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Abstract—Online optimization problems are well-understood
in the convex case, where algorithmic performance is typically
measured relative to the best fixed decision. In this paper, we
shed light on online nonconvex optimization problems in which
algorithms are evaluated against the optimal decision at each
time using the more useful notion of dynamic regret. The focus
is on loss functions which are arbitrarily nonconvex, but have
global solutions that are slowly time-varying. We address this
problem by first analyzing the region around the global solution
at each time to define time-varying target sets, which contain
the global solution and exhibit desirable properties under the
projected gradient descent algorithm. All points in a target set
satisfy the proximal Polyak-kLojasiewicz inequality, among other
conditions. Then, we introduce two algorithms and prove that the
dynamic regret for each algorithm is bounded by a function of the
temporal variation in the optimal decision. The first algorithm
assumes that the decision maker has some prior knowledge
about the initial objective function. This algorithm ensures that
decisions are within the target set at every time. The second
algorithm makes no assumption about prior knowledge. It instead
relies on random sampling and memory to find and then track
the target sets over time. In this case, the landscape of the loss
functions determines the likelihood that the dynamic regret will
be small. Numerical experiments validate these theoretical results
and highlight the impact of a single low-complexity problem early
in the sequence.

I. INTRODUCTION

Nonconvex optimization is ubiquitous in real-world appli-
cations, such as the training of deep neural nets [1]], matrix
sensing/completion [2f], [3]], state estimation of dynamic sys-
tems [4]], and the optimal power flow problem [5]]. Moreover,
most of these practical problems are solved sequentially over
time with time-varying input data, leading to online (real-time)
versions of the aforementioned examples [4], [6], [7].

In this paper, we study an online nonconvex optimization
(ONO) problem whose loss (objective) function changes over
discrete time periods, namely,

minimize
xES

fi(x) ()

where ¢t € Z, denotes the time and S C R" is the time-
invariant feasible region. At each time ¢t = 1,...,7 in this
ONO framework, the decision maker first chooses an action
x; € S while oblivious to the loss function f; : S — R. Once
the action is played, it is evaluated against f;, which may be
chosen by an adversary in response to the action. Then, the
decision maker is granted access to the loss function and its
gradient.
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The performance of a decision maker, or equivalently an
algorithm, in online settings is typically evaluated by a metric
called regret [§]]. In this paper, we exclusively focus on the
strictest version of regret, dynamic regret, which is defined as
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where f; denotes the global optimal objective value of (T).
Dynamic regret (also called non-stationary regret) compares
the decision maker’s actions to an optimal action at each time
t. In comparison, static regret (also called stationary regret or
simply regret) compares the decision maker’s actions to the
best fixed action in hindsight:
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In general, nonconvex optimization problems are NP-hard,
and therefore commonly used local search algorithms, such as
first-order and second-order descent algorithms, may converge
to a spurious local minimum (i.e., a local minimum that is not
globally optimal). As a result, dynamic regret can be arbitrarily
high in a general setting due to the inability to efficiently find
a near-optimal point x;. The existing works in the literature
have derived regret bounds in terms of various quantities,
such as the regularity of the comparator sequence [9]], the
temporal variation in the loss functions [[10]], the temporal
variation in the gradient of the loss functions [[11f], and the
temporal variation in the optimal decision (also called path
length or path variation) [12]], [13]]. Details on many of these
variation measures used to bound dynamic regret can be found
in [14], where the online convex optimization problem is
analyzed. The existing regret bounds for ONO either focus
on static regret [15]—[18]] or require the loss functions to be
weakly pseudo-convex which is a restrictive condition that
excludes spurious local minima [[19]. In [20]], the authors of
this paper established probabilistic nonconvexity regret bounds
for a variation of the ONO problem in which f; is known to
the decision maker at time ¢, future loss functions are unknown
but fixed, the global minima are “sufficiently superior” to all
local minima, and limit points of a continuous-time projected
gradient algorithm can be found precisely. Finally, [21] and
[22] explored how variability in the input data can help ONO
solution trajectories escape non-global local solutions over
time but they did not study dynamic regret and focused on
asymptotic regret.

The main goal of this paper is to analyze how the quality
of the obtained solutions evolves in ONO settings where the
global solution changes slowly over time. To this end, we first
develop mathematical tools for characterizing the landscape
of constrained nonconvex optimization problems and analyze



the behavior of the projected gradient descent algorithm on
such problems. There are many conditions in the literature
that guarantee linear convergence of local search algorithms. In
the unconstrained case when S = R", the Polyak-tL.ojasiewicz
(PL) condition has been proven to be weaker than other com-
mon assumptions (such as strong convexity, essential strong
convexity, weak convexity, and restricted secant inequality)
that guarantee linear convergence [23[]. Despite its favorable
characteristics, requiring that a function satisfy the PL condi-
tion still significantly restricts the type of nonconvex functions
that one can study. For instance, functions satisfying the PL
condition cannot have local minima that are not globally
optimal.

We leverage the generalization of the PL condition for
constrained optimization, called the proximal-PL condition
(originally proposed in [23]]), to study dynamic regret min-
imization in a non-convex setting. The first contribution of
this paper is to establish a target set for each time instance
with the property that once the algorithm finds a point in the
corresponding target set at a given time, the global minimizers
of future problems can be found efficiently. These time-
varying target sets are defined with respect to the proximal-PL
condition and the global solution. We show several important
properties of these sets, including linear convergence to the
global minimizer and quadratic growth.

The design and regret analysis of two online algorithms
constitute the second contribution of this paper. Specifically,
we equip local search algorithms with memory and random
exploration and establish dynamic regret bounds for each
algorithm in terms of the path length of the optimal decision
sequence, when the difference between consecutive points in
this sequence is bounded appropriately. The first algorithm
assumes that the decision maker has some prior knowledge
about the initial function and can start at a point that is
within its target set. This algorithm ensures bounded dynamic
regret by producing decisions which track the time-varying
target sets. The second algorithm obviates this initial condition
assumption by using random exploration. In this case, dynamic
regret depends on when the decision maker first finds a point
within the corresponding target set, as after that time all
decisions will track the time-varying target sets. Therefore, the
relative volume of the time-varying target sets with respect
to the entire feasible domain—a measure of how favorable
the loss function landscape is—influences the likelihood that
the dynamic regret will be small. In particular, a single low-
complexity problem in the sequence can have a large influence
on the outcomes.

The remainder of this paper is organized as follows. In
Section [, we analyze the optimization problem for each fixed
time step, focusing on a neighborhood of the global solution.
In Sectionm we introduce ONO algorithms, derive bounds on
their dynamic regret, and support the analysis with empirical
results. Finally, we conclude the paper in Section

A. Notations

Let || - || indicate the £2-norm of a vector and | - | represent
the cardinality of a set. The symbols R™ and Z denote the

space of n-dimensional real vectors and the set of positive
integers, respectively. The globally optimal objective value of
the optimization problem at time ¢ is denoted by f;. If there
is a unique global optimum at time ¢, it will be denoted as
x;, in which case f;(x}) = f;. The indicator function Is(x)
returns zero if x belongs to the set S and infinity otherwise.
We define the projection operator as follows:

Is(x) := argn;in Ix — vl ()

ye

The tangent cone of a convex set S at x is denoted as Tg(x).
The sublevel set £, is defined as £(a) := {x € R"|fi(x) <
a}. Finally, P[] denotes the probability of the argument.

II. THEORETICAL RESULTS FOR A FIXED TIME STEP
A. Properties of the Problem Structure

Throughout this paper, we make the following assumptions
on the problem structure:

1) The time-invariant feasible region S C R™ is a compact,
convex set known to the decision maker.
2) f; is coercive and differentiable, but potentially nonconvex

in x with many local minima, for all t € {1,2,...,T}.
3) f: has a unique global minimum x; over S for all ¢ €
{1,2,...,T}.

4) The magnitude of the gradient is bounded above by a
positive constant M; for all ¢ € {1,2,...,T}. That is,
Supyes 1<i<r |[VA(X)|] < M.

5) The first derivative of f; is L-Lipschitz continuous on S for
all t € {1,2,...,T}, implying the following inequality for
some constant L:

Fiy) ~ 0 (VA0 y )+ Llly — x|[* x,yeS.

B. Proximal Polyak-Lojasiewicz Regions

In the context of unconstrained optimization problems, we
say that a differentiable function f; satisfies the Polyak-
Lojasiewicz (PL) condition [24] if the following condition
holds for some parameter p > 0:

SIVAGIR 2 nl(fx) — /) vx e R"

PL inequality
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If a function satisfies the PL condition and the magnitude of
its gradient is small at some x, then the function value at x
will be close to the global minimum. This is the reason why
the PL condition is also referred to as the gradient domina-
tion condition [25]]. For a general (unconstrained) nonconvex
optimization problem, first-order methods such as gradient
descent may not converge to a global minimizer. However, if
a function f; satisfies the Polyak-Lojasiewicz condition, then
every stationary point is a global minimizer. Moreover, PL
is one of the most general conditions under which gradient
descent offers linear convergence to a global minimizer [23]].
Note that, in general, functions satisfying the PL condition
may not have a unique global minima.

The top plot in Figure (1| shows an example of a nonconvex
function that satisfies the PL condition. On the other hand,
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Fig. 1: The top figure shows the nonconvex function
fi(z) = 22 + 3sin?(x), which satisfies the PL inequality with
the parameter © = 1/32 for all x € R. The bottom figure
shows an example of a nonconvex function that satisfies
the PL inequality with the parameter ;1 = 1/32 only for
x € {[-55.9,—10.2]U[—5.4,5.4]U[10.2, 55.9]}. The function
for the bottom figure is given below:
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the function in the bottom plot of Figure |I| manifests spurious
local minima and therefore cannot satisfy the PL inequality for
all x for any 1 > 0. However, for a given p, we can identify
a subset of R that satisfies the PL inequality. The idea of
focusing on regions where the PL inequality is satisfied, rather
than only considering functions satisfying the PL condition
over the entire feasible region, leads to our definition of time-
varying target sets in Section

Next, we return to considering constrained optimization
problems. Constrained optimization can be cast in the frame-
work of unconstrained optimization by appending the objective
function with Ig, an indicator function of a convex set S. This
indicator function is non-smooth and convex. Subsequently, a
natural generalization of gradient descent to the constrained
case is the proximal gradient method, whose iteration is
described by
&

k
. — X
= argmin [(Vfy(x}), y — x}) + lly ="

bt
y 2s

+Is(y) — Is(xf)] (6)

for every k € Z,, where s is a positive constant. It can be
shown that the above algorithm is equivalent to the projected
gradient descent algorithm:

xp T =Tls(x} — sV fi(x})). (7)

A matching generalization of the PL inequality, namely the
proximal-PL inequality, was first proposed in [23].

Definition 1. (Proximal-PL inequality) For a function f;,
define the proximal-gradient with parameter 3 > 0 as

Dt (X7 B) = (8)

— x|
— 28 myin (Vfi(x),y —x) + Blly — x| —T5(x)]

5 +Is(y)

We say that a point x € S satisfies the proximal-PL inequality
with the parameters > 0 and 3 > 0 if

5P, ) 2 w0 — 7). ©

While [23]] considers functions that satisfy the proximal-
PL inequality at all points in S, in this work we instead
identify a subset of the entire space that satisfies the inequality.
Hereby, we define the time-varying proximal-PL region, de-
noted Py (1, 5), as the set of all x € S satisfying the proximal-
PL inequality with the parameters > 0 and 5 > 0. That is,

Pun ) = {x €8] 3Px. ) = s - )} (10)

Note that by virtue of the equivalence between equations
(6) and (7), the proximal-gradient can also be expressed as
follows:

Di(x,8) = —20 {(Vf(x%l‘[g(x — %Vft(x)) - x)

+ s~ £V A0x0) - x?).
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C. Time-Varying Regions of Attraction and Target Sets

A proximal-PL region can span over multiple regions of
attraction associated with different local minima. Also, note
that a region of attraction (RoA) is algorithm dependent. In this
paper, we define RoAs with respect to the global minimizer
under the projected gradient descent method and also under
the projected gradient flow system, as a continuous version of
the former.

Definition 2. (Region of Attraction) The region of attraction of
a global minimizer x} of fi based on the projected gradient
descent method (discrete algorithm) with the step size s is
defined as follows:

RAP (s) := {x]| kli_)moo x¥ = x7 where
xp T = Tg(x} — sV fi(x})) and x{ =x}. (12)
In addition, we define the region of attraction of a global

minimizer based on the projected gradient flow system [26]]
(continuous algorithm) as follows:

RAY ={x| élim x:(¢) = x;, where (13)
—00

X¢(0) = Iy, (x,) [V fe(x¢(0))], x¢(0) = x}.

Next, we define a region that we call the target set. In sub-
sequent sections, we will show that if our proposed algorithm
enters the target set at any point in time ¢, then it is possible
to approach the global minimizer and track it henceforth.



Definition 3. (Target set) Let RPY and RPS denote the
subsets of the discrete and continuous RoAs that are contained
within the proximal-PL region at time t:

RPY (1 B, 8) := {x | x;™ = Hs(xf — sV fi(x7)),
xo =, Jim xf =x; and (<5720 € Pulp. )} (14)
Rptc(/hﬂ) = {X ‘ Xt = H'ﬂ'g(xt)(_vft(xt»ﬂxt(o) =X,
elim x;(0) = x; and x;({) € Py(p, 8) VL >0} (15)

We define our target set for time t to be a subset of a sublevel
set around the global minimizer that is contained within both

RPP and RPY:
7;(”’ B, S) = ﬁt(at) N RAtD n RAtC
where o is the largest o satisfying the following condition:

(Et(oz) NRAP N RAC ) c (RPtD nRPE ) (17)

(16)

In summary, all points in each target set are feasible, satisfy
the proximal-PL inequality, and lead to the global solution
under the continuous and discrete descent methods initialized
at those points. Further, the target set is invariant for both
of these methods. Note that the sets RA”, RAS, RPP and
RPC depend on some or all of the parameters (1, 3,s) but
this dependency has been omitted in order to simplify notation.
As indicated by the subscript ¢, the target set varies over time.

One useful way to measure the size of a target set is with
respect to the global solution.

Definition 4. (Reach) Define the reach of a target set as the
maximum distance between the global minimum and any point
in the target set:

max

(18)
X€ Tt (11.,9)

I —x]l.

pt(ﬂa 53 S) =

D. Properties of Target Sets

In [23]], the authors showed the linear convergence of
the proximal-gradient algorithm when applied to functions
satisfying the proximal-PL condition. In this paper, we show
that initializing the proximal-gradient algorithm in the corre-
sponding target set ensures linear convergence, regardless of
whether the proximal-PL inequality is satisfied for all feasible
points. Additionally, there is an open ball around the global
solution whose intersection with the feasible set S is also
contained in the corresponding target set (see Appendix [B).

Theorem 1. Given u > 0,8 > L and a fixed instance of t,
consider the problem of minimizing f; over S (Problem (l))
via the projected gradient descent method (/) with the step
size s. If X0 € T;(u, 3, s), then the projected gradient descent
method with 0 < s < min(%, %) converges linearly to the
optimal value f;, i.e.,

Fioe) = f7 < U= ps)V () = f7), (19
where N € {0,1,2,...} indicates the number of iterations.

Proof. The proof is similar to that of Theorem 5 in [23]]. Let
Fi(x) := fi(x) + Is(x). By using the Lipschitz continuity of
the gradient of f;, one can write:

Fy(xy) = fe(x;) + Is(x?) + Is(x;) — Is(x?)

< fol(x?) + Is(x}) + (Vfilx?), x; —x7)
L
+ 5l = X7 + s () — Ts(xt)

Then, noting that x¢ € T;(u,8,s) C S and L < 1/s, we
obtain an upper bound of the form:

1
Sollxt

Fi(xd) < Ju) + (V) x} =) + 5|} — !

+Is(x;) — Is(x7)

= Ju(ox}) = 5Du(x7,1/5)

where the equality follows from the definition of xf“ and the
proximal-gradient. Finally, we upper bound the equation above
by using the facts that x¥ satisfies the proximal-PL inequality
with parameters 1 and 3 and that D;(x?,1/s) > D (x?, 3)
since L > 3 [23]:

Fy(x;) < folx)) — pslfe(x) = f7]

Since x;} is feasible by the definition of projection, we have
Fe(xg) < folx)) = ps(fe(x?) = f7],

which subsequently implies

fext) = f < (1= ps) [fe(x)) = £7]-

Furthermore, by showing the decrease in objective value and
directly following the definition of the target set, the above
results also prove that x; € T;(p, 3, s). In other words, the
target set is invariant under the projected gradient descent
method, as was mentioned in Section Repeating the
process for N steps, we have the final result:

L) = 7 < (L= ps)Y () = 7]

[

(20)

O
Theorem [1| also gives a lower bound on f; after IV iterations:

N
* ft(xi\’) - (1 - MS) ft(X?)
ft Z N )
1-— (1 — Ms)
The next lemma establishes what we will refer to as the
robustness property of a target set.

YVNeZ, (@I

Lemma 1. (Robustness of a target set) Assume there exist
parameters i, 3, and s > 0 such that oy > 0 for all t €
{1,...,T} (where oy is as defined in ). Then, the target set
Ti(w, B, 8) includes a feasible ball of radius at least r around
the global solution for some v > 0. That is, 3u, B, s, v >
0: Te(w,B,8) 2 (B(xf,r)NS) forallt € {1,...,T}, where
B(xi,r) = {yllx{ —yl* <}

Proof: See Appendix

For unconstrained problems, a function satisfying the PL
condition implies that it also satisfies the quadratic growth
condition [23]]. Next, we prove a similar relationship between
the proximal-PL inequality and quadratic growth.

Theorem 2. (Quadratic growth) The following inequality
holds:

VI F7 2 [kl e RPE (). @2



Proof: See Appendix [C|

While the proof of Theorem [2| relies on the continuous
version of the projected gradient flow algorithm, this paper
does not require implementing or solving this continuous
dynamical system. The algorithms in Section [[II] use the
discrete-time projected gradient descent algorithm.

E. Visualization of a Proximal-PL Region and Target Set

To develop intuition about proximal-PL regions and target
sets, it is beneficial to visualize these sets in an example.
Consider the optimization problem

3
min f(z1,20) = o] — 423 + 2?2 + 22, + B sin(27xq)

3
+ a5 — 4o + 23 + 220 + B sin(2mx,) + 28.87

st. —1<21<3, —1<a,<3 (23)

which is depicted in Figure 2a] This problem has the optimal
value of 0 at x* = (2.75,2.75) and includes many spurious
local solutions.

The proximal-PL region and target set for this problem with
the parameters p = 0.5, 8 = 250 > L and s = ﬁ are depicted
in Figure [2b] and Figure respectively. The proximal-PL
region includes a neighborhood of the global solution, as well
as points far from the global solution. However, many points
in the feasible set do not satisfy the proximal-PL inequality, in
particular those near local maxima or saddle points. Observe
that the target set is a subset of RAP N RAC, RPP nRPC
and the proximal-PL region. The symmetry in Figure [2b] and
Figure [2c|is a result of the symmetry in the loss function f.

III. ONLINE PROJECTED-GRADIENT DESCENT WITH
RANDOM EXPLORATION

In this section, we leverage the results developed in Sec-
tion [I] to study the ONO problem (I). We introduce and
analyze two algorithms for different scenarios:

1) Scenario 1: An initial point in the target region around
the global solution x7 is known.

2) Scenario 2: No information about the loss functions or
their minimizers is known in advance.

A. Scenario 1 - Known desirable initial point

Algorithm 1 provides a natural approach to solving the
ONO problem (I)) in the setting where a suitable initial point
is known. At each time t, the decision maker performs S,
iterations of projected gradient descent on f;, with the final
iteration becoming the decision maker’s action at ¢ 4+ 1. The
assumption is that the decision maker has enough knowl-
edge about the problem at ¢ = 1 to select an initial point
in the corresponding target set and that the change in the
global optimum between time steps is upper-bounded based
on parameters reflecting the functions’ landscapes. The latter
assumption restricts the adversary’s choice of loss function
and can be regarded as requiring the global solution sequence
to have steadiness. This assumption is formalized next.

Sz, @)

(a) Topology of the objective function f over the feasible set. Observe
that this problem has many local minima.

3

T
-
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(b) Points in the grey region satisfy the proximal-PL inequality for
the function f over the set [—1,3] x [—1,3] with the parameters
u = 0.5 and S = 250, while those points in the white regions do
not. The unique optimal solution x* = (2.75,2.75) is identified by
a red star.

Target Set

RP? N RPY

T

RAP N RAC

WX
—-—- Bixtr)
———— reach

S=[-1,3x [-1,3]

(c) Illustration of the target set (yellow) and other sets critical to its
definition. The red dashed circle demonstrates the robustness property
established in Lemma [I] The length of the black dashed line is the
reach of the target set.

Fig. 2: Visualization of the proximal-PL region and the target
set for the optimization problem (23)



Assumption 1. (Steadiness of global solution) The change
in global optimum between consecutive time steps is upper-
bounded by 7 < r, where r is as defined in Lemmal (I} That is,
fort=1,....T -1,

i —xcll <7

(24)

where i, B, s, and r collectively satisfy the robustness property
in Lemma |l| and p(u, B, s) is defined in . Furthermore,
assume that Sy is large enough to satisfy the inequalities:

le o Bs) - (L—ps)S (25a)
y <
log(u) — log(2Ms)
Sy > log(l—,us) . =

The constant Mo defined as
My :=inf{M € R: f;(x)—f < M|x —x}|?

Vt=1,...,T, Vx €S} (26)

exists and is finite because the functions f; are continuous
over the bounded set S.

Note that this assumption only limits the change in the
global minimum; the overall landscape of the function can
change arbitrarily. Under this assumption, we will establish a
deterministic dynamic regret bound for Algorithm 1. To aid
in establishing this bound, we first prove two lemmas:

i) one showing the convergence in terms of the variables x,

ii) another one proving that once the chosen action x; is

within the target region at time ¢, all successive actions
chosen by the algorithm will also lie within the target
region of their respective time.

Lemma 2. Consider a sequence {x;}~_, generated by Algo-
rithm 1. Under Assumption |1} if x, € Ti(u, 8,s) for some
te{l,2,...,T — 1}, then

[[3t4+1 — %7 (| < vllxe — %7 |- (27)
where
2M5(1 — St
v= ma M <1 (28)
t=1,...,T 1

Proof: From the convergence rate in Theorem (1| (specifically,
equation (20)), we have

fe(xegr) = £ < (L= ps)5 [folxe) — f7]

Applying the quadratic growth inequality from Theorem [2] and
taking the square root of all sides, we obtain

Ixer1—%x5 ]| < \/Q(ft(xtﬂ) _ ft*)

o

S \/2(1—%)5‘ (fu(xe) — f7)
I

Then, using the definition of M,, we arrive at

2M2(1 — [IJS)S‘

%1 —x7 || < llx: — x;||

(29)

=7t

Algorithm 1 Online Projected Gradient Descent with Desir-
able Initialization
Require: x; € 71 (1, 3,5), 0 < s < min{/%, 5}

1: fort=1,2,...,T do

2:  Play x

3 Setzg=x;

4. fori=1,..,5; do

5: Observe V fi(z;—1)

6: Perform projected gradient descent update:

z; = s [2z;—1 — sV fi(zi—1)]
7:  end for
8:  Set x¢y1 = zg,
9: end for

Then 7, < 1 since S; > log(u/(2Mz))/ log(1—ps). O
The above lemma proves that given a sufficiently large S;,
we can make 7 € [0, 1) arbitrarily close to zero, implying that
the iterates can become arbitrarily close to the global mini-
mizers at different times. The trade-off is between accuracy
and computation time, which is driven by S;. There is also
an intuitive trade-off between the step size s and computation
time: smaller step sizes require more algorithmic iterations.

Lemma 3. Consider a sequence {x;}]_, generated by Al-
gorithm 1. Under Assumption |1} if x; € Ti(u, B, s) for any
te{l,2,...,T — 1}, then x¢11 € Ter1(p, B, 9).

Proof: It is desirable to show that ||x;1 — x; ;| < r, which
ensures that x; 1 € B(x},,7). By Lemma |I| (the robustness
property of target sets), we have B(x},1,7) C Tit1(u, 5, 5).
One can write:

41 =g | < e = X[+ llxg = x|

<xepr—x;l| +7

y 2M ,B,8)(1—ps)St
§||Xt+1—Xt||+7"—\/ 17:(p: B, 5) (1~ 1s)

n
< \/2(ft(xt+1) - ft*) _|_7"—\/2Mlpt(ﬂ,ﬂ, 8)(1 - us)St
ju ju
S f(l—us)st (fulx) — £7)
n

., _\/QMlpt(m 8, 5)(1—pus)
1

2M7(1—ps)St
W

<r+

(Ve = i1 = Vol B.5))
<r

where the second and third inequalities use Assumption [I]
the fourth inequality applies Theorem [2} the fifth inequality
is due to Theorem |1} the sixth inequality applies the bounded
gradient assumption from Section and the last inequality
is due to (T8). O

Now, we present a dynamic regret bound for Algorithm 1.



Corollary 1. Consider a sequence {x;}_, generated by
Algorithm 1. Under Assumption|l| the dynamic regret satisfies
the inequality

(30)

M, & 7
Reg%(xl,...,XT)Si;HX: X;_ 1||+(()5/]\4)

Proof: This proof will follow the same line of reasoning as
Theorem 1 and Corollary 1 of [14], where a similar result
is proved for strongly convex functions. In the nonconvex
setting considered in this paper, we will utilize Lemma [2] and
Lemma [3]in our proof.

By the Intermediate Value Theorem, there exists y € {z|z =
wx: + (1 —w)x},0 < w < 1} such that fi(x) — fi(x}) =
Vfi(y)T (x; — x}). Therefore, by applying the bounded gra-
dient assumption in Section we have

T
Reg] (x1,...x7) < My Y ||x¢ — x7|]. 31)

t=1

Next we establish an upper bound on the summation in (GI):

T T
D bk = x| =[x — x| + Z [l — x|
t=1

< [l _X1H+Z”Xt_xt 1H+Z”Xz‘ = x|

t=2

< lx1 = x| = ylxr — %7 +“VZ lIx¢ = x|

t=1
T
+ ) lxr = x|l
t=2
T * *
X1 — X7 — vlxT — %
— ZHXt_X:” S || 1”1 _’Y” T”
t=1 7
T
L *_ ok 32
"‘1 Z”Xt x|l (32)
“Ti=
pr(pBs) | 1 <
1\ My * *
< + =i —xi 1l 33)
11—~ 1_7; t t—1

The first inequality invokes the triangle inequality. The second
inequality applies Lemma [2] for each t = ., T and
re-indexes the summation. This application of Lemma [ is
derived by recursively applying Lemma [3| to the requirement
that x; € Ti(u, B, s). We rearrange terms to arrive at (32)
and then apply the definition of the reach of the target set
(I8) to achieve the final inequality. Combining (33)) with @
completes the proof.

Observe that the dynamic regret is a function of the temporal
variation in the optimal decision (also called path length or
path variation), a common measure of variation discussed in
the introduction. The path length is weighted by a function
of « that is large when + is close to one and approximately
one when v is close to 0. Again, this trade-off between the
strength of the dynamic regret bound and computation time is
driven by S;.

Algorithm 2 Online Projected Gradient Descent with Random
Exploration

Require: x; €S, M; =0, m=0,0<s< min{i, %}
1: fort=1,2,....,T do
2: - Play x;
3.« Create W, = {w;,...,
random points from S

w{} by uniformly sampling ¢

4« Set Yy = W, UM, U{x} = {y}, ...y

5: fork=1,2,...,g+m+1do

6: - Initialize z§ = yF, z¥ =y¥, ¢, = 00, by = —0

7 «Seti=1

8 while ¢, — b, > eori < S; do

9: - Observe Vft(zi-C )

10: - Compute z =1 [zF_ — sV fi(zF )]

11: Observe = fi(zh)

12: if F < cF then

13: czh =2k ¢ =cF

14: end if 4

15 b= (fulal) (1= pus)' fulz) ) /(1= (1= ps)')

16: - Update by, = max{by, b¥

17: «Update t =7+ 1

18: end while

19: - Return I} =i

20:  end for

21:  » Let K = argmin,, ¢, and set x;,1 = zX

22:  « Store in memory all other points in {z’v}‘1'~'7"'~'1 which
could be in the proximal PL-region at time ¢:
My ={z" ¢, <cy +ekel{l,...,qg+tm+1}\ K}

23: m = ‘Mt-s-l‘

24: end for

B. Scenario 2 - Blind initialization

The initialization scenario described in Scenario 1 — that
a point in the target region is known at the initial time — is
difficult to satisfy in practice. The reason is that the decision
maker may have no information about how their adversary
will design f;. In this case, it is advantageous to explore the
landscape of f; before selecting decision x;y1. Algorithm 2
explores by running the projected gradient descent algorithm
from multiple initial points, which are sampled uniformly at
random from S.

The goal of exploration is to find a point in a time-varying
target set. The decision maker cannot verify when this occurs,
however, since they do not have knowledge of the landscape of
the function. As a result, Algorithm 2 utilizes memory to make
available at time ¢+ 1 points which may be in the target set at
time ¢. Once a point in a time-varying target set is sampled,
memory ensures that the decision maker has at least one initial
point in the target sets for each future time step. This tracking
guarantee is formalized in the following lemma.

Lemma 4. Consider sequences {x;}_, and {;}I_| gen-
erated by Algorithm 2. Under Assumption if z’g S
(Te(, B,s) N Vy) for any t € {1,2,...,T — 1}, then z" €

(7;4’1(,“7 57 S) N yt+1)-

Proof: The number of iterations I} is at least as large as S;.



Therefore, applying the same logic as the proof of Lemma [3]
we know that z¥, € Ti11(p, 8, 5). By Theorem we have
t
zk >k > > zlgt > z’;k with zF = zF | only if zF = x].
t

k

This implies that z¥ = z¥,. It remains to show that z* €
t

Vi1 If 28 = x4, then z¥ € Y,y ,. Otherwise, since zf§ €

Ti(, B, s), it holds that ¢, < ff + € < ¢ + €, which implies
z¥ € My 1 C Vig1. As aresult, z¥F € Y, 1, which completes
the proof. O

Since Algorithm 1 is a deterministic algorithm, the dynamic
regret bound established in Corollary |1| is deterministic too.
Algorithm 2 relies on sampling, and therefore its associated
regret bound should be probabilistic. In the following culmi-
nating theorem, we provide an upper bound on the dynamic
regret accrued using Algorithm 2 and a lower bound on the
probability with which this bound holds.

Theorem 3. Consider a sequence {x;}l_, generated by
Algorithm 2. Under Assumption I} the dynamic regret satisfies
the following probabilistic bound for all T € {1,...,T}:

P Reg%(xl, coaxr) < Reg%fl(xl, ceyXp_q)
Mipp(p.B,s) | Mi
1 » M 1 * *
Ay 1o & Ixt—xtllll (34)
v rYt—T-H

>1—

e

(=552

t=1
where Vol(-) indicates the volume of the set and v is defined
in Lemma |2} This theorem relates the dynamic regret at time
T to the dynamic regret at an earlier time T, the variation
within the optimal decision sequence after T, and the relative
sizes of the target sets through T.

Proof: The probability that a point located in the time-varying
target set 7;(u, 3, 5) appears in ); by time T is related to the
volumes of T;(u,3,s) and S because, at each time step, ¢
initial points are selected from S uniformly at random. Hence,

P (Ve N Ti(p, B,5)#0 for some te{1,...,T}] (33)
> P (W, N Ti(p, B, s)#0 for some te{1,...,T}]

T gq .
=P U W%Eﬁ(/’hﬂﬂs)
t=11i=1
=1-P[w,¢Ti(pn,B,s) Vt=1,...,T,Vi=1,... ¢
T Vol a
-1-1] (1 _ AR 2, 8)) (ZEO(I’Z’S?’S))) (36)

t=1
Now, we will show that if Y, N T;(p,8,s) # 0 for some
te{l,..., T}, then the dynamic regret is upper bounded by
the expression in (34). Applying Lemma [] Corollary [T] and
Definition [] yields that

r—1 T
Regf(x1,...,x) = > (filxe) = f7)+ Y (filxe) = f7)
t=1 =T
. t=T
=Regf | (x1,..,x7_1) + Y (filxi) = f7)

Il
S

t

17 =X | —yl[xr —x7 ||

SReg%fl(le L] 7XT—1) + Ml

(1=7)
T
Ml * *
+ 1_ Z [l —x;_4 ||
v t=T+1
Mlp* H, Ba S
< Regdf,l(xl, ceXpoq) + (f(—W))
T
M * *
1 D I =Xl 67
t=T+1
This completes the proof. O

Observe that the strength of this probabilistic bound depends
on the landscape of loss functions around the global solution
through the volume of the target sets. In particular, one can
analyze the role that a “lower-complexity problem” at some
time T plays in determining the complexity of the entire
online nonconvex optimization. As an extreme but important
case, suppose that there is a time 7" € {1,...,T} such that
f7 is convex. Then the dynamic regret bound holds
with probability 1 since T¢(u, 8,s) = S. In other words, the
existence of a single convex problem, in between the sequence
of nonconvex problems, is enough to break down the NP-
hardness of solving nonconvex problems for all future times,
under the steadiness of the global solution assumption. On the
other hand, if the global solution is extremely “sharp” at all
times, it is unrealistic to expect any algorithm with limited
computation time to find the global solution. Thus, dynamic
regret could be arbitrarily large in this case. Indeed, the target
set of a sharp minima is small and therefore the probability of
satisfying the dynamic regret bound in (34) is low, as expected.

Choices for the step size s, number of iterations Sy, and
number of samples ¢, represent trade-offs between regret
bound strength and computation time. As discussed in Section
II1-Al a smaller step size requires more algorithmic iterations
to satisfy Assumption [I] Increasing the number of iterations
may increase the time to execute the while loop (line 8).
However, larger values of S; improve the upper bound on
dynamic regret in by reducing ~y. Increasing the number
of random initial points improves the probability with which
@ holds, but also increases computation time.

C. Empirical study of Algorithm 2

The objective of this section is to support the results of
Section through numerical analysis. We will illustrate
the performance of Algorithm 2 on online function sequences
which satisfy the assumptions in Section and Assump-
tion [I] (steadiness of the global solution). To demonstrate the
role that a single comparatively low-complexity problem can
play in a sequence of nonconvex problems, we will consider
two cases:

A) “No  low-complexity problem”: In this case,
{fi :R? - R}, each have many local minima
over S = [—1,3] and the target sets’ volumes represent
between 2.47% and 4.14% of the feasible space. The
geometry of fi,..., f, which are representative of the
entire sequence, is shown in Figure [3]



TABLE I: Parameter and constant values

S m Jéj s € T
[-1,3]> | 0.5 | 289 | 0.0031 | 0.1 | 0.29
Si(maz) | L | My | [lxf—xj 4|l

7060 289 | 140 0.22

B) “Lower-complexity problem at time 4”: In this case,
{f: : R? = R}, is identical to Case A at every time
period except ¢t = 4. The target set corresponding to f4
covers 20.7% of the feasible space. Meanwhile, xj is the
same in both scenarios.

The parameter choices and key problem constants for these
two online optimization problems are summarized in Table

t=3

1
2 3 -1 01 2 3
Fig. 3: Contour plots of fi,..., fs for Case A. The red star
marks the unique global minimum of each function.

We conducted 500 trials of Algorithm 2 on Case A and Case
B for 3 different sampling rates: ¢ =1, ¢ =2, and ¢ = 5.
Figure ] plots the empirical probability that Y;N7; (1, B, s) #0
versus the theoretical lower bound provided in Theorem [3]
(Note that, by Lemma [ this is the same as the probability
that Y, NT¢ (1, B, s) #0 for some t€{1,...,t}.) For the same
value of ¢, the two cases are identical for ¢ = 1,2,3 and
diverge at t = 4 as a result of the “easy” problem in Case B.
These results support Theorem [3] A gap between the lower
bound and observed likelihood of initializing in the target
region is expected, since the lower bound does not account
for the possibility that x; or a memory point may be in the
subsequent target set. The dynamic regret and optimality gap
over time is shown in Figure |5} Regret accumulates quickly
until the target set is found and then accumulates slowly as
Algorithm 2 starts tracking the global solution.

IV. CONCLUSION

In this paper, we defined proximal-PL regions and target
sets, characterized their properties, and used this new knowl-
edge to propose and analyze algorithms for online nonconvex
optimization problems. Linear convergence to the global min-
imizer and quadratic growth are the two key properties of
the target sets that we established. Since dynamic regret can

- -~ -
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3
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= q=5 empirical
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Fig. 4: Empirical validation of Theorem [3| probability bound
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Fig. 5: Regret resulting from Algorithm 2



be arbitrarily large when there are no restrictions on the loss
functions, we constrain consecutive functions to have global
solutions which are not too far apart, but do not limit the
variation in the loss functions otherwise. In this setting, we
propose two online algorithms. Algorithm 1 is relevant when
the decision maker has a good initial point, and it provides
a deterministic dynamic regret upper bound as a function of
the path length of the optimal decision. Algorithm 2 utilizes
exploration and memory to be relevant regardless of the initial
point. It provides a probabilistic dynamic regret upper bound,
which is also a function of the path length of the optimal
decision. The strength of this probabilistic bound depends on
the loss function landscapes. For example, the bound holds
with probability 1 in the special case where one of the loss
functions in the sequence is convex. Empirical studies support
these bounds.
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APPENDIX
A. Proof of Lemma [I]

Lemma [5] (see Appendix establishes the existence of
an open set SP? C RAP(s) such that x; € SP. Then, by
definition of an open set, S 2 (B(x},71) N'S) for some
r1 > 0. It can be concluded from Proposition 8.5 and Lemma
8.3 in [26] that the projected gradient flow system described
in converges to the set of critical points of and the
sublevel sets of f; are invariant under this system. Define [; as
the second-lowest objective value among all critical points of
(I). (f; is the lowest objective value among all critical points.)
Then x} is the only critical point in the sublevel set L;(l),
which implies £,(I) € R.AY. By continuity of f; and the
unique global optimality of x}, we have £;(I) 2 (B(x},r2)N
S) for some ro > 0. Similarly, £;(c) 2 (B(x},r3) N'S) for
some 73 > (0. Therefore,

Ti(u, B, 8) = (Lt(ozt) NRAP(s) N RA?)
5 (B(x;;, r)NB(xE, ) NB(xE, rg)mg)
= (B(Xf,r) N S)

where r = min{ry,r2, 73} > 0. This completes the proof. [

B. Capture property

Lemma 5. Let f be a continuously differentiable function on
a compact, convex set S. Let {x*} be a sequence of points
in'S satisfying f(x**t1) < f(x*) generated by the projected
gradient descent method x*+1 = Tg(x* — sV f(x*)), which
is convergent in the sense that every limit point of such
sequences is a stationary point of minges f(x). Let x* be
a local minimum of minyes f(x), which is the only stationary



point within some open set. Then there exists an open set B

containing X* such that if xk € B for some k > 0, then
x* € B for all k > k and {x*} — x*.

Proof: Let p > 0 be a constant such that
f(x*) < f(x), Vx#x* with [|x —x*|| < p.
For every ¢ € [0, p], define

$(8) = min fx

{xlo<|lx—x*|[<p}

) = F(x).

Note that ¢(d) is a monotonically non-decreasing function of
d, and that ¢(8) > 0 for all § € (0, p]. Given any € € (0, pl,
let € (0, €] be such that

* * 1
="l <= llx =x [+ FVF)] < e
Consider the open set

B={xeS||x—x| <e f(x) < f(x)+ ()}

We claim that if x* € B for some k, then x**1 € B. In order
to prove the claim, assume that x* € B. Then,

S([Ix* —x*[l) < F(x*) = f(x*) < (),
where the first inequality is due to ¢([|x* — x*||) =
TN ok e | < [x—xc [ <p} f (X) = f(x*) < f(x¥)— f(x*) and

the second inequality is due to the fact that x* € B. Since ¢(-)
is monotonically non-decreasing, the above statement implies
that ||x* — x*|| < r, which means that

Ik — x| + %nwc«‘“)n <e

We also know that

" — x| =[] ("

S kaJrl o

_ Xk) + (Xk
x|+ [x" = x|

— M (x — %Vf(x’“)) ("

—x7)]|

)+ 1" — x|

1
< JI(x* ~ BVf(X’“)) = %P+ [lx* - x| (39)

— I VEH) I+ [ = x < e

where equation (39) follows from the non-expansive property
of the projection operator (when projected onto convex sets)
and the final inequality follows from applying equation (B).
Therefore by 1nduct10n this implies that if x* € B for some
k, we have x* € B for all k > k. Let B be the closure of B.
Since B is compact, the sequence {x*} will have at least one
limit point, which by assumption must be a stationary point
of minyes f(x). The only stationary point of minyegs f(x)
within B is x* since ||x — x*|| < € < p for all x € B. Hence,
xF — x*. O

C. Proof of Theorem

Take the function f to be any fi, t € {1,...,
the function g(x) := /f(x) — f* and

%(6) = Ty oy (;w(xw») W0 (40)

T}. Define

with x(0) = x. Then, by the fundamental theorem of calculus,
we have

f(x) = f* = g(x)—g(x")
T VIEx©)

> d
= [ gty ae=— [ TS

The following lemma will be used to establish a lower
bound on the term inside the integral.

x(0) de (41)

Lemma 6. Consider the projected gradient flow [{0) with

x(0) € S. There exists a unique solution x({) to this projected
dynamical system, and

. 51%(0)°

(V1Gx(6) %(6)) = 55 Jim DOx(e), )= H

Proof: The existence and uniqueness of the solution of the

projected dynamical system (@0) is guaranteed by [27, Thm.

2.5] under the assumptions in Section Let {x(€)}s>0
denote the unique solution to (40), and

x(0) = 11e (x(6) - §970x(0))

—x(0)12
= argmin [(y —x(0),Vf(x(£)))e + W]
YES

Then, it follows from [28, Sec III Prop. 5.3.5] that

lim Xl =x(0) _ g (x(e)) (;Vf(x(é))) ;
€ S. By the

. (42)

el0 €

where Tg(x(¢)) is the tangent cone of S at x(¢)
definition of the proximal-gradient,

Jim D(x(6), ) = lim D(x(0), 3/

=t =2 i [(V7(x(0), y—x(O)+ -y —x(0) ]
—tim 2 i (9 () y ()t D by x|
= lim 52 (V1 (x(0), %)= x(O) e+ 5 %) ~x(O)]
= 28 (VA (x(0)), %(0)+ 2 J(0)?

where the last equation is due to the continuity of || - [|2.

Rearranging the above equation yields the desired result. [
Returning to the proof of Theorem 2] next we establish a
lower bound on the term inside the integral in (#T).

Vi)
29(x(0))



2

+ g HHTS(X(K)) (—%Vf(x(f)))

1 D(x(0), B)

g 1
= 29(x(0)) 28 2 Hﬂmx@))(—ﬁw(x(@))

1 %
= 29(x(0) \ B

\/g ‘ng(x(z))(—;vf(x(g)))

2 B

g&@»2+6HH%@mx—1Vf&MD)

2

The first equality follows from the definition of the gradient
flow system and the second equality is due to Lemma [6] The
first inequality holds because of Lemma 1 of [23]). The second
inequality applies the fact that x(¢) satisfies the proximal-PL
inequality with the parameters p and (3. The third inequality is

the result of the arithmetic-geometric mean inequality. Finally,

substituting this lower bound into @I)) gives

Vi) =1 = \/g”/ooo Tz o ( — 5 V() dﬁ”

B
ot

: /Ooox@) cwH =k

This completes the proof.
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