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Damping with Varying Regularization in Optimal
Decentralized Control

Han Feng and Javad Lavaei

Abstract—We study the design of an optimal static decentral-
ized controller with a quadratic cost. The method involves a
combination of the classical local search in the space of control
policies, a gradual damping of the system dynamics and a gradual
variation of the objective parameter. The proposed strategy is a
particular type of homotopy continuation method that generates
a series of optimal distributed control (ODC) problems via a
continuous variation of some parameters. Instead of focusing on
tracking a specific trajectory of locally optimal controllers for
these ODC problems, we focus on the merging phenomenon of
several locally optimal controller trajectories with the aim of
finding the global solution of the original ODC problem. We
prove continuity and asymptotic properties of this method. In
particular, we prove that with enough damping, there is no
spurious locally optimal controller for a block-diagonal control
structure. This leads to a sufficient condition under which an
iterative algorithm can find a global solution to a class of
optimal decentralized control problems. The “damping property”
introduced in this analysis is shown to be unique for general
system matrices. To demonstrate the effectiveness of the proposed
technique, we present empirical observations for instances with
an exponential number of connected components, where damping
could merge all local solutions to the one global solution.

Index Terms—Decentralized control, optimal control, homo-
topy continuation method, damping, local search method.

I. INTRODUCTION

THE optimal decentralized control problem (ODC) adds
controller constraints to the classical centralized optimal

control problem. This addition breaks down the separation
principle and the classical solution formulas culminated in [1].
Although ODC has been proved intractable in general [2], [3],
the problem has convex formulations under assumptions such
as partially nestedness [4], positiveness [5], and quadratic in-
variance [6]. A recently proposed System Level Approach [7]
has convexified the problem in the space of system response
matrices. Convex relaxation techniques have been extensively
documented in [8], though it is challenging to solve large-
scale optimization problems with linear matrix inequalities and
those relaxations might not be exact.

As an alternative to convexification techniques with a high
computational complexity, local search methods are exten-
sively used in the practice of optimization. This approach
stands out for many problems in machine learning, where it is
empirically and theoretically shown that simple policy search
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methods with stochastic gradient descent are able to effectively
solve non-convex optimization or learning problem in practical
scenarios [9]–[11]. Many efficiency statements of local search
from the machine learning literature, however, are unlikely to
directly carry over to ODC, due to the recent investigation
of the topological properties of ODC in [12] showing that
— unlike many problems in machine learning — ODC can
have an exponential number of locally optimal solutions, and
therefore, the landscape of optimization is highly complex.

This paper attempts to delineate the boundary of tractable
ODC instances that are solvable by local-search methods,
by studying the evolution of locally optimal decentralized
controllers as the system dynamics and the objective cost
vary. We have recently proved that one variation of the
system dynamics called “damping” effectively reduces the
topological complexity of the set of stabilizing decentralized
controllers [12]. The main objective of the present paper is
to show how damping reduces the number of locally optimal
decentralized controllers. It is known that a large regularization
term may help to convexify and approximate the solution
of many control and optimization problems [13], [14]. We
show in this paper how damping can be combined with
varying regularization to improve a locally optimal decen-
tralized controller. The variation of the damping and regular-
ization parameters necessitates a study of the continuity and
asymptotic properties of the trajectories of the locally optimal
solutions. Notably, the analysis leads to the result that if the
system dynamics is dampened enough, as long as the condition
number of the regularization matrices remains bounded, there
is no spurious locally optimal controller, by which we mean
all locally optimal controllers are globally optimal for the
damped system. The damped system, therefore, is a tractable
approximate ODC problem. Furthermore, we show that this
globally optimal controller in the damped system can be
continuously connected to the globally optimal controller in
the original system via a variation of the homotopy method,
if the globally optimal decentralized controllers are unique
in the damping process. The observations of this study shall
shed light on the properties of local minima in reinforcement
learning, whose aim is to design optimal control policies in
an uncertain environment, and different local minima have
different practical behaviors.

This work is closely related to homotopy continuation meth-
ods. They are known to be appealing yet theoretically poorly
understood [15]. There is a limited literature of homotopy
methods in solving problems in control theory: in [16], the
author has mentioned the idea of gradually moving from a
stable system to the original system to obtain a stabilizing
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controller. The paper [17] has considered the H2 reduced-order
problem and proposed several homotopy maps and initializa-
tion strategies; in its numerical experiments, initialization with
a large multiple of −I was found appealing. However, no the-
oretical results are known for the optimal decentralized control
that explains when and what homotopy strategies are effective.
The difficulty of obtaining a convergence theory for a general
constrained optimal control problem can be appreciated from
the examples in [18]. Compared with those earlier works, we
analyze a specific type of continuation, namely, damping with
varying regularization, with the aim of eliminating some local
minima in the ODC problem. Our setting avoids some ill-
behaviors of the general homotopy setting mentioned in [18],
such as stable-unstable interlaces and discontinuous solution
paths. Moreover, instead of following a specific path during the
homotopy process, we focus on the evolution of several paths
and the movement of locally optimal solutions from one path
to another in the tracking process. The proposed technique
allows for (i) obtaining an approximate ODC that can be
solved using local-search to global optimality, (ii) obtaining
a sequential local-search method that can solve the original
ODC problem via starting from a fictitious ODC that is easy
to solve and gradually moving to the desirable ODC problem.
Our method relies on the crucial “damping property”, which
will be shown unique in preserving the stability constraints.

The remainder of this paper is organized as follows. No-
tations and problem formulations are given in Section II.
Continuity and asymptotic properties of the proposed damping
strategies are outlined in Section III and Section IV, respec-
tively. The details of the proofs are collected in Section V.
Numerical experiments are detailed in Section VI, followed
by concluding remarks in Section VII.

II. PROBLEM FORMULATION

We study the optimal decentralized control problem (ODC)
with a static controller and a quadratic cost. Consider the linear
time-invariant system

ẋ(t) = Ax(t) +Bu(t),

where A ∈ Rn×n and B ∈ Rn×m are real matrices of
compatible sizes. The vector x(t) is the state of the system
with an unknown initialization x(0) = x0, where x0 is
modeled as a random variable with zero mean and a positive
definite covariance E[x(0)x(0)>] = D0 (where E[·] denotes
the expectation operator). The control input u(t) is to be
determined via a static state-feedback law u(t) = Kx(t) with
the gain K ∈ Rm×n such that some quadratic performance
measure is maximized. Given a controller K, the closed-loop
system is

ẋ(t) = (A+BK)x(t).

A matrix is said to be stable if all its eigenvalues lie in the
open left half of the complex plane. The controller K is said
to stabilize the system (A,B) if A + BK is stable. ODC
optimizes over the set of structured stabilizing controllers

KS = {K : A+BK is stable,K ∈ S}, (1)

where S ⊆ Rm×n is a linear subspace of matrices, often
specified by fixing certain entries of the matrix to zero. In
that case, the sparsity pattern can be equivalently described
with the indicator matrix IS , whose (i, j)-entry is defined to
be

[IS ]ij =

{
1, if Kij is free
0, if Kij = 0.

The structural constraint K ∈ S is then equivalent to
K ◦ IS = K, where ◦ denotes entry-wise multiplication. In
the following, we will consider a sequence of damped cost
functions with a varying regularization, which is defined as

J(K,α) =E
∫ ∞
0

[
e−2αt

(
x̂>(t)Qx̂(t) + û>(t)Rαû(t)

)]
dt

s.t. ˆ̇x(t) = Ax̂(t) +Bû(t)

û(t) = Kx̂(t).
(2)

where Q � 0 is positive semi-definite and the varying
regularization Rα � 0 is positive definite for all α ≥ 0.
The expectation is taken over x0. By a change of variable
x(t) = e−αtx̂(t) and u(t) = e−αtû(t), the cost J(K,α) can
be equivalently written as

J(K,α) =E
∫ ∞
0

[
x>(t)Qx(t) + u>(t)Rαu(t)

]
dt

s.t. ẋ(t) = (A− αI)x(t) +Bu(t)

u(t) = Kx(t),

(3)

ODC is commonly defined for α = 0 as optimizing (3) over
the set of stabilizing structured controllers (1). Formally

min
K

J(K, 0)

s.t. K stabilizes (A,B)

K ∈ S.

In our setting, the notion of stability is relaxed for a positive
α. We define K as a stabilizing solution to (3) if K stabilizes
the system (A − αI,B), in which case formulation (2) is
also meaningful. Formally, we define ODC with damping and
varying regularization as

min
K

J(K,α)

s.t. K stabilizes (A− αI,B)

K ∈ S.
(4)

Our relaxed notion of stability coincides with ODC when
α = 0. We emphasize that the relaxation of stability in the
damped regime is a solution method, while the aim remains
in obtaining an optimal stabilizing controller for the undamped
system with α = 0. We shall denote the problem (4) by
ODC(α). We write ODC(α,K0) if additionally a stabilizing
controller K0 is given.

The two equivalent formulations (2) and (3) motivate the
notion of “damping property”. We make a formal statement
below.

Lemma 1. The function J(K,α) defined in (2) and (3)
satisfies the following “damping property”: assuming that K



3

stabilizes the system (A − αI,B), the following statements
hold for all β > α:
• K stabilizes the system (A− βI,B),
• J(K,β) < J(K,α) if Rβ � Rα.

Proof. From the formulation (4), when A−αI+BK is stable
and β > α, it holds that A− βI +BK = (A− αI +BK)−
(β − α)I is stable. Therefore, J(K,β) is well-defined. From
formulation (2), J(K,β) < J(K,α) when Rβ � Rα.

We define Rα to be monotonically decreasing if Rβ � Rα
for all β > α ≥ 0. We use K∗(α) to denote the set of globally
optimal solutions of (4). We further introduce the set of locally
optimal solutions K†(α), which contains those controllers K
that satisfy first-order optimality conditions (5a)-(5d) (see [19]
for their derivation):

(A−αI +BK)>Pα(K)+

Pα(K)(A− αI +BK) +K>RαK +Q = 0
(5a)

Lα(K)(A−αI +BK)>+

(A− αI +BK)Lα(K) +D0 = 0
(5b)[

(B>Pα(K) +RαK)Lα(K)
]
◦ IS = 0 (5c)

K ◦ IS = K. (5d)

The matrices Pα(K) and Lα(K) are the closed-loop Grami-
ans. The above conditions provide a closed-form expression
for the cost

J(K,α) = tr(D0Pα(K)), (6)

where tr(·) denotes the trace of a matrix. Given α, the
equations (5a)-(5d) and (6) are algebraic, involving only
polynomial functions of the unknown matrices K, Pα and
Lα. The matrices Pα and Lα are written as a function of K
because they are uniquely determined from (5a) and (5b) given
a stabilizing controller K. When the context is clear, we drop
the implicit dependence on K in the notations Pα and Lα.

The paper studies the properties of K∗(α), K†(α), and
J(K,α) for any control K belonging to K∗(α) or K†(α).
To motivate the study of K†(α), Figure 1 illustrates the
evolution of many locally optimal distributed controllers for
a particular system as α varies (see Section VI for details
on the experiment). It is known that systems of this type
have a large number of locally optimal controllers [12].
Figure 1a plots selected trajectories of J(K,α) against α,
where K ∈ K†(α). The selected trajectories are connected to a
stabilizing controller in K†(0). The lowest curve corresponds
to J(K∗(α), α). Figure 1b plots the distance of the selected
K ∈ K†(α) from the controller K ∈ K∗(α).

Figure 1 illustrates the property that modest damping causes
the locally optimal trajectories to “collapse” to each other. This
attractive phenomenon suggests an improvement strategy for
ODC by varying the damping parameter and an initialization
strategy by continuation from a highly damped ODC problem.
The two strategies are detailed in Algorithm 1 and Algo-
rithm 2. Algorithm 1 has the potential to improve the locally
optimal controllers obtained from many other methods. The
outcome of the algorithm is plotted in Figure 2. Algorithm 2
avoids many unnecessary local optima and has been used in
H2 reduced-order model [17]. Algorithm 2 starts with a large

(a) Locally optimal cost trajectory against the damping parameter

(b) Distance between K†(α) and K∗(α)

Fig. 1. Samples of locally optimal cost and locally optimal controller
trajectories of system in equation (27) as the damping parameter α varies.

Fig. 2. Selected cost trajectories of Algorithm 1 applied to several locally
optimal controllers. The system is described in equation (27). All curves are
merged to the blue curve after the damping parameter α is increased beyond
0.05. When decreasing α to 0, no matter where the inital optimal controller
is, the algorithm tracks the best blue curve.
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Algorithm 1 Improving an Existing Stabilizing Controller:
The Forward-Backward Method

Input: J(K,α) and K0 ∈ S that stabilizes the system
(A,B).
Output: A potentially improved K0 ∈ K†(0).
Select a list of parameters 0 = α0 < α1, . . . , < αT .
for t← 1, . . . , T do

Obtain a Kt∈K†(αt) by solving ODC(αt,Kt−1) using
local search.
end for
for t← T−1, T−2, . . . , 0 do

Obtain a Kt∈K†(αt) by solving ODC(αt,Kt+1) using
local search.
end for

Algorithm 2 Obtain a Stabilizing Controller: The Backward
Method

Input: J(K,α)
Output: A potentially stabilizing K0 ∈ K†(0).
Select a list of parameters 0 = α0 < α1, . . . , < αT , where
αT is large enough such that KT = 0 stabilizes the system
(A− αT I,B).
for t← T−1, T−2, . . . , 0 do

Obtain a Kt∈K†(αt) by solving ODC(αt,Kt+1) using
local search.
end for

enough α for which K = 0 is an initial stabilizing controller
in the set S and iteratively solves for a better controller
while reducing the damping parameter α. The improvement
at α = αt is achieved using local-search and the initialization
Kt+1 from the previous step. Algorithm 1 is different from
Algorithm 2 in that it starts with a potentially undesirable
controller for α = 0 and gradually increases α to obtain
an improved optimal controller for a highly-damped system
and then applies a variant of Algorithm 2 to backtrack that
controller to a globally optimal controller for α = 0.

The granularity of the of the space for α, namely
{α0, α1, . . . , αT }, is not essential as long as the discretiza-
tion step is small enough so that the algorithm can follow
the continuous paths. Admittedly, the literature of numerical
continuation methods is rich with appealing predictor-corrector
and piecewise-linear methods [20], and they can be applied in
the tracking of K†(α) and K∗(α). Nevertheless, the paper
aims to analyze the possibility of using local search to locate
a better path, as opposed to following all paths closely.
The potential improvement of the above strategies with more
sophisticated numerical continuation methods is left as a future
direction of research.

Due to the NP-hardness of ODC, one cannot expect any
guarantee for producing a globally optimal, or even a stabi-
lizing, decentralized controller, unless certain conditions are
met, which will be discussed later. The breakdown of these
strategies will be discussed in Section VI. In Section III, we
first prove the continuity of the trajectories, which is the pre-
requisite for trajectory tracking.

III. CONTINUITY

This section studies the continuity properties of K∗(α)
and K†(α). The key notion of hemi-continuity captures the
evolution of parametrized optimization problems.

Definition 1. The set valued map Γ : A → B is said
to be upper hemi-continuous at a point a if for any open
neighborhood V of Γ(a) there exists a neighborhood U of
a such that Γ(U) ⊆ V .

A related notion of lower hemi-continuity is provided in
Section V. A set-valued map is said to be continuous if it is
both upper and lower hemi-continuous. A single-valued func-
tion is continuous if and only if it is upper hemi-continuous.
We restate a version of Berge Maximum Theorem with a
compactness assumption from [21].

Lemma 2 (Berge Maximum Theorem). Let A ⊆ R and S ⊆
Rm×n. Assume that J : S ×A → R is jointly continuous and
Γ : A → S is a compact-valued correspondence. Define

K∗(α) = arg min{J(K,α)|K ∈ Γ(α)}, for α ∈ A,
J(K∗(α), α) = min{J(K,α)|K ∈ Γ(α)}, for α ∈ A.

If Γ is continuous at some α ∈ A, then J(K∗(α), α) is
continuous at α. Furthermore, K∗ is non-empty, compact-
valued, closed, and upper hemi-continuous.

Berge Maximum Theorem does not trivially apply to ODC:
the set of stabilizing controllers is open and often unbounded.
The difficulty is not essential and can be overcome by restrict-
ing the relevant map to a lower level-set.

Theorem 1. Assume that Rα is continuous in α and that
K∗(0) is non-empty. Then, the set K∗(α) is non-empty for
all α > 0. Furthermore, K∗(α) is upper hemi-continuous
and the optimal cost J(K∗(α), α) is continuous. If Rα is
monotonically decreasing, J(K∗(α), α) is strictly decreasing
in α.

Proof. When K∗(0) is non-empty, there is an optimal decen-
tralized controller for the undamped system. With the set of
stabilizing controller non-empty, we can apply K∗(0) to the
damped system and conclude that

J(K∗(α), α) ≤ J(K∗(0), α) <∞.

The inequality above assumes the existence of the globally
controller for all values of the damping parameter α. This is
true because the lower-level set of J(K,α) is compact [22].
Precisely, define ΓM (α) to be

ΓM (α)={K ∈ S :A−αI+BK stable, J(K,α) ≤M}. (7)

The set-valued function ΓM is compact-valued for all fixed
α given a fixed M . We select any M > J(K∗(0), α) and
optimize J(K,α) instead over K ∈ ΓM (α) without losing
any globally optimal controller. The continuity of ΓM (α) at α
for almost all M is proved in Section V. Berge maximum
theorem then yields the desired continuity of K∗(α) and
J(K∗(α), α). When Rα is monotonically decreasing, the
“damping property” ensures that J(K∗(α), α) is monotoni-
cally decreasing.
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The above argument can be extended to characterize all
locally optimal controllers. A caveat is the possible existence
of locally optimal controllers whose costs approaching infinity
in the damped problem. Their existence does not contradict the
damping property — damping can introduce locally optimal
controllers that are not stabilizing without the damping.

Theorem 2. Assume that Rα is continuous in α and that
K†(0) is non-empty. Then, the set K†(α) is nonempty for all
α > 0. Suppose furthermore that at an α0 > 0, we have

lim
ε→0+

sup
α∈[α0−ε,α0+ε]

sup
K∈K†(α)

J(K,α) <∞.

Then, K†(α) is upper hemi-continuous at α0 and the optimal
cost J(K†(α), α) is upper hemi-continuous at α0.

Proof. The fact that K†(α) is non-empty follows from the ex-
istence of globally optimal controllers in Theorem 1. Consider
the parametrized optimization problem

min ‖∇J(K,α)‖
s.t. K ∈ ΓM (α), (8)

where ‖ · ‖ denotes the 2-norm of a vector. The assumption of
the theorem ensures the existence of a real number M and ε >
0 such that M > J(K,α) for K ∈ K†(α) where α ∈ [α0 −
ε, α0+ε]. This choice of M guarantees that the formulation (8)
does not cut off any locally optimal controller. As proved in the
Section V, ΓM (α) is continuous at α0 for almost all M , and
a large M can be selected to make ΓM (α) continuous at α0.
Berge Maximum Theorem applies to conclude that K†(α) is
upper hemi-continuous. Since J(K,α) is jointly continuous in
(K,α), the map J(K†(α), α) is upper hemi-continuous.

IV. ASYMPTOTIC PROPERTIES

In this section, we state asymptotic properties of the local
solutions K†(α). They shed light on the general shape of the
trajectories illustrated in Figure 1.

The following theorem characterizes the evolution of locally
optimal controllers for a specific sparsity pattern. It also
justifies the practice of random initialization around zero and
our initialization strategy in Algorithm 2.

Theorem 3. Suppose that the sparsity pattern IS is block-
diagonal with square blocks and that Rα has the same sparsity
pattern as IS for all α. If the smallest eigenvalue of Rα is
bounded away from zero for all α, then, all points in K†

converge to the zero matrix as α→∞. Furthermore, if Rα is
monotonically decreasing, then J(K,α) → 0 as α → ∞ for
all K ∈ K†(α).

Proof. Refer to Section V.

Not only do all locally optimal controllers approach zero,
the problem is also convex over bounded regions with enough
damping. We use ‖K‖ to denote the operator 2-norm of the
matrix K, which is equal to K’s largest singular value.

Theorem 4. Suppose that the condition number of Rα is
uniformly bounded for all α ≥ 0. Then, for any given
r > 0, the Hessian matrix ∇2J(K,α) is positive definite over
‖K‖ ≤ r for all large α.

Proof. Refer to Section V.

Corollary 1. Under the assumption of Theorem 3 and Theo-
rem 4, there is no spurious locally optimal controller for large
α, that is, K†(α) = K∗(α) for all large values of α.

Proof. For any given r > 0, all controllers in the ball B =
{K : ‖K‖ ≤ r} are stabilizing when α is large. As a result,
stability constraints can be relaxed over B. Furthermore, from
Theorem 3, when α is large, all locally optimal controllers will
be inside B. From Theorem 4, the objective function becomes
convex over B for large enough α. These observations imply
that local and global solutions coincide.

Note that with damping, the regularization matrix Rα does
not need to go to infinity in order to convexify the problem.
Corollary 1 implies that with a large damping and a well-
conditioned Rα, the problem is tractable.

Corollary 2. Under the same assumption of Theorem 3 and
Theorem 4, suppose further that the globally optimal solution
is unique for all damping parameters, namely, K∗(α) is a
singleton set for all α ≥ 0. Then, the trajectory K∗(α) is
continuous. Moreover, if there is an ε > 0 such that the
local search method initialized at ε distance away from K∗(α)
converges to K∗(α), then Algorithm 1 and Algorithm 2 output
the globally optimal stabilizing controller in K∗(0) with a
proper discretization of the α space.

A proper discretization 0 = α0 < α1, . . . , < αT has a
large αT for which the “no spurious property” of Corollary 1
holds. A proper discretization further requires αt and αt+1 to
be reasonably close to guarantee that the local search method
initialized at Kt+1 is able to converge to Kt in Algorithm 1
and Algorithm 2.

Proof. We have shown in Theorem 1 that K∗(α) is upper
hemi-continuous. With the singleton assumption, we conclude
the continuity of K∗(α) because a single-valued function is
continuous if and only if it is upper hemi-continuous. We
choose a discretization 0 = α0 < α1, . . . , < αT , where
αT is large enough for which the “no spurious property” of
Corollary 1 holds. As a result, Algorithm 1 and Algorithm 2
are able to locate the continuous globally optimal trajectory
K∗(α) at α = αT . To obtain K∗(0), we follow the continuous
K∗(α) in the manner of Algorithm 1 and Algorithm 2, where
αt and αt+1 are close enough so Kt+1 lies in the region
where the local search method initialized at Kt+1 converges
to Kt. This discretization inductively yields a serious of
controllers Kt, for t = T, T − 1, . . . , 0 that all lie on the
path K∗(α), for α ∈ [0, αT ].

All the theorems above rely on the “damping property” in
Lemma 1. It is worth commenting that damping the system
with −I is almost the only continuation method for general
system matrices “A” that achieves the monotonic increasing
of stable sets. This will be formalized below.

Theorem 5. When n ≥ 3, for any n-by-n real matrix H that
is not a multiple of −I , there exists a stable matrix A for
which A+H is unstable.
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The proof is given in Section V. This theorem justifies the
use of −αI as the continuation parameter and is the reason
that our setting avoids the undesirable behaviors of homotopy
documented in [18]. Note, however, matrices other than −I
may be used if the system is structured; if A has certain
structures, there are non-trivial matrices H for which A+ tH
is always stable when t > 0.

A. Discrete-time Stochastic Systems

We detour briefly to discuss damping with varying regular-
ization in discrete-time stochastic systems. This shall illustrate
the difference between discrete- and continuous-time systems.
Consider the stochastic system

x[t+ 1] = Ax[t] +Bu[t] + d[t]

under a static feedback policy u[t] = Kx[t], where K is to be
designed such that the damped objective

J(K,α) = lim
t→∞

E
[
α2t
(
x[t]>Qx[t] + u[t]>Rαu[t]

)]
is minimized. The damping parameter α belongs to the interval
[0, 1]. Assume that the random variables d[t], t = 0, 1, 2, . . . ,
are independent and d[t] has the covariance matrix Σα,d[t].
After closing the loop, one can write

x[t+ 1] = (A+BK)t+1x[0] +

t∑
τ=0

(A+BK)(t−τ)d[τ ].

When ‖αA+ αBK‖ < 1, we have

J(K,α) = lim
t→∞

E tr[(Q+K>RαK)x[t]x[t]>α2t]

= tr

[
(Q+K>RαK) ·

lim
t→∞

t∑
τ=0

(αA+αBK)t−τΣα,d[τ ]α2τ (αA+αBK)>(t−τ)

]
.

Assuming that Σα,d[τ ]α2τ = Σd, we have the simplified
expression of the problem as follows,

min
K

J(K,α) = tr[(K>RαK +Q)Pα(K)],

s.t. (αA+αBK)Pα(K)(αA+αBK)>−Pα(K)+Σd = 0,

α‖(A+BK)‖ < 1.
(9)

Note that we scaled the matrices A,B and the covariances
matrices at the same time. Moreover, the formulation is not
linear in K or in Pα. Still, we deduce weaker asymptotic
results with an additional bounded assumption. The proof of
the lemma is given in Section V. We use λmin(·) to denote
the minimum eigenvalue of a symmetric matrix.

Lemma 3. Suppose that λmin(Rα) ≥ ε > 0 for all α ∈ [0, 1].
Assume further that a locally optimal solution Kα to (9) exists
and is uniformly bounded for all α ∈ [0, 1]. Then, as α→ 0,
it holds that Pα(Kα)→ Σd and Kα → 0.

The above lemma suggests an analogue of Algorithm 1
and Algorithm 2 in the discrete setting, where the damping
parameter α is discretalized over [0, 1].

V. PROOFS

This section collects the proofs of the results in the previous
sections.

Lemma 4 and Lemma 5 below prove the continuity of the
lower level-set map ΓM defined in (7). The continuity of ΓM
is the pre-requisite for applying the Berge Maximum Theorem.
The reader is referred to [21] for an accessible treatment of
relevant definitions.

Recall the notion of upper hemi-continuity of a set valued
map Γ : A→ B in Definition 1. If B is compact, upper hemi-
continuity is equivalent to the graph of Γ being closed, that is,
if an → a∗ and bn ∈ Γ(an)→ b∗, then b∗ ∈ Γ(a∗). Lemma 4
resolves the upper hemi-continuity of ΓM .

Lemma 4. Assume that Rα is continuous in α and that for
a given M > 0, ΓM (α) is not empty for all α ≥ 0. Then,
ΓM (α) is an upper hemi-continuous set-valued map.

Proof. From [22], ΓM (α) is compact for all α. To characterize
the continuity of Γ at a point α∗ ≥ 0, it suffices to assume that
the range of ΓM is compact and, therefore, the sequence char-
acterization of upper hemi-continuity applies. Suppose that
αi → α∗, select a sequence of Ki ∈ ΓM (αi) that converges
to K∗. The continuity of J(K,α) implies J(K∗, α∗) ≤ M .
The fact that the cost is bounded implies that A−α∗I+BK∗

is stable. Since subspaces of matrices are closed, K∗ ∈ S. We
have verified all conditions for K∗ ∈ ΓM (α∗), and therefore
ΓM is upper hemi-continuous.

A complementary notion of upper hemi-continuity is lower
hemi-continuity, which is stated below.

Definition 2. The set valued map Γ : A → B is said
to be lower hemi-continuous at a point a if for any open
neighborhood V intersecting Γ(a) there exists a neighborhood
U of a such that Γ(x) intersects V for all x ∈ U .

Equivalently, for all am → a ∈ A and b ∈ Γ(a), there exists
amk

subsequence of am and a corresponding bk ∈ Γ(amk
),

such that bk → b. The map ΓM is lower hemi-continuous for
almost all M .

Lemma 5. At any given α∗ ≥ 0, ΓM (α) is lower hemi-
continuous at α∗ except when M ∈ {J(K,α∗) : K ∈
K†(α∗)}, which is a finite set of locally optimal costs.

Proof. To prove by contradiction, consider a sequence αi →
α∗ and a matrix K∗ ∈ ΓM (α∗), for which there exists no
subsequence of αi and Ki ∈ ΓM (αi) such that Ki → K∗.
We must have

• J(K∗, α∗) = M — otherwise by the continuity of
J , J(K∗, αi) < M for large i and, since the set of
stabilizing controllers is open, K∗ ∈ ΓM (αi) for large
i, which is a contradiction.

• K∗ must be a local minimum of J(K,α∗) — otherwise
there exists a sequence Kj → K∗ with J(Kj , α

∗) < M
and, by the continuity of J , there exists a sequence
of large enough indices nj , j = 1, 2, . . . , such that
J(Kj , αnj ) < M ; the sequence Kj ∈ ΓM (αnj ) con-
verges to K∗.
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The argument above implies that M is the cost of some locally
optimal controllers at α∗. Because given α∗, J(K,α∗) can be
described as a linear function in terms of K over an algebraic
set given by (6), the cost of locally optimal controller can take
finitely many values.

Proof of Theorem 3. Recall the expression of the objective
function (2), the first-order necessary conditions (5a)-(5d),
and (6). As α increases, some local solutions may disappear,
some new local solutions may appear. The appearance cannot
occur infinitely often because the equations (5a)-(5d) are
algebraic. Suppose that when α is greater than α0, the number
of local solutions does not change. The damping property
ensures the following for β > α > α0:

max
K∈K†(β)

J(K,β) ≤ max
K∈K†(α)

J(K,β)

The right-hand side of the above inequality optimizes over a
fixed, finite set of controllers and approaches zero as β →
∞ due to (2) and the dominated convergence theorem. The
left-hand side, therefore, also converges to zero as β → ∞.
From (6) and the assumption that D0 is positive definite, we
have ‖Pβ(K)‖ → 0 for all K ∈ K†(β) as β →∞.

The assumption on sparsity allows the expression of the
locally optimal controllers in (5c) as

K = −R−1α ((B>Pα(K)Lα(K)) ◦ IS)(Lα(K) ◦ IS)−1.

Especially, we bound

‖BK‖ ≤ eα(K) · λmin(Lα(K))−1,

where

eα(K) = ‖BR−1α ‖ · ‖B>Pα(K)Lα(K)‖.

The term ‖BR−1α ‖ is bounded due to the assumption that the
minimum eigenvalue of Rα is bounded away from zero. Pre-
and post-multiply (5b) by the unit eigenvector v of the smallest
eigenvalue of Lα(K) yields

λmin(Lα(K))(2a− 2v>(A+BK)v) = v>D0v. (10)

Therefore,

λmin(Lα(K)) ≥ λmin(D0)

2α+ 2‖A+BK‖

≥ λmin(D0)

2α+ 2‖A‖+ 2‖BK‖

≥ λmin(D0)

2α+ 2‖A‖+ 2eα(K)λmin(Lα(K))−1,

which simplifies to

λmin(Lα(K)) ≥ λmin(D0)− 2eα(K)

(2α+ 2‖A‖)
(11)

Take the trace of (5b), consider the estimate

2n‖A‖‖Lα‖+tr(D0) ≥ 2‖A‖ tr(Lα)+tr(D0)

≥ 2α tr(Lα)+2 tr[BR−1α ((B>PαLα)◦IS)(Lα◦IS)−1Lα]

≥ 2α tr(Lα)− 2eα(K) tr[(Lα◦IS)−1Lα]

= 2α tr(Lα)− 2eα(K)n

≥ 2α‖Lα‖ − 2n‖BR−1α ‖‖B>‖‖Pα‖‖Lα‖, (12)

where for clarity we drop the implicit dependence on K in
Lα and Pα. The second and the third inequalities use the
bound | tr(AL)| ≤ ‖A‖ tr(L) for a positive definite matrix L
and any matrix A. The next equality in the above sequence
follows from the assumption that IS is block diagonal. The
estimate (12), combined with the previous argument that
‖Pα‖ → 0, implies that ‖Lα‖ → 0 and thereby, eα(K)→ 0.
The inequality (12) further implies

‖Lα‖ ≤
tr(D0)

2a− 2n‖A‖ − 2n‖BR−1α ‖‖B>‖‖Pα‖
, (13)

for a small enough Pα. Combining (11) and (13) leads to

‖K‖ ≤ ‖R−1α ‖ · ‖(B>PαLα)◦IS‖ · ‖(Lα◦IS)−1‖
≤ ‖R−1α ‖ · ‖B>‖ · ‖Pα‖ · ‖Lα‖ · λmin(Lα)−1

≤ ‖R−1α ‖ · ‖B>‖ · ‖Pα‖

× tr(D0)

2α− 2n‖A‖ − 2n‖BR−1α ‖‖B>‖‖‖Pα‖

× (2α+ 2‖A‖)
λmin(D0)− 2eα(K)

,

which converges to 0 as α→∞.

Proof of Theorem 4. We use ⊗ to denote the Kronecker
project of two matrices and vec to denote the vectorized
operation that stack the columns of a matrix together into a
vector. We make use of the vectorized Hessian formula in the
following lemma.

Lemma 6 (From [19]). Define jα : Rm·n → R by
jα(vec(K)) = J(K,α). The Hessian of jα is given by the
formula

Hα(K) = 2
{

(Lα(K)⊗Rα) +Gα(K)> +Gα(K)
}
, (14)

where

Gα(K) =[I ⊗ (B>Pα(K) +RαK)]×
[I ⊗ (A− αI +BK) + (A− αI +BK)⊗ I]

−1

(In,n + P (n, n))[Lα(K)⊗B]

and P (n, n) is an n2 × n2 permutation matrix.

We first show that Hα(K) in Lemma 6 is positive definite
for any fixed K when α is large. Recall the definition of Lα
and Pα in (5a)-(5b) and apply the triangle inequality:

2α‖Lα(K)‖ ≤ ‖D0‖+ 2‖A+BK‖‖Lα(K)‖,
2α‖Pα(K)‖ ≤ ‖Q‖+ 2‖A+BK‖‖Pα(K)‖+ ‖Rα‖‖K‖2.

The above inequalities imply ‖Pα(K)‖/‖Rα‖ → 0 and
‖Lα(K)‖ → 0 as α → ∞. We now bound the minimum
eigenvalue of Lα(K). Let v be the unit eigenvector of Lα(K)
corresponding to λmin(Lα(K)); pre- and post-multiply (5b)
by v; we obtain

λmin(Lα(K)) ≥ v>D0v

2α− 2v>(A+BK)v

≥ λmin(D0)

2α+ 2‖A+BK‖
. (15)
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The first Hessian term Lα(K) ⊗ Rα in (14) can be lower
bounded with (15). Due to the assumption that Rα has a
uniformly bounded condition number, there exists a constant
δ > 0 such that λmin(Rα)/‖Rα‖ ≥ δ for all α ≥ 0. Therefore,

λmin (Lα(K)⊗Rα) = λmin(Lα(K)) · λmin(Rα)

≥ λmin(D0)

2α+ 2‖A+BK‖
· δ · ‖Rα‖.

We bound the norm of the second and the third Hessian terms
‖Gα(K)‖ as follows:

‖Gα(K)‖ ≤ ‖I ⊗ (B>Pα(K) +RαK)‖
× ‖ [I ⊗ (A− αI +BK) + (A− αI +BK)⊗I]

−1 ‖
× ‖ [In,n + P (n, n)] [Lα(K)⊗B]‖

. ‖Rα‖(1 + ‖Pα‖/‖Rα‖)×
(−λmax (I⊗(A−αI +BK) + (A−αI +BK)⊗I))−1×
‖Lα(K)‖

. ‖Rα‖(2α)−1‖Lα(K)‖,

where . hides constants that do not depend on α. Comparing
the two estimates above, we find that the first term Lα(K)⊗
Rα in (14) dominates the following Gα(K)> +Gα(K) with
a large α for all bounded K. Therefore, the Hessian Hα(K)
is positive definite over bounded K when α is large. Note
that Hα(K) is the Hessian of the objective function when
the controller is centralized. The conclusion carries over the
decentralized controller because the Hessian for the decentral-
ized controller is a principal sub-matrix of the Hessian for the
centralized controller.

Proof of Lemma 3. We use the Einstein notation where sub-
script variables that appear twice in a monomial are summed
over and the subscripts that appear once are free over the
corresponding set of indices. We use the lower-case letters
to denote the entries of the corresponding upper-case letter
matrices and write A = (aij), B = (bij),Kα = (kij),Σd =
(σij), Pα = (pij), Rα = (rij), Q = (qij). The optimal
solution Kα satisfies the first-order necessary condition to be
derived below:

0 =
∂J

∂kij
=
∂[(kbarbckcd + qad)pad]

∂kij

= (rickcd)pjd + (kbarbi)paj + (kbarbckcd + qad)
∂pad
∂kij

.

(16)

The constraints in (9) may be written as

α2(aab + backcb)pbd(aed + befkfd)− pae + σae = 0 (17)

Taking its partial derivatives of kij yields

2α2baipjd(aed + befkfd)+

α2(aab + backcb)
∂pbd
∂kij

(aed + befkfd)−
∂pae
∂kij

= 0
(18)

By assumption, the entries of the controller kij are bounded as
α→ 0. Hence, (17) implies that Pα(Kα)→ Σd as α→ 0 and
is consequently bounded. This, combined with (18), implies
that the partial derivatives of Pα(K) with respect to K vanish

as α→ 0. This implies that the first two terms in (16), which
are both RαKαPα(K)> in matrix form, converge to zero.
Because Pα(K) and Rα are invertible, Kα → 0 as α→ 0.

To prove Theorem 5, define the set of stable directions as

H={H : A+tH is stable for all stable A and t ≥ 0}, (19)

where A and H are n-by-n real matrices.

Lemma 7. All matrices in H are similar to a diagonal matrix
with non-positive diagonal entries. Especially, they cannot
have complex eigenvalues.

Proof. When t is large, A+ tH is a small perturbation of tH .
Thus, the eigenvalues of H must be in the closed left half-
plane. With a suitable similar transformation, assume that H
is in the real Jordan form. We first consider the case when
the dimension n = 2, and we emphasize the dimension in the
subscript in H2 and A2. To prove for contradiction, assume
that H2 is not diagonalizable. The non-diagonal real Jordan
form of H2 has the following possibilities:

• H2 =

[
h 1
0 h

]
, where H2 has real eigenvalue h < 0 of

multiplicity 2: Let A2 =

[
4h −2

10h2 −3h

]
, which is stable

because tr(A2) = h < 0 and det(A2) = 8h2 > 0. We

have A2+tH2 =

[
ht+ 4hby t− 2

10h2 ht− 3h

]
, whose stability

criteria tr(A2+tH2) < 0 and det(A2+tH2) > 0 amount
to

2ht+ h < 0 and h2(t2 − 9t+ 8) > 0,

or equivalently t ∈ (−1/2, 1) ∪ (8,+∞). In particular,
when t = 2, the matrix A2 + tH2 is not stable.

• H2 =

[
0 1
0 0

]
: Consider the stable matrix A2 =[

−1 0
1 −1

]
, for which A2+tH2 is not stable when t = 2.

• H2 =

[
0 f
−f 0

]
, where f > 0: by selecting A2 =[

−1 −4
1 −1

]
, the matrix A2 + 2

fH2 =

[
−1 −2
−1 −1

]
is not

stable.
• H2 =

[
h f
−f h

]
, where h < 0 and f > 0: by rescaling,

that assume f = 1. Consider the matrix function

G(t) =

[
0 1

2 +(u+w)h
− 1

2 +(u−w)h h

]
+ t

[
h 1
−1 h

]
.

(20)

We have

tr(G(t)) = h+ 2ht,

det(G(t)) = (1 + h2)t2 + (1 + h2 + 2hw)t

+ h2(w2 − u2) + hw +
1

4
.
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Therefore,

tr(G(−1

2
)) = 0,

d

dt
trG(t) = 2h,

det(G(−1

2
)) = h2(−1

4
− u2 + w2),

d

dt
detG(t)

∣∣∣∣
t=− 1

2

= 2hw.

Hence, as long as

w > 0 and − 1

4
− u2 + w2 > 0, (21)

for a small enough ε > 0, the matrix A2 = G(− 1
2 + ε) is

a stable matrix and there is a matrix G(t) with t > − 1
2

whose trace is negative and whose determinant is smaller
than det(A2). Consider the minimal value of detG(t),
which is obtained at − 1

2 −
hw

1+h2 ,

detG

(
−1

2
− hw

1+h2

)
=h2

(
−1

4
−u2+

h2

1+h2
w2

)
.

As a result, when

−1

4
− u2 +

h2

1 + h2
w2 < 0, (22)

the matrix G(t) with t = − 1
2 −

hw
1+h2 is unstable. The

parameters u and w that satisfy (21) and (22) always
exist.

For the higher dimension n > 2, the real Jordan form of H is
a block upper-triangular matrix

H =

[
H2 ∗
0 ∗

]
,

where H2 can take the four possibilities mentioned above (“∗”
denotes an arbitrary sub-matrix). We take the corresponding
stable A2 constructed above, which has the property that A2+
t0H2 is not stable for some t0 > 0. Select a block diagonal
matrix

A =

[
A2 0
0 −I

]
.

Then, A is stable, while A + t0H =

[
A2 + t0H2 ∗

0 ∗

]
is

unstable.

We can strengthen the argument above and further charac-
terize H in the case n ≥ 3.

Lemma 8. When n ≥ 3, the set of stable directions H does
not contain any matrices of rank 1, 2, . . . , n− 2.

Proof. From lemma 7, it suffices to consider a diagonal matrix
H with negative diagonal entries. Assume that there is an
H ∈ H whose rank is in {1, 2, . . . , n− 2}, write

H =

[
H3 0
0 ∗

]
,

where H3 = diag(−1, 0, 0). We will construct a stable 3-by-3
matrix A3 such that A3 + t0H3 is unstable for some t0 > 0,
and then carry the instability to A + t0H with the extended
matrix

A =

[
A3 0
0 −I

]
.

From [12], the set

T =

t :

0 1 0
0 0 1
5 1 −1

+ t

 0
0
−1

 [0.85 0.2 0.2
]

is stable


has two disconnected components. Consider the Jordan de-
composition of the matrix 0

0
−1

 [0.85 0.2 0.2
]

= W diag(−0.2, 0, 0)W−1,

where W is some invertible matrix. Write

G(t) = 5W−1

0 1 0
0 0 1
5 1 −1

W + t× diag(−1, 0, 0).

After this similar transformation, the set T can be written in
terms of G(t) as

T = {t : G(t) is stable}.

Since T is disconnected, there exists some t1 < t2 such that
G(t1) is stable while G(t2) is unstable with some eigenvalue
in the open right half-plane. Setting A3 = G(t1) and t0 =
t2 − t1 completes the proof.

Since we can perturb the direction and make H full-rank,
the restrictions on the rank of H is not essential. The following
lemma confirms this observation, and it completes the proof
of Theorem 5.

Lemma 9. When n ≥ 3, H = {−λI, λ ≥ 0}.

Proof. From lemma 7, it suffices to consider the case where
H is diagonal with negative diagonal entries. Write

H =

[
H3 0
0 ∗

]
,

where H3 = diag(h1, h2, h3). The diagonal entries hi, i =
1, 2, 3 are non-positive and not all equal. We will construct a
stable A3 and a corresponding t0 such that A3 + t0H3 is not
stable, and extend to the general A as in Lemma 8. The case
with a rank-1 matrix H3 has been considered in Lemma 8. In
what follows we prove the case for rank-2 and rank-3 matrix
H3. Without loss of generality we rescale H3 and assume that
h1 = −1, consider the following two standard forms of H3:
• H3 = diag(−1, h2, 0), where h2 < 0. Consider the

matrix function

G(t) =

0 −1 0
0 0 −h2
2 1 0

+ tH3 =

−t −1 0
0 th2 −h2
2 1 0

 .
The characteristic polynomial of G(t), which we denote
by φG(t)(x), can be written as

φG(t)(x) = x3 + (t− th2)x2 + (h2− t2h2)x+ (t− 2)h2.
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The Routh-Hurwitz Criterion states that the stability of
G(t) is equivalent to the following system of inequalities:

t(1− h2) > 0,

(t− 2)h2 > 0,

t(1− h2)h2(1− t2) > (t− 2)h2.

which can be simplified with h2 < 0 to

0 < t < 2, (23a)

(1− h2)t3 + th2 − 2 > 0. (23b)

When t = 3
2 , (23b) simplifies to the obvious expression

1
8 (11 − 15h2) > 0; when t = 3, (23a) implies that G(t)
is not stable. Setting A3 = G( 3

2 ) and t0 = 3
2 completes

the proof.
• H3 = diag(−1, h2, h3), where without loss of generally

we assume that

−1 ≤ h2, h3 < 0, and one of them is not −1. (24)

Consider the matrix

G(t) =

 0 −1 0
0 0 h2
ah3 h3 0

+ tH3 =

−t −1 0
0 th2 h2
ah3 h3 th3

 .
The Routh-Hurwitz Criterion states that the stability of
G(t) is equivalent to the following system of inequalities:

t > 0, (25a)

f1(t) = a− t+ t3 > 0, (25b)
f2(t) = −ah2h3 + th2h3(h2+h3)+

t3(1−h2)(1−h3)(−h2−h3) > 0.
(25c)

We claim that when√
h2h3(h2 + h3)2

(−h2 − h3 + h2h3)3
< a <

√
4

27
, (26)

the set of t that satisfy the Routh-Hurwitz Criterion is dis-
connected. To prove this, we write the positive local min-
imum of f1(t) in (25b) as t1 =

√
1
3 and write the positive

local minimum of f2(t) in (25c) as t2 =
√

h2h3

3(1−h1)(1−h2)
.

The condition (24) implies that t1 < t2 and the con-
dition (26) implies that f1(t1) and f2(t2) are negative.
Furthermore, consider t0 = ah2+h3−h2h3

h2+h3
, which is the

root of (1−h2)(1−h3)(−h2−h3)f1(t)−f2(t). It holds
that t1 < t0 < t2 and both f1(t0) and f2(t0) are positive.
We conclude that when t = t0, the matrix G(t0) is stable,
and when t is large, G(t) is again stable. Yet, when
t = t2 ∈ (t0,∞), the matrix G(t2) is not stable.

VI. NUMERICAL EXPERIMENTS

In this section, we catalogue various homotopy behaviors as
the damping parameter α varies. The focus is on the evolution
of locally optimal trajectories, which can be tracked by any
local search or path-following methods. The experiments are
performed on small-sized systems so the random initialization
can find a reasonable number of distinct locally optimal

solutions. Despite the small system dimension, the existence
of many locally optimal solutions and their convoluted trajec-
tories demonstrates the power and the limit of using homotopy
methods in optimal decentralized control.

For the local search method, we use the projected gradient
descent. At a controller Ki, we perform line search along the
direction K̃i = −∇J(K) ◦ IS . The step size is determined
with backtracking and Armijo rule, namely, we select si as
the largest number in {s̄, s̄β, s̄β2, ...} such that Ki + siK̃i is
stabilizing while

J(Ki + siK̃i) < J(Ki) + γsi〈∇J(Ki), K̃i〉.

We select the parameters γ = 0.001, β = 0.5, and s̄ = 1. We
terminate the iteration when the norm of the gradient is less
than 10−2.

A. Systems with a Large Number of Local Minima

We first consider the examples from [12], where the feasible
set is highly disconnected and admits many local minima. The
system matrices are

A=



−1 2 0
−2 0 1 0

0 −1 0 2
. . .

0 −2 0
. . .

. . . . . . . . .


, B=



0 1 0
−1 0 1 0

0 −1 0 1
. . .

0 −1 0
. . .

. . . . . . . . .


,

D0 = I, IS = I, Q = I, Rα = I.

(27)

When the dimension n is equal to 9, it is known that the
set of stabilizing decentralized controllers has at least 55
connected components, each of them containing at least one
locally optimal controller. We track 50 of those locally optimal
solutions. The damping parameter α is gradually increased
from 0 to 0.2 with a 0.001 increment. The trajectories of
locally optimal solutions are tracked by solving the newly
damped system with the previous local optimal solution as the
initialization, in the same spirit of Algorithm 1. The evolution
of the optimal cost and the distance from the best known
optimal controller is plotted in Figure 1. Notice that all sub-
optimal local trajectories terminate after a modest damping
α ≈ 0.12. After that, the minimization algorithm always
tracks a single trajectory. This illustrates the prediction of
Corollary 1. Especially, if we start tracking a sub-optimal
controller trajectory from α = 0, we will be on a better
trajectory when α ≈ 0.2. At that time, if we gradually decrease
α to zero, we will obtain a stabilizing controller with a lower
cost.

B. Experiments on Small Random Systems

With the same initialization and optimization procedure,
we perform the experiments on 3-by-3 system matrices A
and B randomly generated from the normal distribution with
zero mean and unit variance. For 92 out of 100 samples, we
are not able to find more than one locally optimal trajectory.
Examples with more than one local trajectories are provided in
Figure 3, 4, and 5. The top plot in each figure shows the cost of
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locally optimal controllers. The bottom plot shows the distance
of the locally optimal controllers to the controller with the
lowest cost. Note that the order of the cost trajectories may be
preserved during the damping (Figure 3) or may be disrupted
(Figure 4 and Figure 5). In Figure 4, at the intersection of
the two curves, there are two distinct global solutions and
therefore Algorithm 1 may fail to obtain the globally optimal
decentralized controller. More than one trajectory may have
the lowest cost as the damping increases (Figure 5), but
with high damp, there is only one trajectory that has the
lowest cost. If Algorithm 1 is applied with an initialization
on the purple curve, whose cost is around 180, after the
damping parameter α is increased to around 2, the purple curve
merges with the orange curve. When the damp is reduced to
α = 0, Algorithm 1 will return to the orange curve with cost
around 80, which is a sub-optimal decentralized controller.
This illustrates the necessity of assuming the uniqueness of
the globally optimal controller in Corollary 2.

Fig. 3. Trajectories of a randomly generated system where the order of locally
optimal controllers is preserved as the damping parameter α changes.

VII. CONCLUSION

This paper studied the optimal distributed control problem
with a large number of locally optimal solutions. To be able to
find a globally optimal control policy, we proposed a homo-
topy method that gradually changed the control problem. We
investigated the trajectories of the locally and globally optimal
solutions to the optimal decentralized control problem as the
damping parameter and the regularization of the decentralized

Fig. 4. Trajectories of a randomly generated system where the order of locally
optimal controllers is disrupted as the damping parameter α changes.

Fig. 5. Trajectories of a randomly generated system with a complicated
behavior.
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control problem varied. Asymptotic and continuity properties
of trajectories were proved, which were based on the notion
of “damping property”. A sufficient condition was developed
together with an algorithm based on local search for finding the
global solution of the optimal distributed control problem. The
complicated behavior of numerical continuation methods was
illustrated with numerical examples with many local minima.
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