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Abstract—This work is concerned with finding a global opti-
mization technique for a broad class of non-linear optimization
problems, including quadratic and polynomial optimizations.
The main objective of this two-part paper is to investigate
how the (hidden) structure of a given real/complex-valued
optimization makes the problem easy to solve. To this end,
three conic relaxations are proposed and it is proved that some
or all of these relaxations are exact if the optimization is highly
structured. More precisely, the structure of the optimization is
mapped into a generalized weighted graph, where each edge is
associated with a weight set extracted from the coefficients of
the optimization. In Part I of the paper, it is shown that the
relaxations are all exact for general graphs in the real-valued
case and for acyclic graphs in the complex-valued case, provided
the weight sets satisfy some sign-definite conditions. In this
part of the paper, the complex-valued case is further studied,
and three structural properties are derived for the generalized
weighted graph, each of which guarantees the exactness of some
of the proposed relaxations. It is also shown that this result
holds true if the graph can be decomposed as a union of edge-
disjoint subgraphs, where each subgraph has one of the derived
structural properties. As an application of this paper, it is finally
proved that a broad class of real and complex optimizations
over power networks are polynomial-time solvable due to the
passivity of transmission lines and transformers.

I. INTRODUCTION

Several classes of optimization problems, including poly-

nomial optimization and quadratically-constrained quadratic

program (QCQP) as a special case, are nonlinear/non-convex

and NP-hard in the worst case. The paper [1] provides

a survey on the computational complexity of optimizing

various classes of continuous functions over some simple

constraint sets. Due to the complexity of such problems,

several convex relaxations based on linear matrix inequality

(LMI), semidefinite programming (SDP) and second-order

cone programming (SOCP) have gained popularity [2], [3].

These techniques enlarge the possibly non-convex feasible

set into a convex set characterizable via convex functions,

and then provide the exact or a lower bound on the optimal

objective value. The paper [4] shows how SDP relaxation

can be used to find better approximations for maximum cut

(MAX CUT) and maximum 2-satisfiability (MAX 2SAT)

problems. Another approach is proposed in [5] to solve the

max-3-cut problem via complex SDP. The approaches in [4]

and [5] have been generalized in several papers, including

[6], [7], [8], [9], [10], [11].

The SDP relaxation converts an optimization with a vector

variable to a convex optimization with a matrix variable, via

Emails: sojoudi@caltech.edu and lavaei@ee.columbia.edu

a lifting technique. The exactness of the relaxation can then

be interpreted as the existence of a low-rank (e.g., rank-1)

solution for the SDP relaxation. Several papers have studied

the existence of a low-rank solution to matrix optimizations

with linear and LMI constraints [12], [13]. The papers [14]

and [15] provide an upper bound on the lowest rank among

all solutions of a feasible LMI problem. A rank-1 matrix

decomposition technique is developed in [16] to find a rank-

1 solution whenever the number of constraints is small. This

technique is extended in [17] to the complex SDP problem.

The paper [18] presents a polynomial-time algorithm for

finding an approximate low-rank solution.

This paper is motivated by the fact that real-world op-

timization problems are highly structured in many ways

and their structures could in principle help reduce the com-

putational complexity. For example, transmission lines and

transformers used in power networks are passive devices,

and as a result optimizations defined over electrical power

networks have certain structures which distinguish them

from abstract optimizations with random coefficients. The

high-level objective of this paper is to understand how the

computational complexity of a given nonlinear optimization

is related to its (hidden) structure. This work is concerned

with a broad class of nonlinear real/complex optimization

problems, including QCQP. The main feature of this class

is that the argument of each objective and constraint func-

tion is quadratic (as opposed to linear) in the optimization

variable and the goal is to use three conic relaxations (SDP,

reduced SDP and SOCP) to convexify the argument of the

optimization.

In this work, the structure of the nonlinear optimization

is mapped into a generalized weighted graph, where each

edge is associated with a weight set constructed from the

known parameters of the optimization (e.g., the coefficients).

This generalized weighted graph captures both the sparsity of

the optimization and possible patterns in the coefficients. In

Part I of the paper, it is shown that the proposed relaxations

are exact if the variable of the optimization is real-valued,

provided the generalized weighted graph satisfies some weak

properties [19]. To study the complex-valued case, the notion

of “sign-definite complex weight sets” is introduced and it

is then proved that the relaxations are exact for a complex

optimization if the graph is acyclic with sign definite weight

sets (with respect to complex numbers). In this part of the

paper, the complex case is further studied for general graphs.

In particular, it is shown that if the graph can be decomposed



as the union of some edge-disjoint subgraphs in such a

way that each subgraph possesses one of the four proposed

structural properties, then the SDP relaxation is tight. As an

application of this work in optimization for power systems,

it is also shown that a broad class of energy optimizations

can be convexified due to the physics of power networks.

The results of this paper extend the recent works on energy

optimization [20], [21], [22], [23], [24], [25] and general

quadratic optimization [26], [27].

In the next section, we formally state the optimization

problem. The main contributions of the paper are outlined in

Section II-C, where the plan for the rest of the paper is also

given.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

For the sake of completeness in introducing the notations

and stating the problem under study, most of the materials

in the next two subsections have been repeated from Part I

of the paper [19].

A. Notations and Definitions

Notation 1: In this work, scalars, vectors and matrices

will be shown by lowercase, bold lowercase and uppercase

letters (e.g., x, x and X). Furthermore, xi denotes the ith

entry of a vector x, and Xij denotes the (i, j)th entry of a

matrix X.

Notation 2: R, C, Sn and Hn denote the sets of real

numbers, complex numbers, n × n symmetric matrices and

n × n Hermitian matrices, respectively.

Notation 3: Re{M}, Im{M}, MH , Rank{M} and

Trace{M} denote the real part, imaginary part, conjugate

transpose, rank and trace of a given scalar/matrix M , re-

spectively. The notation M � 0 means that M is symmet-

ric/Hermitian and positive semidefinite.

Notation 4: The symbol ](x) represents the phase of a

complex number x. The imaginary unit is denoted as “i”,

while “i” is used for indexing.

Notation 5: Given an undirected graph G, the notation

i ∈ G means that i is a vertex of G. Moreover, the notation

(i, j) ∈ G means that (i, j) is an edge of G and besides i < j.

Notation 6: Given a set T , |T | denotes its cardinality.

Given a graph G, |G| shows the number of its vertices. Given

a number (vector) x, |x| denotes its absolute value (2-norm).

Definition 1: A finite set T ⊂ R is said to be sign definite

(with respect to R) if its elements are either all negative or all

nonnegative. T is called negative if its elements are negative

and is called positive if its elements are nonnegative.

Definition 2: A finite set T ⊂ C is said to be sign definite

(with respect to C) if when the sets T and −T are mapped

into two collections of points in R2, then there exists a line

separating the two sets (the elements of the sets are allowed

to lie on the line).

To illustrate Definition 2, consider a complex set T with

four elements, whose corresponding points are labeled as 1,

2, 3 and 4 in Figure 1(a). The points corresponding to −T
are labeled as 1’, 2’, 3’ and 4’ in the same picture. Since

there exists a line separating x’s (elements of T ) from o’s
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Fig. 1. In Figure (a), there exists a line separating x’s (elements of T )
from o’s (elements of −T ) so the set T is sign definite. In Figure (b), this

is not the case.

(elements of −T ), the set T is sign definite. In contrast, if

the elements of T are distributed according to Figure 1(b),

the set will no longer be sign definite. Note that Definition 2

is inspired by the fact that a real set T is sign definite with

respect to R if T and −T are separable via a point (on the

horizontal axis).

Definition 3: Given a graph G, a cycle space is the set of

all possible cycles in the graph. An arbitrary basis for this

cycle space is called a “cycle basis”.

Definition 4: In this work, a graph G is called weakly

cyclic if every edge of the graph belongs to at most one

cycle in G (i.e., the cycles of G are all edge-disjoint).

Definition 5: Consider a graph G, a subgraph Gs of this

graph and a matrix X ∈ C|G|×|G|. Define X{Gs} as a sub-

matrix of X obtained by picking every row and column

whose index belongs to the vertex set of Gs. For instance,

X{(i, j)}, where (i, j) ∈ G, has rows i, j and columns i, j

of X.

B. Problem Statement

Consider an undirected graph G with n vertices (nodes),

where each edge (i, j) ∈ G has been assigned a nonzero edge

weight set {c1
ij, c

2
ij, ..., c

k
ij} with k real/complex numbers

(note that the superscripts in the weights are not exponents).

This graph is called a generalized weighted graph as every

edge is associated with a set of weights as opposed to a single

weight. Consider an unknown vector x =
[

x1 · · ·xn

]

belonging to Dn, where D is either R or C. For every i ∈ G,

xi is a variable associated with node i of the graph G. Define:

y =
{

|xi|2
∣

∣ ∀i ∈ G
}

,

z =
{

Re
{

ct
ijxix

H
j

} ∣

∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}

Note that according to Notation 5, (i, j) ∈ G means that

(i, j) is an edge of the graph and that i < j. The sets y and

z can be regarded as two vectors, where

• y collects the quadratic terms |xi|2’s (one term for each

vertex).

• z collects the cross terms Re{ct
ijxix

H
j }’s (k terms for

each edge).

Although the above formulation deals with Re
{

ct
ijxix

H
j

}

whenever (i, j) ∈ G, it can handle terms of the form

Re{αxjx
H
i } and Im{αxix

H
j } for a complex weight α. This

can be carried out using the transformations:

Re{αxjx
H
i } = Re{(αH)xix

H
j },

Im{αxix
H
j } = Re{(−αi)xix

H
j }



This work is concerned with the following optimization:

min
x∈Dn

f0(y, z)

subject to fj(y, z) ≤ 0, j = 1, 2, ...,m
(1)

for given functions f0, ..., fm. The computational complexity

of the above optimization depends in part on the structure of

the functions fj ’s. Regardless of these functions, Optimiza-

tion (1) is intrinsically hard to solve (NP-hard in the worst

case) because y and z are both nonlinear functions of x.

The objective is to convexify the second-order nonlinearity

embedded in y and z. To this end, notice that there exist

two linear functions l1 : Cn×n → Rn and l2 : Cn×n → Rkτ

such that

y = l1
(

xx
H

)

, z = l2
(

xx
H

)

where τ denotes the number of edges in G. Motivated by

the above observation, if xx
H is replaced by a new matrix

variable X, then y and z both become linear in X. This

implies that the non-convexity induced by the quadratic terms

Re{ct
ijxixj}’s and |xi|’s all disappear if Optimization (1) is

reformulated in terms of X. However, the optimal solution

X may not be decomposable as xx
H unless some additional

constraints are imposed on X. It is straightforward to verify

that Optimization (1) is equivalent to

min
X

f0(l1(X), l2(X)) (2a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (2b)

X � 0, (2c)

Rank{X} = 1 (2d)

where there is an implicit constraint that X ∈ Sn if D = R
and X ∈ Hn if D = C. To reduce the computational

complexity of the above problem, two actions can be taken:

(i) remove the nonconvex constraint (2d), (ii) relax the

convex, but computationally-expensive, constraint (2c) to a

set of simpler constraints on certain low-order submatrices

of X. Based on this methodology, three relaxations will be

proposed for Optimization (1) next.

SDP relaxation: This optimization is defined as

min
X

f0(l1(X), l2(X)) (3a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (3b)

X � 0 (3c)

Reduced SDP relaxation: Choose a set of cycles

O1, ....,Op in the graph G such that they form a cycle basis.

Let Ω denote the set of all subgraphs O1, ....,Op as well as

all edges of G that do not belong to any cycle in the graph

(i.e., bridge edges). The reduced SDP relaxation is defined

as

min
X

f0(l1(X), l2(X)) (4a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (4b)

X{Gs} � 0, ∀Gs ∈ Ω (4c)

SOCP relaxation: This optimization is defined as

min
X

f0(l1(X), l2(X)) (5a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (5b)

X{(i, j)} � 0, ∀(i, j) ∈ G (5c)

The reason why the above optimization is called an SOCP

problem is that the condition X{(i, j)} � 0 can be replaced

by the linear and norm constraints

Xii, Xjj ≥ 0, Xii + Xjj ≥
∣

∣

∣

∣

[

Xii Xjj

√
2Xij

]

∣

∣

∣

∣

The above SDP, reduced SDP and SOCP relaxations are

targeted at the non-convexity caused by the nonlinear rela-

tionship between x and (y, z). Note that these optimizations

are convex relaxations only when the functions f0, ..., fm are

all convex. If any of these functions is nonconvex, additional

relaxations might be needed to convexify the SDP, reduced

SDP or SOCP optimization. Define f∗, f∗
SDP, f

∗
r-SDP and f∗

SOCP

as the optimal solutions of Optimizations (2), (3), (4) and

(5), respectively. By comparing the feasible sets of these

optimizations, it can be concluded that

f∗
SOCP ≤ f∗

r-SDP ≤ f∗
SDP ≤ f∗ (6)

Given a particular optimization of the form (1), if any of

the above inequalities turns into an equality, the associated

relaxation will be able to find the solution of the original

optimization. In this case, it is said that the relaxation is

“tight” or “exact”. The objective of this paper is to relate the

exactness of the proposed relaxations to the topology of the

graph G and its weights sets {c1
ij, c

2
ij, ..., c

k
ij}’s.

It is noteworthy that the aforementioned problem formula-

tion can be easily generalized in two directions: (i) allowance

of weight sets with different cardinalities, (ii) inclusion of

linear terms in x. These extensions have been elaborated in

Part I of the paper [19].

C. Contributions

Throughout this paper, we assume that fj(y, z) is mono-

tonic in every entry of z for j = 0, 1, ..., m (but possibly

nonconvex in y and z). With no loss of generality, suppose

that fj(y, z) is an increasing function with respect to all

entries of z (to ensure this property, it may be needed to

change the sign of some edge weights and then redefine the

functions). A few of the results to be developed in this work

do not need this assumption, in which cases the name of the

function fj will be changed to gj to avoid any confusion in

the assumptions.

The objective of this paper is to study the interrelationship

between f∗
SOCP, f∗

r-SDP, f∗
SDP and f∗. In particular, it is aimed

to understand what properties the generalized weighted graph

G should have to guarantee the exactness of some of the

proposed relaxations. Another goal is to find out how low

rank the solution of the SDP relaxation is in the case when

the relaxation is not exact.

A number of results have been proved in Part I of the

paper, including (see [19]):



• Necessary and sufficient conditions are obtained for

the exactness of the SDP, reduced SDP and SOCP

relaxations.

• It is shown that the relaxations are all exact in the real

case D = R if a set of conditions are satisfied: one

for each weight set and one for each cycle. It is also

shown that if some of these conditions are not satisfied,

the SDP relaxation has a rank-2 (rather than rank-1)

solution for certain generalized weighted graphs.

• It is proved that the proposed relaxations are exact in

the complex case D = C if G is acyclic and its weight

sets are sign definite with respect to C.

In Section III of this part of the paper, we continue exploring

the complex-valued case D = C and prove the following

statements:

• The SOCP, reduced SDP and SDP relaxations are tight

if each weight set contains only real or imaginary

numbers and
∏

(i,j)∈Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p}

where σij ∈ {0,±1,±i} shows the sign of each weight

set.

• The reduced SDP and SDP relaxations are exact if G
is bipartite and weakly cyclic with positive or negative

real weight sets.

• The reduced SDP and SDP relaxations (and not SOCP

relaxation) are exact if G is a weakly cyclic graph with

imaginary weight sets and nonzero signs σij’s.

In summary, four types of generalized weighted graphs have

been obtained in the two parts of the paper, which make the

SDP relaxation exact. It is also shown that if the graph G
can be decomposed as a union of edge-disjoint subgraphs of

these four types in an acyclic way, then the SDP relaxation

is exact. In Section IV, a detailed discussion is given to

demonstrate how the results of this two-part paper can be

used for optimization over power networks. Finally, several

illustrative examples are provided in section V.

III. COMPLEX-VALUED OPTIMIZATION

In this section, Optimization (1) will be studied in the

complex-valued case D = C.

A. Weakly Cyclic Graph with Real Edge Weights

In Part I of the paper, it is shown that the SDP relaxation

is exact, provided G is acyclic and each weight set is sign

definite with respect to C. This result requires the assumption

of monotonicity of fj(y, z) in z for j = 0, 1, ..., m. The first

objective is to show that this assumption is not needed as

long as the weight sets are real. To this end, consider the

optimization

min
x∈Cn

g0(y, z)

s.t. gj(y, z) ≤ 0, j = 1, 2, ..., m
(7)

for arbitrary functions gi(·, ·), i = 0, 1, ..., m. The difference

between the above optimization and (1) is that the functions

gj(·, ·)’s may not be increasing in z. One can derive the

SDP, reduced SDP and SOCP relaxations for the above

optimization by replacing f0, ..., fm with g0, ..., gm in (3)-

(5). This part aims to investigate the case when the edge

weights are all real numbers, while the unknown parameter

x is complex.

Theorem 1: Consider the complex-valued case D = C and

assume that the edge weights of G are all real numbers. The

SDP, reduced SDP and SOCP relaxations associated with

Optimization (7) are all exact if the graph G is acyclic.

Proof: It is straightforward to show that every real set is

sign definite with respect to C. Therefore, the edge weight

sets of G are all sign definite. Let X denote an arbitrary

feasible point of the SOCP relaxation. Define (αij, βij) as

(0, 1) for every (i, j) ∈ G. Then,

Re{ct
ij(αij + βij i)} = Re{ct

ij}αij − Im{ct
ij}βij = 0

for every t ∈ {1, ..., k} (note that ct
ij ∈ R by assumption).

As shown in the proof of Theorem 6 in Part I, two properties

hold [19]:

• There exists a positive number γij such that

∣

∣Xij + γij(αij + βiji)
∣

∣

2
= XiiXjj

• There exists a set of angles {θ1, θ2, ..., θn} such that

θi − θj = θij for every (i, j) ∈ G, where θij denotes

the phase of the complex number Xij +γij (αij +βij i).

Define the vector x as
[ √

X11e
−θ1i

√
X22e

−θ2i · · ·
√

Xnne−θni
]H

Therefore,

Re{ct
ijxix

∗
j} = Re{ct

ijXij} + γijRe
{

ct
ij(αij + βij i)

}

= Re{ct
ijXij}

and hence

l1
(

xx
H

)

= l1(X), l2
(

xx
H

)

= l2(X)

Given an arbitrary feasible point X for the SOCP relaxation,

the above equalities imply that x is a feasible point of the

original optimization (7) and that X and x both give rise to

the same objective value. This completes the proof. �

Consider the general optimization (7) in the case when G
is acyclic with real edge weights. As discussed in Part I of the

paper, the associated SDP relaxation may not be tight if its

variable x is restricted to real numbers. However, Theorem 1

shows that the relaxation is exact if x is a complex-valued

variable. In what follows, the results of Theorem 1 will be

generalized to cyclic graphs for Optimization (1).

Theorem 2: Assume that {c1
ij, ..., c

k
ij} is a positive or

negative real set for every (i, j) ∈ G. The relations f∗
r-SDP =

f∗
SDP = f∗ hold for Optimization (1) in the complex-valued

case D = C if the graph G is bipartite and weakly cyclic.

Proof: For brevity, the proof is moved to [28]. �

Note that the SOCP relaxation may not be exact under

the assumptions of Theorem 2. As a direct application of

this theorem, the class of quadratic optimizations proposed

later in Example 2 is polynomial-time solvable.



B. Cyclic Graph with Real and Imaginary Edge Weights

In this part, there is no specific assumption on the topology

of the graph G, but it is assumed that each edge weight is

either real or purely imaginary. The definition of the edge

sign σij introduced in Part I of the paper for real-valued

weight sets can be extended as follows:

σij =























1 if c1
ij, ..., c

k
ij ≥ 0

−1 if c1
ij, ..., c

k
ij ≤ 0

i if c1
ij × i, ..., ck

ij × i ≥ 0

−i if c1
ij × i, ..., ck

ij × i ≤ 0
0 otherwise

, ∀(i, j) ∈ G

The parameter σij being nonzero implies that the elements

of each edge weight set {c1
ij, ..., c

k
ij} are homogeneous in

type (real or imaginary) and in sign (positive or negative).

Theorem 3: The relations f∗
SOCP = f∗

r-SDP = f∗
SDP = f∗

hold for Optimization (1) in the complex-valued case D = C
with real and purely imaginary edge weight sets if

σij 6= 0, ∀(i, j) ∈ G (8a)
∏

(i,j)∈Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p} (8b)

Proof: Consider an arbitrary feasible point X for the

SOCP relaxation. Choose a spanning tree of G and denote

it as T . In light of (8a), n numbers σ1, σ2, ..., σn can be

iteratively obtained from σij’s with the property that:

σiσj = −σij, ∀(i, j) ∈ T
This relation together with (8b) yields that

σiσj = −σij, ∀(i, j) ∈ G
Now, define x as

[

σ1

√
X11 σ2

√
X22 · · · σn

√
Xnn

]H

In line with the proofs of Theorems 2 and 6 in Part I of the

paper, it can be shown that

l1
(

xx
H

)

= l1(X), l2
(

xx
H

)

≤ l2(X)

and therefore

fj(y, z) ≤ fj(l1(X), l2(X))

for j = 0, 1, ...,m, where y = l1
(

xx
H

)

and z = l2
(

xx
H

)

.

This means that corresponding to every feasible point X of

the SOCP relaxation, the original optimization has a feasible

point x with a lower or equal objective value. Therefore,

f∗ ≤ f∗
SOCP. The proof is completes by combining this

inequality with f∗
SOCP ≤ f∗

r-SDP ≤ f∗
SDP ≤ f∗. �

C. Weakly Cyclic Graph with Imaginary Edge Weights

If G has at least one odd cycle whose edge weights sets are

all imaginary sets, then the conditions given in Theorem 3

are violated. The reason is that the product of an odd number

of imaginary numbers (edge signs) can never become a real

number. The high-level goal of this part is to show that the

SDP relaxation can still be tight in presence of such cycles,

while the SOCP relaxation is not guaranteed to be exact. In

this subsection, we assume that G is weakly cyclic.

To proceed with the paper, a new SOCP relaxation needs

to be introduced. This optimization assigns one real scalar

variable qi to every vertex i ∈ G and one 2×2 block matrix

variable
[

U(Gs) V (Gs)
V (Gs)

H W (Gs)

]

to every subgraph Gs ∈ Ω, where U(Gs), W (Gs) ∈ S|Gs|

and V (Gs) ∈ R|Gs|×|Gs|. Let U , V and W denote the

parameter sets {U(Gs) | ∀Gs ∈ Ω}, {V (Gs) | ∀Gs ∈ Ω}
and {W (Gs) | ∀Gs ∈ Ω}, respectively.

Notation 7: For every Gs ∈ Ω, we arrange the ele-

ments in the vertex set of Gs in an increasing order. Then,

we index the rows and columns of each of the matrices

U(Gs), V (Gs), V (Gs) according to the ordered vertex set of

Gs. For example, if Gs has three vertices 5, 7, 1, the ordered

set becomes {1, 5, 7}, and therefore the three rows of U(Gs)
are called row 1, row 5 and row 7. As an example, U17(Gs)
refers to the last entry on the first row of U(Gs) .

For every r ∈ {1, 2, ...., p}, let µr denote the largest index

in the vertex set of Or . Define q as the vector corresponding

to the set {q1, ..., qn}. Recall that

l2(xx
H) =

{

Re
{

ct
ijxix

H
j

}
∣

∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}

Define l̄(V ) as a vector obtained from l2(xx
H) by replac-

ing each entry Re
{

ct
ijxix

H
j

}

with a new term Im{ct
ij} ×

(Vij(Gs)−Vji(Gs)), where Gs denotes the unique subgraph in

Ω containing the edge (i, j) (the uniqueness of such subgraph

is guaranteed by the weakly cyclic property of G).

Expanded SOCP: This optimization is defined as

min
q,U,V,W

f0(q, l̄(V )) (9a)

subject to:

fj(q, l̄(V )) ≤ 0, j = 1, 2, ...,m (9b)

Uii(Gs) + Wii(Gs) = qi, ∀Gs ∈ Ω, i ∈ Gs (9c)
[

Uii(Gs) Vij(Gs)
Vij(Gs) Wjj(Gs)

]

� 0, ∀Gs ∈ Ω, (i, j) ∈ Gs (9d)

[

Ujj(Gs) Vji(Gs)
Vji(Gs) Wii(Gs)

]

� 0, ∀Gs ∈ Ω, (i, j) ∈ Gs (9e)

Wµrµr
(Or) = 0, r = 1, 2, ..., p (9f)

Similar to the argument made for the SOCP relaxation (5),

the above optimization is in the form of an SOCP program

because its constraints (9d) and (9e) can be replaced by linear

and norm constraints. Moreover, this optimization can be

regarded as an expanded version of the SOCP relaxation (5).

Denote the optimal objective value of this optimization as

f∗
e-SOCP.

Theorem 4: Consider Optimization (1) in the complex-

valued case D = C, and assume that the graph G is

weakly cyclic with only purely imaginary edge weights. The

following statements hold:

i) The expanded SOCP is a relaxation for Optimiza-

tion (1), meaning that f∗
e-SOCP ≤ f∗.



ii) The expanded SOCP relaxation is exact if and only if

it has a solution (q∗, U∗, V ∗, W ∗) for which all 2 × 2
matrices given in (9d) and (9e) have rank 1.

iii) f∗
SOCP ≤ f∗

e-SOCP.

iv) f∗
e-SOCP ≤ f∗

r-SDP.

v) The relations f∗
e-SOCP = f∗

r-SDP = f∗
SDP = f∗ hold if

σij 6= 0 for every (i, j) ∈ G.

Proof: Since the proof is long and involved, it has been

moved to [28]. �

Assume that the graph G is weakly cyclic and its edge

weights are all imaginary numbers. Theorem 4 shows that

f∗
SOCP ≤ f∗

e-SOCP ≤ f∗
r-SDP ≤ f∗

SDP ≤ f∗

and that the relations

f∗
e-SOCP = f∗

r-SDP = f∗
SDP = f∗ (10)

hold if each edge weight set has homogeneous elements

(σij = i or −i). Note that the SOCP relaxation may not be

exact, and one needs to use the expanded SOCP relaxation

in this case. Interestingly, this result makes no assumption

on the signs of the edges belonging to the same cycle in the

cycle basis (unlike (8b)).

Although Theorem 4 deals with imaginary coefficients,

some of the results derived in this two-part paper for

complex/real optimizations with real coefficients are based

on this powerful theorem. This is due to the fact that real

numbers may be converted to imaginary numbers through a

simple multiplication.

D. General Graph with Complex Edge Weight Sets

Given an arbitrary subgraph G̃s of the graph G, four

important types will be defined for this subgraph in the

following:

• Type I: G̃s is acyclic with complex weight sets with the

property that {c1
ij, ..., c

k
ij} is sign definite with respect

to C for every (i, j) ∈ G̃s.

• Type II: G̃s is weakly cyclic with imaginary weight

sets and nonzero sign σij (i.e., σij = ±i) for every

(i, j) ∈ G̃s.

• Type III: G̃s is bipartite and weakly cyclic with the

property that {c1
ij, ..., c

k
ij} is a real weight set with

nonzero sign σij (i.e., σij = ±1) for every (i, j) ∈ G̃s.

• Type IV: G̃s has only real and imaginary weights with

the property that

σij 6= 0, ∀(i, j) ∈ G̃s (11a)
∏

(i,j)∈Or

σij = (−1)|Or |, ∀Or ∈ {O1, ...,Op} ∩ G̃s (11b)

By assuming G̃s = Gs, it follows from the theorems

developed in this paper that the SDP relaxation is exact for

Optimization (1) if G is Type I, II, III or IV. In this part, the

objective is to show that the relaxation is still tight if G can

be decomposed into a number of Type I-IV subgraphs in an

acyclic way.

x1 x2

x4 x3

Generator

Generator

Load

Load

g12+b12 i

g34+b34 i
g
2
3 +
b
2
3
i

g
1
4 +
b
1
4
i

Fig. 2. An example of the power circuit studied in Section IV.

Theorem 5: Assume that G can be decomposed as the

union of a number of edge-disjoint subgraphs G̃1, ..., G̃ω in

such a way that

i) G̃s is Type I, II, III or IV for every s ∈ {1, ..., ω}.

ii) The cycle Or is entirely inside one of the subgraphs

G̃1, ..., G̃ω for every r ∈ {1, ..., p}.

Then, the relations f∗
r-SDP = f∗

SDP = f∗ hold for Optimiza-

tion (1) in the complex-valued case D = C.

Proof: The proof has been moved to [28] due to space

restrictions. �

IV. APPLICATION IN POWER SYSTEMS

A majority of real-world optimizations are naturally ‘op-

timization over graph”, meaning that the optimization is

defined over the graph characterizing a physical system.

For example, optimizations in circuits, antenna systems and

communication networks can easily be regarded as “opti-

mization over graph”. Then, the question of interest is: how

does the computational complexity of an optimization relate

to the structure of the system over which the optimization

is performed? This question will be explored here in the

context of electrical power grids. Assume that the graph G
corresponds to an AC power network, where:

• The power network has |G| nodes.

• For every (i, j) ∈ G, nodes i and j are connected to

each other in the power network via a transmission line

with the impedance gij + biji.

• Each node i ∈ G of the network is connected to an

external device, which exchanges electrical power with

the power network.

Figure 2 exemplifies a sample power network in which two

external devices generate power while the remaining ones

consume power. As shown in Figure 3, each line (i, j) ∈ G
is associated with four power flows:

• pij : Active power entering the line from node i

• pji: Active power entering the line from node j

• qij: Reactive power entering the line from node i

• qji: Reactive power entering the line from node j

Note that pij + pji and qij + qji represent the active and

reactive losses incurred in the line. Let xi denote the complex

voltage (phasor) for node i ∈ G. One can write:



xi xjgij+bij i

Fig. 3. This figure illustrates that each transmission line has four flows.

pij(x) = Re

{

xi(xi − xj)
H 1

gij − biji

}

pji(x) = Re

{

xj(xj − xi)
H 1

gij − biji

}

qij(x) = Im

{

xi(xi − xj)
H 1

gij − biji

}

qji(x) = Im

{

xj(xj − xi)
H 1

gij − biji

}

Note that since the flows all depend on x, the argument x

has been added to the above equations (e.g., pij(x) instead

of pij). The flows pij(x), pji(x), qij(x) and qji(x) can all

be expressed in terms of |xi|2, |xj|2 and Re
{

ck
ijxix

H
j

}

for

k = 1, 2, 3, 4, where

c1
ij =

−1

gij − biji
, c2

ij =
−1

gij + biji

c3
ij =

i

gij − biji
, c4

ij =
−i

gij + biji

(note that Re{αxjx
H
i } = Re{αHxix

H
j } and Im{αxjx

H
i } =

Re{(−αi)xix
H
j } for every value of α). Define

p(x) =
{

pij(x), pji(x)
∣

∣ ∀(i, j) ∈ G
}

q(x) =
{

qij(x), qji(x)
∣

∣ ∀(i, j) ∈ G
}

Consider the optimization

min
x∈Cn

h0(p(x), q(x), y(x))

s.t. hj(p(x), q(x), y(x)) ≤ 0, j = 1, 2, ..., m
(12)

for given functions h0, ..., hm, where y(x) is the vector of

|xi|2’s. This optimization aims to optimize the flows in a

power grid. The constraints of this optimization are meant to

limit line flows, voltage magnitudes, power delivered to each

load, and power supplied by each generator. Observe that

p(x) and q(x) are both quadratic in x. Assume that hj(·, ·, ·)
is increasing (or decreasing) in its first and second vector

arguments. Since the above optimization can be cast as (1),

the SDP, reduced SDP and SOCP relaxations introduced

before can be used to eliminate the effect of quadratic terms.

To study under what conditions the relaxations are exact, note

that each edge (i, j) of G has the weight set {c1
ij, c

2
ij, c

3
ij, c

4
ij}.

Due to the physics of a transmission line, gij and bij are

both nonnegative real numbers. As a result of this property,

the set {c1
ij, c

2
ij, c

3
ij, c

4
ij} turns out to be sign definite (see

Definition 2). Now, in light of Theorem 5, the relaxations

are all exact as long as G is acyclic. This result also holds

for cyclic power networks with a sufficient number of phase

shifters (the graph for a mesh power network with phase

shifters can be converted to an acyclic one) [22].

Another interesting case is the optimization of active

power flows for lossless networks. In this case, gij is equal

to zero for every (i, j) ∈ G. Hence, pji(x) can be simply

replaced by −pij(x). Motivated by this observation, define

the reduced vector of active powers as

pr(x) =
{

pij(x)
∣

∣ ∀(i, j) ∈ G
}

and consider the optimization

min
x∈Cn

h̄0(pr(x), y(x))

s.t. h̄j(pr(x), y(x)) ≤ 0, j = 1, 2, ..., m

for some functions h̄0(·, ·), ..., h̄m(·, ·), which are assumed

to be increasing in their first vector argument. Now, each

edge (i, j) of the graph G is accompanied by the singleton

weight set
{

−i
bij

}

. Due to Theorem 4, the SDP and reduced

SDP relaxations are exact if G is weakly cyclic. This is the

generalization of the result obtained in [25] for optimization

over lossless networks.

V. EXAMPLES

Example 1: Consider the optimization

min
x∈C7

x
HMx

subject to |xi| = 1, i = 1, 2, ..., 7
(13)

where M is a given Hermitian matrix. Assume that the

weighted graph G depicted in Figure 4 captures the structure

of this optimization, meaning that (i) Mij = 0 for every pair

(i, j) ∈ {1, 2, ...7} such that (i, j) 6∈ G, (j, i) 6∈ G and i 6= j,

(ii) Mij is equal to the edge weight cij for every (i, j) ∈ G.

The SDP relaxation of this optimization is as follows:

min
X∈C7×7

Trace{MX}

s.t. Xjj = 1, j = 1, 2, ..., 7

X = XH � 0

Define O1 and O2 as the cycles induced by the vertex

sets {1, 2, 3} and {1, 4, 5}, respectively. Now, the reduced

SDP and SOCP relaxations can be obtained by replacing

the constraint X = XH � 0 in the above optimization

with certain small-sized constraints based on O1 and O2,

as mentioned before. In light of Theorem 5, the following

statements hold:

• The SDP, reduced SDP and SOCP relaxations are all

exact in the case when c12, c13, c14, c15, c23, c45 are real

numbers satisfying the inequalities c12c13c23 ≤ 0 and

c14c15c45 ≤ 0.

• The SDP and reduced SDP are exact in the case when

c12, c13, c14, c15, c23, c45 are imaginary numbers (note

that the SOCP relaxation may not be tight).

• The SDP, reduced SDP and SOCP relaxations are all

exact in the case when each of the sets {c12, c13, c23}
and {c14, c15, c45} has at least one zero element.

The above results demonstrate how the combined effect of

the graph topology and the edge weights makes various

relaxations become exact for the quadratic optimization (13).
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Fig. 4. Weighted Graph G studied in Example 1.

Example 2: Consider the optimization

min
x∈Cn

x
HMx

subject to |xj| = 1, j = 1, 2, ...,m
(14)

where M is a symmetric real-valued matrix. It has been

proven in [10] that this problem is NP-hard even in the case

when M is restricted to be positive semidefinite. Consider

the graph G associated with the matrix M . As an application

of Theorem 2, the SDP and reduced SDP relaxations are

exact for this optimization and therefore this problem is

polynomial-time solvable, provided that G is bipartite and

weakly cyclic.

VI. CONCLUSIONS

This work deals with three conic relaxations for a broad

class of nonlinear real/complex optimizations, where the ar-

gument of each objective and constraint function is quadratic

(as opposed to linear) in the optimization variable. Several

types of optimizations, including polynomial optimization,

can be cast as the problem under study. To explore the

exactness of the proposed relaxations, the structure of the

optimization is mapped into a generalized weighted graph

with a weight set assigned to each edge. In the case of real-

valued optimization, it is shown in Part I that the relaxations

are exact if a set of conditions is satisfied, which depends on

some weak properties of the underlying generalized weighted

graph. A similar result is derived in Part I in the complex-

valued case after introducing the notion of “sign-definite

complex weight sets”, under the assumption that the graph

is acyclic. In this part, the complex case is further studied

for general graphs, and it is shown that if the graph can be

decomposed as the union of edge-disjoint subgraphs, each

satisfying one of the four derived structural properties, then

two of the relaxations are exact. As an application, it is

finally shown that the weight sets are sign definite for power

networks due to the passivity of transmission lines, and this

makes a broad class of energy optimizations easy to solve.
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