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Abstract— We study the optimal distributed control (ODC)
problem and propose a design method based on the approxima-
tion of the H2 performance using the optimal centralized con-
troller. The designed distributed controller obeys a prescribed
sparsity pattern in the frequency domain. The proposed method
enables a convex approximation of the distributed controller
problem, which has a closed-form solution with optimality
guarantees. After introducing the notion of rank-preserving
weights, we give sufficient conditions for the controller to be
proper, and furthermore characterize the set of controllers that
can be obtained by the proposed technique via fine-tuning the
algorithm parameters. The results are applied to the linear-
quadratic regulator problem and to the purely decentralized
case with a diagonal sparsity pattern, where certain connections
to the simple methods of thresholding and averaging are
discovered. Numerical examples are provided to demonstrate
the effectiveness of the developed method.

I. INTRODUCTION

Optimal distributed control (ODC) studies complex large-
scale systems and has been an area of growing interest.
There are various communication and structural constraints
in many real-world systems, such as power networks and
transportation networks, which demand a distributed con-
troller. Significant efforts have been devoted to the complex-
ity analysis of the distributed controller design problem and
to the development of optimization methods that precisely
or approximately solve the problem.

ODC is known to admit nonlinear solutions and is NP-hard
in the worst case [1], [2]. In principle, ODC can be solved
using nonlinear programming techniques [3]. However, these
methods are often based on first-order optimality conditions
and lack global optimality guarantees. In contrast, if one
regards ODC as a polynomial optimization problem, it is pos-
sible to use convex relaxations and reformulation techniques
[4]–[7]. Convex formulations are desirable since they can be
solved to global optimality in polynomial time (up to any
accuracy) using local search algorithms [5]. They can also
exploit sparsity structures that reduces the complexity in a
principled way [8], and they allow for a disciplined modeling
framework [9]. It should be noted that the complexity of
different convex formulations could vary significantly and
there have been several works on the approximation of
convex relaxations with linear programs and second-order
cone programs [10].
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Recognizing the core difficulty of the structural constraints
in a distributed control problem and the fact that many
techniques developed for classic centralized control problems
are inapplicable in such settings, there is a line of work on the
identification of structures that break down the complexity of
the ODC problem. Some of these structures are as follows:
spatially invariant systems [11], partially nested systems [12],
positive systems [13], localized systems [14], and quadratic
invariant systems [15]. More recently, a new System Level
Framework [16] identifies a large set of problems that have
a convex formulation.

Unlike the above-mentioned papers that focus on the struc-
tural properties of the control system or convex relaxations
of the problem, we propose a new convex approximation
technique based on the optimal centralized controller. This is
motivated by the fact that with sufficient knowledge one can
make the distributed control trajectories arbitrarily close to
the centralized control trajectories [17]. Moreover, promising
results on approximation techniques for the design of a static
distributed controller has been developed in [18]. The paper
[19] studies the control sparsification problem (where the
control topology is to be co-optimized) by a rank-constrained
formulation that matches frequency characteristics with lin-
ear matrix inequality (LMI) constraints. The ODC problem
is known to be more difficult if the controller structure is
imposed as a constraint rather than being flexible in the
optimization problem.

In this work, we consider the gap between the optimal
centralized and distributed control problems, and focus on
systems for which this gap is not very large. This enables
us to develop an approximation technique for the distributed
control problem based on the centralized control problem.
If the gap is large, the proposed method still works, but the
obtained controller may not have a satisfactory performance
or even be stabilizing. This implicit technical assumption
allows us to overcome the NP-hardness of the problem. It
is shown that the proposed approximation method reduces
to a least-squares problem at all frequencies, which has a
closed-form solution. This explicit formula makes it possible
to obtain optimality guarantees on the designed controller.
We prove that the controller design method automatically
produces proper controllers, based on a new notion of rank-
preserving weight pattern. It is shown that the proposed
method has interesting connections to the basic thresholding
and averaging methods. We also apply the results to the
linear-quadratic regulator (LQR) problem and fully decen-



tralized controller problems.
The remainder of the paper is organized as follows. After

formulating the ODC problem in Section II, we present an
approximation scheme in Section III. Two special cases of
LQR and diagonal controllers are studied in Section IV.
Numerical examples are provided in Section V. Section VI
and VII offer final discussions and draw some concluding
remarks.

II. PROBLEM FORMULATION
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Fig. 1. Synthesis arrangement

Based on Figure 1, consider a plant G described as

G(s) =

 A B1 B2

C1 0 D12

C2 D21 0

 =

[
G11 G12

G21 G22

]
.

where the following standard notation is used for transfer
functions: [

A B
C D

]
= C(sI −A)−1B +D.

The corresponding state-space representation is

ẋ = Ax+B1w +B2u

z = C1x +D12u

y = C2x+D21w,

where x, y, z, u, and w denote the state of the system, output,
measurement, control action, and disturbance, respectively.
The control action associated with the controller K is de-
scribed in the frequency domain as û(s) = K(s)ŷ(s), where
ŷ (resp. û) is the Laplace transform of the signal y (resp.
u). Moreover, Tzw denotes the transfer function from z to
w, which can be expressed as

Tzw =

[
A+B2KC2 B1 +B2KD21

C1 +D12KC2 D12KD21

]
= G11 +G12K(I −G22K)−1G21.

The H2 norm of the system G is defined as

||G||2H2 =

∫ ∞
−∞

Tr[G∗(jw)G(jw)]dw

=

∫ ∞
−∞
||G(jw)||2F dw,

where “ ∗ ”, Tr(·) and ‖ · ‖F denote the conjugate transpose,
trace and Frobenius norm operators.

Notations: We use the operator vec(·) to vectorize a matrix
by stacking its columns on top of each other from left to
right. V T denotes the transpose of V . V ⊗U is the Kronecker
product of V and U . The set RHk×m

∞ includes all rational
transfer matrices of dimension k×m that do not have poles
in the closed right-half plane. RP k×m is a larger transfer
matrix set that only requires the matrix elements to be
proper. The subscripts c and d refer to “centralized” and “dis-
tributed”, respectively. The unknown distributed controller
Kd is assigned a sparsity pattern Σ. This is a 0-1 matrix that
specifies the nonzero elements of Kd, and we say Kd ∈ Σ if
Kd(i, j) = 0 whenever Σ(i, j) = 0. Given a transfer matrix
whose sparsity pattern Σ has r nonzero terms, we define a
corresponding vector vecΣ(K) ∈ RP r associated with the
nonzero elements of K. With a slight abuse of notation, for a
matrix A ∈ C(km)×(km), we use the notation AΣ ∈ C(km)×r

to select those columns of A corresponding to the nonzero
elements of Σ, and ΣTA ∈ Cr×(km) to select the associated
rows. Here, Σ can be regarded as an (mk) × r zero-one
matrix with the property vecΣ(K) = vec(K)Σ.

Throughout the paper, we make the standard assumption
that G22 is strictly proper to ensure that stabilizing G22 is
the same as stabilizing G [20]. The H2 optimal distributed
control problem can be stated as

min ||Tzw,d||H2
(1)

s.t. Kd ∈ Σ (2)
Kd stabilize the system. (3)

In the centralized case, the sparsity constraint (2) is removed,
and Kc, if it exists, can be found efficiently using the Riccati
equation or through the Youla parameterization. There are
also powerful LMI characterizations of the optimal state
feedback solution. In this work, we assume that Kc exists.
In the distributed case, Problem (1) with an arbitrary sparsity
constraint is difficult to solve. In light of the significant
difference between the complexities of the centralized and
distributed cases, we propose to find a distributed controller
that minimizes an approximate error between the central-
ized transfer function and the distributed transfer function.
Roughly speaking, if we can find an approximate error

Edc ≈ Tzw,d − Tzw,c,

whose corresponding optimization problem

min ||Edc||H2 (4a)
s.t. Kd ∈ Σ (4b)

Kd stabilize the system. (4c)

is easy to solve, then we can recover a suboptimal distributed
controller.

III. APPROXIMATION

An approximation scheme will be proposed in this section.
Note that

Tzw,d = G11 +G12Kd(I −G22Kd)−1G21

Tzw,c = G11 +G12Kc(I −G22Kc)
−1G21.



The difference between the centralized and distributed trans-
fer functions can be calculated as

Tzw,d − Tzw,c

= G12

[
Kd(I −G22Kd)−1 −Kc(I −G22Kc)

−1
]
G21,

where the expression within the brackets can be simplified
to[
Kd −Kc(I −G22Kc)

−1(I −G22Kd)
]

(I −G22Kd)−1

=
[
Kd −Kc +Kc(I −G22Kc)

−1G22(Kd −Kc)
]

× (I −G22Kd)−1

=
[
I +Kc(I −G22Kc)

−1G22

]
(Kd −Kc)(I −G22Kd)−1

=(I −KcG22)−1(Kd −Kc)(I −G22Kd)−1

≈ (I −KcG22)−1(Kd −Kc)(I −G22Kc)
−1.

The only approximation we make is the replacement of the
unknown term (I − G22Kd)−1 with the known term (I −
G22Kc)

−1. This approximation is completely negligible at
high frequencies since G22 is strictly proper. Therefore, we
propose the following error:

Edc = G12(I −KcG22)−1(Kd −Kc)(I −G22Kc)
−1G21.

Note that this is linear in Kd with two weighting matrices
on both sides of Kd−Kc. Using the Youla parameterization
of the centralized controller, these matrices can be computed
efficiently. Consider a coprime factorization of G22 as

G22 = NM−1 = M̄−1N̄ ,

where [
X̄ −Ȳ
−N̄ M̄

] [
M Y
N X

]
= I,

and Kc = (Y −MQ)(X − NQ)−1 = (X̄ − QN̄)−1(Ȳ −
QM̄). The following lemma is borrowed from [20].

Lemma 1: The equations

(I −KcG22)−1 = M(X̄ −QN̄),

(I −G22Kc)
−1 = (X −NQ)M̄,

hold and, therefore, both inverses belong to RH∞.

Using Lemma 1, the approximate error can be simpli-
fied as

Edc =G12M(X̄−QN̄)(Kd −Kc)(X−NQ)M̄G21.

We design a sub-optimal distributed controller by mini-
mizing this approximate performance difference. Writing
U = G12M(X̄ − QN̄), and V T = (X − NQ)M̄G21,
the approximation problem (4) is now fully specified by
Edc = U(jw)(Kd(jw)−Kc(jw))V T (jw) as follows:

min

∫ ∞
−∞
||U(jw)(Kd(jw)−Kc(jw))V (jw)T ||2F dw (5)

s.t. Kd ∈ Σ

Kd stabilize the system.

This problem is in the frequency domain. If the stabilizability
constraint is removed, the above optimization problem (5)
reduces to a separate least-squares problem for every w ∈ R:

min ||U(jw)(Kd(jw)−Kc(jw))V (jw)T ||2F (LS-DC)
s.t. Kd(jw) ∈ Σ.

This is an unconstrained convex quadratic problem with
a closed-form solution. Note that the weighting matrices
U(jw) and V (jw) do not need to be chosen as before and
can be designed to obtain a better suboptimal distributed
controller.

Theorem 1: Assuming that G21 is invertible on the imag-
inary axis, the least-squares problem (LS-DC) produces a
solution Kopt

d as a function of Kc with the optimality
guarantee

||Tzw,d||H2 − ||Tzw,c||H2 ≤ Cdc||Eopt
dc ||H2 (6)

where the constant

Cdc = ||G−1
21 (I −G22Kc)(I −G22K

opt
d )−1G21||∞.

depends only on the centralized controller after writing Kopt
d

in terms of Kc.
Proof: It follows from the triangle inequality that

||Tzw,d||H2 − ||Tzw,c||H2 ≤ ||Tzw,d − Tzw,c||H2 ,

Therefore,

||Tzw,d − Tzw,c||2H2 =

∫ ∞
−∞
||Tzw,d(jw)− Tzw,c(jw)||2F dw

=

∫ ∞
−∞
||EdcG

−1
21 (I −G22Kc)(I −G22K

opt
d )−1G21||2F dw

≤
∫ ∞
−∞
||G−1

21 (I −G22Kc)(I −G22K
opt
d )−1G21||22||E

opt
dc ||

2
F dw

≤ ||G−1
21 (I −G22Kc)(I −G22K

opt
d )−1G21||2∞

∫ ∞
−∞
||Eopt

dc ||
2
F dw

= C2
dc||E

opt
dc ||

2
H2 .

We should be cautious when we remove the constraint that
Kd is a stabilizing controller — the controller obtained from
(LS-DC) may not be proper. This is illustrated below.

Example 1: Consider the weighting matrix (V ⊗U)(s) =[
1 1

s+1

]
, which is in RH∞. Assume that the objective is to

design a distributed controller Kd =

[
0
∗

]
from a centralized

controller Kc =

[
1
0

]
. The optimization problem

min
Kd(s)∈Σ

∣∣∣∣∣∣∣∣[1 1
s+1

](
Kd(s)−

[
1
0

])∣∣∣∣∣∣∣∣
has a unique solution Kd(s) =

[
0

s+ 1

]
, which is not proper

and cannot be implemented. We can verify that (V ⊗U)Σ =
[ 1
s+1 ] loses rank at infinity. It turns out if we can avoid

such rank losses at infinity, then (LS-DC) returns a proper
controller. This will be formalized below.



Definition 1: Given the sparsity pattern Σ and weight
matrix U, V ∈ RH∞, the weight-pattern triplet (U, V,Σ)
is said to be rank-preserving if there is some h ≥ 0 such
that B(s) = sh · V (s)⊗U(s) has a nonzero limit at infinity
and rank(B(s)Σ) = rank(B(∞)Σ) when s is large enough.

Theorem 2: Assuming that (U, V,Σ) is rank-preserving,
the solution to (LS-DC) is a proper controller.

Proof: The least-squares problem (LS-DC) has a
closed-form solution based on the Moore-Penrose pseudo-
inverse (shown as †):

vecΣ(Kopt
d (s)) = arg min

Kd∈Σ
||B(s)vec(Kd −Kc(s))||22

= arg min
Kd∈Σ

||B(s)ΣvecΣ(Kd)−B(s)vec(Kc(s))||22

= (B(s)Σ)†B(s)vec(Kc(s))

By assumption the rank does not change when s becomes
large enough, the continuity of Moore-Penrose inverse [21]
implies that (B(s)Σ)† → (B(∞)Σ)†, and

vecΣ(Kopt
d (s)) = (B(s)Σ)†B(s)vec(Kc(s))

→ (B(∞)Σ)†B(∞)vec(Kc(∞)).

Since this is finite by assumption, Kopt
d is proper.

Remark 1: The condition in Theorem 2 is sufficient to
guarantee the recovery of a proper controller. However, this
is not the only way to enforce properness: one can solve a
modified optimization problem by adding a robust term with
some unbounded norm || · ||:

min
Kd(jw)∈Σ

||U(jw)(Kd(jw)−Kc(jw))V T (jw)||2F + λ||Kd||.

With the added term, the optimization problem always has a
bounded solution and properness can be attained for free.

Recognizing the special pattern of the optimization prob-
lem (LS-DC), it is not necessary to select the weighting
matrices U and V based on the definitions made before, as
long as the condition in Theorem 2 is satisfied. The following
corollary characterizes the set of all proper controllers that
can be obtained from the proposed least-squares problem.

Corollary 1: The set of proper controller that can be
obtained from the optimization problem (LS-DC) is equal to

{Kd(s) | vecΣ(Kd(s)) = (B(s)Σ)†B(s)vec(Kc(s)),

B(s) = V (s)⊗ U(s), (U, V,Σ) is rank-preserving}.
Proof: The proof follows from that of Theorem 2.

This corollary implies that each element of the designed
distributed controller is a weighted average of the elements
of the centralized controller.

Corollary 2: In the special case where B(s) = V (s) ⊗
U(s) is diagonal, the optimization problem (LS-DC) obtains
the thresholded centralized controller, namely vecΣ(Kd) =
vecΣ(Kc).

Proof: If B(s) is diagonal, there is no coupling between
the entries in Kd that are forced to be zero and those that

are free in the corresponding optimization problem:

Kopt
d (s) = arg min

Kd∈Σ
||B(s)vec(Kd −Kc(s))||22

= arg min
Kd∈Σ

||B(s)ΣvecΣ(Kd −Kc(s))||22,

The proof follows from the above relation.

IV. SPECIAL CASES

Corollary 1 discovers a strong feature: averaging the
elements of the centralized controller by weights in the form
of transfer functions to obtain a distributed controller. On the
other hand, Corollary 2 reveals that the proposed method
is related to the simple thresholding method in a special
case. Examples in this section make these two observations
more concrete and illustrate the importance of the choice of
(U, V,Σ).

A. LQR Problem

The LQR problem with a state feedback corresponds to
the setting: 

A I B(
0

Q1/2

)
0

(
R1/2

0

)
I 0 0

 .
where Q and R are positive definite matrices. Such ar-
rangement naturally admits a limiting behavior related to the
thresholding method.

Corollary 3: Consider the LQR problem with a diagonal
weighting matrix R and an arbitrary sparsity pattern Σ. The
optimization problem (LS-DC) recovers a controller Kd with
the property lims→∞Kd(s)(i, j) = Kc(s)(i, j), ∀(i, j) ∈ Σ.

Proof: One can write:

G12 =

(
0

Q1/2

)
(sI −A)−1B +

(
R1/2

0

)
=

(
R1/2

Q1/2(sI −A)−1B

)
G22 = (sI −A)−1B

G21 = (sI −A)−1.

Also, the multiplier matrices on both sides of Kd −Kc are

U = G12(I −KcG22)−1

=

(
R1/2

Q1/2(sI −A)−1B

)
(I −Kc(sI −A)−1B)−1

=

(
R1/2 +R1/2Kc(sI −A−BKc)

−1B
Q1/2(sI −A−BKc)

−1B

)
V T = (I −G22Kc)

−1G21

= (I − (sI −A)−1BKc)
−1(sI −A)−1

= (sI −A−BKc)
−1.



Note that at infinity the big matrix of the least-squares
problem is equal to

sV (s)⊗ U(s) =

(
I − (A−BKc)

T

s

)−1

⊗
(
R1/2 +R1/2Kc(sI −A−BKc)

−1B
Q1/2(sI −A−BKc)

−1B

)
→ I ⊗

(
R1/2

O

)
(s→∞).

While taking the limit, the rank of sV (s)⊗U(s)Σ does not
change because I and R both have full rank and a small
perturbation cannot change the rank. Theorem 2 states that
one can always obtain a proper controller using the proposed
approximation technique. Moreover, when R is a positive
definite diagonal matrix, it follows from Corollary 2 and The-
orem 2 that as s→∞ the designed controller approaches the
thresholded centralized controller in the frequency domain.

B. Diagonal Sparsity Pattern

We write U∗U = H = (hij)
m
ij=1 and V ∗V = L =

(lij)
m
ij=1, in the case where m is the number of measure-

ments and is the same as the number of scalar controller
outputs. The solution of the optimization problem (LS-DC)
with a diagonal sparsity pattern has a simple formula, as
given in Corollary 4.

Corollary 4: The optimal solution to

min
Kd= diagonal

Tr(Kd −Kc)
∗H(Kd −Kc)L

T (7)

is given by the system of linear equations∑
u

hiuliuKd(u, u)=
∑
u,v

hiulivKc(u, v), i = 1, . . . ,m. (8)

Proof: (7) is a convex optimization problem that
has an explicit solution given by the first-order optimality
conditions. Taking the derivative with respect to the real
and complex parts of Kd, we obtain the following for all
i = 1, . . . ,m:

Tr(EiiH(Kd −Kc)L
T + (Kd −Kc)

∗HEiiL
T ) = 0,

Tr(−EiiH(Kd −Kc)L
T + (Kd −Kc)

∗HEiiL
T ) = 0.

Notice that Eii = eie
T
i , HT = H̄, LT = L̄,

eTi H(Kd −Kc)L
T ei = 0,

which can be simplified to (8).

V. NUMERICAL EXAMPLES

A. Cruise Control

To illustrate the performance of the developed method,
we consider the planar vertical-takeoff and landing (PVTOL)
model borrowed from [22]. The dynamics of aircraft i ∈
{1, 2, 3} is described by the equation

Ẍi(t) = vi(t)

θ̈i(t) =
1

µ
(sin(θi(t)) + vi(t) cos(θi(t))),

where µ > 0 is a coefficient that describes the amount
of coupling between the rolling moment and the lateral
acceleration. Xi and θi are the horizontal position and angle
of the aircraft. We consider the linear feedback rule

vi(t) = αẊi(t) + βθi(t) + γθ̇i(t) + u(t),

where the gains are selected in such a way that the horizontal
velocity and the angle are stabilized at zero with u = 0. As
discussed in [22], µ = 0.1, α = 90.62, β = −42.15, γ =
−13.22 are an appropriate choice of parameters. Therefore,
we select the parameters in the simulations close to these
numbers. Let d denote the desired distance between two
adjacent aircraft. The state of aircraft i is

xi(t) = [Xi(t)−Xi+1(t)− d, Ẋi(t), θi(t), θ̇i(t)]T (9)

where the first term is the relative distance that the aircraft is
able to access. Each aircraft can be modeled by the following
matrices:

Ai =


0 1 0 0
0 α β γ
0 0 0 1
0 α/µ (β + 1)/µ γ/µ

 , Bi =


0
1
0

1/µ

 .
The A and B matrix of the entire system can be formed by
stacking the models of the 3 aircraft together, and adding −1
in the upper block diagonal position that corresponds to the
Ẋi+1 part of ẋi. We need to fix the position of one plane
since the shifting is uncontrollable. To do so, we delete one
state entry that describes the position of the last plane. There
are 11 states and 3 control inputs in total for this system with
3 aircraft. The C matrix is identity, and the sparsity pattern
of the controller denoted by Σ ∈ R3×11 is equal to

Σ =

 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0

 .
To define an H2 problem, we apply noise and disturbance

to the system and obtain the representation
A I B(
0
I

)
0

(
I
0

)
I I 0

 . (10)

Note that D21 = I has full row rank, and that D12 has full
column rank. The optimal centralized controller Kc is ob-
tained by solving this H2 synthesis problem via MATLAB’s
h2syn function. The controller is dynamic and of order 11.
Distributed controllers are designed under different settings,
and the results are summarized in Table I (the notation T (K)
denotes the transfer function associated with a controller K).
It can be observed that the global optimality guarantee (with
respect to the best centralized controller) is at least 98%.



TABLE I
CRUISE CONTROL APPROXIMATION

α β γ µ
||T (Kc)||
||T (Kd)||

90.62 -42.15 -13.22 0.10 0.9887
96.77 -45.34 -14.20 0.10 0.9904
103.11 -46.12 -15.20 0.10 0.9919

TABLE II
MASS-SPRING APPROXIMATION

p
||T (Kc)||
||T (Kd)||

1 0.9481
2 0.9932
3 0.9937
4 0.9942

B. Mass-Spring System

Consider a mass-spring system with unit masses and unit
spring constants as in [3]. The system can be described as

(
0 I
G 0

)
I

(
0
I

)
(

0
I

)
0

(
I
0

)
I I 0

 . (11)

where G is an n × n symmetric Toeplitz matrix whose
first row is given by [−2, 1, 0, . . . , 0]. The sparsity pattern
is considered as Σ = [Sp, I], where Sp is a banded matrix
with 1’s on the p upper and lower sub-diagonals; this implies
that each mass can only access its own velocity and the
displacement of its p neighbors to the left and to the right. We
consider the cases with n = 10 and p = 1, 2, 3, 4. As before,
we first obtain an optimal centralized controller and then use
the proposed technique to design a sub-optimal distributed
controller. The results are summarized in Table II. The global
optimality guarantee of each designed controller is at least
94%.

VI. DISCUSSION

The above simulations demonstrate that the developed
method is able to obtain structured controllers whose H2

performances are very close to those of their centralized
counterparts. It should be noted that the efficient calculation
of the frequency response is based on a relaxation of the
closed-loop stability constraint. The underlying procedure is
that the designed controller should be applied to the system
for checking stability. As future work, it is useful to obtain
conditions that guarantee the closed-loop stability before
finding the controller.

The distributed controller design was performed in the fre-
quency domain. This was motivated by the fact that dynamic
controllers are far more powerful than static controllers in
a distributed setting. However, frequency domain samples
cannot be implemented directly, and it is important to find
a method for translating the designed controller back to the
time domain systematically. This is left as future work.

Finally, it should be mentioned that the controller design
procedure can be strengthened by making the approximation
more accurate. Indeed, there is a natural tradeoff between
making the approximation easier to solve and making it more
precise. Note that since

I −G22Kc = I −G22Kd +G22(Kd −Kc), (12)

one can write:

(I −G22Kd)−1

=(I −G22Kc)
−1+(I−G22Kc)

−1G22(Kd−Kc)(I−G22Kd)−1

≈(I−G22Kc)
−1+(I−G22Kc)

−1G22(Kd−Kc)(I−G22Kc)
−1.

Hence,

Tzw,d − Tzw,c

≈ G12(I −KcG22)−1(Kd −Kc)(I −G22Kc)
−1

+G12(I −KcG22)−1(Kd −Kc)(I −G22Kc)
−1G22

× (Kd −Kc)(I −G22Kc)
−1G21

= G12M(X̄ −QN̄)(Kd −Kc)(Y −MQ)M̄

+G12M(X̄ −QN̄)(Kd −Kc)(Y −MQ)N̄

× (Kd −Kc)(Y −MQ)M̄G21.

where all relevant coefficients are linear in terms of the Youla
parameters. We can further approximate this difference to
third order using this expansion. Since G22 is assumed to be
strictly proper, it follows that N̄ and N are strictly proper.
This leads to a better approximation at high frequencies when
higher-order terms are used.

VII. CONCLUSION

In this paper, we developed a convex approximation tech-
nique in the frequency domain for the design of a near-
globally optimal distributed controller based on the optimal
centralized controller. This is achieved by first formulating
the difference between the centralized and distributed H2

performances and then approximating it with a convex
function. We investigated the properness of the designed
controller, the optimality guarantees of the controller, and
the space of all controllers that can be obtained using the
proposed method via adjusting the algorithm parameters.
When applied to the LQR problem and to those problems
with a diagonal sparsity pattern, we discovered interesting
connections to the basic thresholding and averaging methods.
Future research is needed to obtain a state-space representa-
tion of the design controller (via a closed-form formula) and
guarantee the closed-loop stability.
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