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Abstract In this work, we develop a new complexity metric for an important class of
low-rank matrix optimization problems, where the metric aims to quantify the com-
plexity of the nonconvex optimization landscape of each problem and the success of
local search methods in solving the problem. The existing literature has focused on
two complexity measures. The RIP constant is commonly used to characterize the
complexity of matrix sensing problems. On the other hand, the sampling rate and
the incoherence are used when analyzing matrix completion problems. The proposed
complexity metric has the potential to unify these two notions and also applies to a
much larger class of problems. To mathematically study the properties of this metric,
we focus on the rank-1 generalized matrix completion problem and illustrate the use-
fulness of the new complexity metric from three aspects. First, we show that instances
with the RIP condition have a small complexity. Similarly, if the instance obeys the

We note that a similar complexity metric based on a special case of instances in Section 3.3 was proposed
in our conference paper [55]. However, the complexity metric in this work has a different form and is
proved to work on a broader set of applications. In addition, we prove several theoretical properties of the
metric in this work, which are not included in [55].
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Bernoulli sampling model, the complexity metric will take a small value with high
probability. Moreover, for a one-parameter class of instances, the complexity metric
shows consistent behavior to the first two scenarios. Furthermore, we establish theo-
retical results to provide sufficient conditions and necessary conditions on the exis-
tence of spurious solutions in terms of the proposed complexity metric. This contrasts
with the RIP and incoherence notions that fail to provide any necessary condition.

Keywords Matrix sensing · Matrix completion · Complexity metric · Nonconvex
optimization · Global convergence

Mathematics Subject Classification (2020) 05C90 · 65F55 · 90C26

1 Introduction

A variety of modern signal processing and machine learning applications require
solving optimization problems that involve a low-rank matrix variable. More specif-
ically, given measurements to some unknown ground truth matrix M∗ ∈ Rn×n of
rank r ≪ n, the low-rank matrix optimization problem can be formulated as

min
M∈Rn×n

f(M ;M∗) s. t. M ⪰ 0, rank(M) ≤ r,(1.1)

where f(·;M∗) is the loss function that penalizes the mismatch between the input
matrix and M∗. The goal is to recover the matrix M∗ via (1.1). Examples of this prob-
lem include matrix sensing [42,59,57], matrix completion [14,15,26], phase retrieval
[12,45,20] and robust principle component analysis [11,25]; see the review papers
[18,23] for more applications. To deal with the nonconvex rank constraint, there have
been several works on the convex relaxations of problem (1.1). More concretely, one
may replace the rank constraint with a nuclear norm regularizer [14,42,15,11]. The
convex relaxation approach is proven to achieve the optimal sampling complexity for
various statistical models. However, the convex relaxation approach needs to update
a matrix variable in each iteration, which relies on the Singular Value Decomposition
(SVD) of the matrix variable. This will lead to an O(n3) computational complexity
in each iteration and an O(n2) space complexity, which are prohibitively high for
large-scale problems; see the numerical comparison in [60].

To improve the computational efficiency, an alternative approach was proposed
by Burer and Monteiro [10], which is named as the Burer-Monteiro factorization
approach. The factorization approach is based on the fact that the mapping U 7→
UUT is surjective onto the manifold of positive semi-definite matrices of rank at
most r, where U ∈ Rn×r. Therefore, problem (1.1) is equivalent to

min
U∈Rn×r

f(UUT ;M∗),(1.2)

which is an unconstrained nonconvex problem. A major difficulty about nonconvex
optimization problems is the existence of spurious local minima1. In general, com-
mon local search methods are only able to guarantee a point approximately satisfying

1 A point U0 is called a spurious local minimum if it is a local minimum of problem (1.2) and
U0(U0)T ̸= M∗.
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the first-order and the second-order necessary optimality conditions. Therefore, local
search methods with a random initialization will likely be stuck at spurious local min-
ima and unable to converge to the global solution. However, despite the aforemen-
tioned issue of nonconvex optimization problems, simple iterative algorithms such
as gradient descent and alternating minimization have achieved empirical success in
a wide range of applications. In recent years, substantial progress has been made
on the theoretical understandings of these algorithms, which generally focused on
proving the in-existence of spurious local minima. For example, the alternating min-
imization algorithm was first studied in [32,39,40]. The (stochastic) gradient descent
algorithm, which is in general easier to implement than the alternating minimization
algorithm, was analyzed in [12,50,56,20,18]. Besides algorithmic analysis, a criti-
cal geometric property named the strict-saddle property [45] was established in [26,
45,61,57], which can guarantee the polynomial-time global convergence of various
saddle-escaping algorithms [16,34,5].

To characterize the behavior of local search methods for problem (1.2), several
complexity metrics were proposed. A small complexity metric implies that the land-
scape of problem (1.2) is benign and thus, local search methods with random initial-
ization converge to global solutions with high probability. Otherwise, if the complex-
ity metric takes a large value, problem (1.2) may have spurious local minima, which
will imply the failure of most local search methods. However, the complexity metrics
for problem (1.2) are designed separately for different applications. As a result, sev-
eral different metrics were proposed to characterize the optimization complexity of
problem (1.2). For example, in the context of matrix sensing problems, the following
Restrict Isometry Property (RIP) is usually assumed:

Definition 1.1 ([42,61]) Given natural numbers r and s, the function f(·;M∗) is
said to satisfy the Restricted Isometry Property (RIP) of rank (2r, 2s) for a constant
δ ∈ [0, 1), denoted as δ-RIP2r,2s, if

(1− δ)∥K∥2F ≤
[
∇2f(M ;M∗)

]
(K,K) ≤ (1 + δ)∥K∥2F(1.3)

holds for all matrices M,K ∈ Rn×n such that rank(M) ≤ 2r, rank(K) ≤ 2s,
where

[
∇2f(M ;M∗)

]
(·, ·) is the curvature of the Hessian at point M .

One important class of matrix sensing problems is the linear matrix sensing problem,
which is induced by linear measurements of the ground truth matrix M∗. If the ℓ2-
loss is used, the linear matrix sensing problem can be formulated as

min
U∈Rn×r

1

m

m∑
i=1

⟨Ai, UUT −M∗⟩2,(1.4)

where m ∈ N is the number of measurements modeled by the known measurement
matrices Ai ∈ Rn×n for all i ∈ [m]. In the special case when each matrix Ai is an
independently identically distributed Gaussian random matrix, the δ-RIP2r,2s condi-
tion holds with high probability if m = O(nrδ−2) [13]. The RIP constant δ plays a
critical role in measuring the optimization complexity of problem (1.2). In [7], the au-
thors showed that the strict-saddle property holds for problem (1.2) if the δ-RIP2r,2r

condition holds with δ < 1/2 and the ground truth matrix satisfies rank(M∗) = r.
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On the other hand, counterexamples have been constructed in [59,57] to illustrate
that the strict-saddle property can fail under the δ-RIP2r,2r condition with δ ≥ 1/2.

Despite these strong theoretical results under the RIP assumption, there exists
a large number of applications that do not satisfy the RIP condition. One of those
applications without the RIP condition is the matrix completion problem. Given a set
of indices Ω ⊂ [n]× [n], the matrix completion problem aims at recovering the low-
rank matrix M∗ from the available entries M∗

ij for (i, j) ∈ Ω. With the least squares
loss function, the matrix completion problem can be formulated as

min
U∈Rn×r

∑
(i,j)∈Ω

[
(UUT )ij −M∗

ij

]2
.(1.5)

The matrix completion problem (1.5) is a special case of the matrix sensing problem
(1.4), where each measurement matrix Ai has exactly one nonzero entry. However,
the RIP2r,2r condition does not hold for problem (1.5) unless all entries of M∗ are
observed, namely, when Ω = [n] × [n]. As an alternative to the RIP condition, the
optimization complexity of problem (1.5) is closely related to the incoherence of M∗.

Definition 1.2 ([14]) Given a constant µ ∈ [1, n], the ground truth matrix M∗ is said
to be µ-incoherent if

∥eTi V ∗∥F ≤
√

µr/n, ∀i ∈ [n],(1.6)

where V ∗Λ∗(V ∗)T is the truncated SVD of M∗ and ei is the i-th standard basis of
Rn.

Intuitively, if the ground truth M∗ is highly sparse, it is likely that only zero entries of
M∗ are observed and there is no chance to learn the other entries of the matrix M∗. A
relatively small incoherence of M∗ avoids this extreme case. The most popular sta-
tistical model of the measurements for problem (1.5) is the Bernoulli model, where
each entry of M∗ is observed independently with probability p ∈ (0, 1]. Assuming
the Bernoulli model, the scaled gradient descent algorithm with a spectral initializa-
tion [47] converges linearly given the condition p ≥ O(µr2κ2 max(µκ2, log n)/n),
where κ := σ1(M

∗)/σr(M
∗) is the condition number of M∗. In addition, the global

convergence was established in [26] through the strict-saddle property under the as-
sumption that p ≥ O(µ4r6κ6 log n/n). We note that the dependence on the condition
number κ may be unnecessary as shown in [29] and that the condition number is equal
to 1 in the rank-1 case. On the other hand, the information-theoretical lower bound
in [14] shows that p ≥ Θ(µr log(n/δ)/n) is necessary for the exact completion with
probability at least 1− δ. Therefore, the complexity of problem (1.5) is mainly mea-
sured by the incoherence of M∗.

The main issue with the notions of RIP and incoherence is that they require strin-
gent conditions to guarantee the success of local search methods for recovering M∗.
Whenever these conditions are violated, local search methods may still work success-
fully, which questions whether these customized notions designed for special cases
of the problem truly capture the complexity of the problem in general. Hence, it is
natural to ask:
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Does there exist a complexity metric with two properties: (i) it unifies the
metrics for problems (1.4) and (1.5), namely, the RIP constant δ and the in-
coherence µ, (ii) even when the RIP and incoherence conditions are violated,
it still quantifies the optimization complexity of the problem in the sense that
the smaller the value of this metric is, the higher the success of local search
methods with random initialization is in finding the ground truth M∗?

In this work, we provide a partial answer to the question by developing a powerful
complexity metric. To analyze the usefulness of this new metric, we focus on the
generalized rank-1 matrix completion problem

min
u∈Rn

∑
i,j∈[n]

Cij(uiuj −M∗
ij)

2,(1.7)

where the ground truth M∗ is symmetric and has rank at most 1. The weights are
Cij ≥ 0 for all i, j ∈ [n]. Without loss of generality, we can assume that the
matrix C := (Cij)i,j∈[n] is symmetric since otherwise one can replace C with
(C +CT )/2, which will not change the optimization landscape. We use MC(C, u∗)
to denote the instance of problem (1.7) with the weight matrix C and the ground
truth M∗ = u∗(u∗)T , for all C ∈ Rn×n and u∗ ∈ Rn. The matrix completion prob-
lem (1.5) is a special case of the generalized matrix completion problem (1.7), where
Cij = 1 if (i, j) ∈ Ω and Cij = 0 otherwise. Moreover, problem (1.7) is a special
case of the matrix sensing problem (1.4), where each measurement only captures one
entry of M∗. However, in Section 3.3, we show that there exists an instance of prob-
lem (1.7) that satisfies the 1/2-RIP2,2 condition but has spurious local minima. This
counterexample implies that the optimal RIP bound in [59,57] still holds for problem
(1.7) and thus, problem (1.7) still contains difficult instances of the matrix sensing
problem. Indeed, we show in Section 3.1 that some of the results to be developed for
problem (1.7) can be extended to the general matrix sensing problem (1.4).

Now, we provide an intuition into the design of our complexity metric for prob-
lem (1.7). For a given problem instance of (1.7), if there exist global solutions u1, u2

such that u1(u1)T ̸= u2(u2)T , it is impossible to decide which global solution cor-
responds to M∗ from the observations. Intuitively, no matter what optimization algo-
rithm we choose and how much computational effort is exerted, there is a chance that
we could not recover M∗ by solving problem (1.7). This observation motivates us to
define the complexity metric to be the inverse of the infimum of the distance between
any given instance and the set of instances with multiple global solutions. Since prob-
lem (1.7) is parameterized by the weight matrix C and the global solution M∗, we are
able to define the metric through norms in Euclidean spaces and their Cartesian prod-
ucts. In addition, in the rank-1 case, the (random) graph theory serves as an important
tool in characterizing the solvability of problem (1.7). These two advantages enable
a more thorough analysis of the new complexity metric. The formal definition of the
metric is provided in Section 2. In this work, we exhibit several pieces of evidence to
show that the proposed metric can serve as an alternative to the RIP constant and the
incoherence, which are summarized below:

1. For problem instances that satisfy the δ-RIP2,2 condition, we provide an upper
bound on the complexity metric. The upper bound is tightened with extra infor-
mation about the incoherence of M∗. The complexity metric is also generalized
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to problem (1.2) and a slightly weaker upper bound is derived. Similarly, for ma-
trix completion problems obeying the Bernoulli model, an upper bound on the
complexity metric in terms of the incoherence of M∗ is derived.

2. We then construct a class of parameterized instances of problem (1.7). A lower
bound on the complexity metric is developed to prove that instances whose com-
plexity metric is larger than the lower bound have an exponential number of spu-
rious local minima. In addition, an upper bound that is consistent with the existing
results for the matrix sensing and matrix completion problems are established to
guarantee the in-existence of spurious local minima if the complexity metric is
below this bound.

3. We prove the existence of a non-trivial upper bound on the complexity metric.
For all problem instances whose complexity metric is below this upper bound,
problem (1.7) has no spurious local minima and M∗ can be successfully found
via local search methods with random initialization.

4. Under a standard bounded-away-from-zero assumption, we show that all instances
with a larger complexity metric will possess spurious local minima.

Based on the aforementioned results, we make some key conjectures and discuss the
potential extensions of the proposed metric to more general cases of the low-rank
matrix optimization problem (1.1).

1.1 Related works

Following the famous Netflix prize, the theoretical analysis of problem (1.1) has at-
tracted a lot of attention in recent years; see the review papers [19,23]. Early attempts
mainly focused on the construction of convex relaxations to rank-constrained prob-
lems [14,15,42,11], where the RIP condition and the incoherence were introduced.
Although the convex relaxation is usually guaranteed to recover the exact ground
truth with almost the optimal sample complexity, the associated algorithms operate
in the space of matrix variables and, thus, are computationally inefficient for large-
scale problems [60]. Similar issues are observed for algorithms based on the Singular
Value Projection [31] and Riemannian optimization algorithms [53,54,30,2,37]. The
analysis of the convex relaxation approach in the noisy case is recently conducted by
bridging the convex and the nonconvex approaches [21,22].

To deal with the difficulties in solving large-scale problems, an efficient alterna-
tive model (1.2) using the Burer-Monteiro factorization is considered. Despite the
nonconvexity, a growing number of works demonstrated that problem (1.2) has be-
nign landscapes and, therefore, is amenable for efficient optimization. Theoretical
analysis stems from the alternating minimization method [32,39,28,29,40,1]. The
alternating minimization method has the advantage that the number of iterations has
only logarithmic dependence on the condition number of the ground truth [29]. More
recently, this advantage is also achieved by the scaled (sub)gradient descent algorithm
[47,48,49,58].

The gradient descent algorithm has also gained a significant attention due to its
simplicity in implementation. In general, there are two ways to apply the gradient
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descent algorithm. First, the gradient descent algorithm can serve as the local refine-
ment method after a suitable initialization [12,50,46,56,4,18]. On the other hand,
the gradient descent algorithm is proved to converge globally for the phase retrieval
problem [20]. More generally, under the strict-saddle property, a number of saddle-
escaping algorithms [34,16,5] converge to the global solution in polynomial time; see
e.g., [44,27,26,61,45,59,17,57,6,7,38]. Moreover, the gradient descent algorithm is
proved to have the implicit regularization phenomenon in the over-parameterization
case [36,24,43].

Finally, the Burer-Monteiro factorization approach has also been studied in the
context of finding low-rank solutions to semi-definite programs [8,41,9,52].

1.2 Notation and organization

The number of elements in a finite set S is denoted as |S|. We use S to denote
the closure of a set S ⊂ Rn. The index set {1, . . . , n} is denoted as [n] for all
n ∈ N. The entry-wise ℓ1-norm and the Frobenius norm of a matrix M are denoted
as ∥M∥1 and ∥M∥F , respectively. The unit sphere of matrices with non-negative
entries denoted as Sn

2−1
+,1 is the set of all symmetric matrices X ∈ Rn×n such that

∥X∥1 = 1 and Xij ≥ 0 for all i, j ∈ [n]. Similarly, the unit sphere of vectors
Sn−1
1 is the set of all vectors x ∈ Rn such that ∥x∥1 = 1. For every symmetric

matrix M ∈ Rn×n, the minimum eigenvalue is denoted as λmin(M). The n-by-n
identity matrix is denoted as In. The notation M ⪰ 0 means that the matrix M
is symmetric and positive semi-definite. The sub-matrix Ri:j,k:ℓ consists of the i-
th to the j-th rows and the k-th to the ℓ-th columns of matrix R. For every vector
x ∈ Rn, the sets of indices corresponding to zero and nonzero components of x
are denoted as I0(x) and I1(x), respectively. For every instance MC(C, u∗), we
use G(C, u∗) = [V(C, u∗),E(C, u∗),W(C, u∗)] to denote the associated weighted
graph, which is defined in Section 2. The unweighted undirected graph G with node
set V and edge set E is denoted as G = (V,E). The objective function of an in-
stance MC(C, u∗) is shown as g(u;C, u∗) :=

∑
i,j∈[n] Cij(uiuj − u∗

i u
∗
j )

2. The
action of the Hessian ∇2g(M ;C, u∗) on any two matrices K and L is given by
[∇2g(M ;C, u∗)](K,L) :=

∑
i,j,k,ℓ[∇2g(M ;C, u∗)]i,j,k,ℓKijLk,ℓ. The notations

an = O(bn) and an = Θ(bn) mean that there exist constants c1, c2 > 0 such that
an ≤ c2bn and c1bn ≤ an ≤ c2bn hold for all n ∈ Z, respectively.

In the remainder of this paper, we first define the proposed complexity metric
and derive basic properties of the metric in Section 2. In Section 3, we analyze this
metric on well-studied problems, including the matrix sensing problem and the matrix
completion problem. Section 4 is devoted to the theoretical guarantees provided by
the new complexity metric. Finally, we conclude the paper in Section 5. Some of the
proofs are provided in the appendix.
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2 New complexity metric and basic properties

In this section, we provide the formal definition of the new complexity and investigate
the properties of the proposed metric. Before proceeding to the definitions, we note
that the problem (1.7) is “scale-free” in the sense that the instance MC(η1C, η2u∗)
has the same landscape as MC(C, u∗) up to a scaling, where C ∈ Rn×n, u∗ ∈ Rn

and η1, η2 > 0 are constants. Therefore, we may normalize the parameters C and u∗

without loss of generality, as follows:

Assumption 2.1 Assume that C ∈ Sn
2−1

+,1 and u∗ ∈ Sn−1
1 , i.e., ∥C∥1 = ∥u∗∥1 = 1.

The above assumption excludes the degenerate cases when C = 0 or M∗ = 0. If C =
0, the objective function is always 0 and it is impossible to recover the ground truth.
For the case when M∗ = 0, we can prove that either u = 0 is the only stationary point
or the instance MC(C, 0) has multiple different global solutions. In the first situation,
the results in [35] imply that randomly initialized gradient descent algorithm will
converge to 0 with probability 1. In the second situation, the instance is information-
theoretically unsolvable. We provide a more detailed analysis in the appendix and
assume that Assumption 2.1 holds in the remainder of the paper.

The definition of the complexity metric is closely related to the set of instances
with multiple “essentially different” global solutions. More specifically, the set of
degenerate instances is defined as

D := {(C, u∗) | C ∈ Sn
2−1

+,1 , u∗ ∈ Sn−1
1 ,

∃u ∈ Rn s. t. g(u;C, u∗) = 0, uuT ̸= u∗(u∗)T }.

Since there exist multiple global solutions to problem (1.7) if (C, u∗) ∈ D, it is
information-theoretically impossible to find the ground truth for any instance in D.
Intuitively, we say that the optimization complexity of all instances in D is infinity.
Motivated by the above observation, we introduce the new complexity metric.

Definition 2.1 (Complexity Metric) Given arbitrary parameters C ∈ Sn
2−1

+,1 , u∗ ∈
Sn−1
1 and α ∈ [0, 1], the complexity of the instance MC(C, u∗) is defined as

Dα(C, u
∗) :=

[
inf

(C̃,ũ∗)∈D
α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

.(2.1)

Since the set D is bounded, the infimum in the definition exists and is finite. The
term inside the inverse operation can be viewed as a weighted distance between the
point (C, u∗) and the set D. In addition, we take the convention that 1/0 = +∞ and
thus, Dα(C, u

∗) = +∞ for all (C, u∗) ∈ D. In this work, we choose the entry-wise
ℓ1-norm in (2.1) for the simplicity of calculations. We believe that similar theory can
still be derived for other choices of the norm.
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2.1 Basic properties of the new complexity metric

We first provide a more concrete definition of the set D. In the rank-1 case, we are
able to exactly describe the set D using graph-theoretic notations. We first introduce
the associated graphs of any instance of the problem. Given an instance MC(C, u∗),
the weighted graph G(C, u∗) = [V(C, u∗),E(C, u∗),W(C, u∗)] is defined by

V(C, u∗) := [n], E(C, u∗) := {{i, j} | Cij > 0, i, j ∈ [n]} ,
[W(C, u∗)]ij := Cij , ∀i, j ∈ [n] s. t. {i, j} ∈ E(C, u∗).

To include the information of u∗, we define

I1(C, u∗) := {i ∈ [n] | u∗
i ̸= 0}, I0(C, u∗) := [n]\I1(C, u∗),

I00(C, u
∗) := {i ∈ I0(C, u∗) | {i, j} /∈ E(C, u∗), ∀j ∈ I1(C, u∗)}.

Intuitively, the sets I1(C, u∗) and I0(C, u∗) contain the locations of the nonzero and
zero components of u∗. The subset I00(C, u∗) corresponds to indices in I0(C, u∗)
that are not connected to any index in I1(C, u∗). We denote the subgraph of G(C, u∗)
induced by the index set I1(C, u∗) as G1(C, u

∗) = [I1(C, u∗),E1(C, u
∗),W1(C, u

∗)],
where E1(C, u

∗) and W1(C, u
∗) are the edge set and weight set of this subgraph. The

following theorem provides an equivalent definition of D in terms of I00(C, u∗) and
G1(C, u

∗).

Theorem 2.2 Given C ∈ Sn
2−1

+,1 and u∗ ∈ Sn−1
1 , it holds that (C, u∗) /∈ D if and

only if
1. G1(C, u

∗) is connected and non-bipartite;
2. {i, i} ∈ E(C, u∗) for all i ∈ I00(C, u∗).

Proof We first construct counterexamples for the necessity part and then prove the
uniqueness of the global minimum (up to a sign flip) for the sufficiency part. For the
notational simplicity, we fix the point (C, u∗) and omit them in the notations.

Necessity. In this part, our goal is to construct a solution u ∈ Rn such that

uiuj = u∗
i u

∗
j , ∀{i, j} ∈ E; uuT ̸= u∗(u∗)T .

We denote M∗ := u∗(u∗)T and analyze three different cases below.

Case I. First, we consider the case when G1 is disconnected, which means that there
exist two non-empty subsets I and J such that

I ∪ J = I1, I ∩ J = ∅; {i, j} /∈ E1, ∀i ∈ I, ∀j ∈ J .

We define the vector u ∈ Rn as

ui := 0, ∀i ∈ I0; ui = u∗
i , ∀i ∈ I; ui = −u∗

i , ∀i ∈ J .

The above definition leads to

uiuj =

{
−M∗

ij if i ∈ I and j ∈ J
M∗

ij otherwise.

Since u∗
i ̸= 0 for all i ∈ I1, it follows that uiuj = −M∗

ij ̸= M∗
ij for all {i, j} such

that i ∈ I and j ∈ J .



10 Haixiang Zhang et al.

Case II. Next, we consider the case when G1 is bipartite, which means that there
exist two non-empty subsets I and J such that

I ∪ J = I1, I ∩ J = ∅; {i, j} /∈ E1, ∀i, j ∈ I1 s. t. i, j ∈ I or i, j ∈ J .

In this case, we define the vector u ∈ Rn as

ui := 0, ∀i ∈ I0; ui := u∗
i /2, ∀i ∈ I; ui := 2u∗

i , ∀i ∈ J .

Now, we have

uiuj =


M∗

ij/4 if i, j ∈ I
4M∗

ij if i, j ∈ J
M∗

ij otherwise.

Since M∗
ij ̸= 0 for all i, j ∈ J , we have that uiuj = 4M∗

ij ̸= M∗
ij for all i, j ∈ J .

Case III. Finally, we check the case when there exists a node i0 ∈ I00 such that
{i0, i0} /∈ E. In this case, we define the vector u ∈ Rn as

ui0 := 1, ui := u∗
i , ∀i ∈ [n]\{i0}.

Now, we have

ui0ui0 = 1 ̸= 0 = M∗
i0i0 , uiuj = M∗

ij , ∀{i, j} ∈ E.

Combining the above three cases completes the proof of the necessity part.

Sufficiency. We prove that any global solution u ∈ Rn to problem (1.7) satisfies
uuT = M∗, where M∗ := u∗(u∗)T . Since u is a global solution, it follows that

uiuj = M∗
ij , ∀i, j ∈ [n] s. t. {i, j} ∈ E.

Since the graph G1 is non-bipartite, there exists a cycle with an odd number of edges
in G1. We denote the length of the cycle as 2k+1, where k is a non-negative integer.
Moreover, we denote the edges of the cycle as

{i0, i1}, {i1, i2}, . . . , {i2k, i0}.

Since {i0, . . . , i2k} ⊂ I1, we know that

uiuj = M∗
ij ̸= 0, ∀i, j ∈ [n] s. t. {i, j} ∈ {{iℓ, iℓ+1}, ℓ ∈ {0, . . . , 2k}} ,

where i2k+1 := i0. Hence, we can calculate that

u2
0 =

2k∏
ℓ=0

(uiℓuiℓ+1
)(−1)ℓ =

2k+1∏
ℓ=0

M
(−1)ℓ

iℓiℓ+1
= (u∗

i0)
2.

Without loss of generality, assume that ui0 = u∗
i0

since otherwise we can consider
the solution −u if ui0 = −u∗

i0
. With the value of ui0 correctly recovered, it follows

that

ui1 =
ui0ui1

ui0

=
u∗
i0
u∗
i1

u∗
i0

= u∗
i1 .
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Similarly, we can utilize the connectivity of G1 to iteratively obtain ui = u∗
i for all

i ∈ I1.
The remaining part is to show that ui = 0 for all i ∈ I0. For every node i ∈

I0\I00, there exists a node j ∈ I1 such that {i, j} ∈ E. This implies that

uj = u∗
j ̸= 0, uiuj = M∗

ij = 0,

Hence, it holds that ui = 0. For every node i ∈ I00, the assumption in the theorem
requires that {i, i} ∈ E, which leads to

u2
i = M∗

ii = 0.

In this case, we also obtain ui = 0. ⊓⊔

Since the set D is bounded, the infimum in the definition (2.1) can be attained by
using the closure of D, namely

Dα(C, u
∗) =

[
min

(C̃,ũ∗)∈D
α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

.(2.2)

The alternative definition (2.2) simplifies the verification of parameters that attain the
infimum. In addition, with the help of Theorem 2.2, we can exactly characterize the
closure D, which has a slightly simpler form than D.

Theorem 2.3 We have the following relation:

D = {(C, u∗) | C ∈ Sn
2−1

+,1 , u∗ ∈ Sn−1
1 ,G1(C, u

∗) is disconnected or bipartite}

∪ {(C, u∗) | C ∈ Sn
2−1

+,1 , u∗ ∈ Sn−1
1 , I00(C, u∗) is not empty}.

Proof We denote the set on the right-hand side as D′. We first prove that

D ⊃ D′.(2.3)

Suppose that (C, u∗) ∈ D′. If G1(C, u
∗) is disconnected or bipartite, the instance

MC(C, u∗) already belongs to D and, therefore, belongs to the closure D. We only
need to consider the case when I00(C, u∗) is not empty. For every constant ϵ > 0,
we construct a new global solution ũ∗ as follows:

ũ∗
i :=

{
u∗
i + ϵ if i ∈ I00(C, u∗)

u∗
i otherwise.

Let M̃∗ := ũ∗(ũ∗)T . For the instance MC(C, ũ∗), we have

I1(C, ũ∗) = I1(C, u∗) ∪ I00(C, u∗).

By the definition of I00(C, u∗), the nodes in I1(C, u∗) and I00(C, u∗) are discon-
nected. Therefore, the new subgraph G1(C, ũ

∗) is disconnected and the new instance
MC(C, ũ∗) belongs to D. By letting ϵ → 0, it follows that (C, u∗) is a limit point of
D and belongs to D. This completes the proof of the relation (2.3).



12 Haixiang Zhang et al.

Then, we prove the other direction D ⊂ D′. By Theorem 2.2, we have

D ⊂ D′.

Hence, it remains to prove that the set D′ is closed. Equivalently, we prove that (D′)c

is open, where (D′)c is the complementary set with respect to Rn×n × Rn. Suppose
that (C, u∗) ∈ (D′)c. If ∥C∥1 ̸= 1 or ∥u∗∥1 ̸= 1, changing C and u∗ by a small
perturbation will not make ∥C∥1 = ∥u∗∥1 = 1. Now, we only consider the case when
∥C∥1 = ∥u∗∥1 = 1. Since (C, u∗) ∈ (D′)c, the subgraph G1(C, u

∗) is connected
and non-bipartite and the set I00(C, u∗) = ∅. Denote

ϵ := min

{
min
Cij>0

Cij , min
u∗
i ̸=0

|u∗
i |
}

> 0.

Suppose that we add a sufficiently small perturbation to the point (C, u∗) such that
each component of C and u∗ is changed by at most ϵ/2. Then, all nonzero compo-
nents of C and u∗ are still nonzero after the perturbation. Therefore, the edges of
the subgraph G1(C,M

∗) are not deleted after the perturbation and, thus, the sub-
graph is still connected and non-bipartite. Similarly, after perturbation, each node in
I0(C,M∗) either becomes nonzero or is connected to G1(C,M

∗), which implies
that I00(C,M∗) is still an empty set. Therefore, the perturbed instance still belongs
to (D′)c. Hence, the set (D′)c is open and we obtain the relation D ⊂ D′. ⊓⊔

Using the results in Theorems 2.2 and 2.3, we provide an estimate on the scale
of the new metric. Since D is a bounded set, there exists an upper bound on the
minimum possible value of the complexity metric, which is defined below:

Dmin
α := min

C∈Sn2−1
+,1 ,u∗∈Sn−1

1

Dα(C, u
∗).

The next theorem provides the expression of Dmin
α .

Theorem 2.4 Suppose that n ≥ 5. Then, it holds that

Dmin
α =


n
4α if α ≤ n2−3n−2

n2−5n+4
n2

2(1−α)(n−2)n+4α if n
n+2 ≤ α ≤ n

n+1
n(n+1)

2(1−α)(n−2)(n+1)+4 if α ≥ n
n+1 .

In the regime (n2 − 3n− 2)/(n2 − 5n+ 4) ≤ α ≤ n/(n+ 2), we have the estimate

Dmin
α ∈

[
n

4α
,

n2

4α(n− 1)

]
.

The proof of Theorem 2.4 relies on the following two lemmas, which transform the
computation of Dmin

α to a one-dimensional optimization problem. The first lemma
upper-bounds the maximum possible distance.
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Lemma 2.1 Suppose that n ≥ 2. It holds that(
Dmin

α

)−1 ≤ max
c∈[0, 1

n(n−1) ]
g(α, c),

where the function g(α, c) is defined by

g(α, c) := min

{
2(1− α) · n− 2

n
+ 4αc, 4α(n− 1)c,

2(1− α) · n− 4

n
+ 2α

(
4

n
− 4(n− 2)c

)
,

2(1− α) · n− 3

n
+ 2α

(
3

n
− (3n− 5)c

)
,

2(1− α) · n− 2

n
+ 2α

(
2

n
− 2(n− 1)c

)
,

2(1− α) · n− 1

n
+ 2α

(
1

n
− (n− 1)c

)}
.

We denote gi(α, c) be the i-th term in the above minimization for all i ∈ {1, . . . , 6}.
The next lemma proves the other direction.

Lemma 2.2 Suppose that n ≥ 2. It holds that(
Dmin

α

)−1 ≥ max
c∈[0, 1

n(n−1) ]
g(α, c),

where the function g(α, c) is defined in Lemma 2.1.

The proofs of both lemmas can be found in the appendix. Now, we provide the
proof of Theorem 2.4.

Proof (Proof of Theorem 2.4) By the results of Lemmas 2.1 and 2.2, we only need
to compute maxc∈[0, 1

n(n−1) ]
g(α, c). Let κ := (1− α)/α ∈ [0,+∞]. We study three

cases below.

Case I. We first consider the case when κ ≥ 2(n−3)/[(n−4)(n−1)]. We prove that
g(α, c) = g2(α, c). Since g2(α, c) has a larger gradient than g1(α, c) and the function
gi(α, c) is decreasing in c for i = 3, 4, 5, 6, we only need to show that

gi

(
α,

1

n(n− 1)

)
≥ g2

(
α,

1

n(n− 1)

)
, ∀i ∈ {1, 3, 4, 5, 6}.(2.4)

The above inequality with i = 1 is equivalent to κ ≥ 2/(n− 1), which is guaranteed
by the assumption that κ ≥ 2(n − 3)/[(n − 4)(n − 1)]. For i ∈ {3, 4, 5, 6}, the
inequality (2.4) is equivalent to

κ ≥ max

{
2(n− 3)

(n− 1)(n− 4)
,

2(n− 2)

(n− 1)(n− 3)
,

2

n− 2
,

2

n− 1

}
=

2(n− 3)

(n− 1)(n− 4)
.
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Therefore, it holds that

g(α, c) = g2(α, c) = 4α(n− 1)c.

whose maximum is attained at c = [n(n− 1)]−1 and

max
C,u∗

Tα(C, u
∗) = g2

(
α,

1

n(n− 1)

)
=

4α

n
.

Case II. Then, we consider the case when κ ≤ 2/n. In this case, we prove that the
maximum is achieved by the intersection point between g1(α, c) (an increasing func-
tion in c) and min{g5(α, c), g6(α, c)} (a decreasing function in c). The intersection
points between g1(α,C) and the other five functions are

κ

2n
,

2− κ

n(2n− 3)
,

3− κ

3n(n− 1)
,

1

n2
,

1 + κ

n(n+ 1)
.

In the regime κ ≤ 1/n, we have

κ

2n
≤ 1 + κ

n(n+ 1)
≤ 1

n2
≤ min

{
2− κ

n(2n− 3)
,

3− κ

3n(n− 1)

}
,

which implies that the maximum is attained at c = (1 + κ)/[n(n + 1)]. Hence, the
maximum distance is

max
C,u∗

Tα(C, u
∗) = g1

(
α,

1 + κ

n(n+ 1)

)
=

2(1− α)(n− 2)(n+ 1) + 4

n(n+ 1)
.

In the regime 1/n ≤ κ ≤ 2/n, we have

κ

2n
≤ 1

n2
≤ 1 + κ

n(n+ 1)
≤ min

{
2− κ

n(2n− 3)
,

3− κ

3n(n− 1)

}
,

which implies that the maximum is attained at c = 1/n2. Hence, the maximum
distance is

max
C,u∗

Tα(C, u
∗) = g1

(
α,

1

n2

)
=

2(1− α)(n− 2)n+ 4α

n2
.

Case III. We finally consider the case when 2/n ≤ κ ≤ 2(n− 3)/[(n− 4)(n− 1)].
In this regime, the intersection point between g2(α, c) and g5(α, c) is

κ(n− 2) + 2

4n(n− 1)
≤ κ

2n
.

This implies that g2(α, c) intersects with g5(α, c) before g1(α, c). Therefore, the
maximum is attained at one of the intersects between g2(α, c) and gi(α, c) for i =
3, 4, 5, 6. By calculating the four intersects, the optimal c that achieves the maximum
is given by

c∗(κ) := min

{
κ(n− 4) + 4

n(6n− 10)
,
κ(n− 3) + 3

n(5n− 7)
,
κ(n− 2) + 2

4n(n− 1)
,
κ(n− 1) + 1

3n(n− 1)

}
,
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which is an increasing function in κ. If κ = 2/n, we can estimate that

c∗(κ)

(2.5)

=min

{
2(n− 4)/n+ 4

n(6n− 10)
,
2(n− 3)/n+ 3

n(5n− 7)
,
2(n− 2)/n+ 2

4n(n− 1)
,
2(n− 1)/n+ 1

3n(n− 1)

}
=min

{
3n− 4

n2(3n− 5)
,

5n− 6

n2(5n− 7)
,
1

n2
,

3n− 2

n2(3n− 3)

}
=

1

n2
.

Similarly, if κ = 2(n− 3)/[(n− 4)(n− 1)], it holds that

c∗(κ) =
1

n(n− 1)
.(2.6)

Combining (2.5) and (2.6), we have

c∗(κ) ∈
[
1

n2
,

1

n(n− 1)

]
, ∀κ ∈

[
2

n
,

2(n− 3)

(n− 4)(n− 1)

]
.

Therefore, the maximum distance satisfies the bound

max
C,u∗

Tα(C, u
∗) = g2 [α, c

∗(κ)] ∈
[
4α(n− 1)

n2
,
4α

n

]
.

This completes the proof. ⊓⊔

The results of Theorem 2.4 imply that in the regime where α ≥ Θ(1) and 1 −
α ≥ Θ(n−1), we have Dmin

α = O (n). This suggests that n−1Dα(C, u
∗) may be a

dimension-free complexity metric; see more examples supporting this conjecture in
Section 3. In addition, the minimum possible value of the complexity is attained at

α∗ := (n2 − 5n+ 4)/(n2 − 3n− 2).

Hence, the set of possible values of the complexity metric attains the maximum size
by choosing α = α∗. This observation hints that α∗ may be the optimal choice of α
since it may enable the metric to differentiate instances with different complexities to
the maximum degree. Using the exact formulation of g(α, c) in Lemma 2.1, we plot
the minimum possible value of the complexity metric both without scaling and after
scaling by n−1 in Figure 1. From the numerical results, we can see that the complexity
scales with n if α is smaller than α∗, which is consistent with Theorem 2.4. If α is
larger than α∗, the complexity metric for different values of n approximately lies on
the same curve.

In the following theorem, we show that if α = α∗, the instances that attain the
minimum value of the complexity metric are unique up to sign flips to components
of the global solution.
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Fig. 1: Comparison of Dmin
α for n = 20, 50, 100. The red “×” sign refers to the value

at α∗. In the right plot, the complexity metric is scaled by n−1.

Theorem 2.5 Suppose that n ≥ 5 and the instance MC(C, u∗) satisfies

Dα∗(C, u∗) =
n

4α∗ .

Then, it holds that

|u∗
i | =

1

n
, Cii = 0, ∀i ∈ [n]; Cij =

1

n(n− 1)
, ∀i, j ∈ [n], i ̸= j.

Proof By the assumption that the complexity metric of (C, u∗) is finite, we have that
(C, u∗) /∈ D. It follows from Theorem 2.3 that the subset I00(C, u∗) is empty and
that G1(C, u∗) is connected and non-bipartite. Let k := |I1(C, u∗)|. For each node
i0 ∈ I1(C, u∗), we define the new weight matrix C̃ as

C̃i0j = C̃ji0 = 0, ∀j ∈ I1(C, u∗)\{i0};

C̃ij = Cij +
2

n2 − 2(k − 1)

∑
j∈I1(C,u∗)\{i0}

Ci0j , otherwise.

The subgraph G1(C̃, u∗) is disconnected and, therefore, we have (C̃, u∗) ∈ D. It
follows that

4α∗

n
= [Dα∗(C, u∗)]−1 ≤ α∗∥C − C̃∥1 = 4α∗

∑
j∈I1(C,u∗)\{i0}

Ci0j .(2.7)

For each node i0 ∈ I0(C, u∗), a similar construct of C̃ leads to

4α∗

n
= [Dα∗(C, u∗)]−1 ≤ 4α∗

∑
j∈I1(C,u∗)

Ci0j .(2.8)

By summing inequality (2.7) over i0 for all nodes in I1(C, u∗) and summing inequal-
ity (2.8) over i0 for all nodes in I0(C, u∗), it follows that

4α∗ ≤ 4α∗

 ∑
i,j∈I1(C,u∗),i̸=j

Cij +
∑

i∈I1(C,u∗),j∈I0(C,u∗)

Cij

(2.9)

≤ 4α∗
∑

i,j∈[n],i̸=j

Cij ≤ 4α∗,
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where all inequalities should hold with equality. Since the last inequality in (2.9)
holds with equality, we obtain that

Cii = 0, ∀i ∈ [n].

It follows from the equality of inequalities (2.7) and (2.8) that

∑
j∈I1(C,u∗)\{i}

Cij =
1

n
, ∀i ∈ I1(C, u∗);

∑
j∈I1(C,u∗)

Cij =
1

n
, ∀i ∈ I0(C, u∗).

(2.10)

Using the condition that ∥C∥1 = 1, the above equalities imply that all weights of C
are limited to edges with a node in I1(C, u∗). Namely, we have∑

j∈I0(C,u∗)
Cij = 0, ∀i ∈ I1(C, u∗).(2.11)

If Io(C, u∗) is not empty, the above equality contradicts the second equality in (2.10).
Hence, the point (C, u∗) satisfies that I0(C, u∗) = ∅. By a similar analysis of the
bipartite instance in Lemma 2.1, for every 4-element subset {i, j, k, ℓ} of [n], it holds
that

2(1− α∗)(1− |u∗
i | − |u∗

j | − |u∗
k| − |u∗

ℓ |) + 4α∗(Cij + Ckℓ) = 4α∗/n.

Taking the average of the above equality over {i, j, k, ℓ} for all 4-element subsets of
[n− 1], we obtain that

2(1− α∗)

(
1−

3∥u∗
1:n−1∥1
n− 1

)
+ 4α∗ 2

(n− 1)(n− 2)
∥C1:n−1,1:n−1∥1 =

4α∗

n
.

Using the first equality in (2.10) and the symmetry of C, it holds that ∥C1:n−1,1:n−1∥1 =
1− 2/n. Substituting into the above equality, we know

2(1− α∗)

(
1−

3∥u∗
1:n−1∥1
n− 1

)
= 4α∗ · n− 3

n(n− 1)
.

By recalling that α∗ = (n− 1)(n− 4)/(n2 − 3n− 2), the above inequality leads to

∥u∗
1:n−1∥1 = (n− 1)/n,

which is equivalent to |u∗
n| = 1/n. By the same proof technique, we conclude that

|u∗
i | = 1/n, ∀i ∈ [n].

By substituting back into equality (2.11), it holds for all 4-element subsets {i, j, k, ℓ} ⊂
[n] that

Cij + Ckℓ =
2

n(n− 1)
,

which implies that

Cij =
1

n(n− 1)
, ∀i, j ∈ [n] s. t. i ̸= j.

⊓⊔
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The above theorem states that if we choose the weight α = α∗, the “easiest”
instance is unique up to a change in the signs of the components of the global solution
u∗. In the next theorem, we show that a similar property as α∗ holds if we set α to be

α⋄ := n/(n+ 2).

Theorem 2.6 Suppose that n ≥ 5 and the instance MC(C, u∗) satisfies

Dα⋄(C, u∗) = Dmin
α =

n(n+ 2)

4(n− 1)
.

Then, it holds that

|u∗
i | =

1

n
, ∀i ∈ [n]; C =

1

n2
In.

Since the proof is similar to that of Theorem 2.5, we omit it for brevity. The above
theorem implies that the weight matrix C of the “easiest” instances is a constant mul-
tiple of the identity matrix In, which satisfies the δ-RIP2,2 condition with δ = 0. This
is consistent with the common sense that the RIP constant δ being 0 is the optimal sit-
uation. Hence, Theorem 2.6 suggests that the choice α⋄ = n/(n+2) may potentially
be the optimal choice of α. On the other hand, we will prove in Section 4.1 that the
“easiest” instances in Theorems 2.5 and 2.6 all have a benign landscape in the sense
that they satisfy the strict-saddle property [45], which guarantees the polynomial-time
global convergence of various algorithms. If the weight α is different from α∗ and
α⋄, there may exist multiple “essentially” different instances attaining the minimum
complexity.

3 Connections to existing results

In this section, we provide estimates of the proposed complexity metric on well-
studied problem instances. More specifically, we consider matrix sensing problems
satisfying the RIP condition and matrix completion problems under the Bernoulli
model. In addition, we construct a class of instances parameterized by a single pa-
rameter. We estimate the threshold of the parameter that separates instances with a
desirable optimization landscape from those with a bad landscape.

3.1 Matrix sensing problem: RIP condition

We first consider instances of problem (1.7) that satisfy the δ-RIP2,2 condition, where
δ ∈ [0, 1) is the RIP constant. However, the constraint that C ∈ Sn

2−1
+,1 is inconsistent

with the RIP condition (1.3) in the sense that the entries of C are averagely on the
scale of n−2, but the RIP condition requires that the entries of C be on the scale of
O(1). Therefore, we generalize the definition of the RIP condition to deal with the
inconsistent scaling:
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Definition 3.1 Given natural numbers r and s, the function f(·;M∗) is said to satisfy
the Restricted Isometry Property (RIP) of rank (2r, 2s) for a constant δ ∈ [0, 1),
denoted as δ-RIP2r,2s, if there exist constants c1, c2 ≥ 0 such that c2/c1 = (1 +
δ)/(1− δ) and

c1∥K∥2F ≤
[
∇2f(M ;M∗)

]
(K,K) ≤ c2∥K∥2F(3.1)

holds for all matrices M,K ∈ Rn×n such that rank(M) ≤ 2r, rank(K) ≤ 2s.

The above definition of the RIP condition is scale-free in the sense that for any con-
stant c > 0, the function cf(·;M∗) satisfies the δ-RIP2r,2s condition if and only if
f(·;M∗) satisfies the same condition. The following lemma transforms the RIP2,2

condition to a condition on the weight matrix C.

Lemma 3.1 Given a constant δ ∈ [0, 1), the instance MC(C, u∗) satisfies the δ-
RIP2,2 condition if and only if

mini,j∈[n] Cij

maxi,j∈[n] Cij
≥ 1− δ

1 + δ
.

The proof of Lemma 3.1 can be found in the appendix. Since the instances sat-
isfying the RIP condition have a benign optimization landscape, we expect that the
complexity metric is upper-bounded for those instances. With the help of Lemma 3.1,
we provide an upper bound on the complexity metric of every instance satisfying the
δ-RIP2,2 condition.

Theorem 3.1 Suppose that δ ∈ [0, 1) is a constant and the instance MC(C, u∗)
satisfies the δ-RIP2,2 condition. Then, it holds that

Dα(C, u
∗) ≤ n2(1 + δ)− 2δ

2α(1− δ)
.

The minimum distance is attained by the instance MC(Cδ, uδ), where

Cδ
11 =

1− δ

(1 + δ)n2 − 2δ
; Cδ

ij =
1 + δ

(1 + δ)n2 − 2δ
, ∀i, j ∈ [n]× [n]\{(1, 1)};

uδ
1 = 1; uδ

i = 0, ∀i ≥ 2.

Proof Suppose that (C̃, ũ∗) ∈ D is the closest pair in D to (C, u∗). By Theorem 2.3,
at least one entry of C̃ is 0. Suppose that C̃i0j0 = 0 for some indices i0, j0 ∈ [n].
Then, the distance between C and C̃ satisfies

∥C − C̃∥1 ≥ 2Ci0j0 .

By Lemma 3.1, the minimum value of Ci0j0 can be estimated by

1 =
∑

i,j∈[n]

Cij ≤ Ci0j0 +
∑

(i,j) ̸=(i0,j0)

1 + δ

1− δ
· Ci0j0 =

(n2 − 1)(1 + δ) + 1

1− δ
· Ci0j0 .
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It follows that

Ci0j0 ≥ 1− δ

n2(1 + δ)− 2δ
.

Therefore, the distance between (C, u∗) and (C̃, ũ∗) satisfies

α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1 ≥ 2αCi0j0 ≥ 2α(1− δ)

n2(1 + δ)− 2δ
.

The upper bound on Dα(C, u
∗) stated in the theorem can be derived by taking the

inverse of the above inequality. For the instance MC(Cδ, uδ), the closest parameters
in D can be constructed by setting Cδ

11 to 0 and normalizing the remaining entries of
C. ⊓⊔

We note that the upper bound on Dα(C, u
∗) is increasing in δ, which is consistent

with the intuition that a smaller δ will lead to a better optimization landscape.
By suitably generalizing the definitions of Dα(C, u

∗) and D, the results in Theo-
rem 3.1 can be extended to the general problem (1.2) in the rank-1 case with a slightly
weaker bound. In this work, we provide one possible generalization. For the problem
(1.2), each instance is defined by the loss function f(·; ·) and the ground truth M∗,
which we denote as (f,M∗). We assume that the loss function satisfies

f(M∗;M∗) = min
K∈Rn×n

f(K;M∗),(3.2)

∀M∗ ∈ Rn×n s. t. M∗ ⪰ 0, rank(M∗) = 1.

In the special case when f(·; ·) is the weighted ℓ2-loss function in (1.7), the above
condition implies that Cij ≥ 0 for all i, j ∈ [n]. Similar to the normalization con-
straint C ∈ Sn

2−1
+,1 , we consider any objective function f(·;M∗) with the property

that ∑
i,j∈[n]

[f(M∗ + Eij ;M
∗)− f(M∗;M∗)] = 1,(3.3)

where Eij is defined in (C.1). For the normalization constraint u∗ ∈ Sn−1
1 , we con-

sider any global truth with the property that∑
i∈[n]

√
M∗

ii = 1.(3.4)

The set of degenerate instances is given by

D :=

{
(f,M∗)

∣∣∣∣ f(·; ·) and M∗ satisfy (3.2)- (3.4),

∃M ̸= M∗ s. t. f(M ;M∗) = f(M∗;M∗),M∗ ⪰ 0, rank(M∗) = 1

}
.
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The “entry-wise ℓ1-norm” between two arbitrary functions h1(·) and h2(·) with the
domain Rn×n is defined as the restricted ℓ∞-Lipschitz constant of h1 − h2. Namely,
we define ∥h1 − h2∥1 to be

∥h1 − h2∥1 := sup
K,L∈Rn×n

∣∣(h1(K)− h2(K)
)
−
(
h1(L)− h2(L)

)∣∣
maxi,j∈[n](Kij − Lij)2

s. t. K ̸= L, rank(K − L) ≤ 2.

For every constant α ∈ [0, 1], the distance between two instances (f,M∗) and
(f̃ , M̃∗) is defined as

distα

[
(f,M∗), (f̃ , M̃∗)

]
:= α∥f(·;M∗)− f̃(·; M̃∗)∥1 + (1− α)∥u∗ − ũ∗∥1,

where u∗, ũ∗ ∈ Rn satisfy u∗(u∗)T = M∗ and ũ∗(ũ∗)T = M̃∗. Finally, the com-
plexity metric is given by

Dα(f,M
∗) :=

[
inf

(f̃ ,M̃∗)∈D
distα

[
(f,M∗), (f̃ , M̃∗)

]]−1

.

We note that the definitions of D and Dα(f,M
∗) are consistent with those of instance

(1.7). The following theorem provides an upper bound on the complexity metric of
any instance satisfying the RIP2,2 condition.

Theorem 3.2 Let α ∈ [0, 1] and δ ∈ [0, 1) be two constants. Suppose that the func-
tion f(·;M∗) satisfies the δ-RIP2,2 condition and the normalization constraint (3.3).
Then, it holds that

Dα(f,M
∗) ≤ n2(1 + δ)

α(1− δ)

Proof We fix the instance (f,M∗) and assume that (f̃ , M̃∗) ∈ D. Suppose that the
matrix M ̸= M̃∗ satisfies∑

i∈[n]

√
Mii = 1, f̃(M ; M̃∗) = f̃(M̃∗; M̃∗).

We first consider the case when M ̸= M∗. In this case, we can estimate that

∥f(·;M∗)− f̃(·; M̃∗)∥1(3.5)

≥

∣∣∣[f(M ;M∗)− f̃(M ; M̃∗)
]
−
[
f(M∗;M∗)− f̃(M∗; M̃∗)

]∣∣∣
maxi,j∈[n](Mij −M∗

ij)
2

=

∣∣∣[f(M ;M∗)− f(M∗;M∗)] +
[
f̃(M∗; M̃∗)− f̃(M ; M̃∗)

]∣∣∣
maxi,j∈[n](Mij −M∗

ij)
2

=

∣∣∣[f(M ;M∗)− f(M∗;M∗)] +
[
f̃(M∗; M̃∗)− f̃(M̃∗; M̃∗)

]∣∣∣
maxi,j∈[n](Mij −M∗

ij)
2

≥ f(M ;M∗)− f(M∗;M∗)

maxi,j∈[n](Mij −M∗
ij)

2
≥ (c1/2) · ∥M −M∗∥2F

maxi,j∈[n](Mij −M∗
ij)

2
≥ c1

2
,
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where c1 is the constant in the RIP condition of f(·;M∗). The second inequality is
due to

f(M ;M∗)− f(M∗;M∗) ≥ 0, f̃(M∗; M̃∗)− f̃(M̃∗; M̃∗) ≥ 0.

The second last inequality follows from the global optimality of M∗ and the second
inequality after inequality (12) in [57], namely,

f(M ;M∗) ≥ f(M∗;M∗) +
c1
2
∥M −M∗∥2F , ∀M ∈ Rn×n, rank(M) ≤ 1.

Now, we provide a lower bound on c1. Using the normalization constraint (3.3) and
the stationarity of M∗, it holds that

1 =
∑

i,j∈[n]

[f(M∗ + Eij ;M
∗)− f(M∗;M∗)] ≤ c2

2
·
∑

i,j∈[n]

∥Eij∥2F =
c2n

2

2
,

which implies that c2 ≥ 2n−2. Using the relation c2/c1 = (1+δ)/(1−δ), we obtain
that

c1 ≥ 2(1− δ)

n2(1 + δ)
.

By substituting into inequality (3.5), it follows that

∥f(·;M∗)− f̃(·; M̃∗)∥1 ≥ 1− δ

n2(1 + δ)
.

which leads to distα[(f,M
∗), (f̃ , M̃∗)] ≥ α(1 − δ)/[n2(1 + δ)]. Now, the desired

bound on Dα(f,M
∗) follows from taking the inverse. In the case when M = M∗,

we can replace M with M̃∗ and the proof can be done in the same way. ⊓⊔

We note that in Theorems 3.1 and 3.2, the normalization constraint on u∗ is not
used. Therefore, the upper bound may be loose for certain instances since the infor-
mation about the global solution is not used. On the other hand, in the case when
α(1 − δ) = Θ(1), the upper bound is on the order of O(n2), which is O(n) larger
than the minimum possible complexity metric in Theorem 2.4. Now, we provide a
remedy to the aforementioned issue for problem (1.7). With the knowledge about the
incoherence of the global solution, we can improve the upper bound on the complex-
ity metric.

Theorem 3.3 Suppose that the instance MC(C, u∗) satisfies the δ-RIP2,2 condition
and u∗ satisfies the µ-incoherence condition. Then, it holds that

Dα(C, u
∗) ≤ max

{
n(1 + δ)

4α(1− δ)
,

1

2(1− α)µ

}
×min

{(
1

µ
− 1

n

)−1

, 3µ

}
.

Before proving the estimation of the complexity metric, we prove two properties
of µ-incoherent vectors.

Lemma 3.2 Given any constant µ ∈ [1, n], suppose that u∗ satisfies the µ-incoherence
condition and ∥u∗∥1 = 1. Then, the following properties hold:
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1. u∗ has at least n/µ nonzero components;
2. |u∗

i | ≤ µ/n for all i ∈ [n].

The proof of Lemma 3.2 can be found in the appendix. We first lower-bound the
perturbation of the weight matrix C.

Lemma 3.3 Suppose that the instance MC(C, u∗) satisfies the δ-RIP2,2 condition
and the weight matrix C̃ ∈ Sn

2−1
+,1 has N zero entries, where δ ∈ [0, 1) and N ∈ [n2].

Then, it holds that

∥C − C̃∥1 ≥ 2
∑

(i,j)∈N
Cij ≥

2(1− δ)N

(1 + δ)n2 − 2δN
,

where N is the set of indices of zero entries of C̃.

Proof The δ-RIP2,2 condition implies that

mini,j Cij

maxi,j Cij
≥ 1− δ

1 + δ
.

Therefore, considering the average of entries in N and that of entries not in N , we
have

1
N

∑
(i,j)∈N Cij

1
n2−N

∑
(i,j)/∈N Cij

≥ 1− δ

1 + δ
,

which further leads to

∑
(i,j)∈N

Cij ≥
1− δ

1 + δ
· N

n2 −N

∑
(i,j)/∈N

Cij =
1− δ

1 + δ
· N

n2 −N

1−
∑

(i,j)∈N

Cij

 .

The above inequality is equivalent to

∑
(i,j)∈N

Cij ≥
(1− δ)N

(1 + δ)n2 − 2δN
.

Hence, the distance between C and C̃ is lower-bounded as

∥C − C̃∥1 ≥ 2
∑

(i,j)∈N
Cij ≥

2(1− δ)N

(1 + δ)n2 − 2δN
.

This completes the proof. ⊓⊔

Proof (Proof of Theorem 3.3) Suppose that MC(C̃, ũ∗) ∈ D is the instance such that

[Dα(C, u
∗)]

−1
= α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

In the following, we split the proof into two steps.
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Step I. We first fix ũ∗ and consider the closest matrix C̃ to C such that (C̃, ũ∗) ∈ D.
Let k := |I1(C̃, ũ∗)|. Without loss of generality, we assume that

I1(C̃, ũ∗) = {1, . . . , k}, I0(C̃, ũ∗) = {k + 1, . . . , n}.

We first consider the case when k ≥ 2. If G1(C̃, ũ∗) is disconnected, at least 2(k−1)
entries of C̃ are 0. If G1(C̃, ũ∗) are bipartite, at least k2/2 ≥ 2(k − 1) entries of C̃
are 0. If I00(C̃, ũ∗) is non-empty, at least 2k entries of C̃ are 0. Otherwise if k = 1,
at least one entry of C̃ should be 0 to make G1(C̃, ũ∗) bipartite. In summary, at least
N(k) entries of C̃ are 0, where

N(k) := max{2(k − 1), 1}.

Using the results in Lemma 3.3, the distance between C and C̃ is at least

∥C − C̃∥1 ≥ 2(1− δ)N(k)

(1 + δ)n2 − 2δN(k)
.(3.6)

We note that the distance is monotonously increasing as a function of k.

Step II. Now, we consider the optimal choice of ũ∗ based on the lower bound in (3.6).
Let

ℓ := |I1(C, u∗)|, k := |I1(C̃, ũ∗)|.
Since the distance between C and C̃ is a monotonously increasing function of k,
the minimum distance between (C, u∗) and (C̃, ũ∗) cannot be attained by k > ℓ.
Therefore, we focus on the case when k ≤ ℓ. Without loss of generality, we assume
that

|u∗
1| ≥ |u∗

2| ≥ · · · ≥ |u∗
ℓ | > 0; |u∗

i | = 0, ∀i ≥ ℓ+ 1.

Then, the distance between u∗ and ũ∗ satisfies

∥u∗ − ũ∗∥1 ≥ 2
∑ℓ

i=k+1
|u∗

i |.(3.7)

Denote the distance between (C, u∗) and (C̃, ũ∗) by

dα := α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

Step II-1. We first consider the case when µ ≤ 2n/3. Combining inequalities (3.6)
and (3.7), we obtain a lower bound on dα:

dα ≥ min
k∈[ℓ]

[
2α(1− δ)N(k)

n2(1 + δ)− 2δN(k)
+ 2(1− α)

∑ℓ

i=k+1
|u∗

i |
]
.

For every k ∈ [ℓ], the term inside the above minimization can be lower-bounded by

2α(1− δ)N(k)

n2(1 + δ)− 2δN(k)
+ 2(1− α)

∑ℓ

i=k+1
|u∗

i |

≥ 2α(1− δ) · 2(k − 1)

n2(1 + δ)
+ 2(1− α)

∑ℓ

i=k+1
|u∗

i |

=
4α(1− δ)

n2(1 + δ)
· (k − 1) + 2(1− α)

∑ℓ

i=k+1
|u∗

i |.
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The minimum of the right-hand side over k ∈ [ℓ] can be solved in closed form and is
equal to

∑ℓ

i=2
min

{
4α(1− δ)

n2(1 + δ)
, 2(1− α)|u∗

i |
}
.

Using the second property in Lemma 3.2, we have

min

{
4α(1− δ)

n2(1 + δ)
, 2(1− α)|u∗

i |
}

≥ min

{
4α(1− δ)

n2(1 + δ)
· n|u

∗
i |

µ
, 2(1− α)|u∗

i |
}

= min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
· |u∗

i |.

Taking the summation over k ∈ {2, . . . , ℓ}, we can conclude that

dα ≥
∑ℓ

k=2
min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
· |u∗

i |(3.8)

= min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
·
∑ℓ

k=2
|u∗

i |.

Using the second property in Lemma 3.2 and ∥u∗∥1 = 1, it follows that

∑ℓ

k=2
|u∗

i | ≥ 1− µ

n
.

Substituting back into inequality (3.8), we have

dα ≥ min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
·
(
1− µ

n

)
.

Step II-2. Next, we consider the case when µ ≥ 2n/3. By Theorem 3.1, the distance
is at least

dα ≥ 2α(1− δ)

n2(1 + δ)− 2δ
≥ 2α(1− δ)

(3/2)µ · n(1 + δ)
≥ min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
· 1
3
,

where the second inequality is due to the assumption that µ ≥ 2n/3.
By combining Steps II-1 and II-2, the distance is lower-bounded by

dα ≥ min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
×max

{
1− µ

n
,
1

3

}
= min

{
4α(1− δ)

n(1 + δ)
, 2(1− α)µ

}
×max

{
1

µ
− 1

n
,
1

3µ

}
The proof is completed by using the relation between dα and Tα(C, u

∗). ⊓⊔



26 Haixiang Zhang et al.

From the above theorem, we can use the weight α to control the balance between
the RIP constant δ and the incoherence µ. If we choose 1 − α = Θ(n−1), then the
complexity can be upper-bounded by

Dα(C, u
∗) = µn ·max

{
O

(
1 + δ

1− δ

)
, O

(
1

µ

)}
= O

(
µn · 1 + δ

1− δ

)
.

In addition, if it holds that µ = O(1) and (1 − δ)−1 = O(1), then the complexity is
upper-bounded by O(n), which matches the minimum possible complexity in Theo-
rem 2.4 up to a constant. Although the complexity metric may have a large value for
extreme instances (i.e., instances with a large incoherence), the complexity of regular
instances achieves the optimal value up to a constant. We conclude the discussion of
instances with the RIP condition by showing that the dependence of δ in Theorem
3.3 is tight up to a constant.

Theorem 3.4 Suppose that n ≥ 4, α ∈ [0, 1], µ ∈ [1, n] and δ ∈ [0, 1). Let ℓ :=
⌈n/µ⌉. Then, there exists an instance MC(C, u∗) such that MC(C, u∗) satisfies the
δ-RIP2,2 condition and

Dα(C, u
∗) ≥ n(1 + δ)

4α(1− δ)
·min

{
nµ

µℓ− µ
, µ

}
.

Proof The proof is split into two different cases.

Case I. We first consider the case when µ ≤ n/2. We construct the weight matrix C̃
as

C̃1i = C̃i1 = 0, ∀i ∈ {2, . . . , ℓ}; C̃ij =
1

n2 − 2(ℓ− 1)
, otherwise.

For the instance MC(C̃, u∗), node 1 is disconnected from nodes {2, . . . , ℓ} and thus,
the subgraph G1(C̃, u∗) is disconnected. This implies that (C̃, u∗) ∈ D. The matrix
C is defined as

C1i = Ci1 =
1− δ

(1 + δ)n2 − 4δ(ℓ− 1)
, ∀i ∈ {2, . . . , ℓ};

Cij =
1 + δ

(1 + δ)n2 − 4δ(ℓ− 1)
, otherwise.

By Lemma 3.1, the weight matrix C ensures that MC(C, u∗) satisfies the δ-RIP2,2

condition. The complexity of MC(C, u∗) is lower-bounded by

Dα(C, u
∗) ≥

(
α∥C − C̃∥1

)−1

=
(1 + δ)n2 − 4δ(ℓ− 1)

4α(ℓ− 1)(1− δ)

≥ (1 + δ)(n2 − 2n)

4α(ℓ− 1)(1− δ)
=

n(1 + δ)

4α(1− δ)
· n− 2

ℓ− 1
≥ n(1 + δ)

4α(1− δ)
· nµ

2(nℓ− 1)
,

where the second last inequality follows from 4δ ≤ 2(1 + δ) and the last inequality
is due to n ≥ 4.
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Case II. Next, we consider the case when µ ≥ n/2. Theorem 3.1 implies that there
exists an instance MC(C, u∗) such that

Dα(C, u
∗) =

n2(1 + δ)− 2δ

2α(1− δ)
≥ (n2 − 1)(1 + δ)

2α(1− δ)
≥ n(1 + δ)

2α(1− δ)
· n
2
,

where the first inequality results from 2δ ≤ 1+ δ and the second inequality is in light
of n ≥ 4. Using the condition that µ ≤ n, it follows that

Dα(C, u
∗) ≥ n(1 + δ)

4α(1− δ)
· µ.

Combining Cases I and II completes the proof. ⊓⊔

3.2 Matrix completion problem: Bernoulli model and incoherence condition

Next, we consider instances MC(C, u∗) of problem (1.7) where the global solution
u∗ is µ-incoherent and the random weight matrix C obeys the Bernoulli model. Sim-
ilar to the RIP condition, we need to generalize the definition of the Bernoulli model
under the normalization constraint.

Definition 3.2 Given the sampling rate p ∈ (0, 1], a random matrix C ∈ Sn
2−1

+,1 is
said to obey the Bernoulli model if

Cij =
δij∑

k,ℓ∈[n] δkℓ
, ∀i, j ∈ [n],

where {δkℓ|k, ℓ ∈ [n]} are independent Bernoulli random variables with the parame-
ter p.

We note that the above model is well defined only when
∑

i,j δij > 0, which happens

with probability 1 − (1 − p)n
2 ≥ 1 − exp(−n2p). This probability is sufficiently

large if n2p ≫ 1. In [15], the authors showed that p ≥ Θ(µ log n/n) is necessary
and under this condition, the success probability is at least 1−O(n−µn). Therefore,
we only focus on the case when the event

∑
i,j δij > 0 happens. In the existing

literature [14,27,18], the instances obeying the Bernoulli model are proven to have
no spurious local minima. We show that our complexity metric is able to characterize
this property by proving an upper bound on the complexity metric.

Theorem 3.5 Given µ ∈ [1, n] and p ∈ (0, 1], suppose that the weight matrix C
obeys the Bernoulli model with the parameter p and that u∗ satisfies the µ-incoherence
condition. If η > 2 is a constant and the sampling rate satisfies

p ≥ min

{
1,

16(1 + ηµ) log n+ 16

n

}
,

it holds with probability at least 1− 3n−η/2+1 that

Dα(C, u
∗) ≤ max

{
3n

4α
,

1

2(1− α)µ

}
·
(
1

µ
− 1

n

)−1

.
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We first establish several lemmas before providing the proof of Theorem 3.5. The
first lemma is the Chernoff bound for the sum of Bernoulli random variables [51].

Lemma 3.4 Suppose that X1, . . . , Xm are i.i.d. Bernoulli random variables with the
parameter p. Then, it holds that

P

∑
i∈[m]

Xi ≤
mp

2

 ≤ exp

(
−mp

8

)
, P

∑
i∈[m]

Xi ≥
3mp

2

 ≤ exp

(
−mp

10

)
.

The next lemma provides an upper bound on the total number of nonzero entries.

Lemma 3.5 Suppose that n ≥ 3. With probability at least 1 − exp(−np/10), there
are at most 3n2p/2 nonzero entries in C. With the same probability, it holds that

Cij ≥
2

3n2p
, ∀i, j ∈ [n] s.t. Cij > 0.

Proof For the n(n−1) non-diagonal entries of C, Lemma 3.4 implies that there are at
most (3/2)·n(n−1)p nonzero entries with probability at least 1−exp (−n(n− 1)p/20).
For the n diagonal entries of C, the same lemma implies that there are at most
(3/2) · np nonzero entries with probability at least 1 − exp (−np/10). Combining
both parts concludes that there are at most (3/2) · n2p nonzero entries in C with
probability at least

1− exp (−n(n− 1)p/20)− exp (−np/10) ≥ 1− 2 exp (−np/10) ,

where the last inequality is due to n ≥ 3. The lower bound on Cij follows from the
normalization constraint. ⊓⊔

For every fixed global solution ũ∗, the next lemma estimates the distance between
(C, ũ∗) and D.

Lemma 3.6 Suppose that ũ∗ is a given vector and the random matrix C obeys the
Bernoulli model. In addition, suppose that η > 2 is a constant and

∥ũ∗∥0 ≥ n

2µ
, p ≥ min

{
1,

16(1 + ηµ) log n+ 16

n

}
,

where ∥ũ∗∥0 is the number of nonzero entries of ũ∗. For every instance (C̃, ũ∗) ∈ D,
it holds with probability at least 1− 3n−η/2 that

∥C − C̃∥1 ≥ 4(∥ũ∗∥0 − 1)

3n2
.

Proof For all i, j ∈ [n], we define Bernoulli random variables Xij to be 1 if Cij > 0
and 0 otherwise. Then, Xij are independent identically distributed Bernoulli random
variables with the parameter p. Let N :=

∑
i,j Xij be the number of nonzero weights

in C. By the definition of the Bernoulli model, all nonzero entries of C are equal to
N−1. Since the global solution ũ∗ is fixed, we assume without loss of generality that

I1(C, ũ∗) = [ℓ], I0(C, ũ∗) = {ℓ+ 1, . . . , n}.

We fix C̃ to be a weight matrix such that (C̃, ũ∗) ∈ D and investigate three cases.
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Case I. We first consider the case when G1(C̃, ũ∗) is disconnected. Suppose that Ĩ11
and Ĩ12 are a division of [ℓ] such that the nodes in Ĩ11 are not connected with the
nodes in Ĩ12. In addition, we denote k := |Ĩ11| and assume that k ≤ ℓ/2. Since the
nodes in Ĩ11 are disconnected from the nodes in Ĩ12, at least

2
∑

i∈Ĩ11,j∈Ĩ12

Xij

nonzero entries in C are equal to 0 in C̃. Therefore, we have

∥C − C̃∥1 ≥ 1

N
· 4

∑
i∈Ĩ11,j∈Ĩ12

Xij =
4

N

∑
i∈Ĩ11,j∈Ĩ12

Xij .

Using Lemma 3.4, it holds that∑
i∈Ĩ11,j∈Ĩ12

Xij ≥
1

2
· |Ĩ11||Ĩ12|p =

k(ℓ− k)p

2

with probability at least 1 − exp(−k(ℓ − k)p/8). Since k(ℓ − k) ≥ ℓ − 1, one can
write:

∥C − C̃∥1 ≥ 4

N

∑
i∈Ĩ11,j∈Ĩ12

Xij ≥
4

N
· (ℓ− 1)p

2
=

2(ℓ− 1)p

N
(3.9)

with the same probability. Considering the union bound over all weight matrices C̃
for which G1(C̃, ũ∗) is disconnected, inequality (3.9) holds with probability at least

1−
⌊ℓ/2⌋∑
k=1

(
ℓ

k

)
exp

[
−k(ℓ− k)p

8

]
≥ 1−

⌊ℓ/2⌋∑
k=1

(
ℓe

k

)k

exp

[
−k(ℓ− k)p

8

]

= 1−
⌊ℓ/2⌋∑
k=1

exp

[
k + k log

(
ℓ

k

)
− k(ℓ− k)p

8

]
,

where the inequality uses the relation
(
ℓ
k

)
≤ (ℓe/k)k. Using the relation that k ≤ ℓ/2,

we can estimate that

exp

[
k + k log

(
ℓ

k

)
− k(ℓ− k)p

8

]
≤ exp

[
k + k log ℓ− kℓp

16

]
=exp

[
−kℓ

16

(
p− 16(1 + log ℓ)

ℓ

)]
≤ exp

[
−kℓ

16

(
p− 16(1 + log n)

n

)]
≤ exp

[
−kℓ

16
· 16ηµ log n

n

]
= exp

(
−ηµkℓ log n

n

)
= n− ηµℓ

n ·k ≤ n− η
2 ·k,

where the second last inequality is from the assumption on p and the last inequality
is from ℓ ≥ n/(2µ). By taking the summation over k = 1, . . . , ⌊ℓ/2⌋, it follows that

1−
⌊ℓ/2⌋∑
k=1

exp

[
k + k log

(
ℓ

k

)
− k(ℓ− k)p

8

]
≥ 1−

⌊ℓ/2⌋∑
k=1

n− η
2 ·k

≥ 1− n− η
2

1− n− η
2

≥ 1− 2n−η/2,
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where the last inequality is due to n−η/2 ≥ n−1 ≥ 1/2. Therefore, inequality (3.9)
holds with probability at least 1 − 2n−η/2. Using the lower bound of N in Lemma
3.5, the distance between C and C̃ is at least

2

3n2p
· 2(ℓ− 1)p =

4(ℓ− 1)

3n2

with probability at least

1− 2n−η/2 − exp(−np/10) ≥ 1− 2n−η/2 − n−4µη/5 ≥ 1− 3n−η/2.

Case II. For the case when I00(C̃, ũ∗) is non-empty, the analysis is the same as Case
I. and it holds that

∥C − C̃∥1 ≥ 2

3n2p
· 2(ℓ− 1)p =

4(ℓ− 1)

3n2

with probability at least 1− 3n−η/2.

Case III. Finally, we consider the case when G1(C̃, ũ∗) is bipartite. In this case, we
show that there exists a set of indices I ⊂ [n]2 with at least max{ℓ2/2, 1} elements
such that

C̃ij = 0, ∀(i, j) ∈ I.

The proof of the above claim can be found in the proof of Theorem 3.3 and we omit
it here. If ℓ ≥ 2, we have ℓ2/2 ≥ 2(ℓ − 1) and the proof is the same as Case I.
Otherwise if ℓ = 1, the inequality

∥C − C̃∥1 ≥ 4(ℓ− 1)

3n2
= 0

always holds.
By combining the above three cases, it holds with probability at least 1− 9n−η/2

that

∥C − C̃∥1 ≥ 4(ℓ− 1)

3n2
.

⊓⊔

Now, we are ready to prove Theorem 3.5.

Proof (Proof of Theorem 3.5) Suppose that the instance MC(C̃, ũ∗) ∈ D attains the
maximum in (2.2). Denote

dα := α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

Let
k := |I1(C, u∗)|, ℓ := |I1(C̃, ũ∗)|.

Similar to Theorem 3.3, our goal is to decide the optimal global solution ũ∗. By
Lemma 3.6, the high-probability lower bound of ∥C− C̃∥1 is increasing in ℓ. Hence,
the optimal choice of ℓ is not larger than k. We then analyze two cases.
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Case I. We first consider the case when ℓ < n/(2µ). Since ℓ ≥ 1, it follows that
µ < n/2. By Lemma 3.2, at least k − ℓ > n/(2µ) nonzero entries in u∗ are equal to
0 in ũ∗. Hence, the distance between u∗ and ũ∗ satisfies

∥u∗ − ũ∗∥1 ≥ 2

(
1− n

2µ
· µ
n

)
≥ 1.

Therefore, it holds that

Dα(C, u
∗) = d−1

α =
[
α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

≤ 1

1− α
≤ 1

2(1− α)
·
(
1− µ

n

)−1

=
1

2(1− α)µ
·
(
1

µ
− 1

n

)−1

.

Case II. Next, we focus on the case when ℓ ≥ n/(2µ). By Lemma 3.6, it holds with
probability at least 1− 3n−η/2 that

∥C − C̃∥1 ≥ 4(ℓ− 1)

3n2
.(3.10)

By considering the union bound over ℓ ∈ L := {⌈n/(2µ)⌉, . . . , k}, the probability
that inequality (3.10) holds for all ℓ ∈ L is at least

1−
(
ℓ− n

2µ

)
· 3n−η/2 ≥ 1− 3n−η/2+1.

In the remainder of this proof, we assume that inequality (3.10) holds for all ℓ ∈ L.
In addition, we assume without loss of generality that

|u∗
1| ≥ |u∗

2| ≥ · · · ≥ |u∗
k| > 0; |u∗

i | = 0, ∀i ≥ k + 1.

By the assumption of this case, at least k − ℓ nonzero entries in u∗ are equal to 0 in
ũ∗. Then, we can estimate that

dα ≥ min
n/(2µ)≤ℓ≤k

[
4α(ℓ− 1)

3n2
+ 2(1− α)

k∑
i=ℓ+1

|u∗
i |

]

≥ min
1≤ℓ≤k

[
4α(k − 1)

3n2
+ 2(1− α)

k∑
i=ℓ+1

|u∗
i |

]
.

The above minimization problem can be solved in closed form, which leads to

dα ≥
∑k

ℓ=1
min

{
4α

3n2
, 2(1− α)|u∗

i |
}
.

By the second property in Lemma 3.2, we have

dα ≥
k∑

i=2

min

{
4α

3µn
|u∗

i |, 2(1− α)|u∗
i |
}

= min

{
4α

3µn
, 2(1− α)

} k∑
i=2

|u∗
i |

≥ min

{
4α

3µn
, 2(1− α)

}
·
(
1− µ

n

)
= min

{
4α

3n
, 2(1− α)µ

}
·
(
1

µ
− 1

n

)
.
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The desired upper bound follows from Dα(C, u
∗) = d−1

α .
By combining the above two cases, the distance dα satisfies

Dα(C, u
∗) ≤ max

{
3n

4α
,

1

2(1− α)µ

}
·
(
1

µ
− 1

n

)−1

with probability at least 1− 3n−η/2+1. ⊓⊔

By Theorem 3.5, if 1 − α = Θ(n−1µ−1), then the complexity of instances
obeying the Bernoulli model is on the order of Θ[n2µ/(n − µ)]. If the incoherence
µ = O(1), the complexity is on the order of O(n), which matches the minimum pos-
sible complexity up to a constant. Therefore, the proposed metric can also serve as a
good indicator for the matrix completion problem with the Bernoulli model. Finally,
we note that the bound p ≥ Θ(µ log n/n) is optimal up to a constant [15]; see also
the discussions in Appendix E of [25].

3.3 One-parameter class of instances

In Sections 3.1 and 3.2, we provided several upper bounds on the complexity metric.
In this part, we consider a class of instances that are parameterized by a single param-
eter ϵ ∈ [0, 1]. Intuitively, when the parameter grows from 0 to 1, the optimization
landscape of the instance becomes more benign. Unlike the previous results in this
section, the analysis of the small parameter case provides necessary conditions for
the existence of spurious local minima. More specifically, we fix G = (V,E) to be
an unweighted undirected graph without self-loops, where the node set is V = [n].
We consider the maximal independent set of G, which is defined as follows:

Definition 3.3 For an undirected graph G = (V,E), a set S ⊂ V is called an inde-
pendent set if no two nodes in S are adjacent. The set S is called a maximal indepen-
dent set if it is an independent set with the maximum number of nodes 2.

Suppose that S ⊂ [n] is a maximal independent set of G. For every ϵ ∈ [0, 1], the
instance MC(Cϵ, u∗) is defined by

Cϵ
ij := ϵ/Zϵ, ∀i, j ∈ S s. t. i ̸= j; Cϵ

ij := 1/Zϵ, if {i, j} ∈ E;(3.11)

Cϵ
ii := 1/Zϵ, ∀i ∈ [n], Cϵ

ij := 0, otherwise,

u∗
i := 1/m, ∀i ∈ S; u∗

i := 0, ∀i /∈ S,

where m := |S| and Zϵ := 2|E|+ n+m(m− 1)ϵ is the normalization constant. In
the remainder of this subsection, we assume without loss of generality that S = [m].

First, we study for what values of ϵ the instance MC(Cϵ, u∗) has benign land-
scape or has spurious local minima. We first prove that the spurious second-order

2 We note that this definition is different from the common definition of maximum independent set,
which only requires that a maximum independent set is not a proper subset of an independent set.
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critical points3 (SSCPs) of the instance MC(Cϵ, u∗) are closely related to those of
the m-dimensional problem

min
x∈Rm

∑
i∈[m]

(x2
i − 1)2 + ϵ

∑
i,j∈[m],i̸=j

(xixj − 1)2.(3.12)

Lemma 3.7 If problem (3.12) has no SSCPs, then the instance MC(Cϵ, u∗) has no
SSCPs. In addition, given a number N ∈ N, suppose that problem (3.12) has N
SSCPs with nonzero components at which the objective function has a positive def-
inite Hessian matrix. Then, the instance MC(Cϵ, u∗) has at least N spurious local
minima.

Proof To prove the first part of the theorem, we assume that problem (3.12) has
no SSCPs. Suppose that u0 ∈ Rn is a second-order critical point of the instance
MC(Cϵ, u∗). Calculating the gradient of g(u;C, u∗) with respect to ui for any index
i ≥ m leads to

Zϵ∇ig(u
0;Cϵ, u∗) = 4(u0

i )
3 + 4

∑
j∈[n],{i,j}∈E

u0
i (u

0
j )

2 = 0,

where ∇ig(·;Cϵ, u∗) is i-th component of the gradient. By multiplying u0
i on both

sides, it follows that

4(u0
i )

4 + 4(u0
i )

2
∑

j∈[n],{i,j}∈E
(u0

j )
2 = 0,

which implies that u0
i = 0 for all i ∈ {m + 1, . . . , n}. Calculating the gradient and

the Hessian matrix with respect to u1:m yields that

Zϵ∇ig(u
0;Cϵ, u∗) = 4ϵ

∑
j∈[m],j ̸=i

u0
j (u

0
iu

0
j − 1/m2)

+ 4u0
i [(u

0
i )

2 − 1/m2], ∀i ∈ [m];

Zϵ∇2
iig(u

0;Cϵ, u∗) = 12(u0
i )

2 − 4/m2 + 4ϵ
∑

j∈[m],j ̸=i
(u0

j )
2, ∀i ∈ [m];

Zϵ∇2
ijg(u

0;Cϵ, u∗) = 4ϵ(2u0
iu

0
j − 1), ∀i, j ∈ [m] s. t. i ̸= j,

where ∇ijg(·;Cϵ, u∗) is the (i, j)-th component of the Hessian matrix. By defin-
ing x0 ∈ Rm as x0

i := mu0
i for all i ∈ [m], the above gradient and Hessian ma-

trix turn out to be the same as those of problem (3.12). Since the first m entries of
∇g(u0;Cϵ, u∗) are 0 and the first m-by-m principle sub-matrix of ∇2g(u0;Cϵ, u∗) is
positive semi-definite, the point x0 is a second-order critical point of problem (3.12).
In addition, the point u0 is a global optimum if and only if |u0

i | = 1/m for all i ∈ [m],
which is further equivalent to x0

i = 1 for all i ∈ [m] and x0 is the global solution to
problem (3.12). Therefore, the point x0 is a SSCP if u0 is a SSCP, which is a contra-
diction to the assumption that problem (3.12) has no SSCPs. Therefore, the point u0

is a global minimum of the instance MC(Cϵ, u∗).

3 A point u ∈ Rn is called a spurious second-order critical point if it satisfies the first-order and the
second-order necessary optimality conditions and uuT ̸= u∗(u∗)T .



34 Haixiang Zhang et al.

For the second part of the theorem, suppose that x0 is a SSCP of problem (3.12),
where the Hessian matrix is positive definite and x0

i ̸= 0 for all i ∈ [m]. We construct
u0 ∈ Rn by setting u0

i := m−1x0
i for all i ∈ [m] and u0

i = 0 for all i ∈ {m +
1, . . . , n}. By similar calculations, we can prove that the Hessian matrix at u0 is a
block diagonal matrix with two blocks, where the first block is H(x; ϵ) and the second
block is a diagonal matrix with positive diagonal entries. Moreover, the gradient at
u0 is equal to 0. Hence, u0 is a SSCP with a positive definite Hessian matrix. The
construction shows that the mapping from x0 to u0 is injective. ⊓⊔

To simplify the notations in the following proofs, we denote the gradient and the
Hessian matrix of the objective function of problem (3.12) by

gi(x; ϵ) := 4
[
x3
i − xi + ϵ

∑
j ̸=i

xj(xixj − 1)
]
, ∀i ∈ [m];

Hii(x; ϵ) := 4
[
3x2

i − 1 + ϵ
∑

j ̸=i
x2
j

]
, ∀i ∈ [m];

Hij(x; ϵ) := 4ϵ(2xixj − 1), ∀i, j ∈ [m] s.t. i ̸= j.

The following theorem guarantees that the instance MC(Cϵ, u∗) does not have spu-
rious local minima when ϵ ≥ O(m−1).

Theorem 3.6 If ϵ > 18/m, the instance MC(Cϵ, u∗) does not have SSCPs, namely,
all second-order critical points are global minima associated with the ground truth
solution M∗.

Proof By Lemma 3.7, we only need to prove that problem (3.12) has no SSCPs. The
conclusion holds when ϵ = 1 since the δ-RIP2,2 condition holds with δ = 0 and
the results in [59] guarantee that there is no SSCP. In the remainder of the proof, we
assume that ϵ ∈ [0, 1). Suppose that x0 ∈ Rm is a second-order critical point of
problem (3.12). Denote

Sk :=
∑m

i=1
(x0

i )
k, ∀k ∈ N.

Using the first-order optimality conditions, we have

0 =
1

4

∑
i∈[m]

gi(x
0; ϵ) = (1− ϵ)S3 − (1− ϵ)S1 −mϵS1 + ϵS1S2,(3.13)

0 =
1

4

∑
i∈[m]

x0
i gi(x

0; ϵ) = (1− ϵ)S4 − (1− ϵ)S2 − ϵS2
1 + ϵS2

2 .

Using the second-order necessary optimality conditions, the curvatures of the objec-
tive function along the directions

c+ := (x0
1 − 1, . . . , x0

m − 1) and c− := (x0
1 + 1, . . . , x0

m + 1)

are given by

cT+H(x; ϵ)c+/4 = 3(1− ϵ)(S4 − 2S3 + S2) + [ϵS2 − (1− ϵ)](S2 − 2S1 +m)

+ 2ϵ(S2
2 − 2S2S1 + S2

1)− ϵ(S2
1 − 2nS1 +m2) ≥ 0,

cT−H(x; ϵ)c−/4 = 3(1− ϵ)(S4 + 2S3 + S2) + [ϵS2 − (1− ϵ)](S2 + 2S1 +m)

+ 2ϵ(S2
2 + 2S2S1 + S2

1)− ϵ(S2
1 + 2nS1 +m2) ≥ 0.
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Using the relations in (3.13), we can write S3 and S4 in terms of S1 and S2, which
leads to

[mϵ+ 5(1− ϵ)]S2 + 4ϵS2
1 − 4[mϵ+ (1− ϵ)] · |S1| − [m2ϵ+m(1− ϵ)] ≥ 0.

(3.14)

Let c be a positive number such that

S2
1 = cS2.

Using Hölder’s inequality, we have c ∈ [1,m]. We note that in the case when S2 = 0,
it holds that S1 = 0 and we can choose c to be any constant in [1,m]. Then, inequality
(3.14) can be written as

[mϵ+ 5(1− ϵ) + 4ϵc]S2 − 4[mϵ+ (1− ϵ)]
√
c ·
√
S2 − [m2ϵ+m(1− ϵ)] ≥ 0.

(3.15)

Inequality (3.15) is a quadratic inequality in
√
S2 and thus, it can be solved in closed

form, namely, inequality (3.15) is equivalent to

√
S2

(3.16)

≥
4[mϵ+ (1− ϵ)]

√
c+

√
4[mϵ+ (1− ϵ)][8mϵc+ 4(1− ϵ)c+m2ϵ+ 5m(1− ϵ)]

2[mϵ+ 5(1− ϵ) + 4ϵc]

=m
√
mϵ+ (1− ϵ) ·

[√
[8mϵ+ 4(1− ϵ)]c+m2ϵ+ 5m(1− ϵ)

−
√
4[mϵ+ (1− ϵ)]c

]−1

.

Consider the function

e(c) :=
√
[8mϵ+ 4(1− ϵ)]c+m2ϵ+ 5m(1− ϵ)−

√
4[mϵ+ (1− ϵ)]c,

∀c ∈ [1,m],

which is the negative of a unimodal function4. Hence, the maximum value of e(c) on
[1,m] is attained at 1 or m. Let

C := mϵ > 18.

We calculate that

e(m) =
√
9m[mϵ+ (1− ϵ)]−

√
4m[mϵ+ (1− ϵ)]

=
√
m[mϵ+ (1− ϵ)] ≤

√
m(C + 1) ≤

√
2mC,

e(1) =
√

8mϵ+ 4(1− ϵ) +m2ϵ+ 5m(1− ϵ)−
√
4[mϵ+ (1− ϵ)]

≤
√
8C + 4 +mC + 5m ≤

√
2(m+ 8)C.

4 In this work, we say a function f : R 7→ R is a unimodal function if there exists a constant c ∈ R
such that f is increasing on (−∞, c] and decreasing on [c,+∞).
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Hence, we have

e(c) ≤
√

2(m+ 8)C, ∀c ∈ [1,m].

By combining with (3.16), it follows that

√
S2 ≥ m

√
C + (1− ϵ) ·

[√
2(m+ 8)C

]−1

≥ m
√
C ·
[√

2(m+ 8)C
]−1

=
m√

2(m+ 8)
,

which further leads to

S2 ≥ m2

2(m+ 8)
≥ m

18
.(3.17)

Therefore, we obtain that

ϵ

1− ϵ
S2 − 1 ≥ ϵm

18
− 1 > 0.

Using the first-order optimality condition, each component x0
i is the solution to the

third-order polynomial equation

gi(x; ϵ) = x3
i +

[
ϵ

1− ϵ
S2 − 1

]
xi −

ϵ

1− ϵ
S1 = 0, ∀i ∈ [m].(3.18)

Since the first-order coefficient ϵ/[(1 − ϵ)S2] − 1 is positive, the derivative of the
polynomial is positive and the equation has a unique real root x0. Hence, we know

x0
1 = · · · = x0

m = x0.

The equation in (3.18) now becomes

x3
0 +

[
ϵ

1− ϵ
·mx2

0 − 1

]
x0 −

ϵ

1− ϵ
·mx0 =

[
mϵ

1− ϵ
+ 1

]
(x3

0 − x0) = 0,

which gives x0 ∈ {−1, 0, 1}. If x0 ∈ {−1, 1}, then the point x0 is a global optimum.
Otherwise if x0 = 0, it follows that x0 = 0 and S2 = 0, which contradicts (3.17).
Combining the two cases, we conclude that problem (3.12) does not have SSCPs,
which implies that the instance MC(Cϵ, u∗) also has no SSCPs. ⊓⊔

Then, we consider the regime of ϵ where the instance MC(Cϵ, u∗) has spurious
solutions. The following theorem studies the case when m is an even number.

Theorem 3.7 Suppose that m is an even number. If ϵ < 1/(m+1), then the instance
MC(Cϵ, u∗) has at least 2m/2 spurious local minima.
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Proof By Lemma 3.7, we only need to show that problem (3.12) has at least
(

m
m/2

)
SSCPs whose associated Hessian matrices are positive definite and whose compo-
nents are nonzero. We consider a point x0 ∈ Rm such that

(x0
i )

2 =
1− ϵ

1 + (m− 1)ϵ
> 0, ∀i ∈ [m];

∑
i∈[m]

x0
i = 0.

The above equations have a solution since m is an even number. By a direct calcula-
tion, we can verify that the gradient g(x0; ϵ) is equal to 0. We only need to show that
the Hessian matrix H(x0; ϵ) is positive definite, namely

cTH(x0; ϵ)c > 0, ∀c ∈ Rm\{0}.

The above condition is equivalent to[
(3 + (m− 3)ϵ)

(
x0
1

)2 − 1 + ϵ
]∑

i∈[m]
c2i − ϵ

(∑
i∈[m]

ci

)2

+ 2ϵ
(
x0
1

)2(∑
i∈[m]

sign(x0
i )ci

)2

> 0, ∀c ∈ Rn\{0}.

Under the normalization constraint ∥c∥2 = 1, the Cauchy inequality implies that the
minimum of the left-hand side is attained by

c1 = · · · = cm = 1/
√
m.

Therefore, the Hessian is positive definite if and only if

(3 + (m− 3)ϵ)
(
x0
1

)2 − 1 + ϵ > mϵ.

By substituting (x0
1)

2 = (1− ϵ)/[1 + (m− 1)ϵ], the above condition is equivalent to

2− (m+ 4)ϵ− (m− 2)(m+ 1)ϵ2 > 0.

Using the condition that (m+ 1)ϵ < 1, we obtain that

2− (m+ 4)ϵ− (m− 2)(m+ 1)ϵ2 > 1− 3ϵ− (m− 2)ϵ = 1− (m+ 1)ϵ > 0,

where the first inequality is from the fact that m ≥ 2, which follows from the as-
sumption that m > 0 is an even number.

To estimate the number of SSCPs, we observe that m/2 components of x0 have
a positive sign and the other m/2 components have a negative sign. Hence, there are
at least (

m

m/2

)
spurious SSCPs. The estimate on the combinatorial number is in light of the inequal-
ity
(
n
k

)
≥ (n/k)k. ⊓⊔

The estimation of the odd number case is similar. We present the result in the
following theorem and provide the proof in the appendix.
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Fig. 2: The left plot shows the transitions of the success rate of the gradient descent
algorithm when n = 100, 125, 150, 175. The red “×” sign refers to the transition
threshold, i.e., the smallest value of η that attains 100% success rate. In the right
plot, the transition thresholds of η are compared with the curves y = 1 and y =
1− 1.7(n+ 1)−2/3.

Theorem 3.8 Suppose that m is an odd number. If ϵ < 1/[13(m + 1)], then the
instance MC(Cϵ, u∗) has at least [2m/(m+ 1)](m+1)/2 spurious local minima.

By combining Theorems 3.6-3.8, it follows that the threshold ϵ = Θ(m−1) =
Θ(µ/n) separates the regimes where the instance possesses and does not possess
spurious local minima, where µ := n/m is the incoherence of u∗. In addition, in the
case when m = 2, Theorem 3.7 implies that the instance MC(Cϵ, u∗) has spurious
local minima if ϵ < 1/3. By Lemma 3.1, the condition that ϵ = 1/3 corresponds
to the condition that the δ-RIP2,2 condition holds with δ = 1/2. Therefore, the RIP
constant δ ≤ 1/2 is necessary for the instance MC(Cϵ, u∗) to have no spurious
local minima. Combined with the results in [57,7], we can see that the one-parameter
group MC(Cϵ, u∗) also contains difficult instances of the general problem (1.2).

Furthermore, we note that the constants in Theorems 3.6-3.8 are not optimal. We
conjecture that the instance MC(Cϵ, u∗) has spurious solutions if ϵ < (m+ 1)−1 +
o(m−1) and does not have spurious solutions if ϵ > (m+1)−1+o(m−1). We numer-
ically verify this conjecture in the special case when m = n. In numerical examples,
we consider the scaled parameter η := (n+1)ϵ. For each instance, we implement the
randomly initialized gradient descent algorithm for 200 times and check the number
of implements for which the distance between the last iterate and ±u∗ has Frobenius
norm at most 10−5. The results are plotted in Figure 2. In the left plot, we can see that
in most cases, the success rate grows with the parameter η, which is proportional to ϵ.
This indicates that the optimization landscape becomes more benign when ϵ is larger.
In addition, the transition thresholds of η are very close to 1 (to be more accurate,
the thresholds of η are between 0.95 and 1.05). This observation is consistent with
our conjecture. In the right plot, we compare the transition thresholds of η against the
constant number 1. We observe that the thresholds are approximately located between
1 and 1− 1.7(n+1)−2/3, which implies that the original thresholds of ϵ are between
(n+ 1)−1 and (n+ 1)−1 − 1.7(n+ 1)−5/3. Hence, the thresholds become close to
(n + 1)−1 when n is large, which is also consistent with our conjecture. Moreover,
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we can see that the threshold of η is not monotone in n and is slightly smaller when
n is odd.

Finally, we transform the above estimates on the parameter ϵ to the complexity
metric.

Theorem 3.9 Suppose that n ≥ m ≥ 36, α ∈ [0, 1] and ϵ ∈ [0, 1]. Then, the
following statements hold true:

1. If

Dα(C
ϵ, u∗) ≤

[
36α

n2
+min

{
72α · m

n2
, 2(1− α)

}]−1

,

then the instance MC(Cϵ, u∗) has no spurious local minima;
2. If

Dα(C
ϵ, u∗) ≥ 18

17
max

{
13n2

2α
,

1

2(1− α)

}
,

then the instance MC(Cϵ, u∗) has spurious local minima.

The proof of Theorem 3.9 relies on the following lemma, which calculates the
complexity metric of the instance MC(Cϵ, u∗).

Lemma 3.8 Suppose that n ≥ m ≥ 5, α ∈ [0, 1] and ϵ ∈ [0, 1]. The complexity
metric Dα(C

ϵ, u∗) has the closed form

[Dα(C
ϵ, u∗)]−1 = min

{
2α

Zϵ
+

2(1− α)(m− 1)

m
,
4αϵ

Zϵ
+
2(1− α)(m− 2)

m
,

4α(m− 1)ϵ

Zϵ

}
.

Moreover, Dα(C
ϵ, u∗) is strictly decreasing in ϵ on [0, 1/2].

The proof of Lemma 3.8 is similar to that of Theorem 2.4 and is provided in the
appendix. Combining Theorems 3.6-3.8 and Lemma 3.8, we are able to estimate the
range of the complexity metric.

Proof (Proof of Theorem 3.9) By defining constants δ := 1/26 and ∆ := 18, Theo-
rems 3.6-3.8 imply that

1. If ϵ < δ/m, the instance MC(Cϵ, u∗) has spurious local minima;
2. If ϵ > ∆/m, the instance MC(Cϵ, u∗) has no spurious local minima.

Then, we study two different cases.

Case I. We first consider the case when mϵ is large. Since ϵ < ∆/m ≤ 1/2, the
threshold locates in the regime where Dα(C

ϵ, u∗) is strictly decreasing. Hence, it
suffices to show that [

2α∆

n2
+min

{
4α∆ · m

n2
, 2(1− α)

}]−1
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is a lower bound on Dα(C
ϵ, u∗) when ϵ = ∆/m. By Lemma 3.8, it holds that

[Dα(C
ϵ, u∗)]

−1

=min

{
2α

Zϵ
+

2(1− α)(m− 1)

m
,
4αϵ

Zϵ
+

2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
≤min

{
4αϵ

Zϵ
+

2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
=
4αϵ

Zϵ
+ (m− 2)min

{
4αϵ

Zϵ
,
2(1− α)

m

}
≤ 4αϵ

Zϵ
+mmin

{
4αϵ

Zϵ
,
2(1− α)

m

}
.

Since the graph G does not contain any independence set with m+ 1 nodes, Turán’s
theorem [3] implies that the graph G has at least n2/(2m) edges, namely,

|E| ≥ n2/(2m).

We note that the above bound is asymptotically tight and is attained by the Turán
graph. Hence, we obtain that

Zϵ = 2|E|+ n+m(m− 1)ϵ ≥ 2|E| ≥ n2/m.

By substituting into the estimate of Dα(C
ϵ, u∗), it follows that

[Dα(C
ϵ, u∗)]

−1 ≤ 4αϵ ·m
n2

+mmin

{
4αϵ ·m

n2
,
2(1− α)

m

}
=

2α∆

n2
+min

{
4α∆ · m

n2
, 2(1− α)

}
.

Case II. Next, we consider the case when ϵm is small. Similar to Case I, it suffices
to show that

18

17
max

{
n2

4αδ
,

1

2(1− α)

}
is an upper bound for Dα(C

ϵ, u∗) when ϵ = δ/m. Since δ < 1/2, we have

2α/Zϵ > 4αϵ/Zϵ.

By Lemma 3.8, it holds that

[Dα(C
ϵ, u∗)]

−1

=min

{
2α

Zϵ
+

2(1− α)(m− 1)

m
,
4αϵ

Zϵ
+

2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
=min

{
4αϵ

Zϵ
+

2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
=
4αϵ

Zϵ
+ (m− 2)min

{
4αϵ

Zϵ
,
2(1− α)

m

}
≥ 17

18
min

{
4αϵm

Zϵ
, 2(1− α)

}
,
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where the last inequality is from m ≥ 36. Since ϵ ≤ 1, the definition of Zϵ implies
that Zϵ ≤ n2. By substituting into the estimate of Dα(C

ϵ, u∗), it follows that

[Dα(C
ϵ, u∗)]

−1 ≥ 17

18
min

{
4αϵm

n2
, 2(1− α)

}
=

17

18
min

{
4αδ

n2
, 2(1− α)

}
.

By combining Cases I and II, we complete the proof. ⊓⊔

In the case when 1 − α ≥ Θ(m/n2), the upper bound on Dα(C
ϵ, u∗) is on the

order of O(nµ/α), where µ := n/m is the incoherence of u∗. This result is consistent
with the upper bounds in Sections 3.1 and 3.2. On the other hand, the lower bound
in Theorem 3.9 is on the order of O(n2/α) in the case when 1 − α ≥ Θ(n−2).
In Section 4, we make some conjectures based on these observations and provide a
partial theoretical explanation.

4 Theoretical results

In this section, we provide a theoretical analysis for the proposed complexity metric
(2.2) on the general problem (1.7). Intuitively, we expect the problem (1.7) to have a
benign landscape when the complexity metric is small and vice versa. Recalling the
analysis in Section 3, we have the following two conjectures:

Conjecture 1 Suppose that 1 − α ≥ Θ(n−1) and the solution u∗ is µ-incoherent.
Then, there exist two constants δ,∆ > 0 such that

1. If Dα(C, u
∗) ≤ δµn/α, the instance MC(C, u∗) has no SSCPs;

2. If Dα(C, u
∗) ≥ ∆n2/α, the instance MC(C, u∗) has SSCPs.

Suppose that the first conjecture holds. The results in Section 3.1 imply that the
proposed complexity metric guarantees the in-existence of SSCPs when the RIP
constant is O[(δ − 1)/(δ + 1)], which is independent of µ. In addition, the matrix
completion problem under the Bernoulli model does not have SSCPs when p ≥
O(µ log n/n), which matches the lower bound in [15]. In Section 4.1, we prove
a weaker version of the first conjecture in the case when α is equal to α∗ or α⋄,
which are defined in Section 2. We note that both α∗ and α⋄ satisfy the condition
that 1 − α = Θ(n−1). On the other hand, in Section 4.2, we refute the second con-
jecture by constructing counterexamples. This observation implies that similar to the
RIP constant and the incoherence, the proposed complexity metric cannot provide
necessary conditions on the in-existence of spurious local solutions. However, if we
substitute the degenerate set D with a slightly smaller set, we prove that the complex-
ity metric is able to provide a necessary condition.

4.1 Small complexity case

We first consider instances with a small complexity metric. In the case when α is
equal to α∗ or α⋄, we prove that Dα(C, u

∗) ≤ δn/α serves as a sufficient condition



42 Haixiang Zhang et al.

for the in-existence of SSCPs, where δ > 0 is an absolute constant. Since the incoher-
ence µ is at least 1, the aforementioned condition is weaker than the first property in
Conjecture 1. By Theorem 2.4, the minimum possible value of the complexity metric
is on the order of O(n/α). In this subsection, we show that the constant δ can be
chosen such that δn/α is strictly larger than the minimum possible complexity. The
following theorem deals with the case when α = α∗.

Theorem 4.1 Suppose that n ≥ 5 and α = α∗. Then, there exists a constant δ > 1/4
such that for every instance MC(C, u∗) satisfying

Dα∗(C, u∗) ≤ δn/α∗,

the instance MC(C, u∗) does not have any SSCPs.

Since the minimum possible complexity metric is n/(4α∗), the upper bound in
Theorem 4.1 is non-trivial in the sense that there exist instances satisfying the in-
equality. By Theorem 2.5, the minimum complexity metric n/(4α∗) is only attained
by instances in M, where

M :=

{
(C, u∗)

∣∣∣∣∣ |u∗
i | = 1/n, Cii = 0, ∀i ∈ [n],

Cij =
1

n(n− 1)
, ∀i, j ∈ [n], i ̸= j

}
.

In the next lemma, we prove the strict-saddle property [45] of the ℓ1-norm for in-
stances in M, which can be viewed as a robust version of the in-existence of SSCPs.

Lemma 4.1 Suppose that n ≥ 2 and (C0, u0) ∈ M. Then, there exist a positive
constant η0 and two positive-valued functions β(η) and γ(η) such that for all η ∈
(0, η0] and u ∈ Rn, at least one of the following properties holds:

1. min{∥u− u∗∥1, ∥u+ u∗∥1} ≤ η;
2. ∥∇g(u;C, u∗)∥∞ ≥ β(η);
3. λmin[∇2g(u;C, u∗)] ≤ −γ(η).

We then show that after a sufficiently small perturbation to any point (C0, x0) ∈
M, the new instance does not have any SSCPs.

Lemma 4.2 Suppose that n ≥ 3. There exists a small positive constant ϵ such that
for every pair (C0, u0) ∈ M and (C̃, ũ∗) satisfying

α∗∥C̃ − C0∥1 + (1− α∗)∥ũ∗ − u0∥1 < ϵ,

the instance MC(C̃, ũ∗) does not have SSCPs.

The proofs of the last two lemmas can be found in the appendix. Now, we prove
the existence of a non-trivial upper bound on the metric.
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Proof (Proof of Theorem 4.1) Let ϵ be the constant in Lemma 4.2. We consider the
compact set

C :=

{
(C, u∗)

∣∣∣∣ ∥C∥1 = ∥u∗∥1 = 1,

α∗∥C̃ − C0∥1 + (1− α∗)∥ũ∗ − u0∥1 ≥ ϵ, ∀(C0, u0) ∈ M
}
.

Since the minimum possible complexity metric n/(4α∗) is only attained by points in
M, it holds that

Dα∗(C) := max
(C,u∗)∈C

Dα∗(C, u∗) > n/(4α∗).

Therefore, choosing
δ := (α∗/n) · Dα∗(C) > 1/4,

we have

Dα∗(C, u∗) ≤ δn/α∗ =⇒ (C, u∗) /∈ C
=⇒ the instance MC(C, u∗) has no SSCPs.

This completes the proof. ⊓⊔

The case when α = α⋄ can be analyzed in a similar way. We note that the strict-
saddle property of the instances in Theorem 2.6 has been established in [33]. Hence,
we present the results in the following theorem and omit the proof.

Theorem 4.2 Suppose that n ≥ 5 and α = α⋄. Then, there exists a constant δ > 1/4
such that for every pair (C, u∗) satisfying

Dα⋄(C, u∗) ≤ δn(n+ 2)/(n+ 1),

the instance MC(C, u∗) does not have any SSCPs.

Similar to Theorem 4.1, since the minimum possible complexity metric is attained
with δ = 1/4, the upper bound in Theorem 4.2 is non-trivial.

4.2 Large complexity case

In this subsection, we first refute the second property in Conjecture 1 and then refine
its statement to make it hold true. We note that the RIP constant and the incoherence
cannot provide necessary conditions for the in-existence of SSCPs either. Namely,
there exist instances that satisfy the δ-RIP2,2 condition with δ as high as 1 which do
not have SSCPs. Similarly, in the case when the incoherence of the global solution
is n, it is still possible to have an instance of the matrix completion problem without
any SSCPs. In other words, although small values for the RIP constant and incoher-
ence guarantee the in-existence of spurious solutions, these notions cannot capture
the complexity of the problem since there are low-complexity problems with large
values for these parameters. We first show that our new metric suffers from the same
shortcoming, but we then propose a simple refinement to address this issue.
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Example 1 Suppose that the weight matrix and the ground truth are

Cδ :=
1

1 + 3δ

[
1 δ
δ δ

]
, u∗ :=

[
1
0

]
,

where δ ≥ 0 is a constant. One can verify that ±u∗ are the only local minima to the
instance MC(Cδ, u∗) for all δ > 0. However, in the case when δ = 0, the instance
MC(C0, u∗) has the set of global solutions

±
[
1
c

]
, ∀c ∈ R.

Moreover, we consider the case when both components of u∗ are measured, where
the instance MC(C̃ϵ, ũϵ) is defined by

C̃ϵ :=
1

1 + ϵ

[
1 0
0 ϵ

]
, ũϵ :=

1

1 + ϵ

[
1
ϵ

]
,

where ϵ is a positive constant. One can verify that the pair (C̃ϵ, ũϵ) belongs to D
for all ϵ > 0. Setting δ and ϵ to be small enough, the instances MC(Cδ, u∗) and
MC(C̃ϵ, ũϵ) can be arbitrarily close to each other in the sense that

α∥Cδ − C̃ϵ∥1 + (1− α)∥u∗ − ũϵ∥1 = O(αδ + ϵ).

Therefore, the complexity metric of MC(Cδ, u∗) can be arbitrarily large. This exam-
ple shows that instances without SSCPs can be arbitrarily close to those in D, which
have non-unique global solutions.

Nevertheless, we derive a lower bound on the complexity metric (2.2) by con-
structing a subset of D, which allows obtaining a necessary condition. Intuitively, if
an instance has multiple global minima, these global minima are still locally optimal
after a sufficiently small perturbation to the instance. To ensure the “robustness” of
the local optimality, we require the positive-definiteness of the Hessian matrix. For
each instance MC(C, u∗), let G1k(C, u

∗) for all k ∈ [n1] be the connected compo-
nents of G1(C, u

∗), where n1 is the number of connected components. Moreover, we
use I1k(C, u∗) to denote the node set of G1k(C, u

∗) for all k ∈ [n1]. We define the
following subset of D:

SD := {(C, u∗) ∈ D | G1k(C, u
∗) is non-bipartite for all k ∈ [n1],

G1(C, u
∗) is disconnected, I00(C, u∗) = ∅}.

The following theorem provides a characterization of the Hessian matrix at global
solutions for pairs in SD.

Theorem 4.3 Suppose that (C, u∗) ∈ SD. Then, the Hessian matrix is positive defi-
nite at all global solutions of the instance MC(C, u∗).

The proof of Theorem 4.3 directly follows from the next two lemmas.

Lemma 4.3 Suppose that (C, u∗) ∈ SD and that u0 is a global solution to MC(C, u∗).
Then, for all k ∈ [n1], it holds that u0

iu
0
j = u∗

i u
∗
j for all i, j ∈ I1k. In addition,

u0
i = 0 for all i ∈ I0(C, u∗).
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Proof Denote M∗ := u∗(u∗)T . We first consider nodes in G1k for some k ∈ [n1].
Since the subgraph is non-bipartite, there exists a cycle with an odd length 2ℓ + 1,
which we denote as

{i1, . . . , i2ℓ+1}.

Then, we have

(u0
i1)

2 =
∏2ℓ+1

s=1
(u0

isu
0
is+1

)(−1)s−1

=
∏2ℓ+1

s=1
(M∗

isis+1
)(−1)s−1

=
∏2ℓ+1

s=1
(u∗

isu
∗
is+1

)(−1)s−1

= (u∗
i1)

2,

which implies that the conclusion holds for i = j = i1. Using the connectivity of
G1k(C, u

∗), we know

u0
iu

0
j = u∗

i u
∗
k, ∀i, j ∈ I1k(C, u∗).

Then, we consider nodes in I0(C, u∗). Since I00(C, u∗) is empty, for every node
i ∈ I0(C, u∗), there exists another node j ∈ I1(C, u∗) such that Cij > 0. Hence, we
have

u0
i = M∗

ij/u
0
j = 0.

This completes the proof. ⊓⊔

The following lemma provides a necessary and sufficient condition for instances
with a positive definite Hessian matrix at global solutions, which is stronger than
what Theorem 4.3 requires.

Lemma 4.4 Suppose that u0 ∈ Rn is a global minimizer of the instance MC(C, u∗)
such that the conditions in Lemma 4.3 hold. Then, the Hessian matrix is positive
definite at u0 if and only if

1. G1i(C, u
∗) is non-bipartite for all i ∈ [n1];

2. I00(C, u∗) = ∅.

Proof We first construct counterexamples for the necessity part and then prove the
positive definiteness of the Hessian matrix for the sufficiency part.

Necessity. We construct counterexamples by discussing two different cases.

Case I. We first consider the case when there exists k ∈ [n1] such that G1k(C, u
∗)

is bipartite. Suppose that G1i(C, u
∗) = G1k1 ∪ G1k2 is a partition of G1k(C, u

∗).
Let the sets I1k, I1k1 and I1k2 be the node sets of the corresponding graphs. Define
q ∈ Rn as

qi := u0
i , ∀i ∈ I1k1; qi := −u0

i , ∀i ∈ I1k2; qi := 0, ∀i /∈ I1k.
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Then, the curvature of the Hessian along the direction q is

1

4
[∇2g(u0;C, u∗)](q, q)

=
∑

i∈I1k1,j∈I1k2

Cij

[
(u0

i )
2q2j + (u0

j )
2q2i
]
+ 2

∑
i∈I1k1,j∈I1k2

Cij(2u
0
iu

0
j − u∗

i u
∗
j )qiqj

=
∑

i∈I1k1,j∈I1k2

Cij

[
(u0

i )
2q2j + (u0

j )
2q2i
]
+ 2

∑
i∈I1k1,j∈I1k2

Ciju
0
iu

0
jqiqj

=
∑

i∈I1k1,j∈I1k2

2Cij(u
0
iu

0
j )

2 − 2
∑

i∈I1k1,j∈I1k2

Cij(u
0
iu

0
j )

2 = 0.

We note that there is no self-loop in G1k(C, u
∗) and, thus, the diagonal entries of the

weight matrix are equal to 0. Therefore, the Hessian matrix has a zero curvature along
q and is not positive definite.

Case II. We consider the case when I00(C, u∗) ̸= ∅. Suppose that k ∈ I00(C, u∗).
Define the vector q ∈ Rn as

qk := 1; qi := 0, ∀i ̸= k.

The curvature of the Hessian along the direction q is

1

4
[∇2g(u0;C, u∗)](q, q) = Ckk

[
2(u0

k)
2 − (u∗

k)
2
]
q2k +

∑
j∈I0(C,u∗),j ̸=k

Ckj(u
0
j )

2q2k

= Ckk(u
0
k)

2 +
∑

j∈I0(C,u∗),j ̸=k

Ckj(u
0
j )

2 = 0.

Therefore, the Hessian matrix is not positive-definite at u0.

Sufficiency. Next, we consider the sufficiency part, namely, we prove that the Hessian
matrix is positive definite under the two conditions stated in the theorem. Suppose that
there exists a nonzero vector q ∈ Rn such that

[∇2g(u0;C, u∗)](q, q) = 0.

Then, after straightforward calculations, we arrive at

u0
i qj + u0

jqi =0, ∀i, j s. t. Cij > 0, i ̸= j;

[2(u0
i )

2 − (u∗
i )

2]q2i = (u0
i qi)

2 =0, ∀i s.t. Cii > 0.

The two conditions can be written compactly as

u0
i qj + u0

jqi =0, ∀i, j s.t. Cij > 0.(4.1)

Consider the index set I1k(C, u∗) for some k ∈ [n1]. The equality (4.1) implies that

qi/u
0
i + qj/u

0
j = 0, ∀i, j ∈ I1k(C, u∗).(4.2)
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Since the graph G1k(C, u
∗) is non-bipartite, there exists a cycle with an odd length

2ℓ+ 1, which we denote as
{i1, i2, . . . , i2ℓ+1}.

Denoting i2ℓ+2 := i1, we can calculate that

2
qi1
u0
i1

=

2ℓ+1∑
s=1

(−1)s−1

(
qis
u0
is

+
qis+1

u0
is+1

)
= 0,

which leads to qi1 = 0. Using the connectivity of G1k and the relation (4.2), it follows
that

qi = 0, ∀i ∈ I1k(C, u∗).

Moreover, the same conclusion holds for all k ∈ [n1] and, thus, we conclude that

qi = 0, ∀i ∈ I1(C, u∗).

Since I00(C, u∗) = ∅, for every node i ∈ I0(C, u∗), there exists another node j ∈
I1(C, u∗) such that Cij > 0. Considering the relation (4.2), we obtain that

qj = −u0
jqi/u

0
i = 0.

In summary, we have proved that qi = 0 for all i ∈ [n], which contradicts the as-
sumption that q ̸= 0. Hence, the Hessian matrix at u0 is positive definite. ⊓⊔

Using the positive-definiteness of the Hessian matrix, we are able to apply the
implicit function theorem to certify the existence of spurious local minima.

Lemma 4.5 Suppose that α ∈ [0, 1] and consider a pair (C, u∗) ∈ SD. Then, there
exists a small constant δ(C, x∗) > 0 such that for every instance MC(C̃, ũ∗) satis-
fying

α∥C̃ − C∥1 + (1− α)∥ũ∗ − u∗∥1 < δ(C, u∗),

the instance MC(C̃, ũ∗) has spurious local minima.

Proof By Theorem 4.3, there exists a global solution u0 to the instance MC(C, u∗)
such that

u0(u0)T ̸= u∗(u∗)T , ∇2g(u0;C, u∗) ≻ 0.

Consider the system of equations:

∇g(u;C, u∗) = 0.

Since the Jacobi matrix of ∇g(u;C, u∗) with respect to u is the Hessian matrix
∇2g(u;C, u∗) and (u0, C, u∗) is a solution, the implicit function theorem guaran-
tees that there exists a small constant δ(C, u∗) > 0 such that in the neighborhood

N :=
{
(C̃, ũ∗)

∣∣ α∥C̃ − C∥1 + (1− α)∥ũ∗ − u∗∥1 < δ(C, u∗)
}
,

there exists a function u(C̃, ũ∗) : N 7→ Rn such that

1. u(C, u∗) = u0;
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2. u(·, ·) is a continuous function in N ;
3. ∇g[u(C̃, ũ∗); C̃, ũ∗] = 0.

Using the continuity of the Hessian matrix and u(·, ·), we can choose δ(C, u∗) to be
small enough such that

u(C̃, ũ∗)[u(C̃, ũ∗)]T ̸= ũ∗(ũ∗)T , ∇2g
[
u(C̃, ũ∗); C̃, ũ∗

]
≻ 0, ∀(C̃, ũ∗) ∈ N .

Therefore, the point u(C̃, ũ∗) is a spurious local minimum of the instance MC(C̃, ũ∗).
⊓⊔

Lemma 4.5 guarantees the existence of spurious local minima in a neighbour-
hood of each instance in SD. The global guarantee can be established by considering
closed subsets of SD. For every constant ϵ ≥ 0, we consider the closed subset SDϵ,
which is defined as

SDϵ :=
{
(C, u∗) ∈ SD | Cij ∈ {0} ∪ [ϵ, 1], ∀i, j ∈ [n],

|u∗
i | ∈ {0} ∪ [ϵ, 1], ∀i ∈ [n]

}
.

Basically, the extra condition in the definition of SDϵ requires that the nonzero com-
ponents of C and u∗ be at least ϵ. We can verify that the set SDϵ is a compact set and
for every ϵn → 0, it holds that

limn→∞ ∪n
i=1 SDϵi = SD0 = SD.

Now, we define the alternative complexity metric

Dα,ϵ(C, u
∗) :=

[
min

(C̃,ũ∗)∈SDϵ

α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

.(4.3)

Since SDϵ is a subset of D, it holds that

Dα,ϵ(C, u
∗) ≤ Dα(C, u

∗).

Similar to Theorem 2.3, we can prove the following relation:

SD = {(C, u∗) | C ∈ Sn
2−1

+,1 , u∗ ∈ Sn−1
1 ,G1(C, u

∗) is disconnected}

∪ {(C, u∗) | C ∈ Sn
2−1

+,1 , u∗ ∈ Sn−1
1 , I00(C, u∗) is not empty}.

Hence, the closure of SD is a proper subset of D. Combining with the fact that SDϵ

is a subset of SD, the metric Dα,ϵ(C, u
∗) is not equivalent to Dα(C, u

∗). Using the
compactness of SDϵ, the following theorem provides a necessary condition for the
existence of spurious local minima.

Theorem 4.4 Suppose that ϵ > 0 is a constant. Then, there exists a large constant
∆(ϵ) > 0 such that for every instance MC(C, u∗) satisfying

Dα,ϵ(C, u
∗) ≥ ∆(ϵ),

the instance MC(C, u∗) has spurious local minima.
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Proof For every pair (C, u∗) ∈ SDϵ, Lemma 4.5 implies that there exists an open
neighborhood of (C, u∗) such that the desired properties hold. Now, we consider the
union of such open neighborhoods over all points (C, u∗) ∈ SDϵ, which is an open
cover of SDϵ. Using the Heine-Borel covering theorem, there exists an open sub-
cover of SDϵ. Therefore, we obtain the existence of ∆(ϵ). ⊓⊔

We note that the maximum possible value of Dα,ϵ(C, u
∗) is +∞, which is at-

tained by instances in SDϵ. Therefore, there exist instances satisfying the condition of
Theorem 4.4 and the lower bound is non-trivial. Using Theorem 4.4, the slightly mod-
ified complexity metric is able to provide a necessary condition on the in-existence
of SSCPs. This result implies that our complexity metric is much better than the RIP
constant and the incoherence that fail to provide necessary conditions.

Finally, we conjecture that the second property in Conjecture 1 holds for any fixed
weight matrix. More specifically, we define

DC(u
∗) :=

(
min

(C,ũ∗)∈D
∥u∗ − ũ∗∥1

)−1

.(4.4)

We have the following conjecture:

Conjecture 2 Suppose that ϵ ∈ [0, 1]. Then, there exists a large constant Γ (ϵ) > 0
such that for every instance MC(C, u∗) satisfying

Cij ∈ {0} ∪ [ϵ, 1], DC(u
∗) ≥ Γ (ϵ),

the instance MC(C, u∗) has spurious local minima.

We note that the metric DC(u
∗) is equal to 0 if MC(C, u∗) satisfies the δ-RIP2,2

condition with δ ∈ [0, 1).

5 Conclusions

In this work, we propose a new complexity metric for an important class of the low-
rank matrix optimization problems, which has the potential to unify two existing com-
plexity metrics and is applicable to a much broader set of problems. The proposed
complexity metric aims to measure the complexity of the non-convex optimization
landscape of each problem and quantifies the likelihood of local search methods in
successfully solving each instance of the problem under a random initialization. We
focus on the rank-1 generalized matrix completion problem (1.7) to mathematically
prove the usefulness of the new metric from three aspects. Namely, we show that the
complexity metric has a small value if the instance satisfies the RIP condition or obeys
the Bernoulli model. The results in these two scenarios are consistent with the exist-
ing results on RIP and incoherence. In addition, we analyze a one-parameter class of
instances of the matrix sensing problem to illustrate that the proposed metric captures
the true complexity of this class as the parameter varies and has consistent behavior
with the aforementioned two scenarios. Finally, we provide strong theoretical results
on the proposed complexity metric by showing that a small value for the proposed
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complexity metric guarantees the in-existence of spurious solutions, whereas a large
value for a slightly modified complexity metric guarantees the existence of spuri-
ous solutions. This shows the superiority of this metric over the RIP constant and
the incoherence since those notions cannot offer any necessary conditions on having
spurious solutions.
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A Analysis of the degenerate case

In this section, we provide a detailed analysis on instances with u∗ = 0. The optimization problem of the
instance MC(C, 0) can be written as

min
u∈Rn

∑
i,j∈[n]

Ciju
2
i u

2
j .(A.1)

We prove that problem (A.1) either has multiple global solutions or has no SSCPs.

Theorem A.1 If Cii > 0 for all i ∈ [n], the instance MC(C, 0) has no SSCPs. Otherwise if Cii = 0
for some i ∈ [n], the instance MC(C, 0) has nonzero global solutions.

Proof We first consider the case when Cii > 0 for all i ∈ [n]. Let u0 ∈ Rn be a second-order critical
point. By the first-order optimality conditions, it holds that

1

4
∇ig(u

0;C, 0) = Cii(u
0
i )

3 +
∑

j∈[n],j ̸=i

Ciju
0
i (u

0
j )

2 = 0, ∀i ∈ [n].

Multiplying u0
i on both sides, we have

0 = Cii(u
0
i )

4 +
∑

j∈[n],j ̸=i

Cij(u
0
i )

2(u0
j )

2 ≥ Cii(u
0
i )

4 ≥ 0,

which implies that Cii(u
0
i )

4 = 0. Since Cii > 0, it follows that

u0
i = 0, ∀i ∈ [n].

Hence, u0 = 0 is the unique second-order critical point.
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Next, we consider the case when there exists an index i0 such that Ci0i0 = 0. In this case, define
u0 ∈ Rn by

u0
i0

= 1, u0
i = 0, ∀i ∈ [n]\{i0}.

Then, we have [
u0(u0)T

]
i0i0

= 1,
[
u0(u0)T

]
ij

= 0, otherwise.

Since the (i0, i0) entry is not observed, the point u0 leads to the same measurements as u∗ = 0. Therefore,
u0 is a nonzero global solution to the instance MC(C, 0).

⊓⊔

B Proofs in Section 2

B.1 Proof of Lemma 2.1

Proof Denote the distance between (C, u∗) and D as

Tα(C, u∗) := min
(C̃,ũ∗)∈D

α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

We fix the pair (C, u∗) and let

η :=
1

n(n− 1)

∑
i,j∈[n],i ̸=j

Cij ∈
[
0,

1

n(n− 1)

]
.

Using the condition ∥C∥1 = 1, it follows that

θ :=
1

n

∑
i∈[n]

Cii =
1

n

1−
∑

i,j∈[n],i̸=j

Cij

 =
1

n
− (n− 1)η ∈ [0, n−1].

Our goal is to prove that

Tα(C, u∗) ≤ g(α, η).

In the remainder of the proof, we upper-bound the distance Tα(C, u∗) by constructing some instances in
D.

We first consider those instances in D with a disconnected subgraph G1. For every k ∈ {2, . . . , n},
let I1 be a subset of [n] satisfying |I1| = k and I0 := [n]\I1. Suppose that ϵ > 0 is a sufficiently small
constant. For every i0 ∈ I1, we consider the pair (C̃, ũ∗), where

ũ∗
i = 0, ∀i ∈ I0; ũ∗

i = (1− ϵ)u∗
i + ϵ ·

∥∥∥u∗
I1

∥∥∥
1

|I1|
+

∥∥∥u∗
I0

∥∥∥
1

|I1|
, ∀i ∈ I1(B.1)

and

C̃i0j = C̃ji0 = 0, ∀j ∈ I1\{i0};

C̃ij = Cij +
2

n2 − 2(k − 1)

∑
j∈I1\{i0}

Ci0j , otherwise.

By choosing a sufficiently small ϵ, it can be shown that

I1(C̃, ũ∗) = I1; I0(C̃, ũ∗) = I0.

The node i0 is disconnected from other nodes in G1(C̃, ũ∗) and, therefore, (C̃, ũ∗) ∈ D. The distance
between u∗ and ũ∗ is

∥u∗ − ũ∗∥1 = 2
∥∥∥u∗

I0

∥∥∥
1
+ 2ϵ

∥∥∥u∗
I1

∥∥∥
1
≤ 2

∥∥∥u∗
I0

∥∥∥
1
+ 2ϵ.(B.2)
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In addition, the distance between C and C̃ can be calculated as

∥C − C̃∥1 = 4
∑

j∈I1\{i0}
Ci0j .(B.3)

Combining inequalities (B.2) and (B.3), we have

Tα(C, u∗) ≤ 2(1− α)
∥∥∥u∗

I0

∥∥∥
1
+ 4α

∑
j∈I1\{i0}

Ci0j + 2ϵ.(B.4)

Taking the average of inequality (B.4) over i0 for I1, we have

Tα(C, u∗) ≤ 2(1− α)
∥∥∥u∗

I0

∥∥∥
1
+ 4α(k − 1)

∑
i,j∈I1,i ̸=j

Cij + 2ϵ.(B.5)

Then, we take the average of (B.5) over I1 for all k-element subsets of [n], which leads to

Tα(C, u∗) ≤ 2(1− α) ·
n− k

n
+ 4α(k − 1)η + 2ϵ.

By setting ϵ → 0, we obtain that

Tα(C, u∗) ≤ 2(1− α) ·
n− k

n
+ 4α(k − 1)η.(B.6)

Since inequality (B.6) is linear in k, the minimum of the right-hand side over k ∈ {2, . . . , n} is attained
by either 2 or n. Hence, it holds that

Tα(C, u∗) ≤ min

{
2(1− α) ·

n− 2

n
+ 4αη, 4α(n− 1)η

}
.(B.7)

Using a similar analysis, we can obtain inequality (B.6) by considering instances in D whose I00 is non-
empty.

Finally, we check those instances in D whose G1 is bipartite. Let I1 be a subset of [n] satisfying
|I1| = 4, and let I0 = [n]\I1. We define ũ∗ in the same way as (B.1). For every subset I11 ⊂ I1 such
that |I11| = 2, the new weight matrix is defined as

C̃ii = 0, ∀i ∈ I1; C̃ij = 0, ∀i, j ∈ I11; C̃ij = 0, ∀i, j ∈ I1\I11;

C̃ij = Cij +
2

n2 − 8

∑
i∈I1

Cii +
∑

i,j∈I11,i ̸=j

Cij +
∑

i,j∈I1\I11,i ̸=j

Cij

 .

The distance between C and C̃ is

∥C − C̃∥1 = 2

∑
i∈I1

Cii +
∑

i,j∈I11,i ̸=j

Cij +
∑

i,j∈I1\I11,i ̸=j

Cij


Therefore, the maximum distance is bounded by

Tα(C, u∗) ≤ 2(1− α)
∥∥∥u∗

I0

∥∥∥
1

(B.8)

+ 2α

∑
i∈I1

Cii +
∑

i,j∈I11,i ̸=j

Cij +
∑

i,j∈I1\I11,i ̸=j

Cij

+ 2ϵ.

By taking the average of (B.8) over I11 for all 2-element subsets of I1, it follows that

Tα(C, u∗) ≤ 2(1− α)
∥∥∥u∗

I0

∥∥∥
1
+ 2α

∑
i∈I1

Cii +
1

3

∑
i,j∈I1,i ̸=j

Cij

+ 2ϵ.(B.9)
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Furthermore, we take the average of (B.9) over I1 for all 4-element subsets of [n], which gives

Tα(C, u∗) ≤ 2(1− α) ·
k

n
+ 2α (4θ + 4η) + 2ϵ.

By letting ϵ → 0, we conclude that

Tα(C, u∗) ≤ 2(1− α) ·
4

n
+ 2α (4θ + 4η) .(B.10)

By applying a similar technique to subsets of [n] with 1, 2, 3 elements, the distance can be bounded as

Tα(C, u∗) ≤ 2(1− α) ·
3

n
+ 2α (3θ + 2η) ,(B.11)

Tα(C, u∗) ≤ 2(1− α) ·
2

n
+ 2α · 2θ,

Tα(C, u∗) ≤ 2(1− α) ·
1

n
+ 2α · θ.

By combining inequalities (B.6), (B.10) and (B.11) and recalling the relation that θ = 1/n − (n − 1)η,
it follows that

Tα(C, u∗) ≤ g(α, η).

Now, we take the maximum over C ∈ Sn
2−1

+,1 and u∗ ∈ Sn−1
1 , which is equivalent to taking the maximum

over η ∈
[
0, 1

n(n−1)

]
in the right-hand side. This yields that

max
∥C∥1=∥u∗∥1=1

Tα(C, u∗) ≤ max
c∈

[
0, 1

n(n−1)

] g(α, c).
This completes the proof. ⊓⊔

B.2 Proof of Lemma 2.2

Proof Let η ∈
[
0, 1

n(n−1)

]
and define the pair (C, u∗) according to

u∗
i :=

1

n
, Cii :=

1

n
− (n− 1)η, ∀i ∈ [n]; Cij := η, ∀i, j ∈ [n] s. t. i ̸= j.

Our goal is to prove that
Tα(C, u∗) ≥ g(α, η).

Suppose that (C̃, ũ∗) ∈ D attains the distance Tα(C, u∗), namely,

Tα(C, u∗) = α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

We analyze three different cases.

Case I. We first consider the case when G1(C̃, ũ∗) is disconnected. Denote k := |I1(C̃, ũ∗)|. The
distance between u∗ and ũ∗ is lower-bounded by

∥u∗ − ũ∗∥1 ≥ 2∥u∗
I0(C̃,ũ∗)

− ũ∗
I0(C̃,ũ∗)

∥1 = 2∥u∗
I0(C̃,ũ∗)

∥1 =
2(n− k)

n
.(B.12)

Since there are k nodes in G1(C̃, ũ∗), we need to eliminate at least k − 1 edges that are not self-loops
to make the graph disconnected. Therefore, at least 2(k − 1) non-diagonal weights of C̃ are 0 and the
distance between C and C̃ is at least

∥C − C̃∥1 ≥ 2 · 2(k − 1)η = 4(k − 1)η.(B.13)

Combining inequalities (B.12) and (B.13), we obtain that

Tα(C, u∗) ≥ 2(1− α) ·
n− k

n
+ 4α(k − 1)η.(B.14)
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Case II. For the case when I00(C̃, ũ∗) is not empty, similar estimations as Case I can be derived and
inequality (B.14) also holds true.

Case III. Finally, we consider the case when G1(C̃, ũ∗) is bipartite. Denote k := |I1(C̃, ũ∗)|. If
k ≥ 5, we need to eliminate at least k − 1 edges that are not self-loops to make the graph bipartite. Thus,
we can follow the same proof as Case I to arrive at inequality (B.14). If k = 4, we need to eliminate
at least 2 edges that are not self-loops and 4 self-loops to make the graph bipartite. Therefore, at least 4
non-diagonal weights and 4 diagonal weights of C̃ are 0, and the distance between C and C̃ is at least

∥C − C̃∥1 ≥ 2

[
4η + 4

(
1

n
− (n− 1)η

)]
= 2

[
4

n
− (4n− 8)η

]
.(B.15)

Combining inequalities (B.12) and (B.15) yields that

Tα(C, u∗) ≥ 2(1− α) ·
n− 4

n
+ 2α

[
4

n
− (4n− 8)η

]
.(B.16)

The cases when k = 1, 2, 3 can be analyzed similarly, leading to

Tα(C, u∗) ≥ 2(1− α) ·
n− 3

n
+ 2α

[
3

n
− (3n− 5)η

]
,(B.17)

Tα(C, u∗) ≥ 2(1− α) ·
n− 2

n
+ 2α

[
2

n
− (2n− 2)η

]
,

Tα(C, u∗) ≥ 2(1− α) ·
n− 1

n
+ 2α

[
1

n
− (n− 1)η

]
.

By combining Cases I-III, it follows that

Tα(C, u∗) ≥ g(α, η).

Choosing η to be the maximizer
η∗ := argmax

c∈
[
0, 1

n(n−1)

] g(α, c),
we have

Tα(C, u∗) ≥ max
c∈

[
0, 1

n(n−1)

] g(α, c).

Taking the maximum over C ∈ Sn
2−1

+,1 and u∗ ∈ Sn−1
1 gives rise to the desired conclusion. ⊓⊔

C Proofs in Section 3

C.1 Proof of Lemma 3.1

Proof We first prove the necessity part. Suppose that the instance MC(C, u∗) satisfies the δ-RIP2,2

condition with the constants c1 and c2. For every i, j ∈ [n], we define the matrix Eij ∈ Rn×n of rank at
most 2 as

Eij
ij = Eij

ji = 1, Eij
kℓ = 0, otherwise.(C.1)

Using the facts that ∇2f(M ;M∗) = C and C is symmetric, it holds that[
∇2f(M ;M∗)

]
(Eij , Eij) = Cij + Cji = 2Cij , ∥Eij∥2F = 2.
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By the RIP2,2 condition (3.1), we have

2c1 ≤ 2Cij ≤ 2c2, ∀i, j ∈ [n].

which leads to
mini,j∈[n] Cij

maxi,j∈[n] Cij
≥

c1

c2
=

1− δ

1 + δ
.

Now, we consider the sufficiency part. We aim to prove that

min
i,j∈[n]

Cij · ∥K∥2F ≤
[
∇2f(M ;M∗)

]
(K,K) ≤ maxi,j∈[n]Cij · ∥K∥2F .(C.2)

Recalling that ∇2f(M ;M∗) = C, we can calculate that[
∇2f(M ;M∗)

]
(K,K) =

∑
i,j∈[n]

CijK
2
ij .

The inequality (C.2) directly follows from the above inequality and the condition that Cij ≥ 0 for all
i, j ∈ [n]. Therefore, we can choose

c1 := min
i,j∈[n]

Cij , c2 := maxi,j∈[n]Cij .

Then, the δ-RIP2,2 condition holds under the assumption of the theorem. ⊓⊔

C.2 Proof of Lemma 3.2

Proof Assume without loss of generality that

|u∗
i | > 0, ∀i ∈ [ℓ]; u∗

i = 0, ∀i ∈ {ℓ+ 1, . . . , n}.

By the definition (1.6), we have

(u∗
i )

2 ≤
µ

n
∥u∗∥22 =

µ

n

∑
i∈[ℓ]

(u∗
i )

2, ∀i ∈ [ℓ].

Summing over i ∈ [ℓ], we obtain that∑
i∈[ℓ]

(u∗
i )

2 ≤
ℓµ

n

∑
i∈[ℓ]

(u∗
i )

2,

which implies that ℓ ≥ n/µ. Let

ci := |u∗
i |/∥u∗∥2, ∀i ∈ [ℓ].

The µ-incoherence condition implies that

ci ∈ (0,
√

µ/n], ∀i ∈ [ℓ].(C.3)

In addition, it holds that

∥u∗∥22 =
∑

i∈[ℓ]
(u∗

i )
2 =

∑
i∈[ℓ]

c2i ∥u∗∥22,

1 = ∥u∗∥1 =
∑

i∈[ℓ]
|u∗

i | =
∑

i∈[ℓ]
ci∥u∗∥2,

which implies that ∑
i∈[ℓ]

c2i = 1,
∑

i∈[ℓ]
ci = ∥u∗∥−1

2 .

Combined with (C.3), it follows that

∥u∗∥−1
2 =

∑
i∈[ℓ]

ci ≥
√

n

µ
·
∑

i∈[ℓ]
c2i =

√
n

µ
.

Therefore,
|u∗

i | = ci∥u∗∥2 ≤
√

µ/n ·
√

µ/n = µ/n.

⊓⊔
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C.3 Proof of Theorem 3.8

Proof We pursue a similar way as in Theorem 3.7 to construct spurious solutions. By Lemma 3.7, we
only need to show that problem (3.12) has at least

( m
(m−1)/2

)
SSCPs whose Hessian matrices are positive

definite and whose components are nonzero. Let k := (m− 1)/2 ∈ Z. We first choose a subset

I ⊂ [m], |I| = k.

Then, we consider the point x ∈ Rm, where

ui = y1, ∀i ∈ I, ui = y2, ∀i /∈ I,

where y1 and y2 are real numbers such that

(1 + kϵ)(1 + 2kϵ)[(1− ϵ)y22 ]
3 − 2(1 + kϵ)(1 + (k − 1)ϵ)[(1− ϵ)y22 ]

2(C.4)

+ (1 + kϵ)(1 + (k − 1)ϵ)(2k2ϵ2 + 2kϵ2 − kϵ− ϵ+ 1)[(1− ϵ)y22 ]

− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2 = 0,

y1 =
y2

kϵ
·
(1 + kϵ)[(1− ϵ)y22 ]− (k2ϵ2 + (k − 1)ϵ+ 1)

[(1− ϵ)y22 ] + (1 + (k − 1)ϵ)
.

We first assume the existence of the constants y1 and y2. After some direct calculations, one can show that
the conditions in (C.4) imply the first-order optimality condition of the instance MC(Cϵ, u∗), i.e.,

y31 − y1 + ϵ[(k − 1)y21 + (k + 1)y22 ]y1 − ϵ[(k − 1)y1 + (k + 1)y2] = 0,

y32 − y2 + ϵ[ky21 + ky22 ]y2 − ϵ[ky1 + ky2] = 0.

Therefore, the point x is a first-order critical point of the instance MC(Cϵ, u∗). In addition, the following
relations result from the condition (C.4):

(1− ϵ)y1y2(y1 + y2) = −ϵ[ky1 + (k + 1)y2],(C.5)

(1− ϵ)(y21 + y1y2 + y22 − 1) = −ϵ[ky21 + (k + 1)y22 ].

Now, we prove the existence of y1, y2 and estimate their values. We note that the first equation in
(C.4) is a third-order polynomial equation for (1− ϵ)y22 , which has at least one real root. To show that the
equation has a positive root, we observe that the coefficient of the third-order term is (1+kϵ)(1+2kϵ) > 0
and the value at zero is −k2ϵ2(1+(k−1)ϵ)(1−ϵ)2 < 0. Therefore, the polynomial equation for (1−ϵ)y22
has at least one positive root and y2 is well defined. We provide a more accurate estimate to y1 and y2,
namely, we show that there exists a solution (y1, y2) to equations (C.4) such that

y1 ∈ [−2,−3/5], y2 ∈ [1/2, 1].

Define the polynomial function

g(z) :=(1 + kϵ)(1 + 2kϵ)z3 − 2(1 + kϵ)(1 + (k − 1)ϵ)z2

+ (1 + kϵ)(1 + (k − 1)ϵ)(2k2ϵ2 + 2kϵ2 − kϵ− ϵ+ 1)z − k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2.

We first estimate g(1− (2k + 1)ϵ) as follows:

g(1− (2k + 1)ϵ)

=(1 + kϵ)[1− (2k + 1)ϵ]
[
(1 + 2kϵ)[1− (2k + 1)ϵ]2 − 2[1 + (k − 1)ϵ][1− (2k + 1)ϵ]

+ [1 + (k − 1)ϵ][1− (k + 1)ϵ+ 2k(k + 1)ϵ2]
]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

=(1 + kϵ)[1− (2k + 1)ϵ]
[
k2ϵ2 + 2k2(5k + 4)ϵ3

]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

≥k2ϵ2(1 + kϵ)[1− (2k + 1)ϵ][1 + 2(5k + 4)ϵ]− k2ϵ2(1 + kϵ)(1− ϵ)2

=k2ϵ2(1 + kϵ)[(8k + 9)ϵ− [2(2k + 1)(5k + 4) + 1]ϵ2]

≥k2ϵ2(1 + kϵ)[(8k + 8)ϵ− 20(k + 1)2ϵ2] > 0,
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where the last inequality is due to (k+1)ϵ = (n+1)ϵ/2 < 2/5. Next, we estimate g(1− (3k/2+1)ϵ)
as follows:

g(1− (3k/2 + 1)ϵ)

=(1 + kϵ)[1− (k + 1)ϵ]
[
(1 + 2kϵ)[1− (3k/2 + 1)ϵ]2 − 2[1 + (k − 1)ϵ][1− (3k/2 + 1)ϵ]

+ [1 + (k − 1)ϵ][1− (k + 1)ϵ+ 2k(k + 1)ϵ2]
]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

=(1 + kϵ)[1− (3k/2 + 1)ϵ]
[
k2ϵ2/4 + k2(13k/2 + 6)ϵ3

]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

=k2ϵ2(1 + kϵ)[1− (3k/2 + 1)ϵ][1/4 + (13k/2 + 6)ϵ]− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

≤k2ϵ2(1 + kϵ)[1− (3k/2 + 1)ϵ][1/4 + (13k/2 + 6)ϵ]− k2ϵ2 · [(1 + kϵ)/2] · (1− ϵ)2

≤k2ϵ2(1 + kϵ)
[
[1− (3k/2 + 1)ϵ][1/4 + (13k/2 + 6)ϵ]− (1− ϵ)2/2

]
=k2ϵ2(1 + kϵ)

[
− 1/4 + (49k/8 + 27/4)ϵ− (39k2/4 + 31k/2 + 13/2)ϵ2

]
≤k2ϵ2(1 + kϵ)

[
− 1/4 + 27(k + 1)/4ϵ− 39(k + 1)2ϵ2/4

]
< 0,

where the last inequality is in light of (k+1)ϵ = (n+1)ϵ/2 < 1/26. Combining the above two estimates,
we conclude that there exists a solution y2 to the first equation in (C.4) such that

(1− ϵ)y22 ∈ [1− (2k + 1)ϵ, 1− (3k/2 + 1)ϵ].(C.6)

Hence,

y2 ≤

√
1− (3k/2 + 1)ϵ

1− ϵ
≤ 1(C.7)

and

y2 ≥

√
1− (2k + 1)ϵ

1− ϵ
≥

√
1− (2k + 1)ϵ ≥

1

2
.(C.8)

Now, we use the second equation in (C.4) to estimate y1, which leads to

(1 + kϵ)[(1− ϵ)y22 ]− (k2ϵ2 + (k − 1)ϵ+ 1)

kϵ

≥
(1 + kϵ)[1− (2k + 1)ϵ]− (k2ϵ2 + (k − 1)ϵ+ 1)

kϵ

=− 2− (3k + 1)ϵ

and

(1 + kϵ)[(1− ϵ)y22 ]− (k2ϵ2 + (k − 1)ϵ+ 1)

kϵ

≤
(1 + kϵ)[1− (3k/2 + 1)ϵ]− (k2ϵ2 + (k − 1)ϵ+ 1)

kϵ

=−
3

2
−

(
5k

2
+ 1

)
ϵ.

On the other hand, we have

y2

[(1− ϵ)y22 ] + (1 + (k − 1)ϵ)
=

1

(1− ϵ)(y2 + y−1
2 ) + kϵ

≤
1

2(1− ϵ) + kϵ
.
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Using the bound in (C.6), it holds that

y2 ≥

√
1− (2k + 1)ϵ

1− ϵ
≥

1− (2k + 1)ϵ

1− ϵ
=

1

2
−

1− (4k + 1)ϵ

2(1− ϵ)
≥

1

2
.

Therefore,

y2

[(1− ϵ)y22 ] + (1 + (k − 1)ϵ)
=

1

(1− ϵ)(y2 + y−1
2 ) + kϵ

≥
1

2.5(1− ϵ) + kϵ
.

Combining the above inequalities and the second equation in (C.4) yields that

y1 ≥
−2− (3k + 1)ϵ

2(1− ϵ) + kϵ
≥ −

(
1 +

5ϵ

1− ϵ

)
≥ −2(C.9)

and

y1 ≤
−3/2− (5k/2 + 1)ϵ

2.5(1− ϵ) + kϵ
≤ −

1.5

2.5
= −

3

5
,(C.10)

where the last inequality in (C.9) results from ϵ ≤ 1/(3(k + 1)) ≤ 1/6. In summary, inequalities (C.7)-
(C.10) lead to

y1 ∈ [−2,−3/5], y2 ∈ [1/2, 1].

We then prove that y1 + 2y2 > y2 ≥ 0.5, which is equivalent to

y2

kϵ
·
(1 + kϵ)[(1− ϵ)y22 ]− (k2ϵ2 + (k − 1)ϵ+ 1)

[(1− ϵ)y22 ] + (1 + (k − 1)ϵ)
+ y2 > 0.

Since y2 > 0, we only need to prove that

0 < (1 + kϵ)[(1− ϵ)y22 ]− (k2ϵ2 + (k − 1)ϵ+ 1) + kϵ
[
[(1− ϵ)y22 ] + (1 + (k − 1)ϵ)

]
= (1 + 2kϵ)[(1− ϵ)y22 ]− (k2ϵ2 + (k − 1)ϵ+ 1) + kϵ(1 + (k − 1)ϵ).

Using inequality (C.6), it suffices to show that

(1 + 2kϵ)[1− (3k/2 + 1)ϵ)] + kϵ(1 + (k − 1)ϵ) > 1 + (k − 1)ϵ+ k2ϵ2

⇐⇒
1

2
kϵ > 3k

(
k +

3

2

)
ϵ2 ⇐⇒ 3(2k + 3)ϵ < 1 ⇐ 6(k + 1)ϵ < 1,

where the last inequality holds since (k + 1)ϵ = (n+ 1)ϵ/2 < 1/6.
Now, we verify the second-order sufficient optimality condition. For every c ∈ Rm\{0}, we calculate

that

cTH(x; ϵ)c =
∑
i∈I

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)

]
c2i

+
∑
i/∈I

[
3y22 − 1 + ϵ(ky21 + ky22)

]
c2i +

∑
i,j∈I,i ̸=j

ϵ
(
2y21 − 1

)
cicj

+
∑

i,j /∈I,i ̸=j

ϵ
(
2y22 − 1

)
cicj + 2

∑
i∈I,j /∈I

ϵ (2y1y2 − 1) cicj

=
[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]∑
i∈I

c2i

+
[
3y22 − 1 + ϵ(ky21 + ky22)−

(
2y22 − 1

)]∑
i/∈I

c2i

+ ϵ
(
2y21 − 1

)∑
i∈I

ci

2

+ ϵ
(
2y22 − 1

)∑
i/∈I

ci

2

+ 2ϵ (2y1y2 − 1)

∑
i∈I

ci

∑
i/∈I

ci

 .
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Using the Cauchy inequality, the above expression is positive if and only if

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
·
1

k

∑
i∈I

ci

2

+
[
3y22 − 1 + ϵ(ky21 + ky22)−

(
2y22 − 1

)]
·

1

k + 1

∑
i/∈I

ci

2

+ϵ
(
2y21 − 1

)∑
i∈I

ci

2

+ ϵ
(
2y22 − 1

)∑
i/∈I

ci

2

+2ϵ (2y1y2 − 1)

∑
i∈I

ci

∑
i/∈I

ci

 > 0.

We denote
A :=

∑
i∈I

ci, B :=
∑

i/∈I
ci.

Then, the second-order sufficient condition is equivalent to[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
·
1

k
A2

+
[
3y22 − 1 + ϵ(ky21 + ky22)−

(
2y22 − 1

)]
·

1

k + 1
B2 + 2ϵ(y1A+ y2B)2 − ϵ(A+B)2 > 0.

The above inequality is a quadratic inequality in A and B, which can be rewritten as[
1

k

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
+ ϵ(2y21 − 1)

]
A2

+2ϵ(2y1y2 − 1)AB

+

[
1

k + 1

[
3y22 − 1 + ϵ(ky21 + ky22)− ϵ

(
2y22 − 1

)]
+ ϵ(2y22 − 1)

]
B2 > 0.

Therefore, the positivity condition can be verified through the discriminant, namely,

ϵ2(2y1y2 − 1)2 <

[
1

k

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
+ ϵ(2y21 − 1)

]
·
[

1

k + 1

[
3y22 − 1 + ϵ(ky21 + ky22)− ϵ

(
2y22 − 1

)]
+ ϵ(2y22 − 1)

]
.

Using the second property in (C.5), the above condition can be simplified into

− (1− ϵ)2(y2 − y1)
2(2y1 + y2)(y1 + 2y2) + (k + 1)ϵ(1− ϵ)(2y22 − 1)(y1 − y2)(2y1 + y2)

+ kϵ(1− ϵ)(2y21 − 1)(y2 − y1)(y1 + 2y2) > k(k + 1)ϵ2(y1 − y2)
2.

Since y2 > y1, it suffices to have

− (1− ϵ)2(y2 − y1)(2y1 + y2)(y1 + 2y2)− (k + 1)ϵ(1− ϵ)(2y22 − 1)(2y1 + y2)

+ kϵ(1− ϵ)(2y21 − 1)(y1 + 2y2) > k(k + 1)ϵ2(y2 − y1).

We can estimate that

− (1− ϵ)2(y2 − y1)(2y1 + y2)(y1 + 2y2)− (k + 1)ϵ(1− ϵ)(2y22 − 1)(2y1 + y2)

+ kϵ(1− ϵ)(2y21 − 1)(y1 + 2y2)− k(k + 1)ϵ2(y2 − y1)

≥ [1− (k + 1)ϵ]2 · 1.1 · 0.2 · 0.5− (k + 1)ϵ · 1 · 0.5 · 2− (k + 1)ϵ · 1 · 0.64 · 1.4− (k + 1)2ϵ2 · 3

= 0.11[1− (k + 1)ϵ]2 − 1.896(k + 1)ϵ− 3(k + 1)2ϵ2 = 0.11− 2.116(k + 1)ϵ− 2.89(k + 1)2ϵ2

≥ 0.11− 2.116(k + 1)ϵ− 2.89(k + 1)2ϵ2 > 0,
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where the last inequality is due to (k+1)ϵ = (n+1)ϵ/2 < 1/26. Thus, we have shown that the Hessian
matrix is positive definite and the point x is a SSCP.

To count the number of spurious solutions, we notice that the subset I has
( m
(m+1)/2

)
different

choices. Hence, the total number of SSCPs is at least
( m
(m+1)/2

)
. The estimate on the combinatorial

number follows from
(n
k

)
≥ (n/k)k . ⊓⊔

C.4 Proof of Lemma 3.8

Proof We fix ϵ, α and m in the proof. Let MC(C̃, ũ∗) be an instance that attains the minimum in (2.2)
and ℓ := |I1(C̃, ũ∗)|. Denote

dα := α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

Then, we investigate three different cases.

Case I. Suppose that G1(C̃, ũ∗) is disconnected. In this case, at least 2(ℓ− 1) non-diagonal entries of
C̃ are equal to 0. This implies that

∥Cϵ − C̃∥1 ≥ 4(ℓ− 1) · (ϵ/Zϵ).(C.11)

Case II. The case when I00(C̃, ũ∗) is non-empty can be analyzed similarly as Case I and the inequality
(C.11) holds. We omit the proof for brevity.

Case III. Finally, we consider the case when G1(C̃, ũ∗) is bipartite. If ℓ ≥ 5, at least 2(ℓ − 1) non-
diagonal entries of C̃ are equal to 0 and inequality (C.11) holds. If ℓ = 4, at least 4 non-diagonal entries
and 4 diagonal entries of C̃ are equal to 0. Hence, we have

∥Cϵ − C̃∥1 ≥ 8 ·
ϵ

Zϵ
+ 8 ·

1

Zϵ
=

8ϵ+ 8

Zϵ
≥

12ϵ

Zϵ
.(C.12)

Similarly, it follows from analyzing the cases with ℓ = 1, 2, 3 that

∥Cϵ − C̃∥1 ≥ (4ϵ+ 6)/(Zϵ) ≥ 8ϵ/Zϵ,(C.13)

∥Cϵ − C̃∥1 ≥ 4/Zϵ ≥ 4ϵ/Zϵ,

∥Cϵ − C̃∥1 ≥ 2/Zϵ.

Combining inequalities (C.11), (C.12) and (C.13), we know that

∥Cϵ − C̃∥1 ≥ N(ℓ)/Zϵ,(C.14)

where N(ℓ) := 4(ℓ− 1)ϵ if ℓ ≥ 2 and N(1) := 2.
Now, we consider the optimal choice of ũ∗. Since the distance in (C.14) is increasing in ℓ, it is not

optimal to choose ℓ > m. For every ℓ ∈ [m], at least m− ℓ of the first m entries of ũ∗ are 0. Hence, we
have the lower bound

∥u∗ − ũ∗∥1 ≥ 2(m− ℓ) ·m−1.(C.15)

Combining inequalities (C.14) and (C.15), we have

dα ≥
N(ℓ) · α

Zϵ
+

2(1− α)(m− ℓ)

m
.

Taking the minimum over ℓ ∈ [m] leads to

dα ≥ min
ℓ∈[m]

[
N(ℓ) · α

Zϵ
+

2(1− α)(m− ℓ)

m

]
.
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We note that the above inequality indeed attains equality with a suitable choice of C̃ and ũ∗. For all ℓ ≥ 2,
we can set ũ∗

i = 0 for all i ∈ {ℓ+1,m} and make node 1 disconnected from nodes {2, . . . , ℓ}. If ℓ = 1,
we can remove the self-loop at node 1. Therefore, it holds that

dα = min
ℓ∈[m]

[
αN(ℓ)

Zϵ
+

2(1− α)(m− ℓ)

m

]
.

The minimum in the above equality is attained at one of the points 1, 2,m, which gives

dα = min

{
2α

Zϵ
+

2(1− α)(m− 1)

m
,
4αϵ

Zϵ
+

2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
.

Since each component in the minimization is an increasing function in ϵ, the distance dα is also increasing
in ϵ. Results for Dα(Cϵ, u∗) follow accordingly by taking the inverse of dα.

Since the closed form expression of Dα(Cϵ, u∗) is the minimum of three monotone functions in ϵ,
the complexity metric is the negative of a unimodal function. For every ϵ ≤ 1/(2m), we can prove that

2α

Zϵ
+

2(1− α)(m− 1)

m
> min

{
4αϵ

Zϵ
+

2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
.

Therefore, in the regime [0, 1/2], the complexity metric Dα(Cϵ, u∗) is the minimum of two strictly
decreasing functions and, thus, is also strictly decreasing in ϵ. ⊓⊔

D Proofs in Section 4

D.1 Proof of Lemma 4.1

Proof Without loss of generality, we assume that

u0
i = 1/n, ∀i ∈ [n].

We first consider the scaled problem instance

min
x∈Rn

∑
i,j∈[n],i ̸=j

(xixj − 1)2.(D.1)

We denote the gradient and the Hessian matrix of problem (D.1) as g(x) ∈ Rn and H(x) ∈ Rn×n,
respectively. Then, we can calculate that

1

4
gi(x) = −x3

i + (∥x∥22 + 1)xi −
∑

k∈[n]
xk, ∀i ∈ [n];

1

4
Hii(x) =

∑
k∈[n],k ̸=i

x2
k,

1

4
Hij(x) = 2xixj − 1, ∀i, j ∈ [n].

Let c be a small positive constant and define ϵ := c/n. Suppose that x ∈ Rn satisfies

∥g(x)∥∞ < 4ϵ.(D.2)

Then, we study three different cases.

Case I. We first consider the case when
∑

i∈[n] xi > 2ϵ. For all i ∈ [n], the condition (D.2) implies
that

1

4
|gi(x)| =

∣∣∣∣(∑
j∈[n],j ̸=i

x2
j + 1

)
xi −

∑
j∈[n]

xj

∣∣∣∣ < ϵ.(D.3)

If xi ≤ ϵ, it holds that(∑
j∈[n],j ̸=i

x2
j + 1

)
xi −

∑
j∈[n]

xj ≤ xi −
∑

j∈[n]
xj < −ϵ,
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which contradicts (D.3). Hence,
xi > ϵ, ∀i ∈ [n].

Define three index sets

I1 := {i ∈ [n] | xi ≥ 1 + ϵ}, I2 := {i ∈ [n] | xi ≤ 1− ϵ}, I3 := [n]\(I1 ∪ I2).

Choosing the perturbation direction q ∈ Rn to be

qi = −xi, ∀i ∈ I1; qi = xi, ∀i ∈ I2; qi = 0, ∀i ∈ I3,

we can calculate that

1

4
qT g(x) =

∑
i,j∈I1,i̸=j

−xixj(xixj − 1) +
∑

i,j∈I2,i ̸=j

xixj(xixj − 1)(D.4)

+
∑

i∈I1,j∈I3

−xixj(xixj − 1) +
∑

i∈I2,j∈I3

xixj(xixj − 1).

We then consider four sub-cases.

Case I-1. We first assume that |I1| ≥ 2. In this case, we have∑
i,j∈I1,i ̸=j

−xixj(xixj − 1) ≤
∑

i,j∈I1,i ̸=j

−xixj [(1 + ϵ)2 − 1] ≤ −2ϵ
∑

i,j∈I1,i ̸=j

xixj(D.5)

≤ −2ϵ(|I1| − 1)∥xI1∥1 ≤ −2∥xI1∥1 · ϵ,∑
i,j∈I2,i̸=j

xixj(xixj − 1) =
∑

i,j∈I2,i ̸=j

−xi · [xj − xix
2
j ]

≤
∑

i,j∈I2,i ̸=j

xi · [xj − (1− ϵ)x2
j ]

≤
∑
i∈I2

xi max(|I2| − 1, 0) · ϵ[1− (1− ϵ)ϵ]

= −max(|I2| − 1, 0)∥xI2
∥1 · ϵ+O(nϵ2),∑

i∈I1,j∈I3

−xixj(xixj − 1) =
∑

i∈I1,j∈I3

−
1

4
(2xixj − 1)2 +

1

4

≤ |I1||I3|
[
−
1

4
[2(1 + ϵ)(1− ϵ)− 1]2 +

1

4

]
,

= |I1||I3|
(
ϵ2 − ϵ4

)
= O(n2ϵ2),∑

i∈I2,j∈I3

xixj(xixj − 1) =
∑

i∈I2,j∈I3

1

4
(2xixj − 1)2 −

1

4

≤ |I2||I3|
[
1

4
[2(1 + ϵ)(1− ϵ)− 1]2 −

1

4

]
≤ 0.

Choosing ϵ to be small enough and substituting the above four estimates into (D.4), we obtain that

1

4
qT g(x) ≤ −2ϵ∥xI1

∥1 −max(|I2| − 1, 0)ϵ∥xI2
∥1 +O(n2ϵ2)

≤ −
[
∥xI1

∥1 +max(|I2| − 1, 0)∥xI2
∥1

]
· ϵ.

If |I2| ≥ 2, it follows from Hölder’s inequality that

∥g(x)∥∞ ≥
4(∥xI1∥1 + ∥xI2∥1) · ϵ

∥q∥1
=

∥xI1∥1 + ∥xI2∥1
∥xI1∥1 + ∥xI2∥1

· 4ϵ = 4ϵ.
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which is a contradiction to (D.2). Otherwise if |I2| ≤ 1, it also follows from Hölder’s inequality that

∥g(x)∥∞ ≥
4∥xI1

∥1ϵ
∥q∥1

=
4∥xI1

∥1
∥xI1

∥1 + ∥xI2
∥1

· ϵ ≥
∥xI1

∥1
∥xI1

∥1 + 1
· 4ϵ ≥ 2ϵ.

In summary, in this sub-case, we have
∥g(x)∥∞ ≥ 2ϵ.

Case I-2. Now, we consider the case when |I1| = 1 and |I2| ≥ 2. Assume without loss of generality
that I1 = {1}. A similar calculation as (D.5) leads to

1

4
qT g(x) ≤ −max(|I2| − 1, 0)ϵ∥xI2

∥1 +O(n2ϵ2) ≤ −
1

2
∥xI2

∥1 · ϵ.

If x1 ≤ 2ϵ−1, Hölder’s inequality gives

∥g(x)∥∞ ≥
4ϵ∥xI2

∥1
2∥q∥1

= 2ϵ ·
∥xI2

∥1
∥xI1

∥1 + ∥xI2
∥1

≥ 2ϵ ·
2ϵ

2ϵ−1 + 2ϵ
≥ 2ϵ ·

ϵ2

2
= ϵ3.

Now, we assume that x1 > 2ϵ−1. The first component of the gradient is

1

4
g1(x) =

∑
j∈[n],j ̸=1

(x2
jxi − xj) ≥

∑
j∈[n],j ̸=1

(ϵ2xi − ϵ)

= (n− 1)ϵ2 · x1 − (n− 1)ϵ > (n− 1)ϵ > ϵ,

which contradicts (D.2). In summary, in this sub-case, we have

∥g(x)∥∞ ≥ ϵ3.

Case I-3. In this case, we assume |I1| = 1 and |I2| ≤ 1. In addition, we assume I1 = {1}. If
x1 ≥ (1− ϵ)−1 + ϵ, the third estimate in (D.5) becomes∑

j∈I3
− x1xj(x1xj − 1) ≤

∑
j∈I3

− x1(1− ϵ)[x1(1− ϵ)− 1]

≤ −(1− ϵ)2ϵx1 ≤ −
1

2
∥xI1

∥1 · ϵ.

Then, using a similar analysis and by applying Hölder’s inequality, it follows that

1

4
qT g(x) ≤ −

1

2
∥xI1

∥1ϵ and ∥g(x)∥∞ ≥ 2ϵ ·
∥xI1

∥1
∥xI1

∥1 + ∥xI2
∥1

> ϵ.

Otherwise, if x1 < (1− ϵ)−1 + ϵ,

|x1 − 1| <
ϵ

1− ϵ
+ ϵ < 3ϵ.

Hence,
∥x− x0∥1 ≤ 3ϵ+ (n− 1)ϵ = (n+ 2)ϵ.

In summary, in this sub-case, we have

∥g(x)∥∞ < ϵ/4 or ∥x− x0∥1 ≤ (n+ 2)ϵ.
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Case I-4. Finally, we assume |I1| = 0. If |I2| ≥ 2, we can use a similar analysis as Case I-2 to
conclude that

1

4
qT g(x) ≤ −

1

2
∥xI2∥1 · ϵ+O(nϵ2)

and thus
∥g(x)∥∞ ≥ ϵ.

Next, we consider the case when |I2| = 1 and we assume I2 = {1}. The fourth term in (D.5) can be
estimated as ∑

i∈I2,j∈I3
xixj(xixj − 1) =

(∑n

j=2
x2
j

)
x2
1 −

(∑n

j=2
xj

)
x1.

Since xj ∈ [1− ϵ, 1 + ϵ] for all j ∈ {2, . . . , n}, it holds that∑n
j=2 xj∑n
j=2 x

2
j

≥
1

1 + ϵ
> 1− ϵ.

Therefore,

∑
i∈I2,j∈I3

xixj(xixj − 1) =

(∑n

j=2
x2
j

)
x2
1 −

(∑n

j=2
xj

)
x1

≤
(∑n

j=2
x2
j

)
(1− ϵ)2 −

(∑n

j=2
xj

)
(1− ϵ)

=
∑n

j=2

[
(1− ϵ)2x2

j − (1− ϵ)xj

]
≤

∑n

j=2

[
(1− ϵ)2(1 + ϵ)2 − (1− ϵ)(1 + ϵ)

]
≤ −(n− 1)ϵ2 +O(nϵ3).

Thus, it holds that
1

4
qT g(x) ≤ −(n− 1)ϵ2 +O(nϵ3) ≥ −ϵ2.

Hölder’s inequality implies that

∥g(x)∥∞ ≥
4ϵ2

∥q∥1
=

4ϵ2

x1
≥

4ϵ2

1− ϵ
≥ 4ϵ2.

The only remaining case is when |I2| = 0. In this case, we have

xi ∈ [1− ϵ, 1 + ϵ], ∀i ∈ [n].

Therefore, it holds that
∥x− x0∥1 ≤ nϵ.

In summary, in this sub-case, we have

∥g(x)∥∞ ≥ 4ϵ2 or ∥x− x0∥1 ≤ nϵ.

Combining Cases I-1 to I-4 yields that

∥g(x)∥∞ ≥ ϵ3 or ∥x− x0∥1 ≤ (n+ 4)ϵ

in Case I.

Case II. For the case when
∑

i∈[n] xi < −2ϵ, one can obtain the same conclusions as Case I by the
symmetry of the landscape.
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Case III. We finally consider the case when
∑

i∈[n] xi ∈ [−2ϵ, 2ϵ]. Considering the assumption (D.2),
we have

1

4
gi(x) =

(∑
j∈[n],j ̸=i

x2
j + 1

)
xi −

∑
j∈[n]

xj ∈ [−ϵ, ϵ], ∀i ∈ [n].

Combined with the assumption that
∑

i∈[n] xi ∈ [−2ϵ, 2ϵ], it follows that(∑
j∈[n],j ̸=i

x2
j + 1

)
xi ∈ [−3ϵ, 3ϵ].

Furthermore, since
∑

j∈[n],j ̸=i x
2
j + 1 ≥ 1, we have

xi ∈ [−3ϵ, 3ϵ], ∀i ∈ [n].

We consider the descent direction p ∈ Rn, where

pi = 1/
√
n, ∀i ∈ [n].

Then, we can calculate that

1

4
pTH(x)p =

∑
i,j∈[n]j ̸=i

[
x2
jp

2
i + (2xixj − 1)pipj

]
=

1

n

∑
i,j∈[n]j ̸=i

[
x2
j + (2xixj − 1)

]
=

1

n

[
(n− 1)

∑
i∈[n]

x2
i + 2

∑
i,j∈[n],i ̸=j

xixj − n(n− 1)

]
≤

1

n

[
(n− 1) · 9nϵ2 + 2n(n− 1) · 9ϵ2 − n(n− 1)

]
= 27(n− 1)ϵ2 − (n− 1) ≤ −n/2,

where the last inequality is because ϵ is sufficiently small.
Combined Cases I-III, we have proved that under assumption (D.2), it holds that

min{∥x− x0∥1, ∥x+ x0∥1} ≤ (n+ 4)ϵ or ∥g(x)∥∞ ≥ ϵ3 or λmin[H(x)] ≤ −2n.

Letting ϵ := η/(n + 4) ≪ 1, we know that the property stated in the theorem holds for problem (D.1)
with

β(η) =
η3

(n+ 4)3
, γ(η) = 2n.

In addition, we have η0 = O(1), β(η) = O(n−3η3) and γ(η) = O(n). Transforming back to the
instance (C0, u0), the property stated in the theorem holds with

η0 = O(n−0.5), β(η) = O(n−6.5η3), γ(η) = O(n−2).

This completes the proof. ⊓⊔

D.2 Proof of Lemma 4.2

Proof Similar to Lemma 4.1, it is equivalent to prove the results for the scaled instance MC(n(n −
1)C̃, nũ∗). With a little abuse of notations, we use (C̃ũ∗) to denote the scaled pair of parameters. Denote

δ := max

{
n(n− 1)ϵ

α∗ ,
nϵ

1− α∗

}
.

Then, the condition stated in the lemma implies that

C̃ij ∈ [1− δ, 1 + δ], ∀i, j ∈ [n] s. t. i ̸= j; C̃ii ∈ [0, δ], ũ∗
i ∈ [1− δ, 1 + δ], ∀i ∈ [n].
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Let R > 0 be a large enough constant. Suppose that u ∈ Rn is a stationary point of the instance (C̃, ũ∗)
such that ∥u∥2 = R. Denote the gradient and the Hessian matrix of the instance MC(C̃, ũ∗) at u as
g(u) ∈ Rn and H(u) ∈ Rn×n, respectively. Then, it holds that

1

4
gi(u) =

∑
j∈[n]

C̃ijuj(uiuj − ũ∗
i ũ

∗
j ) = 0, ∀i ∈ [n].(D.6)

We assume without loss of generality that

u1 = maxi∈[n]|ui| ≥ R/
√
n > 0.

If ui = 0 for all i ∈ [n]\{1}, we have

1

4
g2(u) =

(
C̃21u

2
1 +

∑
j≥2

C̃2ju
2
j

)
u2 −

(
C̃21ũ

∗
1ũ

∗
2u1 +

∑
j≥2

C̃2j ũ
∗
j ũ

∗
2uj

)
= −C̃21ũ

∗
1ũ

∗
2u1 ≤ −(1− δ) · (1− δ)2 ·R < 0,

where the last inequality is in light of C̃21 > 1 − δ and ũ∗
i > 1 − δ. This contradicts the stationarity of

point x and thus ∑
j≥2

u2
j > 0.

Moreover, since C̃1j > 1− δ for all j ∈ [n]\{1}, we have∑
j∈[n]

C̃1ju
2
j ≥

∑
j≥2

C̃1ju
2
j > (1− δ)

∑
j≥2

u2
j > 0.

Similarly, for all i ∈ [n]\{1}, it holds that∑
j∈[n]

C̃iju
2
j ≥

∑
j∈[n],j ̸=i

C̃iju
2
j > (1− δ)

∑
j∈[n],j ̸=i

u2
j > (1− δ)u2

i > 0.

Solving (D.6) for all i ∈ [n], we conclude that

ui =

∑
j∈[n] C̃ij ũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

.(D.7)

Assuming that

u1 < R−
2n

(1− δ)R
,

it follows that ∑
j∈[n]

C̃1ju
2
j > (1− δ)

∑
j≥2

u2
j ≥ 4n−

4n2

(1− δ)R2
.(D.8)

In addition, we can calculate that∑
j∈[n]

C̃1j ũ
∗
1ũ

∗
juj ≤

∑
j∈[n]

C̃1j ũ
∗
1ũ

∗
j |uj |(D.9)

< (1 + δ) · (1 + δ)2
∑

j∈[n]
|uj | ≤ 2∥u∥1 ≤ 2

√
nR,

where the second last inequality is because δ is a sufficiently small constant. Combining inequalities (D.8)-
(D.9), we have

u1 =

∑
j∈[n] C̃1j ũ

∗
1ũ

∗
juj∑

j∈[n] C̃1ju2
j

<
2
√
nR

4n− 4n2/[(1− δ)2R2]
.

Choosing R ≥ 4n ≥ 2(1− δ)−1n, the above inequality leads to

u1 <
2
√
nR

4n− 4n2/[(1− δ)2R2]
<

2
√
nR

2n
=

R
√
n
,
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which contradicts the assumption that u1 ≥ R/
√
n. Therefore,

u1 ≥ R−
2n

(1− δ)R
.

Using the condition that ∥x∥2 = R, it holds that∑
j≥2

u2
j ≤

2n

1− δ
−

4n2

(1− δ)2R2
<

2n

1− δ
.

For all i ∈ [n]\{1}, the relation (D.7) implies that

ui =

∑
j∈[n] C̃ij ũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

=
C̃1iũ

∗
i ũ

∗
1u1 +

∑
j≥2 C̃ij ũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

≥
(1− δ) · (1− δ)2(R− 2n/[(1− δ)R])− (1 + δ) · (1 + δ)2

√
n ·

∑
j≥2 u

2
j∑

j∈[n] C̃iju2
j

≥
(1− δ) · (1− δ)2(R− 2n/[(1− δ)R])− (1 + δ) · (1 + δ)2

√
n · 2n/(1− δ)∑

j∈[n] C̃iju2
j

≥
1/2 · (R− 1)− 2n

√
2/(1− δ)∑

j∈[n] C̃iju2
j

≥
R/2− 1/2− 4n∑

j∈[n] C̃iju2
j

> 0,

where the last inequality is due to choosing R > 8n + 1 and the second last inequality results from the
fact that δ is sufficiently small. Using the same relation, it follows that

ui =

∑
j∈[n] C̃ij ũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

≥
C̃1iũ

∗
i ũ

∗
1u1∑

j∈[n] C̃iju2
j

≥
(1− δ)(1− δ)2u1

(1 + δ) ·R2

≥
1

4R2
·
(
R−

2n

(1− δ)R

)
≥

1

8R
,

where the last inequality is due to choosing R ≥ 8n ≥ 4(1 − δ)−1n. Furthermore, using the relation
(D.7) with i = 1, we have∑

j≥2
uj ≥

1

(1 + δ)(1 + δ)2

∑
j≥2

C̃1j ũ
∗
i ũ

∗
juj

=
1

(1 + δ)(1 + δ)2
· u1

[∑
j≥2

C̃1ju
2
j + C̃11[u

2
1 − (ũ∗

1)
2]

]
≥

1

(1 + δ)(1 + δ)2
· u1

[
(1− δ)

∑
j≥2

u2
j

+ C̃11[(R− 2n/[(1− δ)R])2 − (1 + δ)2]

]
≥

1− δ

(1 + δ)(1 + δ)2
· u1

(∑
j≥2

u2
j

)
≥

1− δ

(1 + δ)(1 + δ)2

(
R−

2n

(1− δ)R

)
·
∑

j≥2
u2
j

≥
1

4

(
R−

2n

(1− δ)R

)
·
∑

j≥2
u2
j .

Since
∑

j≥2 uj ≤
√

n(
∑

j≥2 u
2
j ), it follows that√

n

(∑
j≥2

u2
j

)
≥

1

4

(
R−

2n

(1− δ)R

)
·
∑

j≥2
u2
j ,
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which further implies that

∑
j≥2

u2
j ≤

16n

(R− 2n/[(1− δ)R])2
≤

16n

(R− 1)2
≤

1

4
,

where the last inequality is because of choosing R ≥ 1 + 8
√
n. Now, we consider the descent direction

q ∈ Rn, where
q1 = −u1; qi = ui, ∀i ∈ [n]\{1}.

Similar to the proof of Lemma 4.1, we can calculate that

1

4
⟨g(u), q⟩ =

∑
i,j≥2,i ̸=j

C̃ijuiuj

(
uiuj − ũ∗

i ũ
∗
j

)
− C̃11u

2
1[u

2
1 − (ũ∗

1)
2]

+
∑

i≥2
C̃iiu

2
i [u

2
i − (ũ∗

i )
2]

≤
∑

i,j≥2,i̸=j
C̃ijuiuj

(
uiuj − ũ∗

i ũ
∗
j

)
+

∑
i≥2

C̃iiu
2
i [u

2
i − (ũ∗

i )
2]

≤
∑

i,j≥2,i̸=j
C̃ijuiuj

[
1/4− (1− δ)2

]
+

∑
i≥2

C̃iiu
2
i [1/4− (1− δ)2]

≤
∑

i,j≥2,i̸=j
(1− δ) · (8R)−2 · (1/4− 1/2)

+
∑

i≥2
δ · (8R)−2 · (1/4− 1/2) < 0,

which contradicts the assumption that x is a stationary point. Therefore, the above analysis implies that
the instance (C̃, ũ∗) has no stationary point in the region {u ∈ Rn | ∥u∥2 > 8n+ 1}.

Now, We focus on the compact region {u ∈ Rn | ∥u∥2 ≤ 8n + 1}. Since the gradient and the
Hessian matrix are continuous functions of (C, u∗), the ℓ∞-norm of the gradient and the eigenvalues of
the Hessian matrix are also continuous functions of (C, u∗). Intuitively, a small perturbation to (C, u∗)
would not significantly change the norms of the gradient and the Hessian matrix. Thus, the strict-saddle
property still holds after a small perturbation. More rigorously, let (C0, u0) ∈ M and η ∈ (0, η0]. In the
region

Rη := {u ∈ Rn | ∥u∥2 ≤ 8n+ 1, ∥u− u0∥1 ≥ η, ∥u+ u0∥1 ≥ η},

at least one of the following properties holds:

∥∇g(u;C0, u0)∥∞ ≥ β(η), λmin[∇2g(u;C0, u0)] ≤ −γ(η).

Since Rη is a compact set and we constrain (C, u∗) by ∥C∥1 = 1 and ∥u∗∥1 = 1, the functions

∥∇g(u;C, u∗)∥∞ and λmin[∇2g(x;C, u∗)]

are Lipschitz continuous in (C, u∗). Suppose that the Lipschitz constants are Lg and LH under the
weighted ℓ1-norm, namely∣∣∣∥∇g(u;C, u∗)∥∞ − ∥∇g(u; C̃, ũ∗)∥∞

∣∣∣
≤ Lg

[
α∗∥C̃ − C∥1 + (1− α∗)∥ũ∗ − u∗∥1

]
,∣∣∣λmin[∇2g(u;C, u∗)]− λmin[∇2g(u; C̃, ũ∗)]

∣∣∣
≤ LH

[
α∗∥C̃ − C∥1 + (1− α∗)∥ũ∗ − u∗∥1

]
,

∀x ∈ Rη , (C, u∗) s.t. ∥C∥1 = ∥u∗∥1 = 1.

Let

ϵ := min

{
β(η)

2Lg
,
γ(η)

2LH

}
.
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Then, for every pair (C̃, ũ∗) satisfying

α∗∥C̃ − C0∥1 + (1− α∗)∥ũ∗ − u0∥1 < ϵ,

at least one of the following properties holds for all x ∈ Rη :

∥∇g(u; C̃, ũ∗)∥∞ ≥ β(η)/2, λmin[∇2(u; C̃, ũ∗)] ≤ −γ(η)/2.

This implies that the strict-saddle property holds for the the perturbed instance MC(C̃, ũ∗). Letting η →
0, it follows that ±ũ∗ are the only points satisfying the second-order necessary optimality conditions, and
thus MC(C̃, ũ∗) does not have SSCPs. ⊓⊔
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