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Uniqueness of Power Flow Solutions Using
Monotonicity and Network Topology

SangWoo Park, Richard Y. Zhang, Javad Lavaei and Ross Baldick

Abstract—This paper establishes sufficient conditions for the
uniqueness of AC power flow solutions via the monotonic rela-
tionship between real power flow and the phase angle difference.
More specifically, we prove that the P −Θ power flow problem
has at most one solution for any acyclic or GSP graph. In
addition, for arbitrary cyclic power networks, we show that
multiple distinct solutions cannot exist under the assumption
that angle differences across the lines are bounded by some limit
related to the maximal girth of the network. In these cases, a
vector of voltage phase angles can be uniquely determined (up to
an absolute phase shift) given a vector of real power injections
within the realizable range. The implication of this result for
classical power flow analysis is that, under the conditions specified
above, the problem has a unique physically realizable solution
if the phasor voltage magnitudes are fixed. We also introduce
a series-parallel operator and show that this operator obtains
a reduced and easier-to-analyze model for the power system
without changing the uniqueness of power flow solutions.

I. INTRODUCTION

The AC power flow equations fundamentally underpin ev-
ery aspect of power systems: from day-to-day operations in
contingency analysis, security-constrained dispatch of elec-
tricity markets and yearly capacity planning for peak load,
to decades-long transmission expansion and renewable inte-
gration. The purpose of AC power flow problem is to solve
for the complex voltages, described by their magnitudes and
phase angles, given a power system set-point. The power flow
equations are nonlinear, and may admit multiple solutions.
In the past, the conventional wisdom was to assume that
the solution becomes unique by restricting it to “realistic”
or “physically realizable” values. However, various examples
in the literature show that multiple solutions may persist
even after restricting either voltage magnitudes or phase angle
differences to “physically realizable” values [2], [3], [4, Sec-
tion IV]. For the former, we present an example in Section V
where multiple solutions exist despite having fixed voltage
magnitudes for all buses. For the latter, it is possible to
construct a two-bus example — one slack bus and one PQ
bus — that admits a high-voltage solution within standard
operating limits, and another low-voltage solution with a large
phase angle difference of 49.9 degrees that is still below the
steady-state limit of 90 degrees [5]. Therefore, in principle,
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system operators may encounter operating points that are very
different from what they had expected. In order to avoid these
situations, it is important to understand whether or not there is
a unique “physically realizable” power flow solution for real-
world power systems. The goal of this paper is to develop
sufficient conditions on top of the “realism” that will guarantee
a unique solution to the AC power flow equations.

A. Monotonicity between phase angles and power flow

Mathematical tools that are often used to prove uniqueness
results include the fixed point theorem with contraction map-
ping and the inverse function theorem. In this paper, we use the
notion of monotonicity to prove uniqueness of the power flow
solution under certain conditions. The results that we present
stem from a simple idea that is best explained via an example.
Consider a two-bus, lossless one-line system, with the line
reactance X . Voltage magnitude and angle are specified at one
of the buses (“slack bus”), whereas real power injection and
voltage magnitude are specified at the other bus (“PV bus”).
Then, the power transfer between the two buses is given with
respect to the two voltage magnitudes |v1|, |v2| and the angular
difference θ1−θ2 as a sinusoid: P = |v1|·|v2|· sin(θ1−θ2)/X.

Even in this simple toy example, we can see that the power
flow solutions are not unique: every value of P satisfying
|P |< |v1|·|v2|/X can be attained by two choices of θ1 − θ2.
However, if we restrict θ1 − θ2 to take on what we will call
physically realizable values within the steady-state stability
limit of |θ1 − θ2|< π/2, then the solution becomes unique.
Indeed, this follows from the fact that P is monotonically
increasing with respect to θ1−θ2 within this range. Formally,
if we define f(x) = (|v1|·|v2|/X) sinx as the power flow
function and Ω = [−π/2,+π/2] as the range of acceptable
values for x, then the strictly increasing property of f guar-
antees the following inequality:

(f(x)− f(y))(x− y) > 0 ∀x 6= y, x, y ∈ Ω.

The inequality forces the nonlinear equation f(x) = P to
have no more than one solution x ∈ Ω, because a different
y ∈ Ω satisfying f(y) = P would contradict the inequality.
Hence, the phase angles θ1 and θ2 can be uniquely determined
(up to an absolute phase shift) given a value of P within
the realizable range |P |< |v1|·|v2|/X . This paper extends this
idea to an arbitrary power network using a multi-dimensional
generalization of the monotonicity property.

B. Main results

The major contribution of this paper is the identification
of sufficient conditions under which the power flow equations
have a unique “realistic” solution. For the remainder of the
paper, we focus on the relationship between voltage angle
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differences and real power injections, referred to as the P −Θ
problem in the literature [6]. Analogous to the two-bus case,
a set of phase angles are physically realizable for a lossless
system if the angular difference across every line lies within
the stability limit of π/2. Under the constraint that phase
angles are physically realizable and smaller than a certain limit
that depends on the network topology, we extend the notion
of monotonicity that was illustrated for the earlier two-bus
example to high-dimensional networks. The contributions of
this paper are summarized below:
• We show that all acyclic networks have at most one
P − Θ power flow solution under certain conditions
on voltage angles. Furthermore, the set of feasible real
power injections (for non-slack buses) on these graphs is
a convex set.

• We show that cyclic networks cannot have multiple dis-
tinct P−Θ power flow solutions under certain conditions
on voltage angles. These conditions can be checked
offline and provide a certificate for ruling out multiple
solutions. The certificate is easier to satisfy for graphs
with smaller maximal girth.

• We show that the uniqueness of P − Θ power flow
solutions is preserved under series-parallel reduction.
A natural corollary to this is that power systems with
Generalized Series-Parallel graphs have at most one
P − Θ power flow solution under some angle condi-
tions. Loosely speaking, these are graphs that can be
constructed entirely out of series and parallel terminal
connections in circuit theory, plus dangling vertices. Any
tree or cycle graph is a Generalized Series-Parallel graph.

The implication of these results for classical power flow
analysis is that, under the conditions specified above, the
problem has a unique physically realizable solution if the
phasor voltage magnitudes are fixed. This occurs, for example,
if all buses except the slack bus are modeled as PV buses. In
practice, tightly controlled voltage magnitudes are enforced
by operating limits, and are usually achieved through the
availability of dispersed and controllable reactive sources. The
assumption is commonly used in the power industry and is
implicit in the DC power flow equations.

C. Related work

The paper [7] is one of the first to study the solution set of
the power flow equations, which contrary to the conjecture
at that time constructed an example showing the general
non-uniqueness of decoupled power flow solutions. A more
thorough study was later presented in the paper [8], which
derived the estimate number of solutions and characterized
the stability region for the power flow problem. However, the
results are limited to lossless transmission networks consisting
of only PV buses. Soon after, [9] formulated the coupled
power flow equations in rectangular coordinates and described
a set of linear necessary conditions for the solution of the
power flow problem, which helped systematically investigate
the problem feasibility. Subsequently, researchers have tried
to explicitly characterize conditions under which the power
flow solution exists and is unique. For example, the work [10]

derived conditions under which the reactive power-voltage
problem has a unique solution under decoupling assumptions.
Then, [6] extended these results by deriving conditions for the
real power-phase angle problem under the same decoupling
assumptions. Note that in this paper, we consider the real
power-phase angle problem as in [6], but discard the decou-
pling assumptions because it fails to accurately capture the
true physics when transmission lines are not purely inductive.
Furthermore, we consider a general lossy network.

Researchers have also observed that information about the
topology of the power system network can be utilized to derive
stronger results. Without making decoupling assumptions, the
paper [2] investigated the number of power flow solutions
in a radial network and showed that, for practical system
parameters, the solution always exists and is unique. The
results were extended to unbalanced three-phase distribution
networks in [11]. Adding to these results, the work in [12]
shows that several algorithms, using the fixed-point, convex
relaxation and the energy function approaches, converge to
the unique high-voltage solution for radial networks. In the
more recent study [13], the authors studied the power flow
problem and its relationship to optimization in tree networks
by mainly analyzing the injection region of the power network.
While these results are limited to tree graphs, our current
work characterizes a wider class of topologies under which the
power flow solution is unique. Finally, the work in [14] used
the network topology to upper bound the number of power
flow solutions.

The most widely used tool to prove existence and unique-
ness of power flow solutions is the fixed point technique. The
work [15] was the first to apply the fixed point technique de-
veloped for nonlinear circuits to power flow. In [16] and [17], a
fixed point formulation of the power flow problem was used to
specify a domain around a feasible point and derive sufficient
conditions for a unique solution. In the recent works [18]
and [19], the authors developed a new fixed point formulation
of the lossless power flow equations that includes both PQ and
PV buses, and for radial networks derived network parametric
conditions that guarantee the existence and uniqueness of a
high-voltage solution. Extensions of the conditions to multi-
phase distribution systems appear in [20] and new sufficient
conditions using a fixed point technique on the complex
domain appear in [21].

Moving away from fixed point techniques, the work [22]
developed a semidefinite programming based procedure to
characterize the domain of voltages over which the power
flow operator is monotone. In a similar but different spirit,
this paper utilizes monotonicity to rule out multiple solutions.
Furthermore, we take advantage of the network topology in-
formation to derive less conservative sufficient conditions. The
recent work [23] presents a unifying framework for network
problems on the n-torus while introducing the concept of
winding cell that is used to partition solutions. The framework
can be applied to the AC power flow problem under the
lossless setting and their monotonicity assumptions share close
resemblance to our approach. In this work, we provide a more
general result on arbitrary networks with losses.

The remainder of this paper is organized as follows. Sec-
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tion II lays out the basic notations used in this paper. In
Section III, we define the P −Θ power flow problem formu-
lation. Section IV establishes the condition under which strict
monotonicity holds over a single line and presents favorable
properties that arise from the monotonicity. The properties are
used to prove that there is at most one power flow solution
for acyclic networks. Section V extends this result to general
cyclic networks. We present additional (voltage) angular con-
ditions under which cyclic graphs cannot have multiple distinct
power flow solutions. This condition is closely related to the
maximal girth of the underlying graph. Section VI shows that
series-parallel reduction on a graph preserves the uniqueness
of power flow solutions, and arrive at the conclusion that
Generalized Series-Parallel networks have at most one solu-
tion under additional angle constraints. Section VII develops
a linear-time algorithm for a subset of Generalized Series-
Parallel graphs. Finally, Section VIII provides numerical and
simulation results that support the ideas developed in the paper.
All the proofs will be delineated in the Appendix.

II. NOTATIONS

We start with some mathematical notations. For a given
vector x, let xk denote its k-th element. When notation is
overloaded, x(k) will sometimes take on the role of xk. The
symbol j denotes the unit imaginary number. The notations
(·)T and (·)H denote the transpose and Hermitian transpose
of a matrix, respectively. For a complex number z, |z| denotes
its magnitude and for a set X , the symbol |X| denotes its
cardinality. <(·) denotes the real part of a given argument.

Power system topology is specified by an undirected graph
G = (V,E) and we assume that this graph is simple and
connected. For an undirected graph G = (V,E), V is the
set of vertices (buses) and E ⊆ V×V is the set of undirected
edges (lines). If the edges of an undirected graph are weighted
with the weights captured by a set W, then the graph is
represented as G = (V,E,W). For a directed graph (digraph)
D = (V, Ẽ,W), Ẽ ⊆ V×V denotes the set of directed edges.
The undirected edge e connecting two vertices k and ` is
denoted by a set notation e = {k, `}, whereas a = (k, `)
denotes a directed edge a coming out of vertex k and going
into `. Depending on the context, an edge can be denoted
by either e or {k, `}. The same goes for directed edges. The
series element of the equivalent Π-model of each line {k, `}
is modeled by admittance Gk` − jBk`, where Gk`, Bk` ≥ 0.
Let d denote the vector of degrees, where its k-th element
d(k) stands for the degree of vertex k ∈ V. Similarly, limited
to directed graphs, let d+ and d− denote the vectors of out-
degrees and in-degrees, respectively. Moreover, let G[V′] and
E[V′] denote the subgraph and edge-subset of G that are
induced by a given vertex set V′ ⊆ V, respectively. The
symbol 1 is the vector of ones. Finally, Kn denotes the
complete graph on n vertices.

III. P -Θ PROBLEM FORMULATION

As mentioned in the introduction, we focus our attention to
the relationship between the voltage phasor angles and the real
power injections. To this end, we will study the mapping from

angles to real powers. Let the slack bus (also the reference bus)
be indexed by 1, unless defined otherwise. Let v ∈ Cn be the
vector of complex bus voltages. The complex voltage at bus
k can be expressed in polar form, vk = |vk|ejθk , where |vk|
and θk denote the voltage magnitude and phase angle at bus
k, respectively. For convenience, we also define θk` = θk−θ`
to be the angle difference across line {k, `}.

The P − Θ power flow problem assumes that all buses
except the slack bus are PV buses. This means that the
voltage magnitudes V = (|v1|, . . . , |vn|)T are fixed at all
buses, and the net real power injections are fixed at all buses
except the slack bus. We denote the specified real power
injection vector as P = (p2, . . . , pn)T . The unknown variable
is Θ = (θ2, . . . , θn)T because bus 1 is the reference bus
and θ1 is fixed at zero. Although the voltage magnitudes are
considered fixed at all buses, we make no assumption about
their particular values. For example, the magnitude could be
low as in the two-bus example mentioned in Section I. Finally,
assuming that the shunt elements of the model have zero real
part, we can neglect the admittance of the shunt elements
without loss of generality. That is, we assume that the shunt
elements are purely reactive.

Let i ∈ Cn be the vector of complex currents, where ik
is the total current flowing out of bus k into the rest of the
network. Given a complex admittance matrix Y ∈ Cn×n, the
equation i = Y v holds due to Ohm’s law and Kirchoff’s
Current Law. Furthermore, the complex power injected at
bus k is equal to sk = pk + jqk = vki

H
k where pk and

qk denote the net real and reactive power injections at bus
k, respectively. Therefore, we can write the equation for the
real power injections as: pk = <{(Y v)Hk vk}. Since voltage
magnitudes are known parameters, the injection vector P is
only a function of Θ and we can define the following injection
operator that describes the P −Θ problem.

Definition 1. Define P̂k : Rn−1 → R as the map from the
vector of phasor angles to the real power injection at bus k:

P̂k(Θ) = <{(Y v)Hk vk}. (1)

Moreover, define the injection operator P̂ : Rn−1 → Rn−1 as

P̂ (Θ) = [P̂2(Θ), . . . , P̂n(Θ)]. (2)

The goal of the P −Θ problem is, given P ∈ Rn−1, to find
Θ ∈ Rn−1 such that P̂ (Θ) = P .

IV. ACYCLIC NETWORKS

In this section, we derive conditions under which the P −Θ
problem has at most one solution for a power system repre-
sented by an acyclic graph. In particular, a straightforward
generalization of the elementary angle assumption that is
necessary for a single line network to have at most one solution
is sufficient for any acyclic network to have at most one
solution.
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A. Single line properties

We begin the analysis with a single line. Consider any line
{k, `} ∈ E and the real power flow from bus k to bus `,
denoted by pk`. Elementary calculations show that:

pk` = Gk`(|vk|2−|vk|·|v`|cos θk`) +Bk`|vk|·|v`|sin θk` (3)

Therefore, given the line properties and the voltage magnitude
at both ends, the flow pk` depends only on the voltage angle
difference θk`. Hereby, we define the function p̂k`(·) for every
{k, `} ∈ E such that pk` = p̂k`(θk`). Taking the derivative

∂p̂k`
∂θk`

(θk`) = Gk`|vk|·|v`|· sin θk` +Bk`|vk|·|v`|· cos θk`

concludes that pk` is monotonically increasing in θk` if:

Gk`|vk|·|v`|· sin θk` +Bk`|vk|·|v`|· cos θk` ≥ 0.

A strict inequality of the above equation is obtained if:

− tan−1(Bk`/Gk`) < θk` < π − tan−1(Bk`/Gk`).

Similarly, p`k is strictly monotonically decreasing in θk` if:

tan−1(Bk`/Gk`)− π < θk` < tan−1(Bk`/Gk`).

Combining these observations, both pk` and p`k are strictly
monotonic functions of θk` as long as:

|θk`|< tan−1(Bk`/Gk`), (4)

which corresponds to the region of steady-state stability
of the line {k, `} considered individually. We refer to
tan−1(Bk`/Gk`) as the steady-state stability limit for line
e = {k, `} ∈ E and will restrict attention to angles that
satisfy (4) for each line {k, `} in the system. In what follows,
we will give the definitions on the set of allowable angles and
set of allowable injections.

Definition 2. For a power system G = (V,E), let G =
(V,E,W) indicate a weighted version of the power sys-
tem network. For each line e = {k, `} ∈ E, there is
a corresponding angle limit (weight) wk` ∈ W such that
ωk` < tan−1(Bk`/Gk`). Note that ωk` can be written in
an equivalent notation, ωe. The set W is called the ‘set of
allowable limits.’ The ‘set of allowable angles’ for a power
system G = (V,E,W) is defined as:

Γ(G) = {Θ ∈ Rn−1 : θ1 = 0 and |θk`|< ωk` ∀{k, `} ∈ E}.

Furthermore, for a given Θ ∈ Γ(G), define P(G,Θ) ∈ Rn−1

to be the vector of net injections (at all buses except for the
slack bus) realized by Θ. We define P(G,Γ(G)) ⊆ Rn−1 to
be the set of all possible net injections for allowable angles
and refer to it as the “set of allowable injections.”

We acknowledge that there is no one-to-one correspondence
between the notion of stability of a line considered individually
in isolation and the steady-state and transient stability of an
actual power system, particularly where there are additional
control feedback loops such as “power system stabilizers.”
However, limiting angles to satisfy (4) results in some con-
venient properties of power flow solutions. These properties
are explained in the following lemma:

Lemma 1. Define p
k`

= p̂k`(−ωk`) and pk` = p̂k`(ωk`). Then
for each pk` ∈ (p

k`
, pk`) there exists a unique θk` with |θk`|<

ωk` such that pk` = p̂k`(θk`). In fact, there is an explicit
expression for the solution θk`:

θk` = θ̂k`(pk`) = sin−1

(
pk` −Gk`|vk|2

|vk|·|v`|Zk`

)
− γk` (5)

where Zk` =
√
G2
k` +B2

k` and γk` = tan−1(−Gk`/Bk`).
Furthermore, if we define r̂k`(·) = p̂`k(−θ̂k`(·)), then

p`k = r̂k`(pk`) (6)

where r̂k` is a strictly decreasing function.

Previously, we established that p̂k`(·) is a strictly increasing
function of θk` over the range |θk`|< ωk`. By using the
Browder–Minty theorem in its proof, Lemma 1 states that
the inverse of the function p̂k`(·) is well-defined. In fact, the
inverse function θ̂k`(·) is also an increasing function, of pk`
over (p

k`
, pk`). Moreover, given pk` ∈ (p

k`
, pk`), there is

a uniquely determined corresponding value for the flow p`k
coming from the opposite direction. This enables us to express
p`k as a well-defined function of pk` as in (6).

B. Tree networks

In this subsection, we build on the results for a single line to
prove uniqueness of the P − Θ power flow problem for tree
networks. We also show that the set of allowable injections
is a convex set. Although a tree network is not realistic for
transmission systems, this will provide important results that
will be used for the general case of a mesh. Some of the
results that we mention here are already well known in the
existing literature. However, we organize the proof of this
existing result around the monotonicity property, with the goal
of generalizing the arguments to mesh networks.

We will write T ⊆ V×V for a collection of lines that form a
tree and consider power systems with graphs G = (V,T,W).
Recall that the reference/slack bus is indexed by 1. A key
observation about tree topology is that for any bus k ∈ V
there is a unique path Ek ⊆ T of successive lines between
bus k and bus 1, which we consider to be the root of the
tree. Define the “distance” c(k) between bus k and bus 1 to
be the number of lines in the unique path Ek between bus k
and bus 1 in T. We define E1 = ∅ and c(1) = 0. Generically,
results for such networks could be proved by beginning with
leaves and proceeding towards bus 1 by using an induction
argument on the decreasing distance to bus 1. By following
such approach, the next theorem can be obtained.

Theorem 2. Suppose that the power system G = (V,T,W)
has a tree topology. Then,

1) For each P ∈ P(G,Γ(G)), there is a unique Θ ∈ Γ(G)
such that P = P̂ (Θ).

2) P(G,Γ(G)) is a convex set.

Note that by Part 1 of Theorem 2, for a given power system
G with a tree topology, there is a well-defined function Θ̂ such
that for each P ∈ P(G,Γ(G)), the unique value Θ ∈ Γ(G)
with the property P = P̂ (Θ) satisfies Θ = Θ̂(P ). That is,
Θ̂(•) is the inverse of P̂ (Θ).
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V. CYCLIC NETWORKS

For networks with cycles, restricting the voltage angles to
the set of allowable angles is not enough to guarantee that the
P − Θ problem has at most one solution. Hence, we begin
this section by analyzing a simple example on a cycle to
illustrate the need for additional conditions on voltage angles
in guaranteeing a unique solution.

In Fig. 1, we have a six-bus lossless network where all the
real power injections are set to be zero. Under this setting,
we can see that there are at least two solutions: one with zero
flow in all lines and another one with a nonzero flow around
the cycle, corresponding to a π/3 angle difference across each
line. This example is similar to the one in [7] and is essentially
due to the fact that the sum of angle differences from bus 1
to bus 6 (i.e. θ12 + θ23 + θ34 + θ45 + θ56) is less than −π
and therefore becomes equivalent to π/3 (mod 2π), allowing
a positive amount of power to flow from bus 1 to bus 6 and
then back to bus 1. In this example, if the absolute value of
θ12 + θ23 + θ34 + θ45 + θ56 were to be restricted below π,
there would be no possibility of multiple solutions. We state
this formally in the following lemma.

Lemma 3. Consider a power network G = (V,E,W) with
V = {1, . . . , N} and E = {{1, 2}, . . . , {N − 1, N}, {N, 1}}.
For every P ∈ P(G,Γ(G)) there is a unique solution Θ ∈
Γ(G) such that P = P̂ (Θ) if:

ω12 + ω23 + · · ·+ ωN−1,N < π/2. (7)

Lemma 3 applies to only a single cycle network. However,
this will be extended to any arbitrary network below. The
main idea behind the development of this result is to associate
a digraph to every possible distinct solution based on its
deviation from a baseline solution. We call two solutions
distinct if every two corresponding elements of these solutions
are different. If an angle constraint similar to equation (7) is
met for every such digraph (named the residual-digraph), then
there cannot be multiple distinct power flow solutions (i.e.,
distinctly unique). In this section, we prove results on distinct
uniqueness, but the same methodology can also be readily
used to prove results on uniqueness (in the common sense)
by substituting the digraph with a hybrid graph that contains
both directed and undirected edges. In addition, if there are
two non-distinct solutions, then one can delete the edges with
the same flows in the two solutions and then compensate
for the nodal injections at the endpoints of all such removed
edges in order to arrive at a subgraph that has two distinct
solutions. In other words, having only unique distinct solutions
for the subgraphs of the network implies the uniqueness of the
solution for the original network. As a result, we only focus on
studying distinct solutions in this section. For the rest of this
paper, we also assume that the digraphs under consideration do
not have self-loops. Furthermore, in order to satisfy the power
balance equations, there must be at least one incoming and one
outgoing edge at each non-slack bus of the residual-digraph.
This merits introducing the concept of feasible orientation,
which we define below.

Definition 3. (Feasible Orientation) Consider a general power
network G = (V,E,W). Let D = (V, Ẽ,W) be a digraph that

1
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θ1 = 0

θ2 = 0

θ3 = 0 θ4 = 0

θ5 = 0

θ6 = 0
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2

3 4

5

6
θ1 = 0

θ2 = −π/3

θ3 = −2π/3 θ4 = −π

θ5 = −4π/3

θ6 = −5π/3

Fig. 1: Cycle example showing multiple solutions. The two
graphs show two different solutions that satisfy the power flow
equations. In the top solution, there is no flow going around
the cycle. In the bottom solution, there is a clockwise flow
going around the cycle.

is created by assigning a specific orientation Ẽ to the original
undirected edges E of graph G. The digraph D is called a
‘feasible orientation’ of the underlying undirected graph if:

d+(k) ≥ 1, d−(k) ≥ 1 ∀k ∈ V \ {1}

The set of all feasible orientations for graph G is called the
‘set of feasible orientations’ and is denoted by Df (G).

The condition in Definition 3 simply requires that each
bus have in-degree and out-degree greater than or equal to
one. Now, we are ready to state the theorem that generalizes
Lemma 3. From here on, we will use the word ‘vertex’ more
often in place of the word ‘bus.’

Theorem 4. Consider an arbitrary power network G =
(V,E,W). Suppose that for every feasible orientation D ∈
Df (G), there exists a directed cycle C with its vertex set
denoted as Vdc = {u(1), . . . , u(|Vdc|)} ⊆ V such that

|Vdc|−1∑
i=1

ωu(i),u(i+1) < π/2. (8)

Then, for each P ∈ P(G,Γ(G)) there cannot be multiple
distinct solutions satisfying P = P̂ (Θ).

Note that condition (8) becomes less restrictive if there
exists a short directed cycle for every feasible orientation of
the underlying graph. In the graph theory literature, the length
of the smallest directed cycle of digraph D is called the girth
of D, which we denote by δ(D). Therefore, to rephrase the
earlier statement, having a small girth for all of the possible
feasible orientations is crucial. This calls for a new notion of
maximal girth of an undirected graph, in addition to the girth,
which we define below.

Definition 4. For a given undirected graph G, define the
‘maximal girth’ ∆(G) as follows:

∆(G) = max
D∈Df (G)

δ(D) (9)
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Corollary 5. Given an arbitrary power network G =
(V,E,W), suppose that

ωk` <
π

2 · (∆(G)− 1)
∀{k, `} ∈ E. (10)

Then, for each P ∈ P(G,Γ(G)) there cannot be multiple
distinct solutions satisfying P = P̂ (Θ).

Note that for cyclic networks, P(G,Γ(G)) is in general a
nonconvex set, and there have been recent works that address
the issue via convex restrictions [24]. So far, we have shown
that finding a directed cycle satisfying condition (8) for all
feasible orientations corresponds to certifying that the P −Θ
problem cannot have multiple distinct solutions. Furthermore,
Corollary 5 has introduced the concept of maximal girth to
show that if the allowable limits are uniformly less than the
upper-bound in (10), then the P − Θ problem cannot have
multiple distinct solutions. The smaller the value of ∆(G),
the more freedom there is for angle differences over lines.
The question arises as to whether we can calculate or upper-
bound ∆(G). For the example in Fig. 1, it is relatively easy
to see that ∆(G) = 6. However, for a graph with m edges,
the number of feasible orientations is on the order of 2m,
and calculating or even proving an upper-bound on ∆(G) is a
difficult task. Most of the existing results provide bounds that
are on the order of n/s where s is the minimum out-degree
of a digraph [25], which is not useful for our purpose since
s = 1 for feasible orientations.

Here, we upper-bound the maximal girth by using another
property of the underlying undirected graph, namely the length
of its longest chordless cycle, which we denoted by κ(G). The
basic idea behind the proof is that any directed cycle with a
chord can be further decomposed into two cycles, one of which
is again a directed cycle. The formal statement with its proof
is provided in Lemma 10 of the Appendix. With this upper-
bound on maximal girth, condition (10) can be substituted by
the following new condition:

ωk` <
π

2 · (κ(G)− 1)
∀{k, `} ∈ E (11)

A major benefit of this result comes from the fact that κ(G)
can be computed in a relatively straightforward fashion. For
the example in Fig. 1, the value of κ(G) is equal to the
value of ∆(G). The procedure for the computation of κ(G)
and its values for several IEEE test cases are reported in
Section VIII-B. For complete graphs, κ(G) = 3 because
all vertices are connected by an edge. In connection with
Corollary 5, this implies that complete graphs cannot have
multiple distinct solutions if angle differences are restricted
below π/4, which is often the case in real-world power
operations due to security considerations. It is acknowledged,
however, that power system graphs are not in practice complete
graphs and are, in fact, sparse.

VI. SERIES-PARALLEL REDUCTION

This section shows that under the assumption that voltage
angles lie within the allowable limits, the uniqueness of P−Θ
problem solutions is preserved under series-parallel reduction,
with appropriate updates on the set of allowable limits, namely

W. These updates are involved with the dangling vertex,
highway-path and parallel edges of the graph, which will be
explained in detail throughout the section. We conclude the
section with a recognition that all graphs that are reducible (via
series-parallel reduction) to a K2 have a unique power flow
solution if the updated allowable limit on the remaining single
line is less than π/2. These graphs turn out to be equivalent
to a group of graphs called Generalized Series-Parallel (GSP)
that includes any tree or cycle graph. In fact, every outer-
planar graph is GSP [26]. This result has practical implications
because real-world transmission and distribution systems are
not far away from this type of topology. We begin by defining
series-parallel reduction and GSP graphs. As detailed in [26],
one of the equivalent definitions of a GSP graph is as follows:

Definition 5. A graph is a Generalized Series-Parallel (GSP)
graph if it can be reduced to a single edge graph (K2) by a
sequence of the following three operations:

1. Replacement of a pair of parallel edges with a single
edge that connects their common endpoints.

2. Replacement of a pair of edges incident to a vertex of
degree 2 with a single edge.

3. Deletion of a dangling (degree 1) vertex.
Any sequence of these three operations will be called a
“series-parallel reduction”.

To help visualize how the three operations work, in Fig. 2,
we illustrate a reduction example on the IEEE 14-bus net-
work. Starting from the original network (a), the graph is
subsequently reduced to (d) via a sequence of series-parallel
reductions. Going from (a) to (b) represents an example of
operation 3, where the dangling vertex (numbered by 8 in the
figure) is deleted. The process from (b) to (c) is an example
of operation 2, where two edges incident to a vertex of degree
2 is replaced by a single edge. Finally, the process from (c)
to (d) is an example of operation 1, where two parallel edges
are replaced by a single edge.

It turns out that the analysis of conditions (8–11) for the
original power network can be performed on a “series-parallel
reduced” network that could be far smaller than the original
graph. Let us revisit the example in Fig. 2. In the original
network (a), edge {7, 8} cannot be part of any cycle because
vertex 8 has degree 1. Therefore, this edge can be omitted
from the analysis of directed cycles. In network (b), edges
{6, 12} and {12, 13} have to be either both part of a cycle
or both not part of any cycle. Therefore, the two edges can
be replaced by a single edge {6, 13} with a new allowable
limit, ω̃6,13 = ω6,12 + ω12,13. A similar implication follows if
we replace the two parallel edge in (c), connecting vertex 6
and 13, by a single edge with a new allowable limit that is of
maximum value among the replaced edges. Before we present
the formal statement of this observation, we define what a
highway-path is below.

Definition 6. An induced path P of G with vertex set

Vh = {s, uh(1), uh(2), . . . , uh(H), t} (12)

from vertex s to vertex t is called a highway-path if:

d(uh(i)) = 2 ∀i ∈ {1, . . . ,H} (13)
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Fig. 2: A simple diagram illustrating a sequence of series-
parallel reductions for the IEEE 14-bus system.

and uh(i) is a non-slack vertex for every i ∈ {1, . . . ,H}.

Note that a single edge is also considered a highway-
path. By building on the previous observations and using the
above definition, we show that the problem of determining
the uniqueness of the power flow solutions for the original
meshed network can be reduced to determining the uniqueness
of solutions on a smaller graph that excludes a dangling vertex,
a highway-path or a parallel edge.

Theorem 6. Consider a power network G = (V,E,W).
1. If G contains two parallel edges e1, e2 ∈ E both connecting
the same pair of vertices, define

V̄ = V, Ē = E \ {e2},

W̄ = {w̄e | w̄e = we, ∀e ∈ Ē\{e1}, ω̄e1 = max{we1 , we2}}

2. If G contains a highway-path P, let Vh be the vertex set
of P as described in (12). Define

V̄ = V \ {uh(1), . . . , uh(H)}, Ē = E[V̄] ∪ {{s, t}},

W̄ = {w̄e | w̄e = we, ∀e ∈ E[V̄], ω̄s,t =
∑

e∈E[Vh]

ωe}

3. If G contains a dangling (degree 1) vertex u, define

V̄ = V \ {u}, Ē = E[V̄], W̄ = {w̄e | w̄e = we, ∀e ∈ Ē}

Let the reduced graph Gr be defined by Gr = (V̄, Ē, W̄).
Then, the P −Θ power flow problem for the original graph G
has at most one solution if condition (10) is satisfied for Gr.

Theorem 6 implies that deleting the graph’s dangling vertex,
or contracting multiple edges that are connected in series, or
eliminating one of the two parallel edges do not influence
the uniqueness of power flow solutions as long as the set
of allowable limits W is updated appropriately. One major
advantage of Theorem 6 is that the analyses pertaining to

directed cycles, maximal girth and longest chordless cycle
introduced in Section V can now be applied to a smaller
reduced network. For instance, checking condition (8) is time-
dependent on the number of vertices, edges, and simple cycles
of a graph. As the graph becomes larger, this computation
can be daunting since the number of simple cycles can grow
exponentially in the number of vertices. The effect of series-
parallel reduction on several IEEE test cases is illustrated in
Section VIII-A.

Finally, it is no coincidence that these three reduction
procedures are equivalent to the three operations that are
allowed and required to turn a GSP graph into a K2 graph (see
Definition 5). In other words, any GSP graph can be reduced
to a single line after undergoing a sequence of reduction
procedures delineated in Theorem 6. The absence of cycles
suggests that Theorem 4 is unnecessary in this case, and
warrants a simpler result, which is given as a corollary below.
The corollary states that the P − Θ problem on GSP graphs
has at most one solution if the final updated allowable limit
for the reduced single line is less than π/2.

Corollary 7. Suppose that the power system G = (V,E,W)
has a GSP topology. Let L = (V̄, Ē, W̄) be a K2 graph
(containing the slack bus) that is series-parallel reduced from
G, where W̄ = {ω} represents the ‘allowable limit’ on the
remaining line that is updated according to the procedures in
Theorem 6. If ω < π/2, then there is a unique Θ ∈ Γ(G) such
that P = P̂ (Θ) for each P ∈ P(G,Γ(G)).

VII. ALGORITHM

In this section, we design an algorithm for finding the
unique solution of the P − Θ problem when the graph has
a GSP structure. In general, the P −Θ equations constitute a
system of nonlinear equations and are prone to complex and
chaotic behavior. Conventional algorithms such as Newton’s
method may fail to converge when a bad initial guess is
provided or if the system is close the its security margins. In
the special case where the injection operator P̂ (Θ) is strictly
monotone, leading to a unique (if there exists) P −Θ problem
solution, a fixed point iteration approach will converge to the
correct solution with a convergence rate that depends on the
monotonicity constant and Lipschitz constant of the operator
in question. However, requiring the injection operator to be
monotonic over a feasible region is quite restrictive. In our
case, the uniqueness of the P − Θ power flow problem for
GSP graphs emerges from a repetitive reduction process of
the network and its flow set in a parameterized way that is not
amenable to conventional numerical methods. The power flow
algorithm that we propose for the GSP networks, therefore,
will emulate this reduction process.

A. Linear-time algorithm

We begin with a simple example illustrating the idea behind
the algorithm. Fig. 3 shows a GSP network with four buses
and five lines, where bus 1 is the slack bus as usual. Let
W = {ω1,2, ω2,3, ω1,3, ω1,4, ω3,4} denote the set of
allowable limits for this network. Suppose that the assumption
in Corollary 7 is met, meaning that the network can be reduced



8

to a single edge connecting vertices 1 and 4 via series-parallel
reduction and the updated allowable limit for that edge is less
than π/2. More specifically, this means that ω̄1,4 < π/2, where
ω̄1,4 equals the left-hand side of the following expression:

max
{
ω1,4 , max{ω1,2 + ω2,3 , ω1,3}+ ω3,4

}
< π/2 (14)

Now, set the variable x to represent the real power flow
from vertex 1 to vertex 2, i.e. x = p12. Due to power balance
at each vertex and the fact that vertex 2 has a degree of two,
p23 is an increasing function with respect to x. Furthermore,
due to Lemma 1 and the allowable angle assumptions that we
made, this means that θ12 and θ23 are also increasing functions
of p12. It follows that θ13 = θ12 + θ23 is also an increasing
function of x. Finally, due to the assumption on ω̄1,4 in (14),
we know that ω1,3 <

π
2 , which implies that p13 is an increasing

function of θ13 and also of x.
Similarly, the flow variables expressed as bold arrows in

Fig. 3 are all monotonically increasing with respect to x.
Furthermore, once x is known, all the other flow variables can
be calculated sequentially. We will call this flow variable x the
primary flow. This sequential process is illustrated below:

1. Set x = x0.
2. Calculate: p23 = p2 − r̂12(x)
3. Calculate θ12 and θ23. Then, add them up to obtain θ13.
4. Calculate p13 = p̂13(θ13).
5. Calculate: p34 = p3 − r̂23(p23)− r̂13(p13).
6. Calculate: p41 = p4 − r̂34(p34).
These steps will be embedded in the algorithm proposed

in this section. Each iteration of the algorithm will involve
the above calculation of the flow variables, followed by an
update on the value of the primary flow. Notice that at each
step of the process, all the necessary information is already
calculated in the preceding steps. Also, none of the steps
involves solving a separate optimization problem and just
requires simple algebraic calculations. Before delving into the
full algorithm, we introduce a concept of outer-cycles.

Definition 7. An induced cycle C of G is called an outer-cycle
if the following two conditions are met:

1. C contains two highway-paths such that the union of the
two paths is C and the intersection is {s, t}. One of the
paths (arbitrarily chosen), denoted by Sp, will be called
the principal-path and has vertex set Vp. The other path,
named Sa, will be called the auxiliary-path and has vertex
set Va. Let the vertex sets be denoted as follows:

Vp = {s, up(1), up(2), . . . , up(N), t} (15)
Va = {s, ua(1), ua(2), . . . , ua(M), t} (16)

2. All the vertices except for s and t have degree 2 and are
non-slack buses.

The concept of an outer-cycle is useful because it corre-
sponds to a cycle that is reduced via a combination of opera-
tions 1 and 2 of the series-parallel reduction (Definition 5). For
example, in Fig. 2, the outer-cycle with vertices {6, 12, 13}
is reduced as it is transformed from sub-figure (b) to (d).
The order in which outer-cycles and dangling vertices are

x

p14
p13 p31

p21

p41

p23

p43

p32

p34

1

2

3

4

p2

p3

p4

Fig. 3: A two-cycle network sharing an edge

deleted essentially define the series-parallel reduction. In our
algorithm, it also corresponds to the order in which the flows
are calculated starting from the primary flow. Theorem 8 states
that for a subset of GSP graphs, the exemplary steps above
can work and the P −Θ power flow problem can be solved in
linear time. Here, we will use the notation G→ Gr to signify
the series-parallel reduction from graph G to Gr.

Theorem 8. For Corollary 7, suppose thatO = {C1, . . . ,CR}
is the sequence of outer-cycles reduced in the process G→ L.
Let Ej denote the edge set for cycle Cj . Then, there is a
linear-time algorithm with complexity O(|E|·log(1/ε)) to find
the unique solution of the P − Θ power flow problem, given
a desired precision level ε, if the following condition holds:

| ( ∪
i<j

Ei) ∩ Ej |≤ 1 ∀j = {1, . . . , R} (17)

The linear-time algorithm is given in Algorithm 1. The
algorithm makes use of the fact that for each line, there is
one direction for which the flow increases with respect to the
primary flow and another for which the flow decreases with
respect to the primary flow. Let F+ denote the set of ordered
pair of indices (k, `) such that pk` is monotonically increasing
with respect to the primary flow. Also, for notation reasons, let
p(k, `) also denote the flow from bus k to ` in addition to pk`.
Below, we define a type of projection operator Π that allows
the iterative sequence to stay in the allowable sets arising from
our angle difference assumptions. Here, xiter denotes the iterth

iteration value of the primary flow x. Furthermore, we make
use of several MATLAB functions: break means to break out
of all the for-loops, and find(A == a) returns the index of an
array A for which the value is equal to a.

Π(xiter, pk`) =


xiter+1 = x+xiter

2 and break if pk` ≥ pk`
xiter+1 = xiter+x

2 and break if pk` ≤ pk`
θk` = θ̂k`(pk`) otherwise

Each iteration of Algorithm 1 involves calculating all the
flows in the set F+ based on the current value of the primary
flow. This process is done sequentially in the same order in
which the original graph is reduced to the final K2 graph.
Based on these values, the primary flow is updated by the
bisection method until the solution is found. In Section VIII-C,
a set of representative numerical examples are generated and
the performance of this proposed algorithm is illustrated.
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Algorithm 1: Linear-time GSP algorithm

Initialize: Set ε, δ0 > ε, P and iter = 0
Delete dangling vertex k and add injection value of
−r̂k,`(pk) to its unique adjacent bus `: P` = P` − r̂k,`(pk).
Do this for all dangling vertices.
Set reduction order: Find the sequence of outer-cycles that
are eliminated during the sp-reduction process.

⇒ O = {C1, . . . ,CR}
For each cycle Cj ∈ O: set the principal (Spj ) and auxiliary
(Saj ) paths of Cj so that Spj be the path with one edge.
Order the vertices in Saj as Vaj = {uaj (1), . . . , uaj (Mj)} so
that (uaj (1), uaj (2)) ∈ F+.
Set primary flow x to represent p(ua1(1), ua1(2)). Then, do
x = p(ua1(1), ua1(2)), x = p(ua1(1), ua1(2)),
x0 = 1

2 (x+ x), ua0(1) = ua1(1)
while |δiter|> ε do

for j=1:R do
z = find(Vaj == uaj-1(1))
for f = 1 : z-1 do

k = uaj (z − f), ` = uaj (z − f + 1)
q = uaj (z − f + 2)
p(k, `) = r̂k,`(P` − p(`, q)), Π(xiter, p(k, `))

end
for f = z : Mj-2 do

k = uaj (f + 1), ` = uaj (f + 2), q = uaj (f)
p(k, `) = Pk − r̂q,k(p(q, k)) Π(xiter, p(k, `))

end
wj =

∑Mj−1
k=1 θua

j (k),ua
j (k+1)

p(uaj (1), uaj (Mj)) = p̂ua
j (1),ua

j (Mj)(wj)

Pua
j (1) = Pua

j (1) − p(uaj (1), uaj (2))

Pua
j (Mj) = Pua

j (Mj) + p(uaj (Mj − 1), uaj (Mj))
Delete dangling vertex k, and add injection
value of −r̂k,`(pk) to its unique adjacent bus `:
P` = P` − r̂k,`(pk)

end
p(uaR(MR), uaR(1)) =
Pua

R(MR) − p(uaR(MR − 1), uaR(MR))

Π(xiter, p(uaR(MR), uaR(1)))
δiter = wR + θua

R(MR),ua
R(1)

if δiter > 0 then
x = xiter, xiter+1 = 1

2 (x+ x)
else

x = xiter, xiter+1 = 1
2 (x+ x)

end
iter = iter + 1

end

B. Graphs that do not satisfy the assumption in Theorem 8

Theorem 8 states that if a power system network with GSP
topology satisfies (17), then the power flow problem can be
solved efficiently. Equation (17) essentially requires that any
chordless cycle can only share at most one edge with all the
previous reduced cycles. Obviously, this result weakens once
the assumption is not met. We will illustrate the difficulties
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Fig. 4: A simple diagram of the IEEE 14-bus system. Buses
are marked in plain numbers, while the flow variables are
marked in parenthesized numbers in the order in which they
are calculated in Algorithm 1. Nodal real power injections are
not shown in order to simplify the diagram.

that arise using the IEEE 14-bus system, which has a GSP
topology but does not satisfy (17).

Consider the system drawn in Fig. 4 and notice that p6,12

is selected as the primary flow. Given the primary flow value,
the flows (2)–(5) can be easily calculated as delineated in Sec-
tion VII-A. The first difficulty arises when trying to calculate
the next unknown, flow (6). This is because the assumption
of Theorem 8 breaks down: cycle {6, 13, 14, 9, 10, 11, 6} and
cycle {5, 6, 11, 10, 9, 4, 5} share three edges. Therefore, even
though we know θ6,9 from the previous calculations, i.e.
by doing θ69 = θ̂6,13(p6,13) + θ̂13,14(p13,14) + θ̂14,9(p14,9),
finding flow (6) requires solving an additional implicit func-
tion. Noting that p11,10 = P11 − r̂6,11(p6,11) and p10,9 =
P10 − r̂11,10(p11,10) = P10 − r̂11,10(P11 − r̂6,11(p6,11)), the
implicit function to be solved is:

θ̂6,11(p6,11) + θ̂11,10(P11 − r̂6,11(p6,11))

+ θ̂10,9(P10 − r̂11,10(P11 − r̂6,11(p6,11))) = θ6,9

where the only variable is now p6,11. This equation is mono-
tonically increasing in p6,11 and can be solved in log(1/ε).
After having found the value for flow (6), flows (7)–(9) can
be found by simple arithmetic calculations. Similarly, p9,7 can
be found by solving another monotonic implicit function. This
is because the nodal injection at bus 8 gives a unique p7,8 that
acts as an additional negative injection at bus 7. After this, p9,4

and p7,4 can be calculated by explicit arithmetic equations. The
next difficulty arises after these steps. At this point, buses 5 and
4 both have three lines where the flows are unknown, which
means that there is no easy way to calculate the remaining
flow variables of the network. The only thing left to do is to
solve a sub-problem on a subsystem of the original network,
which is depicted in Fig. 4 as dotted lines. For this sub-
problem, it is important to update the original nodal real power
injections at bus 5, namely P5, by P5 − r̂6,5(p6,5). Likewise,
the original nodal real power injections at bus 9, namely P9,
by P9 − r̂10,9(p10,9) − r̂14,9(p14,9). Also, update injection at
bus 4 in a similar manner. Now, observe that this subsystem
satisfies all the assumptions made in Theorem 8 and hence the
sub-problem can be solved in linear time.
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The example above illustrates the fact that violating the
assumptions corresponds to an increase in the algorithm’s
complexity. Suppose that the original graph G can be divided
into two subgraphs: the first part containing all the difficulties
and the second part satisfying the assumptions made in The-
orem 8. Then, the complexity of the algorithm will become
O
(
{m1c1log(1/ε)} ·m2log(1/ε)

)
= O

(
c1m1m2log

2(1/ε)
)

where mi’s are the number of edges for each subgraph and c1
is the number of additional implicit functions that have to be
solved for the first subgraph.

VIII. NUMERICAL AND SIMULATION RESULTS

In this section, we use simulation and computation to
numerically verify and support the ideas that have been
developed in the paper. We start with visualizing how series-
parallel reduction works on actual power systems. Then, we
calculate the longest chordless cycle – which provides an
upper bound on maximal girth – of benchmark power systems.
Finally, we apply Algorithm 1 to a class of networks in order
to demonstrate its performance.

A. Series-parallel reduction of IEEE test cases

In Section VI, we introduced series-parallel reduction and
showed that analyzing the uniqueness of the P−Θ problem so-
lution can be performed on a smaller ‘series-parallel reduced’
network. In Fig. 5, we illustrate how these reductions visualize
when applied to actual IEEE test cases (note that here the slack
bus was not necessarily selected as bus 1). Figures 5(a) and (c)
represent the graphs before the reduction and figures 5(b) and
(d) represent the graphs after the series-parallel reduction. We
can see that the reduced graphs are much smaller and contain
the core information of the original graph. These reductions
make Theorem 4 more practical to use because condition (8)
is much easier to check on a smaller network.

B. Calculation of κ(G)

In Section V, we introduced κ(G) as an upper-bound on
the maximal girth ∆(G), which is computationally more
tractable than ∆(G). To find the value of κ(G), we first
use a function built in Sage [27] to calculate all simple
cycles of the graph, and then narrow them down to chordless
cycles. Ultimately the length of the longest chordless cycle is
obtained. The values are calculated for several IEEE standard
test cases and reported in Table I. A tighter bound can be
found by observing that chordless cycles are not entirely
immune to further decomposition. For example, consider the
IEEE 39-bus network depicted in Fig. 5(c). One of the
chordless cycles that are found using our implementation
is {1, 2, 3, 4, 14, 13, 12, 11, 6, 7, 8, 9, 39, 1}, which has length
thirteen (note that this is not the longest chordless cycle).
This is a chordless cycle because there is no edge directly
connecting any two vertices of the cycle. However, as we
can observe from Fig. 6, this cycle can be further partitioned
into three smaller chordless cycles by the three edges in its
interior. Furthermore, depending on the orientation of these
three edges, at least one of the three smaller cycles is again a
directed cycle if the big cycle is oriented. The tighter bound
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Fig. 5: (a) IEEE 30-bus system before reduction, (b) IEEE
30-bus system after reduction, (c) IEEE 39-bus system before
reduction, and (d) IEEE 39-bus system after reduction.

achieved from this process is denoted by κ̃(G) and also
reported in Table I. Now, Corollary 5 can be used to study
when the power flow equations have a unique solution.

C. Performance of linear-time algorithm

In order to verify the effectiveness of the proposed algo-
rithm, we analyze its performance along with the performance
of Newton-Raphson method as a standard algorithm used
to solve power-flow in practice. To implement this standard
algorithm, we use the MATPOWER [28] runpf function with
the ‘Newton-Raphson (NR)’ option. Furthermore, in order to
satisfy the assumptions in equation (17), we create a class
of triangulated networks of varying sizes (see Appendix J.
for figure) using the MATPOWER casefile format (mpc). The
allowable set of angles is enforced by setting the 12th and
13th columns of the field “branch” in the casefile to the
steady-state stability limit (refer to Definition 2). Note that
the matpower-NR algorithm cannot enforce additional angle
constraints, such as (14), whereas Algorithm 1 does by design.
Note that matpower-NR can be modified to incorporate these
constraints if we formulate the power flow problem as an
optimal power flow (OPF) problem, but then this becomes a
constrained nonconvex optimization problem which introduces
its own difficulties and is not the subject of this paper (even
finding a feasible point to such optimization problem is a
challenge). The following steps describe the experiments:

1) Generate a random Θ∗ that belongs to the set Γ(G). This
is the true set of angles that we wish to recover via the
above algorithms.
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κ(G) κ̃(G)
case5 4 4
case14 6 6
case30 11 8
case39 17 8

TABLE I: Upper-bounds on maximal girth for IEEE test cases.
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Fig. 6: Further decomposition of a directed chordless cycle.
The solid arrows represent the original directed chordless
cycle. The dotted arrows represent a possible orientation of
the three edges that lie in the interior of the cycle.

2) Calculate the real power injection vector P , using Θ∗.
3) Taking P as input, solve the P −Θ power flow problem

using both Algorithm 1 and matpower-NR method. The
voltage angles retrieved from each algorithm are denoted
by Θ1 and ΘNR, respectively.

4) Calculate the errors ‖Θ1 −Θ∗‖2 and ‖ΘNR −Θ∗‖2.

For the initial point that is provided to the MATPOWER
solvers, we generate a random point around the true solution
via Θinit = Θ∗ + Θnoise, where Θnoise is a random vector
whose elements are independent and normally distributed with
mean µ. For the initialization of Algorithm 1, a random value
is chosen between the minimum and maximum allowable real
power flow. In order to highlight the performance of the two
algorithms as the initial point deviates away from the true
solution, we test three different values of µ = {0.1, 1, 10}. The
experiments are performed on an increasing number of buses
and 20 independent simulations are carried out for each fixed
network. Fig. 7 shows the results of these experiments. The
top three figures plot the average 2-norm error (for varying val-
ues of µ) and the bottom three figures plot the average solver
time (for varying values of µ) as a function of the network size.
From the top three figures, it can be observed that matpower-
NR performs relatively well and is able to recover Θ∗ when
the initial point is close enough to Θ∗. However, as Θinit

deviates further away from Θ∗, matpower-NR fails to reliably
recover Θ∗. In fact, for most cases with initial values far from
the true solution, the matpower-NR algorithm does not even
converge within the maximum iteration limit. For µ = 10, the
matpower-NR method successfully converged for only 36 out
of the 400 simulations. Fig. 8 plots the errors for these 36
convergent cases. It can be seen that several of these display
high errors despite the successful convergence, implying that
the algorithm converged to a different solution. Furthermore,
it is demonstrated that Algorithm 1 does not converge to
any of these different solutions and is capable of recovering
Θ∗ irrespective of the initial point or the number of buses.
Finally, from the bottom three figures, we can observe that the
solving time for Algorithm 1 has a very slow growth in the
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Fig. 7: Comparison of average errors and solving times for
Algorithm1 and matpower-NR. The first three figures plot the
average error for different values of µ = 0.1, 1, 10 (from top
to bottom). The last three figures plot the average solving time
for different values of µ = 0.1, 1, 10 (from top to bottom)
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Fig. 8: Errors for the 36 (out of 400) simulations when
matpower-NR converged successfully for µ = 10.

size of the network and therefore can be used to solve large-
scale problems. Note that Algorithm 1 was implemented in
MATLAB with no strenuous efforts at optimizing the solving
time and the purpose of Fig. 7 is only to demonstrate linear-
time complexity of the proposed algorithm.

IX. CONCLUSION

In this paper, we establish sufficient conditions for the
uniqueness of power flow solutions (if it exists) in an AC
power system via the monotonic relationship between real
power flows and voltage phase angles. We extend a simple
observation made for a single line network – that angle differ-
ences bounded by their stability limit will give monotonicity
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and uniqueness – to the general network with multiple lines.
More specifically, we prove that the P−Θ power flow problem
has at most one solution for any acyclic or GSP graphs. These
conditions guarantee the uniqueness of power flow solution,
if it exists. In addition, for arbitrary power networks, we
show that multiple distinct solutions cannot exist under the
assumption that angle differences across the lines are bounded
by some limit related to the maximal girth of the network.
It is also shown that the series-parallel reduction on a graph
does not alter the uniqueness of P −Θ problem solutions and
therefore the analysis for a large network can be performed
on a much smaller “reduced” network. Finally, we develop a
efficient algorithm for a subset of the GSP graphs that work
reliably, irrespective of the initial point.
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X. APPENDIX

A. Proof of Lemma 1

proof. The equation for the real power flow from node k
to node ` over line {k, `} is given in equation (3). After
combining the cosine and sine functions into one sine function,
we obtain a simpler equation for both flows:

pk` = Gk`|vk|2+|vk|·|v`|Zk` sin(θk` + γk`) (18)

With a simple rearrangement:

sin(θk` + γk`) =
pk` −Gk`|vk|2

|vk|·|v`|Zk`
(19)

Using the assumption made on the angle differences and the
definition of γk`, we deduce the following bounds on θk`+γk`:

θk` + γk` ≥ − tan−1(Bk`/Gk`) + tan−1(−Gk`/Bk`)

= −
(π

2
− tan−1(Gk`/Bk`)

)
− tan−1(Gk`/Bk`) = −π

2
θk` + γk` ≤ tan−1(Bk`/Gk`) + tan−1(−Gk`/Bk`)

=
π

2
− 2 tan−1(Gk`/Bk`) ≤

π

2

In summary, the angle θk` + γk` belongs to the range
[−0.5π, 0.5π] and therefore there exists a unique value of
θk`+γk` that satisfies equation (19), leading to a unique value
of θk`. To prove the second part of the lemma, recall that the
equation for the real power flow from node k to node ` over
line {k, `} is given in equation (3). Similarly, the real power
flow in the opposite direction (from node ` to k) is given by:

p`k = Gk`(|v`|2−|vk|·|v`|cos θk`)−Bk`|vk|·|v`|sin θk` (20)

After combining the cosine and sine functions into one sine
function, we arrive at a simpler equation similar to equa-
tion (18):

p`k = Gk`|v`|2−|vk|·|v`|Zk` sin(θk` − γk`) (21)

Furthermore, we can derive bounds on θk` − γk` similar to
those on θk` + γk` shown above:

θk` − γk` ≥ − tan−1(Bk`/Gk`)− tan−1(−Gk`/Bk`)

= −π
2

+ 2 tan−1(−Gk`/Bk`) ≥ −
π

2
θk` − γk` ≤ tan−1(Bk`/Gk`)− tan−1(−Gk`/Bk`)

=
(π

2
− tan−1(Gk`/Bk`)

)
+ tan−1(Gk`/Bk`) =

π

2

Therefore, taking note of the fact that θk` + γk` and θk`− γk`
are bounded by [−0.5π, 0.5π], pk` and p`k are increasing and
decreasing functions of θk`, respectively. It can be concluded
that p`k is a decreasing function of pk` for pk` ∈ (p

k`
, pk`).

B. Proof of Theorem 2

(a) Let P ∈ P(G,Γ(G)). We show by construction that the
specification of P uniquely determines Θ ∈ Γ(G) such that
P = P̂ (Θ). Note that since the power system has a tree
topology, there is a unique path Ek between any bus k and bus
1 (consisting of successive lines) and that the distance c(k)
is therefore well-defined. Let c = maxk∈V c(k). We prove
the result by using an induction argument on the decreasing

distance ĉ. That is, the induction starts at ĉ = c and then
considers successively smaller values of ĉ.

First, consider the case with distance ĉ = c. Consider each
bus k with c(k) = c. Note that each such bus k is a leaf of
the tree and that the injection pk at this bus equals pk`(θk`),
where {k, `} ∈ T is the unique line connected to bus k and
θk` is the angle difference across this line. By Lemma 1, this
means that pk uniquely determines θk`. Consequently, we can
also evaluate p`k(−θk`), i.e., the power fow from bus ` into
the line at the other end.

Now, suppose that for each bus k with c(k) = ĉ, we have
that the injections pk for each bus k ∈ V \ {1} with c(k) ≥ ĉ
uniquely determines θk`, where {k, `} ∈ T is the unique line
connected to bus k such that c(`) = c(k) − 1 = ĉ − 1.
Consider any bus k′ with c(k′) = ĉ − 1 and suppose that
{k′, `′} ∈ T is the unique line connected to bus k′ such
that c(`′) = c(k) − 2 = ĉ − 2. By power balance at bus
k′, pk′,`′(θk′,`′) equals the injection pk′ minus the sum of
the flows onto each other line {k′, `′′} incident to bus k′.
However, by assumption, c(`′′) ≥ ĉ and so the flow on each
such line {k′, `′′} is uniquely determined by the injections
pk for each bus with c(k) ≥ ĉ. In turn, this means that the
flow pk′,`′(θk′`′) and the corresponding angle θk′`′ are both
uniquely determined by pk′ together with the injections pk for
each bus with c(k) ≥ ĉ. That is, the angle θk′`′ and the flow
pk′,`′(θk′`′) are uniquely determined by the injections pk for
each bus with c(k) ≥ ĉ− 1.

The induction continues to the root of the tree; that is, to bus
1. Hence, for all {k, `} ∈ T, the injections pk for each bus k ∈
V uniquely determines both pk`(θk`) and the corresponding
angle θk` and p`k(−θk`). Now, note that the angle θ1 = 0.
Therefore, since each angle difference is uniquely specified,
this means that the corresponding angles are also uniquely
determined. As a result, there is a unique Θ ∈ Γ(G) such that
P = P̂ (Θ).

(b) Suppose that P a, P b ∈ P(G,Γ(G)), with the corre-
sponding flows also labeled by superscript a and b, and let
λ ∈ [0, 1] be given. Let Θa,Θb ∈ Γ(G) be the unique angles
satisfying P a = P(G,Θa) and P b = P(G,Θb). Consider
the injection P ? = λP a + (1 − λ)P b. To prove convexity
of P(G,Γ(G)), it is enough to show that P ? ∈ P(G,Γ(G)),
which will involve constructing an angle Θ? ∈ Γ(G) such
that P ? = P(G,Θ?). By a similar argument to Part 1, first
consider injections at buses k with c(k) = c and let {k, `} ∈ T
be the unique line connected to bus k. Note that, by definition,
P ?k = λP ak + (1− λ)P bk and therefore the corresponding flow
p?k` is the convex combination of the corresponding injections.
In other words,

p?k` = P ?k

= λP ak + (1− λ)P bk , by definition of P ?k ,

= λpk`(θ
a
k`) + (1− λ)pk`(θ

b
k`)

The first and third equations come from the fact that {k, `} ∈ T
is the unique line connected to bus k. Now, note that the
values of flows pk`(θ

a
k`) and pk`(θ

b
k`) belong to [p

k`
, pk`],

which is a convex set. Thus, we also have that p?k` ∈ [p
k`
, pk`].
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Therefore, there exists a unique |θ?k`|≤ tan−1(Bk`/Gk`) such
that p?k` = pk`(θ

?
k`). We proceed as in Part 1 by using an

induction argument on the decreasing distance ĉ. That is, the
induction starts at ĉ and shows that for each {k, `} ∈ T, the
corresponding angle difference θ?k` with injections P ? satisfies
|θ?k`|≤ tan−1(Bk`/Gk`). Proceeding to bus 1, and again
noting that θ1 = 0 is specified, it can be concluded that there
is a uniquely defined Θ? ∈ Γ(G) such that P ? = P(G,Θ?).
Therefore, P(G,Γ(G)) is convex.

C. Lemma 9 and its proof

For each pair of vertices k, ` ∈ V, we define Θ̂k` = Θ̂k−Θ̂`.
Note that we do not require that {k, `} ∈ T in the definition
of Θ̂k` and in the next lemma:

Lemma 9. Suppose that the power system G = (V,T) has a
tree topology. Then, for each k ∈ V \ {1} and ` ∈ V and for
each P ∈ P(G,Γ(G)), we have ∂Θ̂k`

∂pk
(P ) ≥ 0.

proof. Consider the path Ek from bus k to bus 1 and the path
E` from bus ` to bus 1. Note that Θ̂k =

∑
(k′,`′)∈Ek

Θ̂k′`′

and Θ̂` =
∑

(k′,`′)∈E`
Θ̂k′`′ , because θ1 = 0. Moreover,

Θ̂k` =
∑

(k′,`′)∈Ek
Θ̂k′`′ −

∑
(k′,`′)∈E`

Θ̂k′`′ . Now, observe
that changes in injection at bus k can only affect flows, and
therefore angle differences, in the path between bus k and bus
1. Moreover, changes in flows and angles differences in the
common part of the path Ek∩E` affect the angle at both buses
k and ` equally. Define Ek` = Ek \ (Ek ∩ E`). That is, Ek`
is the path from bus k to the bus that is common to both Ek
and E` and furthest from bus 1. Then:

∂Θ̂k`

∂pk
(P ) =

∑
(k′,`′)∈Ek`

∂Θ̂k′`′

∂pk
(P ).

We now observe that the relationship between injection at
bus k and angle differences at lines in this path Ek` are all
monotonic. That is, ∂Θ̂k`

∂pk
(P ) ≥ 0. According to Lemma 9, we

can see that the angle difference between any non-slack bus
k and any other bus ` is a monotonically increasing function
of the real power injection at bus k when the injection vector
P is within the set of allowable injections.

D. Proof of Lemma 3

Suppose that there are two distinct vectors of voltage angles,
Θ∗,Θ∗∗ ∈ Γ(G) that satisfy the power flow equations.
Without loss of generality, assume that θ∗∗12 > θ∗12. Then, due to
power balance at buses 2, . . . , N and Assumption 1, a simple
induction argument shows that

θ∗∗i,i+1 − θ∗i,i+1 > 0 ∀i = {1, . . . , N}, (22)

where bus N + 1 is again bus 1. Furthermore, we have that

θ∗∗i,i+1 − θ∗i,i+1 < π ∀i = {1, . . . , N}, (23)

which can be shown using the same logic followed to derive
equation (27). Finally, by definition,

θ∗∗1,N − θ∗1,N =

N−1∑
i=1

(θ∗∗i,i+1 − θ∗i,i+1) > 0 (24)

and also,

θ∗∗1,N − θ∗1,N =

N−1∑
i=1

(θ∗∗i,i+1 − θ∗i,i+1) ≤
N−1∑
i=1

|θ∗∗i,i+1 − θ∗i,i+1|

≤
N−1∑
i=1

(|θ∗∗i,i+1|+|θ∗i,i+1|)

<

N−1∑
i=1

ω∗∗i,i+1 +

N−1∑
i=1

ω∗i,i+1 < π.

This is a contradiction to equation (23) and therefore there
cannot be two distinct solutions.

E. Proof of Theorem 4

In order to prove by contraction, suppose that there are
two distinct solutions to the power flow problem, denoted
as Θ∗,Θ∗∗ ∈ Γ(G). Now, we define a digraph Dr(G) =
Dr(V,Ar) where the direction of each directed edge in Ar is
based on the difference (residual) between these two solutions.
Hereby, we define the residual incidence matrix Lr for Dr(G)
below:

Lr(a, k) =


−1 if a = (k, `) ∈ Ar and θ∗∗k,` > θ∗k,`
1 if a = (`, k) ∈ Ar and θ∗∗k,` > θ∗k,`
1 if a = (k, `) ∈ Ar and θ∗∗k,` < θ∗k,`
−1 if a = (`, k) ∈ Ar and θ∗∗k,` < θ∗k,`

(25)

Note that because of power balance at each node, this orien-
tation has to be a Feasible Orientation. By assumption, for
this fixed feasible orientation Dr(G) ∈ Df (G), there exists
a directed cycle C satisfying the inequality in (8). Without
loss of generality, assume that θ∗∗u(1),u(2) > θ∗u(1),u(2). Then,
because C is a directed cycle, it holds that

θ∗∗u(i),u(i+1) − θ
∗
u(i),u(i+1) > 0 ∀i = {1, . . . , N}, (26)

where the (N + 1)th bus is again the 1st bus. Furthermore,

θ∗∗u(i),u(i+1) − θ
∗
u(i),u(i+1) < π ∀i = {1, . . . , N}, (27)

which is due to the following inequalities:

θ∗∗u(i),u(i+1) − θ
∗
u(i),u(i+1) ≤ |θ

∗∗
u(i),u(i+1) − θ

∗
u(i),u(i+1)|

≤ |θ∗∗u(i),u(i+1)|+|θ
∗
u(i),u(i+1)|< 2 · ωu(i),u(i+1) < π

However, by definition,

θ∗∗u(1),u(N) − θ
∗
u(1),u(N) =

N−1∑
i=1

(θ∗∗u(i),u(i+1) − θ
∗
u(i),u(i+1))

≤
N−1∑
i=1

|θ∗∗u(i),u(i+1) − θ
∗
u(i),u(i+1)|

≤
N−1∑
i=1

|θ∗∗u(i),u(i+1)|+
N−1∑
i=1

|θ∗u(i),u(i+1)|

<

N−1∑
i=1

ωu(i),u(i+1) +

N−1∑
i=1

ωu(i),u(i+1) < π

which is a contradiction to equations (26) and (27). Therefore,
there cannot be two distinct vectors Θ∗,Θ∗∗ ∈ Γ(G) that
satisfy P = P̂ (Θ).
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F. Proof of Theorem 5

Suppose that equation (10) is satisfied. In other words, to
restate the equation here,

ωk` <
π

2 · (∆(G)− 1)
∀{k, `} ∈ E. (28)

Defining ωmaxk` = max{k,`}∈E ωk`, we also have that

ωmaxk` <
π

2 · (∆(G)− 1)
∀{k, `} ∈ E. (29)

Multiplying both sides of the equation by (∆(G)− 1) yields

(∆(G)− 1) · ωmaxk` <
π

2
. (30)

Now, using the definition of ∆(G), the following holds true
for every D ∈ Df (G):

(δ(D)− 1) · ωmaxk` <
π

2
. (31)

Since δ(D) represents the length of the smallest directed cycle
of D, let us denote this smallest directed cycle by C and its
vertex set by Vdc = {u(1), . . . , u(|Vdc|)} ⊆ V. Then, the
above inequality becomes equivalent to the following:

(|Vdc|−1) · ωmaxk` <
π

2
. (32)

This implies that

|Vdc|−1∑
i=1

ωu(i),u(i+1) <
π

2
. (33)

Therefore, we have satisfied condition (8) of Theorem 4 and
as a result can conclude that for each P ∈ P(G,Γ(G))
there cannot be multiple distinct solutions for the P = P̂ (Θ)
problem.

G. Lemma 10 and its proof

Lemma 10. For a given graph G = (V,E), the following
inequality holds:

∆(G) ≤ κ(G) (34)

Proof. Consider an arbitrary feasible orientation on graph G,
and denote it as D = (V,A). We will first show that the
shortest directed cycle in D must by chordless. Recall that
because the feasible orientation enforces every vertex to have
at least one incoming arc and one outgoing arc, there always
exists a sequence of arcs in D that form a directed cycle. To
put this in another way, there is at least one directed cycle in
D(G). Let us call the shortest of these directed cycles, C0 and
denote its vertices using the ordered set {u(1), . . . , u(N)}. In
other words, (u(i), u(i + 1)) ∈ A ∀i ∈ {1, . . . , N − 1} and
(u(N), u(1)) ∈ A. In order to prove by contradiction, assume
that C0 contains a chord with two endpoints u(k), u(`) and
k < `. Then, this chord divides C0 into two cycles C1 and C2

such that the symmetric difference of the two becomes C0.
Depending on whether (u(k), u(`)) ∈ A or (u(`), u(k)) ∈ A,
exactly one of C1 and C2 again becomes a directed cycle. This
is a contradiction to C0 being the shortest directed cycle. So
far, we have established that the shortest directed cycle of a
given digraph is a chordless cycle of its underlying undirected

graph G. It follows naturally that the length of this shortest
directed cycle is less than the length of the longest chordless
cycle in G:

δ(D) ≤ κ(G) for any D ∈ Df (G)

Taking the maximum over D ∈ Df (G) on both sides of the
inequality and using the definition of maximal girth in (9), we
arrive at the desired conclusion.

H. Proof of Theorem 6

(a) Consider a graph G = (V,E,W) with a dangling vertex
k. See Figure 10 for an example, where k = 1 is the dangling
vertex. By definition, vertex k cannot be part of any cycle.
Therefore, if there exists a directed cycle C that satisfies
condition (10) for Gr = (V̄, Ē, W̄), the same cycle also
satisfies condition (10) for G = (V,E,W).

(b) Consider a graph G = (V,E,W) with a highway-
path. See Figure 11 for an example, where the vertex set
{1, 2, 3, 4} specify the highway-path. Denote the vertex set
of the highway-path P as the following:

Vh = {s, uh(1), uh(2), . . . , uh(H), t} (35)

For Gr = (V̄, Ē, W̄), suppose that condition (10) is
satisfied for a directed cycle Cr that includes the edge
{s, t}. This implies that for G = (V,E,W), condi-
tion (10) is satisfied for a directed cycle C that includes the
edges {s, uh(1)}, {uh(1), uh(2)}, . . . , {uh(H − 1), uh(H)}
and {uh(H), t}. This is because the edges in a highway-path
must either all be part of a cycle or all not be part of any
cycle.

(c) Consider a graph G = (V,E,W) with a pair of parallel
edges e1 and e2, both connecting the two end-points s and t.
For Gr = (V̄, Ē, W̄), suppose that condition (10) is satisfied
for a directed cycle Cr that includes the edge {s, t}. This
implies that for G = (V,E,W), condition (10) is satisfied for
a directed cycle C that either (i) includes only edge e1 but not
e2, (ii) includes only edge e2 but not e1, or (iii) includes both
edges e1 and e2.

I. Proof of Theorem 8

We prove that there is a linear-time algorithm by construc-
tion. Denote the vertex set of the auxiliary path of the jth

outer-cycle by:

Vaj = {sj , uaj (1), uaj (2), . . . , uaj (Nj), tj}

Set the primary flow to be p(sj , u
a
j (1)) and initial-

ize its value to be the average-value of the range
[p(sj , u

a
j (1)), p̄(sj , u

a
j (1))]. Here, we again abuse some no-

tation so that p(k, `) denotes the real power flow from
vertex k to `. Then, because all of the intermediate nodes
uaj (1), . . . , uaj (Nj) have degree two, the subsequent flows on
the auxiliary path can be calculated by simple arithmetic.
Furthermore, due to the allowable angle assumption, we
can uniquely determine the angle difference across every
edge that is part of the auxiliary path. Summing them up
will also provide the value for θsj ,tj . Also, because of the
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assumption made in (17), the principal path consists of a
single edge. The flow on this edge can be calculated by
using the previously calculated θsj , tj . Finally, note that the
flows that we calculated so far are all increasing functions
of the primary flow. This process can be repeated for all
outer-cycles in O until the last cycle CR. For CR, instead
of calculating θsR,tR and then using it to calculate p(sR, tR),
do the following: p(sR, tR) = ptR − p(uR(NR), tR). Fi-
nally, calculate all the angle differences using these flow
values and add them around the cycle. If the angle sum is
greater than zero, reduce the range of the primary flow to
[p(sj , u

a
j (1)), p(sj , u

a
j (1))] and restart the process; otherwise,

if the angle sum is greater than zero, reduce the range of
the primary flow to [p(sj , u

a
j (1)), p̄(sj , u

a
j (1))] and restart the

process. We repeat this process until the range is less than ε.
Calculating all flows takes O(|E|) time and this is repeated
for log(1/ε) times if we want ε-accuracy. This concludes the
proof.

J. Additional Figures
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Fig. 9: A test network consisting of triangles
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Fig. 10: A simple graph with dangling vertex
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Fig. 11: A simple graph with multiple edges in series
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