nearly independent of the original distri-
bution. This finding simplifies practical implementations, as
it eliminates the need for distribution-specific assumptions
about the sensing matrices. Practitioners can rely on the
preconditioned sensing matrices to provide consistent RIP
performance, primarily governed by the values of r, m, and
n.
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Yalçın, B., Ma, Z., Lavaei, J., and Sojoudi, S. Semidefinite
programming versus burer-monteiro factorization for ma-
trix sensing. In Proceedings of the Thirty-Seventh AAAI
Conference on Artificial Intelligence, 2023.

Zhang, H., Bi, Y., and Lavaei, J. General low-rank matrix
optimization: Geometric analysis and sharper bounds.
In Advances in Neural Information Processing Systems,
volume 34, pp. 27369–27380, 2021.

Zhang, R., Josz, C., Sojoudi, S., and Lavaei, J. How much
restricted isometry is needed in nonconvex matrix recov-
ery? Advances in Neural Information Processing Systems,
31, 2018.

Zheng, Q. and Lafferty, J. A convergent gradient descent
algorithm for rank minimization and semidefinite pro-
gramming from random linear measurements. Advances
in Neural Information Processing Systems, 28, 2015.

Zhu, Z., Li, Q., Tang, G., and Wakin, M. B. Global optimal-
ity in low-rank matrix optimization. IEEE Transactions
on Signal Processing, 66(13):3614–3628, 2018.

10



Measurement Manipulation of the Matrix Sensing Problem to Improve Optimization Landscape

A. Proof of Theorem 3.1
Proof. Let N1, . . . , Nm denote the components ofN , i.e.,N (X) = [⟨N1, X⟩, . . . , ⟨Nm, X⟩]. For every matrix X ∈ Rn×n

satisfying rank(X) ⩽ s, it holds that

∥(A+N )(X)∥2

=

m∑
i=1

⟨Ai +Ni, X⟩2

=

m∑
i=1

⟨Ai, X⟩2 +
m∑
i=1

⟨Ni, X⟩2 + 2

m∑
i=1

⟨Ai, X⟩ ⟨Ni, X⟩

Since A satisfies the RIP condition with the constant δs, we have

(1− δs) ∥X∥2F ⩽
m∑
i=1

⟨Ai, X⟩2 ⩽ (1 + δs) ∥X∥2F

Due to the Cauchy-Schwarz inequality, one can write

0 ⩽
m∑
i=1

⟨Ni, X⟩2 ⩽
m∑
i=1

∥Ni∥2F ∥X∥
2
F ⩽ mn2ε2∥X∥2F ,

and ∣∣∣∣∣
m∑
i=1

⟨Ai, X⟩ ⟨Ni, X⟩

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

⟨Ai, Ni⟩

∣∣∣∣∣ ∥X∥2F
⩽ mn2ε∥A∥∞∥X∥2F

Hence,
0 <

(
1− δs − 2mn2∥A∥∞ε

)
∥X∥2F ⩽ ∥(A+N )(X)∥2

⩽
(
1 + δs +mn2ε2 + 2mn2∥A∥∞ε

)
∥X∥2F

indicating that A+N satisfies the RIP condition with the constant δs +mn2ε · 4∥A∥∞+ε(1−δs)
2+mn2ε2 .

B. Proof of Corollary 3.3

Proof. Since ∥N∥∞ is sub-Gaussian bounded, we have P(∥N∥∞ ≥ ε) ≤ 2 exp
(
−mε2

σ2

)
. This implies that P(∥N∥∞ ≤ ε)

with probability at least 1− 2 exp
(
−mε2/σ2

)
. Combining Theorem 3.1 and ε = cσ/

√
m, it can be concluded that with

probability at least 1− 2 exp(−c2), A+N satisfies the RIP condition with the constant

δs + c
√
mn2σ[2(1 + δs)

1/2 +
c

2
√
m
(1− δs)σ].

This completes the proof.

C. Proof of Theorem 3.4
Proof. It has been proved in (Recht et al., 2010) that if A is nearly isometrically distributed, then there exist positive
constants c1 and c2 with c1 depending on the RIP constant ofA such that, with probability at least 1− exp (−c1m), we have
δs(A) ≤ c2

√
ns log n/m. Now, it follows from Corollary 3.3 that with probability at least 1− 2 exp(−c2)− exp (−c1m),

it holds that A+N satisfies the RIP condition with the constant

c2
√

ns log n/m+ c
√
mn2σ[2(1 + δs)

1/2 +
c

2
√
m
(1− δs)σ].

This completes the proof.

11



Measurement Manipulation of the Matrix Sensing Problem to Improve Optimization Landscape

D. Proof of Theorem 4.2
Proof. We expand the orthonormal matrices A1, ..., Am into a basis for Rn×n. More precisely, consider orthonormal bases
V1, . . . , Vn2 ∈ Rn×n such that Vi = Ai for i = 1, . . . ,m. Given a matrix X ∈ spans(A), we can write it as

∑m
i=1 αiAi

with at most s nonzero αi’s. Without loss of generality, we assume that ∥X∥2F =
∑m

i=1 α
2
i = 1. Now, one can write:

∥A(X)∥2

∥X∥2F
=

m∑
i=1

m∑
j=1

⟨Ai, αjVj⟩2 =

m∑
i=1

α2
i = 1.

This completes the proof.

E. Proof of Theorem 4.4
Proof. Since A satisfied the RIP condition, the following inequality holds for every matrix M with rank(M) ≤ s:

(1− δs) ∥M∥2F ⩽ ∥A(M)∥22 = ∥A vec (M)∥22 ⩽ (1 + δs) ∥M∥2F .

As Ã = PA, we introduce the operator norm of P and write

sup
M :A vec (M )̸=0

∥PA vec (M)∥22
∥A vec (M)∥22

= λ1

(
P⊤P

)
,

inf
M :A vec (M) ̸=0

∥PA vec (M)∥22
∥A vec (M)∥22

= λm

(
P⊤P

)
.

Now, we aim to bound ∥Ã(M)∥22 by the eigenvalues of P⊤P . Since P = U⊤S−1, U is a unitary matrix, and S is diagonal,
we have P⊤P = S−2, λ1

(
P⊤P

)
= σ−2

m (A), and λm

(
P⊤P

)
= σ−2

1 (A). Hence,

σ−2
1 (A)∥A vec (M)∥22 ≤ ∥PA vec (M)∥22 ≤ σ−2

m (A)∥A vec (M)∥22.

As a result, we obtain the lower bound

∥PA vec (M)∥22 ≥
1

σ2
1(A)

∥A vec (M)∥22 ≥
1− δs
σ2
1(A)

∥ vec (M)∥22.

On the other hand, since V is a unitary matrix, one can write

∥PA vec (M)∥22 = ∥S−1U⊤A vec (M)∥22
= ∥[Im,0m×(n2−m)]V

⊤ vec (M)∥22
≤ ∥ vec (M)∥22

By combining the above two inequalities, we obtain the desired result for the RIP constant of Ã.

F. Proof of Theorem 4.7
Proof. Inspired by the proof of Theorem 1 in (Chen & Lin, 2021), define the following events:

E
.
= {Ã satisfies the RIP of rank s with the constant 1− (1− δ)/[1 +

√
n2

m (1 + ϵ)]2},

F1
.
= {A satisfies the RIP of rank s with the constant δ},

F2
.
=

{√
n2

m (1− ϵ)− 1 ≤ σi(A) ≤ 1 +
√

n2

m (1 + ϵ), i ∈ [m]

}
.
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We will show that Pr (E) ≥ Pr (F1F2).

Consider the singular value decomposition of A as A = U [S,0m×(n2−m)]V
⊤, where U ∈ Rm×m, S =

diag([σ1(A), . . . , σm(A)]) ∈ Rm×m, V ∈ Rn2×n2

. Under Assumption 4.6, we have
√

n2

m (1− ϵ)− 1 > 0, and therefore

S is nonsingular. Hence, the preconditioning matrix defined as P = S−1U⊤ is valid.

If A ∈ F1F2, in light of Theorem 4.4, F1 implies that the conditioned operator Ã satisfies the RIP of rank s with the
constant 1− 1−δ

σ2
1(A)

. With F2 implying an upper bound on σ2
1(A), obtain that Ã satisfies the RIP inequality (3) with the

constant 1− (1− δ)/[1 +
√

n2

m (1 + ϵ)]2. We could also have A ∈ E. Hence we could have Pr (E) ≥ Pr (F1F2). With
the union bound Pr (F1F2) ≥ Pr (F1) + Pr (F2)− 1, we estimate the probabilities Pr (F1) and Pr (F2) using Theorem
4.2 in (Recht et al., 2010) and Assumption 4.5 to arrive at

Pr (E) ≥ Pr (F1F2)

≥ Pr (F1) + Pr (F2)− 1

≥ 1− exp (−c1m)− 2 exp (−n2ϵ2/2)

This completes the proof.

G. Empirical RIP with Variance Bar

Figure 3: Empirical RIP comparison before and after preconditioning
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