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Abstract— The optimal distributed control (ODC) problem
for linear discrete-time systems is studied in this paper. The
goal is to design a static stabilizing controller that offers some
optimality guarantee for the closed-loop system and yet respects
an imposed communication structure. Unlike the traditional
centralized control problem, the ODC problem is hard to
solve in general. Recently, we have introduced an efficient
and scalable algorithm to design a distributed controller whose
performance is close to that of a given centralized controller,
provided that the initial state of the system is known. In this
work, we generalize the proposed method to systems with un-
certain initial states. The objective is to make the performance
of the designed distributed controller be as closely as possible
to that of the optimal centralized counterpart for every initial
state in the uncertainty region. It is shown that the developed
method requires solving a convex problem. Strong theoretical
lower bounds are provided on the optimality guarantee of the
synthesized distributed controller. To illustrate the effectiveness
of the proposed method, case studies on aircraft formation and
frequency control of power systems are offered.

I. INTRODUCTION

The problem of designing an optimal distributed controller
is of significant importance for complex large-scale systems
that are subject to communication and/or computation re-
strictions. The main objective is to design a controller with
a prescribed sparsity pattern, as opposed to a conventional
centralized controller that does not have any restrictions
on the controller’s structure. In a complex system that is
comprised of many subsystems, it is often computationally
prohibitive to process and design control policies based on
the state of the whole system. Instead, these subsystems
are equipped with subcontrollers that interact with each
other based on a pre-defined structure. The imposed control
structure significantly increases the complexity of the design
procedure. This difficulty arises from the fact that well-
established methods for the design of traditional centralized
controllers often fail as soon as sparsity control constraints
are imposed on the controller.

It is formally proven in [1] that the optimal distributed con-
trol (ODC) problem is NP-hard in its worst case. Although
the problem of designing a distributed controller with an
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arbitrary structure is a daunting task, several methods have
been developed to find an optimal or near-optimal controller
for special structures, such as spatially distributed systems
[2], [3], localizable systems [4], [5], strongly connected sys-
tems [6], optimal static distributed systems [7], decentralized
systems over graphs [8], [9], and quadratically-invariant sys-
tems [10]. The problem of designing a distributed controller
whose performance is close to that of its centralized coun-
terpart is cast as a rank-constrained optimization problem in
[11] and [12]. Moreover, it is shown in [13] that the design
of an optimal linear-quadratic distributed controller with an
arbitrary structure is essentially a convex problem as long as
the input weighting or measurement covariance matrices are
large enough.

The difficulty of finding the optimal distributed controller
is due to the fact that it belongs to a more general class of
hard problems, namely polynomial optimization problems.
Because of the NP-hardness of these problems, several
convex relaxation and reformulation techniques have been
proposed to find their global or near-global solutions [14],
[15]. A convex relaxation of general polynomial optimization
problems is studied in [16] and [17], where the underlying
structure of the problem is exploited via a weighted graph.
Furthermore, it is shown that the exactness of the proposed
relaxation depends on the specifications of this graph. By
building on this result, it is proved in [18] and [19] that the
semidefinite programming relaxation of the ODC problem
possesses a low-rank solution.

Recently, we have proposed an easy-to-implement and
scalable method to design a distributed controller with a
pre-specified sparsity pattern via a transformation of the
optimal centralized controller, as long as the exact value
of the initial state of the system is known [20]. Later on,
this method has been extended to stochastic systems that are
subject to measurement and input disturbance noise [21].
One important drawback of this method for deterministic
systems is a lack of robustness to the initial state in the
sense that the designed distributed controller depends on
the exact value of the initial state. However, in almost all
real-world problems, the system operators do not know the
exact value of the initial state and can only estimate it. This
implies that the method introduced in [20] is not directly
applicable to the control of systems whose initial state is



not known a priori. On the other hand, unlike the optimal
centralized control problem, the parameters of the optimal
distributed controller may not be independent from the initial
state. The aim of this paper is to extend the recent work [20]
to the case where the initial state is unknown, but belongs
to an uncertainty region. In particular, the objective is to
design a convex optimization problem whose solution gives
rise to a distributed controller that is nearly optimal for
every initial state in a given uncertainty region. Furthermore,
it is desirable to theoretically certify the performance of
the designed distributed controller by deriving strong lower
bounds on its optimality guarantee.

To exhibit the performance of the designed distributed
controller, two case studies are considered in this paper. The
first one is an aircraft formation problem in which each
aircraft should make decision solely based on its relative
distance from the neighboring agents [22], [23]. The second
case study is the frequency control problem of generators
in power systems with different topological restrictions on
the controller [18]. It will be shown that the synthesized
distributed controller can stabilize the closed-loop system
while maximizing its performance in both of these case
studies.

Notations: The set of real numbers is denoted by R.
The symbol trace{W} denotes the trace of a matrix W .
The notation I denotes the identity matrix of appropriate
dimension. The symbol (·)T denotes the transpose operator.
The symbols ‖W‖2 and ‖W‖F are used to denote the 2-
norm and Frobenius norm of W , respectively. W (i, j) is the
(i, j)th entry of a matrix W . The notations w(t) and w[t]
are used for vectors correspondence to time t in continuous
and discrete domains, respectively. The symbol λmax

W refers
to the maximum eigenvalue of a symmetric matrix W . The
maximum absolute value of the eigenvalues of W is denoted
by ρ(W ) and called the spectral radius of matrix W . The
notation W � 0 means that the symmetric matrix W is
positive semidefinite. For a real number y, the notation (y)+
denotes the maximum of 0 and y.

II. PROBLEM FORMULATION

In this paper, we consider the optimal distributed control
(ODC) problem with an uncertain initial state. The goal is to
develop a fast and scalable algorithm for the design of a near-
globally optimal distributed controller with a pre-defined
structure for linear time-invariant (LTI) systems whose initial
state is unknown, but belongs to an uncertainty region.

Definition 1: The set K ∈ Rm×n is defined as a linear
subspace with some pre-specified sparsity structure. This
structure captures the communication topology of the dis-
tributed controller (enforced zeros in certain entries). A static
feedback gain that belongs to K is called a distributed con-
troller with the sparsity pattern captured by K. If there is no
structural constraint on the controller, then K = Rm×n and
the static feedback gain is called a centralized controller.
The notations Kc, Kd, K are used for the optimal centralized
controller, the designed distributed controller, and a variable
controller in optimization problems, respectively.

Consider the discrete-time system

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, ...,∞ (1)

where A ∈ Rn×n and B ∈ Rn×m are some known matrices
that depend on the structure of the LTI system. Assume that
the initial state x[0] is unknown, but it belongs to a compact
and bounded set E that is referred to as the uncertainty region
of the initial state. For the sake of simplicity of notations,
the initial state is denoted as x henceforth. The goal is
to design a static gain Kd ∈ K such that the system (1)
under the distributed controller u[τ ] = Kdx[τ ] satisfies
some performance and stability criteria. Associated with the
system (1), define the cost function

J(K) =

∞∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
(2)

where Q ∈ Rn×n and R ∈ Rm×m are constant positive-
definite matrices. Assume that the pair (A,B) is stabilizable.
The optimization problem of

min
K∈Rm×n

J(K) (3)

subject to (1), u[τ ] = Kx[τ ], and the closed-loop stability
condition is called the optimal centralized control problem,
where the optimal controller gain can be efficiently obtained
from the Riccati equation. While finding the optimal cen-
tralized controller is a tractable problem, the design of an
optimal distributed controller subject to the constraint K ∈ K
is computationally hard in general.

Definition 2: Consider the system (1) with the cost func-
tion (2). Given Kd ∈ K and a number µ ∈ [0, 1], it is said
that the distributed controller has the optimality guarantee µ
if it satisfies the inequality

J(Kc)

J(Kd)
≥ µ (4)

We interchangeably denote the optimality guarantee as a
number µ between 0 and 1 or in percentage as 100 × µ%.
For example, if µ = 0.95, then the inequality (4) implies
that the underlying distributed controller Kd is at most 5%
worse than the optimal centralized controller Kc. This means
that if there exists a better distributed controller, it would
outperform Kd by at most 5%. The goal of this work is
twofold:
• Given the sparsity structure K, it is desirable to develop

a cheap and scalable method for designing a distributed
controller Kd ∈ K that maximizes the performance for
every initial state x in a given uncertainty region E .

• The second objective is to analyze the proposed design
method and provide optimality guarantees on the ob-
tained distributed controller.

III. DISTRIBUTED CONTROLLER DESIGN

Assume for now that the uncertainty region E is the
singleton a. In this case, the initial state of the system is
known a priori. Define Pa as the unique positive semidefinite
solution of the Lyapunov equation

(A+BKc)P (A+BKc)
> − P + aa> = 0 (5)



Consider the optimization problem

min C(K) s.t. K ∈ K (6)

where

C(K)= ω×trace
{
(Kc −K)Pa(Kc −K)T

}︸ ︷︷ ︸
C1(Pa,K)

+(1−ω)×trace
{
(Kc−K)TBTB(Kc−K)

}︸ ︷︷ ︸
C2(K)

(7)

for a regularization coefficient ω between 0 and 1. In what
follows, it will be explained that the optimality guarantee of
a distributed controller Kd can be lower bounded in terms
of C1(Pa,Kd). Therefore, the minimization of C1(Pa,Kd)
would increase the optimality guarantee of the designed
controller Kd. Denote κ(V ) as the condition number of the
eigenvector matrix V of A+BKd in 2-norm.

Theorem 1 ([21]): Assume that Q = In and R = Im.
Consider the set E = {a}, the optimal centralized gain Kc

and an arbitrary stabilizing gain Kd ∈ K for which A +
BKd is diagonalizable. The controller u[τ ] = Kdx[τ ] has
the optimality guarantee µ, where

µ =
1(

1 + ζ
√
C1(Pa,Kd)

)2 (8)

and

ζ = max

{
κ(V )‖B‖2

(1− ρ(A+BKd))
√∑∞

τ=0 ‖xc[τ ]‖22
,

1− ρ(A+BKd) + κ(V )‖Kd‖2‖B‖2
(1− ρ(A+BKd))

√∑∞
τ=0 ‖uc[τ ]‖22

} (9)

Remark 1: As delineated in [21], the value of C1(Pa,Kd)
can be interpreted as a measure of closeness between the
state (or input) trajectories of the optimal centralized control
system and their counterparts in the designed distributed
control systems in the case where the initial state is equal to
a. If C1(Pa,Kd) is equal to zero for a designed distributed
controller Kd, the optimality guarantee of the distributed
controller is 100%. The incorporation of C2(K) via the
regularization coefficient ω in the objective function (7)
indirectly enforces the stability of the closed-loop system. It
is worthwhile to mention that a small value for the function
C1(Pa,Kd) does not necessarily guarantee the closed-loop
stability. Instead, such small value only ensures that the
system started from the initial state a resides in the stable
manifold of x[τ + 1] = (A+BKd)x[τ ].

Note that although Theorem 1 holds for Q = In and
R = Im, a similar bound can be derived for the general
case through a simple transformation of states and inputs
in the ODC problem (see [21]). Note also that (6) has an
explicit solution that can be derived by solving a system of
linear equations. This closed-form solution can be found in
[20].

As described in Section I, it is often the case that the
initial state at which the system starts to operate is not known

precisely a priori. For these types of systems, the equation
(5) cannot be used because it depends on the unknown initial
state. In this section, the objective is to modify (5) and (6)
to account for an unknown initial state. In particular, the
goal is to design a distributed controller that provides a high
optimality guarantee for every initial point that belongs to
the uncertainty region E . Throughout the rest of this paper,
assume that

E = {a+Mu : u ∈ Rn×n, ‖u‖2 ≤ 1} (10)

for a vector a ∈ Rn×1 and a symmetric matrix M ∈
Rn×n. Indeed, if E does not have the above ellipsoidal
expression, one may use its outer ellipsoidal approximation
as the uncertainty region of the initial state at the expense of
designing more conservative controllers (see [15] for more
details). Define

L(P, x)=(A+BKc)P (A+BKc)
>−P + xx> (11)

Based on the definition of E , it may not be possible to find a
matrix P that satisfies L(P, x) = 0 for every x ∈ E . Instead,
we introduce a new optimization problem to design a matrix
P such that L(P, x) is maintained close to zero for every
x ∈ E . This problem is given below:

min
α,P

α (12a)

s.t. − αI � L(P, x) � αI, ∀x ∈ E (12b)
P � 0 (12c)

Notice that (12) is a semidefinite programming (SDP) with an
infinite number of constraints. One may speculate that using
the optimal solution of (12) as a surrogate for Pa in (6) would
not lead to a high performance distributed controller (since
the optimality guarantee introduced in Theorem 1 no longer
holds for the designed distributed controller). Furthermore,
(12) is an infinite-dimensional optimization problem and
cannot be solved efficiently using the available solvers. In
the sequel, we will remedy both of the above-mentioned
problems. First, we will introduce explicit solutions that
are nearly optimal for (12). Second, we will derive bounds
similar to (8) on the performance of the designed distributed
controller under all initial states belonging to the uncertainty
region.

The next theorem studies the solution of the optimization
problem (12). For the sake of simplicity of notations, define

s(E) = max
||y||2=1

{
|a>y| × ‖My‖2

}
(13)

Theorem 2: Suppose E = {a +Mu | u ∈ Rn×n} is the
uncertainty region of the initial state and α∗ is the optimal
objective value of (12). Furthermore, define P ∗ as the unique
solution of the Lyapunov equation

(A+BKc)P (A+BKc)
> − P + aa> +M2 = 0 (14)

Then, the following statements hold:
1. (β, P ∗) is a feasible solution for (12), where

β = 2max
{
s(E), (λmax

M )2
}

(15)



2. 0 ≤ β − α∗ ≤
(
(λmax
M )2 − s(E)

)
+

Proof: The optimization problem (12) can be written as

min α (16a)
s.t. L(P, x) � αI, ∀x ∈ E (16b)

− αI � L(P, x), ∀x ∈ E (16c)
P � 0 (16d)

Notice that (16b) is equivalent to y>L(P, x)y ≤ α for every
x ∈ E and y such that ‖y‖2 = 1. This implies that (16b) is
equivalent to

y>L(P, 0)y + max
x=a+Mu
‖u‖2=1

(y>x)2 ≤ α (17)

for every y such that ‖y‖2 = 1. Now, consider

max
x=a+Mu
‖u‖2≤1

{(y>x)2} (18)

Using S-procedure, it can be easily verified that (18) is equal
to (|a>y|+ ‖My‖2)2. Therefore, (17) can be reduced to

y>L(P, 0)y + (|a>y|+ ‖My‖2)2 ≤ α (19)

Now, consider (16c). Similar to the previous case, this
constraint is equivalent to

− α ≤ y>L(P, 0)y + min
x=a+Mu
‖u‖2≤1

(y>x)2 (20)

for every y such that ‖y‖2 = 1. One can use strong duality
to show that

min
x=a+Mu
‖u‖2≤1

{(y>x)2} =
(
(|a>y| − ‖My‖2)+

)2
(21)

Therefore, (20) is equivalent to

− α ≤ y>L(P, 0)y +
(
(|a>y| − ‖My‖2)+

)2
(22)

Now, it follows from (19) and (22) that the inequalities

0 ≤ α+ y>L(P, 0)y +
(
|a>y| − ‖My‖2

)2
(23a)

0 ≤ α− y>L(P, 0)y − (|a>y|+ ‖My‖2)2 (23b)

should be satisfied for every y such that ‖y‖2 = 1 (note that
we did not use the “+” operator in the above equations).
Combining (23a) and (23b), one can verify that the inequality

2(|a>y|)‖My‖2 ≤ α (24)

is satisfied for every y such that ‖y‖2 = 1. This implies that

s(E) ≤ α (25)

Next, it will be proved that the defined pair of (β, P ∗) is
indeed feasible for (16). First, notice that since P ∗ satisfies
(14) and aaT +M2 � 0, it yields that P ∗ � 0. Now, the
goal is to show the feasibility of (16b) and (16c) via their
equivalence to (19) and (22), respectively. Combining the
definitions of β and P ∗ with (19) leads to the inequality

0 ≤ β + (a>y)2 + ‖My‖22 − (|a>y|+ ‖My‖2)2 (26)

This is equivalent to

2|a>y|‖My‖2 ≤ β (27)

which holds for every y such that ‖y‖2 = 1, due to the
definition of β. This implies that (β, P ∗) satisfies (16b).
Similarly, one can substitute β and P ∗ in (22) to derive the
inequality

0 ≤ β − (a>y)2 − ‖My‖22 + ((|a>y| − ‖My‖2)+)2 (28)

If |a>y| ≥ ‖My‖2, the above inequality holds due to (27).
Now, assume that |a>y| < ‖My‖2. It is useful to show that

(a>y)2 + ‖My‖22 ≤ β (29)

for every y such that ‖y‖2 = 1. Observe that

(a>y)2 + ‖My‖22 ≤ 2‖My‖22 ≤ 2(λmax
M )2 ≤ β (30)

which certifies that (29) holds for every feasible y. This
implies that (β, P ∗) satisfies (16c) and, hence, it is feasible
for (16). The second part of the theorem follows from the
definition of β and the fact that s(E) ≤ α∗ (due to (25)).

Remark 2: Notice that if s(E) ≥ (λmax
M )2, the pair

(β, P ∗) is an optimal solution of (16). One sufficient condi-
tion for the satisfaction of s(E) ≥ (λmax

M )2 is the inequality
‖Ma‖2 ≥ (λmax

M )2. Roughly speaking, this condition holds
for those ellipsoids with the properties that the ratio of their
largest and smallest diameters is not very large and that the
center of the ellipsoid is sufficiently far from the origin. For
example, it holds whenever the feasible region is equal to a
2-norm ball that does not include the origin.

Theorem 2 does not offer closed-form formulas for α∗ and
β. However, notice that only the matrix P ∗ is required for
the design of the distributed controller, and this matrix can
be efficiently found by solving the Lyapunov equation (14).
Based on the above analysis, the proposed method for finding
a high performance distributed controller for LTI systems
with an uncertain initial state can be summarized as follows:

1. Solve the Lyapunov equation (14) in order to find P ∗.
2. Solve the optimization problem (6) after replacing Pa

with P ∗ to obtain a distributed controller.

IV. LOWER BOUNDS ON OPTIMALITY GUARANTEE

So far, we have combined two convex optimization prob-
lems to design a distributed controller with the prescribed
sparsity structure. It is also argued that this distributed
controller would have a similar performance to the optimal
centralized one. In this section, this statement will be for-
malized by showing that the proposed method finds a dis-
tributed controller that maximizes the optimality guarantee.
In particular, Theorem 1 will be generalized to derive a lower
bound on the optimality guarantee of the designed distributed
controller for a system with an uncertain initial state.

Definition 3 ([24]): For a stable matrix X , define the
radius of stability as r(X) = inf0≤θ≤2π ‖(eiθ −X)−1‖−1.
It can be verified that r(X) > 0 and r(X) + ρ(X) ≤ 1.



Lemma 1 ([24], [25]): Assume that R satisfies the Lya-
punov equation XRXT −R+Y = 0 for a stable matrix X .
Then, the inequality

‖R‖2 ≤
‖Y ‖2
r(X)2

(31)

holds.

For every x ∈ E , define Px as the unique positive
semidefinite solution of

L(P, x) = 0 (32)

Lemma 2: The relation

‖P − Px‖2 ≤
α

r(A+BKc)2
(33)

holds for every x ∈ E and every feasible solution (α, P ) of
the optimization problem (12).

Proof: One can write

−αI � L(P, x) � αI (34)

for every x ∈ E . Subtracting L(Px, x) = 0 from (34) yields

− αI � L(P − Px, 0) � αI (35)

According to (35) and Lemma 1, one can write

‖P − Px‖2 ≤
‖L(P − Px, 0)‖2
r(A+BKc)2

≤ α

r(A+BKc)2
(36)

This completes the proof.
The following theorem is an extension of Theorem 1 for

systems with uncertain initial states.
Theorem 3: Assume that Q = In and R = Im. Consider

the optimal centralized gain Kc, an arbitrary stabilizing gain
Kd ∈ K, and a feasible solution (α, P ) for the optimiza-
tion problem (12). The controller u[τ ] = Kdx[τ ] has the
optimality guarantee µ for every initial state x ∈ E , where

µ =
1(

1 + ζ
√
C1(P,Kd) + γα

)2 (37)

and

ζ = max

{
κ(V )‖B‖2

(1− ρ(A+BKd))
√∑∞

τ=0 ‖xc[τ ]‖22
,

1− ρ(A+BKd) + κ(V )‖Kd‖2‖B‖2
(1− ρ(A+BKd))

√∑∞
τ=0 ‖uc[τ ]‖22

}
(38a)

γ =
‖Kc −Kd‖2F
r(A+BKc)2

(38b)

Proof: It yields that

trace{(Kc −Kd)Px(Kc −Kd)
T }

=trace{(Kc −Kd)P (Kc −Kd)
T }

+ trace{(Kc −Kd)(Px − P )(Kc −Kd)
T }

(39)

On the other hand, according to Lemma 2, one can verify
that

trace{(Kc −Kd)(Px − P )(Kc −Kd)
T } (40)

= trace{(Kc −Kd)
T (Kc −Kd)(Px − P )} (41)

≤ λmax(Px − P )trace{(Kc −Kd)
T (Kc −Kd)} (42)

≤ ‖P − Px‖2‖Kc −Kd‖2F (43)

≤ ‖Kc −Kd‖2F
r(A+BKc)2

α (44)

Hence, the relation

C1(Px,Kd) ≤ C1(P,Kd) +
‖Kc −Kd‖2F
r(A+BKc)2

α (45)

holds for every x ∈ E . The proof is completed using (45)
and Theorem 1.

Remark 3: Theorem 3 states that minimizing both α and
C1(P,K) increases the optimality guarantee of the designed
distributed controller. More specifically, if the uncertainty
region E is a singleton (M = 0), the derived lower bound
on the optimality guarantee is identical to the one introduced
in Theorem 1.

In this paper, we have not considered stochastic systems
that are subject to measurement and input disturbance noise.
For those systems, either the time average or the asymptotic
behavior of the states and inputs is often considered as a
measure of their performance, as opposed to the cost function
(2) used for deterministic systems. It can be observed that
if the system is subject to noise, the objective function
defined in (2) would be unbounded due to the summation
of non-vanishing noise covariances. Therefore, the choice of
the objective function in stochastic systems implies that the
optimal distributed controller is independent of the value of
the initial state. For such systems, the method introduced in
[21] can be used to design distributed controllers.

V. CASE STUDIES

In this section, the developed design procedure will be
applied to two case studies on multi-agent and power systems
to demonstrate its efficacy in different real-world problems.

A. Multi-Agent Systems

Consider N identical LTI systems, named agents, with
the following state-space representation in the continuous
domain:

ẋi(t) = Axi(t) +Bui(t) (46a)

yi(t) = Cxi(t) (46b)

where xi(t) and ui(t) denote the state and the input of agent
i at time t and yi(t) is the output that the controller can use
to design the feedback law. The agents are coupled through a
global objective, which is to maintain their relative positions
in the system. The communication among these agents is
captured via an undirected graph. If there exists an edge
between agents i and j, it means that both agents have
access to the difference of their outputs yi(t) − yj(t). Let



N(i) denote the set of neighbors of agent i, and consider the
control law

ui(t) =
∑

j∈N(i)

kij
(
yj(t)− yi(t)

)
(47)

There is no assumption on the symmetry of the control gain
and, therefore, it may occur that kij 6= kji. The structure of
the distributed controller is defined as

Kd(i, j) =

{
kij if j ∈ N(i)
0 if j 6∈ N(i)

(48)

for every pair of agents i and j.
The goal is to design a distributed controller Kd that

minimizes the objective function

Jc(Kd) =

∫ ∞
0

(
y(t)>Qy(t) + u(t)>Ru(t)

)
dt (49)

while ensuring the stability of the closed-loop system. Here,
y(t) and u(t) are the concatenation of the output and
input vectors of all agents, respectively. To illustrate the
performance of the proposed method on multi-agent systems,
consider the planar vertical takeoff and landing (PVTOL) of
a set of aircraft, where the model of each aircraft is given as
[26]:

Ẍi(t) = v(t), θ̈i(t) =
1

δ

(
sin θi(t) + vi(t) cos θi(t)

)
(50)

Note that X and θ are the horizontal position and angle
of aircraft i, respectively, and δ depends on the coupling
between the rolling moment and lateral acceleration of the
aircraft. Assuming that all agents are stabilized vertically, we
only study their horizontal position in this problem. Consider
the feedback rule

vi(t) = αẊi(t) + βθi(t) + γθ̇i(t) + ui(t) (51)

for the control of aircraft i. The first three terms in (51) are
used for the internal stability of the horizontal speed and
angle of each aircraft. The last term needs to be designed
using a controller with the structure delineated in (47) and
(48) such that the agents maintain their relative positions.

As an example, consider a system consisting of 4 aircraft
whose communication structure is in the form of a path
graph. This communication structure also defines the sparsity
of the to-be-designed distributed controller. Assume that the
desired distance between adjacent agents is equal to d. By
defining the state of aircraft i ∈ {1, 2, 3, 4} as

xi(t) = [Ẋi(t), θi(t), θ̇i(t)]> (52)

the linearized model of this system can be described as (46)
where

A =

 α β γ
0 0 1
α
δ

β+1
δ

γ
δ

 , B =

 1
0
1
δ

 (53)

and C = I [27]. Note that the parameters α, β, and γ are
used to guarantee the internal stability of each aircraft. As
explained in [27], for δ = 0.1, the values α = 90.62, β =

−42.15 and γ = −13.22 in the state feedback controller of
each agent ensure its internal stability. Since the agents have
access to their relative distance from their neighbors, define

zi(t) = [Xi(t)−Xi+1(t)− d, xi(t)>]> (54)

for i = 1, 2, 3 and z4(t) = x4(t). Based on the above
definition, the state-space model of the entire system can
be described as

ż(t)=


Ã H4 0 0

0 Ã H4 0

0 0 Ã H3

0 0 0 A


︸ ︷︷ ︸

Ã

z(t)+


B̃ 0 0 0

0 B̃ 0 0

0 0 B̃ 0
0 0 0 B


︸ ︷︷ ︸

B̃

u(t) (55)

Note that the vectors z(t) and u(t) are the concatenation of
zi(t) and ui(t) for all agents, respectively. The matrix H4

(or H3) is a 4 × 4 (or 3 × 3) matrix whose (i, j)th entry is
equal to −1 if (i, j) = (1, 2) (or (i, j) = (1, 1)) and is equal
to 0, otherwise. Finally, Ã and B̃ are defined as

Ã =


0 1 0 0
0 α β γ
0 0 0 1

0 α
δ

β+1
δ

γ
δ

 , B̃ =


0
1
0
1
δ

 (56)

The structure of the distributed controller for the system
described in (55) can be viewed as

Kd=


? 0 0 0 0 0 0 0 0 0 0 0 0 0 0
? 0 0 0 ? 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ? 0 0 0 ? 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0

 (57)

where each “?” corresponds to a to-be-designed free element
of the distributed controller. Since the goal is to bring each
aircraft to its pre-specified relative location as quickly as
possible with the least amount of effort, we define the
weighting matrix Q to be a diagonal matrix with Q(k, k)
equal to 100 if the kth element of x(t) corresponds to the
relative positions of neighboring agents and 1 otherwise.
Furthermore, we choose R to be an identity matrix with
appropriate dimension. Let the estimate of the initial state of
the whole system be equal to a vector a whose kth element
is uniformly drawn from the interval [−2 2]. Moreover, we
consider a maximum amount of 0.2× |a| for the estimation
error, where | · | is the entry-wise absolute value operator.
This means that the initial state of the system can reside
anywhere between a − 0.2 × |a| and a + 0.2 × |a|. It is
easy to observe that the smallest-volume outer ellipsoidal
approximation of this uncertainty region can be described
as E = {a + Mu : u ∈ R15×1, ‖u‖2 ≤ 1}, where M
is a diagonal matrix with the kth diagonal entry equal to
0.2× |ak| ×

√
15.

We discretize the system using the zero-order hold method
with the sampling time equal to 0.01 and then find the
distributed controller via the method presented in this paper.
The free entries of the designed distributed controller are
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Fig. 1: Formation of 4 aircraft over the horizontal axis with d = 4.

obtained as:

Kd(1, 1)= −8.84, Kd(2, 1)= 4.72, Kd(2, 5)= −7.30
Kd(3, 5) = 6.18, Kd(3, 9) = −4.90, Kd(4, 9) = 9.67

(58)
This controller makes the closed-loop system stable. We also
find the optimal centralized LQR controller for the continu-
ous system in order to measure the optimality guarantee of
the designed distributed controller. For 100 uniformly and in-
dependently chosen initial states from the uncertainty region,
the average cost function using the optimal centralized LQR
controller is 7793.49, whereas the average cost function for
the designed distributed controller is 8178.40. Moreover, the
average optimality guarantee of these trials is 95.28% with
the standard deviation of 0.32. Figure 1 shows a snapshot of
the coordination of the four aircraft for one of these trials.

B. Power Systems

In this case study, we consider the frequency control prob-
lem for power systems. The aim is to control the frequency of
the power system with a distributed controller that respects a
certain sparsity structure. This sparsity structure determines
which generators can share their rotor angle and frequency
with each other. We consider the IEEE 39-bus New England
Power System. The relationship between the rotor angle and
frequency of each generator can be described by the per-unit
swing equation

Miθ̈i +Diθ̇i = PMi − PEi (59)

where θi is the voltage (or rotor) angle at a generator bus
i (in rad), PMi

denotes the mechanical power input to the
generator at bus i (in per unit), PEi

shows the electrical
active power injection at bus i (in per unit), Mi is the
inertia coefficient of the generator at bus i (in pu-sec2/rad),
and Di is the damping coefficient of the generator at bus i
(in pu-sec/rad) [28]. The relationship between the electrical
active power injection PEi

and the voltage angles can be
described by a set of nonlinear equations, known as AC
power flow equations. In order to simplify these equations
and to linearize the representation of the system, a widely-
used method is to utilize the following DC power flow
equations as an approximation of the nonlinear relationship

(a) Fully Distributed (b) Localized

(c) Star (G10 in center) (d) Ring

Fig. 2: Communication structures studied for the IEEE 39-bus test system
(borrowed from [18]).
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Fig. 3: Optimality gap of the designed distributed controller for different
topologies.

between the active power injection and voltage angles:

PEi =

n∑
j=1

Bij(θi − θj) (60)

where n is the number of buses in the system and Bij is the
susceptance of the line (i, j). Writing (60) in a matrix form
gives rise to the following state-space representation of the
frequency control problem:[
θ̇(t)
ẇ(t)

]
=

[
0n×n In
−M−1L −M−1D

][
θ(t)
w(t)

]
+

[
0n×n
M−1

]
PM (t)(61)

where θ(t) = [θ1(t), . . . , θn(t)]
T and w(t) =

[w1(t), . . . , wn(t)]
T represent the state of the rotor

angles and the frequency of generators at time t,
respectively. Furthermore, L is the Laplacian matrix,
M = diag(M1, . . . ,Mn) and D = diag(D1, . . . , Dn). The
IEEE 39-bus system has 10 generators. We consider four
different topologies for the distributed controller: Fully
decentralized, Localized, Star, and Ring. Figure 2 visualizes



these structures on the map. The state and input weighting
matrices are chosen as I and 0.1× I , respectively.

We discretize the system using the zero-order hold method
with the sampling rate of 0.2. Consider an uncertainty region
in the form of a sphere that is centered at [1, 1, ..., 1]T and
has a radius ψ to be specified later. In order to show the per-
formance of the proposed method, we analyze the optimality
guarantee of the designed distributed controller for different
topologies with respect to the radius of the uncertainty region
varied from 0.1 to 6. For each radius and topology, we
consider 1000 independent trials with initial states uniformly
chosen from the spherical uncertainty region. The results
are summarized in Figure 3. It can be observed that the
ring topology has the best performance for different radii.
The maximum and minimum optimality guarantees for this
structure are equal to 99.97% and 97.70% (corresponding to
the radii 0.1 and 6), respectively. Moreover, the worst perfor-
mance corresponds to the fully decentralized controller with
the maximum and minimum optimality guarantees equal to
99.83% and 90.85%, respectively. Finally, it can be observed
that the star and localized structures have relatively similar
performances with respect to the radius of the uncertainty
region.

VI. CONCLUSION

This paper studies the optimal distributed control (ODC)
problem for deterministic discrete-time linear systems. The
goal is to design a static controller that obeys a user-defined
sparsity pattern for the system. This distributed controller
should maximize the performance of the controlled system
while stabilizing the closed-loop system. Recently, we have
developed an efficient method to design a distributed con-
troller whose state and input trajectories resemble those of
the optimal centralized controller, provided that the initial
state is known precisely. In this paper, we extend this method
to the case where the initial state belongs to an uncertainty re-
gion and, therefore, a robust and high-performance controller
is sought. It is proved that the designed distributed controller
yields a high optimality guarantee for every initial state
in the prescribed uncertainty region. Extensive simulations
are performed on two real-world problems, namely aircraft
formation as a multi-agent system and frequency control of
power systems, to demonstrate the efficacy of the developed
method.
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