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Convex Relaxation for Optimal Power Flow Problem: Mesh Networks

Ramtin Madani, Somayeh Sojoudi and Javad Lavaei

Abstract—This paper is concerned with the optimal power flow
(OPF) problem. We have recently shown that a convex relaxation
based on semidefinite programming (SDP) is able to find a global
solution of OPF for IEEE benchmark systems, and moreover
this technique is guaranteed to work over acyclic (distribution)
networks. The present work studies the potential of the SDP
relaxation for OPF over mesh (transmission) networks. First, we
consider a simple class of cyclic systems, namely weakly-cyclic
networks with cycles of size 3. We show that the success of the
SDP relaxation depends on how the line capacities are modeled
mathematically. More precisely, the SDP relaxation is proven
to succeed if the capacity of each line is modeled in terms of
bus voltage difference, as opposed to line active power, apparent
power or angle difference. This result elucidates the role of
the problem formulation. Our second contribution is to relate
the rank of the minimum-rank solution of the SDP relaxation
to the network topology. The goal is to understand how the
computational complexity of OPF is related to the underlying
topology of the power network. To this end, an upper bound is
derived on the rank of the SDP solution, which is expected to be
small in practice. A penalization method is then applied to the
SDP relaxation to enforce the rank of its solution to become 1,
leading to a near-optimal solution for OPF with a guaranteed
optimality degree. The remarkable performance of this technique
is demonstrated on IEEE systems with more than 7000 different
cost functions.

I. INTRODUCTION

The optimal power flow (OPF) problem aims to find an
optimal operating point of a power system, which minimizes
a certain objective function (e.g., power loss or generation
cost) subject to network and physical constraints [1]. Due
to the nonlinear interrelation among active power, reactive
power and voltage magnitude, OPF is described by nonlinear
equations and may have a nonconvex/disconnected feasibility
region. Since 1962, the nonlinearity of the OPF problem has
been studied, and various heuristic and local-search algorithms
have been proposed [2], [3].

The paper [4] proposes two methods for solving OPF: (i) to
use a convex relaxation based on semidefinite programming
(SDP), (ii) to solve the SDP-type Lagrangian dual of OPF.
That work shows that the SDP relaxation is exact if and
only if the duality gap is zero. More importantly, [4] makes
the observation that OPF has a zero duality gap for IEEE
benchmark systems with 14, 30, 57, 118 and 300 buses, in
addition to several randomly generated power networks. This
technique is the first method proposed since the introduction of
the OPF problem that is able to find a provably global solution
for practical OPF problems. The SDP relaxation for OPF has
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attracted much attention due to its ability to find a global
solution in polynomial time, and it has been applied to various
applications in power systems including: voltage regulation in
distribution systems [5], state estimation [6], calculation of
voltage stability margin [7], economic dispatch in unbalanced
distribution networks [8], charging of electric vehicles [9], and
power management under time-varying conditions [10].

The paper [11] shows that the SDP relaxation is exact in two
cases: (i) for acyclic networks, (ii) for cyclic networks after
relaxing the angle constraints (similar result was derived in
[12] and [13] for acyclic networks). This exactness was related
to the passivity of transmission lines and transformers. A
question arises as to whether the SDP relaxation remains exact
for mesh (cyclic) networks without any angle relaxations. To
address this problem, the paper [14] shows that the relaxation
is not always exact for a three-bus cyclic network. More exam-
ples can be found in the recent paper [15], where the existence
of local solutions is studied for the OPF problem. To improve
the performance of the above-mentioned convex relaxation,
the papers [16] and [17] suggest solving a sequence of SDP-
type relaxations based on the branch and bound technique.
However, it is highly desirable to develop an algorithm needing
to solve only a few SDP relaxations in order to guarantee a
polynomial-time run for the algorithm. The aim of this paper is
to investigate the possibility of finding a global or near-global
solution of the OPF problem for mesh networks by solving
only a few SDP relaxations.

In this work, we first consider the three-bus system studied
in [14] and prove that the exactness of the SDP relaxation
depends on the problem formulation. More precisely, we show
that there are four (almost) equivalent ways to model the
capacity of a power line but only one of these models always
gives rise to the exactness of the SDP relaxation. We also prove
that the relaxation remains exact for weakly-cyclic networks
with cycles of size 3. Furthermore, we substantiate that this
type of network has a convex injection region in the lossless
case and a non-convex injection region with a convex Pareto
front in the lossy case. The importance of this result is that the
SDP relaxation works on certain cyclic networks, for example
the ones generated from three-bus subgraphs (this type of
network is related to three-phase systems).

In the case when the SDP relaxation does not work, an
upper bound is provided on the rank of the minimum-rank
solution of the SDP relaxation. This bound is related only
to the structure of the power network and this number is
expected to be very small for real-world power networks.
Finally, a heuristic method is proposed to enforce the SDP
relaxation to produce a rank-1 solution for general networks
(by somehow eliminating the undesirable eigenvalues of the
low-rank solution). The efficacy of the proposed technique is
elucidated by extensive simulations on IEEE systems as well
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OPF Problem SDP Relaxation of OPF

Minimize
∑
k∈G

fk(PGk
) over PG, QG, V Minimize

∑
k∈G

fk(PGk
) over PG, QG, W ∈ Hn

+

Subject to:

1- A capacity constraint for each line (l,m) ∈ L

2- The following constraints for each bus k ∈ N :

Subject to:

1- A convexified capacity constraint for each line

2- The following constraints for each bus k ∈ N :

PGk
− PDk

=
∑

l∈N (k)

Re {Vk(V ∗
k − V ∗

l )y
∗
kl} (1a)

QGk
−QDk

=
∑

l∈N (k)

Im {Vk(V ∗
k − V ∗

l )y
∗
kl} (1b)

Pmin
k ≤ PGk

≤ Pmax
k (1c)

Qmin
k ≤ QGk

≤ Qmax
k (1d)

V min
k ≤ |Vk| ≤ V max

k (1e)

PGk
− PDk

=
∑

l∈N (k)

Re {(Wkk −Wkl)y
∗
kl} (2a)

QGk
−QDk

=
∑

l∈N (k)

Im {(Wkk −Wkl)y
∗
kl} (2b)

Pmin
k ≤ PGk

≤ Pmax
k (2c)

Qmin
k ≤ QGk

≤ Qmax
k (2d)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (2e)

Capacity constraint for line (l,m) ∈ L Convexified capacity constraint for line (l,m) ∈ L

|θlm| = |]Vl − ]Vm| ≤ θmax
lm (3a)

|Plm| = |Re {Vl(V ∗
l − V ∗

m)y∗lm}| ≤ Pmax
lm (3b)

|Slm| = |Vl(V ∗
l − V ∗

m)y∗lm| ≤ Smax
lm (3c)

|Vl − Vm| ≤ ∆V max
lm (3d)

Im{Wlm} ≤ Re{Wlm} tan(θmax
lm ) (4a)

Re{(Wll −Wlm)y∗lm} ≤ Pmax
lm (4b)

|(Wll −Wlm)y∗lm| ≤ Smax
lm (4c)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )

2 (4d)

as a difficult example proposed in [15] for which the OPF
problem has at least three local solutions. Note that this paper
is concentrated on a basic OPF problem, but the results can be
readily extended to a more sophisticated formulation of OPF
with security constraints together with variable tap-changing
transformers and capacitor banks. This can be carried out using
the methodology delineated in [18].

Notations: R, R+, Sn+ and Hn
+ denote the sets of real numbers,

positive real numbers, n × n positive semidefinite symmetric
matrices, and n× n positive semidefinite Hermitian matrices,
respectively. Re{W}, Im{W}, rank{W} and trace{W} de-
note the real part, imaginary part, rank and trace of a given
scalar/matrix W, respectively. The notation W ≽ 0 means
that W is Hermitian and positive semidefinite. The notation
]x denotes the angle of a complex number x. The notation “i”
is reserved for the imaginary unit. The symbol “*” represents
the conjugate transpose operator. Given a matrix W, its (l,m)
entry is denoted as Wlm. The superscript (·)opt is used to show
the optimal value of an optimization parameter.

Definitions: Given a simple graph H, its vertex and edge sets
are denoted by VH and EH, respectively. A “forest” is a simple
graph that has no cycles and a “tree” is defined as a connected
forest. A graph H′ is said to be a subgraph of H if V ′

H ⊆ VH
and E ′

H ⊆ EH. A subgraph H′ of H is said to be an induced
subgraph if, for every pair of vertices vl, vm ∈ VH′ , (vl, vm) ∈
EH′ if and only if (vl, vm) ∈ EH. H′ is said to be induced by
the vertex subset VH′ .

II. OPTIMAL POWER FLOW

Consider a power network with the set of buses N :=
{1, 2, ..., n}, the set of generator buses G ⊆ N , and the set of
flow lines L ⊆ N ×N , where:

• A known constant-power load with the complex value
PDk

+QDk
i is connected to each bus k ∈ N .

• A generator with an unknown complex output PGk
+

QGk
i is connected to each bus k ∈ G.

• Each line (l,m) ∈ L of the network is modeled as
a passive device with an admittance ylm with possible
resistance and reactance (the network can be modeled as
a general admittance matrix).

We call the network lossless if Re{ylm} = 0 for all
(l,m) ∈ L and call it lossy otherwise. The goal is to design the
unknown outputs of all generators in such a way that the load
constraints are satisfied. To formulate this problem, named
optimal power flow (OPF), define:

• Vk: Unknown complex voltage at bus k ∈ N .
• Plm: Unknown active power transferred from bus l ∈ N

to the rest of the network through the line (l,m) ∈ L.
• Slm: Unknown complex power transferred from bus l ∈

N to the rest of the network through the line (l,m) ∈ L.
• fk(PGk

): Known increasing, convex function represent-
ing the generation cost for generator k ∈ G.

Define V, PG, QG, PD and QD as the vectors {Vk}k∈N ,
{PGk

}k∈G , {QGk
}k∈G , {PDk

}k∈N and {QDk
}k∈N , respec-

tively. Given the known vectors PD and QD, OPF minimizes
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the total generation cost
∑

k∈G fk(PGk
) over the unknown

parameters V, PG and QG subject to the power balance
equations at all buses and some network constraints. To
simplify the formulation of OPF, with no loss of generality
assume that G = N . The mathematical formulation of OPF is
given in (1), where:

• (1a) and (1b) are the power balance equations accounting
for the conservation of energy at bus k.

• (1c), (1d) and (1e) restrict the active power, reactive
power and voltage magnitude at bus k, for the given limits
Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k .
• Each line of the network is subject to a capacity constraint

to be introduced later.
• N (k) denotes the set of all neighboring nodes of bus
k ∈ N .

A. Convex relaxation for optimal power flow

Regardless of the unspecified capacity constraint, the above
formulation of the OPF problem is non-convex due to the
nonlinear terms |Vk|’s and VkV ∗

l ’s. Since this problem is NP-
hard in the worst case, the paper [4] suggests solving a convex
relaxation of OPF. To this end, notice that the constraints of
OPF can all be expressed as linear functions of the entries
of the quadratic matrix VV∗. This implies that if the matrix
VV∗ is replaced by a new matrix variable W ∈ Hn, then
the constraints of OPF become convex in W. Since W
plays the role of VV∗, two constraints must be added to the
reformulated OPF problem in order to preserve the equivalence
of the two formulations: (i) W ≽ 0, (ii) rank{W} = 1.
Observe that Constraint (ii) is the only non-convex constraint
of the reformulated OPF problem. Motivated by this fact,
the SDP relaxation of OPF is defined as the OPF problem
reformulated in terms of W under the additional constraint
W ≽ 0, which is given in (2). If the SDP relaxation gives rise
to a rank-1 solution Wopt, then it is said that the relaxation
is exact. The exactness of the SDP relaxation is a desirable
property being sought, because it implies the equivalence of
the convex SDP relaxation and the non-convex OPF problem.

B. Four types of capacity constraints

In this part, the line capacity constraint in the formulation of
the OPF problem given in (1) will be specified. Line flows are
restricted in practice to achieve various goals such as avoiding
line overheating and guaranteeing the stability of the network.
Notice that

i) A thermal limit can be imposed by restricting the line
active power flow Plm, the line apparent power flow
|Slm|, or the line current magnitude |Ilm|. The maximum
allowable limits on these parameters can be determined
by analyzing the material characteristics of the line.

ii) A stability limit may be translated into a constraint on the
voltage phase difference across the line, i.e., |]Vl−]Vm|.

Hence, each line (l,m) ∈ L may be associated with one
or multiple capacities constraints, each of which has its
own power engineering implication. Four types of capacity
constraints are provided in equation (3) for the given upper

bounds θmax
lm = θmax

ml , Pmax
lm = Pmax

ml , Smax
lm = Smax

ml and
∆V max

lm = ∆V max
ml , where θlm denotes the angle difference

]Vl −]Vm. Note that the constraint (3d) is equivalent to the
line current limitation constraint in the context of this work,
because each line has been modeled as a simple admittance
and therefore Vl − Vm is proportional to the line current.
Henceforth, we assume that θmax

lm is less than 90◦ due to the
current practice in power networks. This can be assured by
adding the constraint Re{Wlm} > 0 to the SDP relaxation, if
necessary.

The capacity constraints given in (3) can all be cast as con-
vex inequalities in W, leading to the reformulated constraints
in (4). To understand how the reformulation from V to W
is carried out, consider the constraint (3a). This constraint is
equivalent to |](VlV ∗

m)| ≤ θmax
lm or∣∣∣∣ Im{VlV ∗

m}
Re{VlV ∗

m}

∣∣∣∣ ≤ tan(θmax
lm ) (5)

Since θmax
lm is less than 90◦ by assumption, the above inequal-

ity can be rewritten as

|Im{VlV ∗
m}| ≤ Re{VlV ∗

m} tan(θmax
lm ) (6)

The convex constraint (4a) is obtained from the above inequal-
ity by replacing VlV

∗
m with Wlm and dropping the absolute

value operator from the left side. Note that the absolute value is
not important because the two constraints |θlm|, |θml| ≤ θmax

lm

are equivalent to θlm ≤ θmax
lm and θml ≤ θmax

lm all together
(recall that θmax

lm = θmax
ml ).

Theorem 1. Let α ∈ [0, π/2) denote an arbitrary angle.
Suppose that all voltage magnitudes are fixed at the nominal
value of 1 per unit. Then, the capacity constraints in (3) are
all mathematically equivalent and interchangeable through the
upper bounds:

θmax
lm (α) , α (7a)

Pmax
lm (α) , Re{(1− eαi)y∗lm} (7b)

Smax
lm (α) , |(1− eαi)y∗lm| (7c)

∆V max
lm (α) ,

√
2 (1− cos(α)). (7d)

Proof: The proof may be found in the appendix. �
Under relatively tight voltage conditions, the four capacity

constraints in (3) give rise to very similar feasible regions
for (Vl, Vm) if the above upper bounds are employed. Given
a certain level of deviation from the nominal voltage mag-
nitude, it is possible to improve the above upper limits of
the constraints by incorporating the deviation into these limits
via solving a small optimization. In addition, given an upper
bound for any of the constraints in (3), it is possible to
design the upper bounds for the remaining three constraints
in such a way that they all imply the constraint with the
given upper bound. Since the maximum voltage deviation is
usually small and less than 10% in general, it can be inferred
from the above arguments that four common types of capacity
constraints with different power engineering implications can
be converted to each other with a good accuracy from a
mathematical standpoint. To shed light on this fact, Figure 1
depicts the feasible region of Vm for each of the constraints
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Fig. 1: Four feasible regions for voltage phasor Vm (in p.u.) associated with the constraints in (3) in the case where Vl is fixed
at 1]0◦(p.u.) and 0.9 ≤ |Vm| ≤ 1.1: (a) region for the line constraint (3a); (b) region for the line constraint (3b); (c) region
for the line constraint (3c), and (d) region for the line constraint (3d).

in (3), where the upper bounds in (7) are deployed for the
line (l,m) under the following scenario: α = 15◦, the line
admittance ylm = 1]−80◦ (p.u.), allowing a variable voltage
magnitude for Vm with the maximum permissible deviation of
10% from the nominal magnitude, and Vl = 1]0◦ (p.u.). It
can be seen that the feasible regions are very similar and barely
distinguishable from each other.

In the following subsection, we will show that this sim-
ilarity (or equivalence in the extreme case of fixed voltage
magnitudes) is no longer preserved after relaxation. In fact, it
will be shown that the above capacity constraints behave very
differently in the SDP relaxation (i.e., after removing the rank
constraint rank{W} = 1).

C. SDP relaxation for a three-bus network

It has been shown in [14] that the SDP relaxation is not
exact for a specific three-bus power network with a triangular
topology, provided one line has a very limited capacity. The
capacity constraint in [14] has been formulated with respect
to apparent power. It is imperative to study the interesting
observation made in [14] because if the SDP relaxation cannot
handle very simple cyclic networks, its application to mesh
networks would be questionable. The result of [14] implies
that the SDP relaxation is not necessarily exact for cyclic
networks if the capacity constraint (3c) is employed. The
high-level objective of this part is to make the surprising
observation that the SDP relaxation becomes exact if the
capacity constraint (3d) is used instead (this result will be
proved later in the paper). To this end, we explore a scenario
for which all four types of capacity constraints provided in
(3) are equivalent but their convexified counterparts behave
very differently. The goal is to show that the SDP relaxation
is always exact only for one of these capacity constraints.

Consider the three-bus system depicted in Figure 2(a),
which has been adopted from [14]. The parameters of this
cyclic network are provided in Table I, where zlm = 1

ylm

denotes the impedance of the line (l,m). Assume that lines
(1, 2) and (2, 3) have very high capacities, i.e.,

θmax
12 = Pmax

12 = Smax
12 = ∆V max

12 = ∞, (8a)
θmax
23 = Pmax

23 = Smax
23 = ∆V max

23 = ∞, (8b)

while line (1, 3) has a very limited capacity. Since there are
four ways to limit the flow over this line, we study four
problems, each using only one of the capacity constraints given
in (3) with its corresponding bound from (7). To this end,
given an angle α belonging to the interval [0, 30◦], consider
the following limits for these four problems:

Problem A : θ13 ≤ θmax
13 (α) (9a)

Problem B : P13 ≤ Pmax
13 (α) (9b)

Problem C : S13 ≤ Smax
13 (α) (9c)

Problem D : ∆V13 ≤ ∆V max
13 (α) (9d)

It is straightforward to verify that Problems A-D are equivalent
due to the fact that they all lead to the same feasible set for
the pair (V1, V3). After removing the rank constraint from the
OPF problem, these four problems become very distinct. To
illustrate this property, we solve four relaxed SDP problems
for the network depicted in Figure 2(a), corresponding to
the equivalent Problems A-D. Figure 2(b) plots the optimal
objective value of each of the four SDP relaxations as a
function of α over the period α ∈ [0, 30◦]. Let f opt(α)
denote the solution of the original OPF problem. Each of
the curves in Figure 2(b) is theoretically a lower bound on
the function f opt(α) in light of removing the non-convex
constraint rank{W} = 1. A few observations can be made
here:

• The SDP relaxation for Problem D yields a rank-1
solution for all values of α. Hence, the curve drawn
in Figure 2(b) associated with Problem D represents the
function f opt(α), leading to the true solution of OPF.

• The curves for the SDP relaxations of Problems A-C
do not overlap with f opt(α) if α ∈ (0, 7◦). Moreover,
the gap between these curves and the function f opt(α) is
significant for certain values of α.

• Figure 3 shows the case when a maximum of 10% off-
nominal voltage magnitude is allowed for each bus. In
this case, Problem D is the only formulation that always
results in a rank-1 solution.

In summary, three types of capacity constraints make the
SDP relaxation inexact in general, while the last type of
capacity constraint makes the SDP relaxation always exact.
The current practice in power systems is to use Problem B
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Fig. 2: (a) Three-bus system studied in Section II-C ; (b) optimal objective value of the SDP relaxation for Problems A-D.
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Fig. 3: Optimal objective value of the SDP relaxation for Prob-
lems A-D by allowing 10% off-nominal voltage magnitudes.

(due to its connection to DC OPF), but this example signifies
that Problem D is the only one making the SDP relaxation a
successful technique. Note that the capacity constraint consid-
ered in Problem D is closely related to the thermal loss, and
therefore it may be natural to deploy Problem D for solving
the OPF problem. Note also that if the OPF is defined in terms
of multiple types of capacity constraints, the above reasoning
justifies the need for converting the constraints into a single
constraint of the form (3d).

Based on the methodology developed in [4] and [11], the
above result can be interpreted in terms of the duality gap
for OPF: there are four equivalent non-convex formulations of
the OPF problem in the above example with the property that
three of them have a nonzero duality gap in general while
the last one always has a zero duality gap. This example
reveals the fact that the problem formulation of OPF has a
tremendous role in the success of the SDP relaxation, and in
particular even equivalent formulations may become distinct
after convexification. The observation made in this example
will be proved for certain networks below.

Definition 1. A graph is called weakly cyclic if every edge of
the graph belongs to at most one cycle in the graph.

Theorem 2. Consider the OPF problem (1) with the capacity
constraint (3d) for a weakly-cyclic network with cycles of size
3. The following statements hold:

a) The SDP relaxation is exact in the lossless case, provided
Qmin

k = −∞ for every k ∈ N .

f1(PG1) , 0.11P 2
G1

+ 5.0PG1

f2(PG2) , 0.085P 2
G2

+ 1.2PG2

f3(PG3) , 0

z23 = 0.025 + 0.750i, SD1 = 110 MW
z31 = 0.065 + 0.620i, SD2 = 110 MW
z12 = 0.042 + 0.900i, SD3 = 95 MW

V min
k = V max

k = 1 for k = 1, 2, 3

(Qmin
k , Qmax

k ) = (−∞,∞) for k = 1, 2, 3

(Pmin
k , Pmax

k ) = (−∞,∞) for k = 1, 2

Pmin
3 = Pmax

3 = 0

TABLE I: Parameters of the three-bus system drawn in Fig-
ure 2(a) with the base value 100 MVA.

b) The SDP relaxation is exact in the lossy case, provided
Pmin
k = Qmin

k = −∞ and Qmax
k = +∞ for every k ∈ N .

Proof: The proof may be found in the appendix. �
Note that the statement of Theorem 2 cannot be generalized

to the capacity constraints (3a)-(3c). This manifests the impor-
tance of the problem formulation and mathematical modeling.

III. INJECTION REGION

A power network under operation has a pair of flows
(Plm, Pml) over each line (l,m) ∈ L and a net injection Pk at
each bus k ∈ N , where Pk is indeed equal to PGk

−PDk
. This

means that two vectors can be attributed to the network: (i)
injection vector P = [ P1 P2 · · · Pn ], (ii) flow vector F =
[Plm| (l,m) ∈ L]. Due to the relation Pk =

∑
l∈N (k) Pkl,

there exists a matrix M such that P =M × F.
In order to understand the computational complexity of

OPF, it is beneficial to explore the feasible set for the injection
vector. To this end, two notions of flow region and injection
region will be defined in line with [19].

Definition 2. Define the flow region F as the set of all flow
vectors F = [Plm | (l,m) ∈ L] for which there exists a voltage
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(a) (b)

Fig. 4: (a) The reduced flow region Fr for a three-bus mesh
network; (b) the injection region P for a three-bus mesh
network.

phasors vector [ V1 V2 · · · Vn ] such that

Plm = Re {Vl(V ∗
l − V ∗

m)y∗lm} , (l,m) ∈ L (10a)
|Vl − Vm| ≤ ∆V max

lm , (l,m) ∈ L (10b)

V min
k ≤ |Vk| ≤ V max

k , k ∈ N (10c)

Define also the injection region P as M · F .

The above definition of the flow and injection regions
captures the laws of physics, capacity constraints and voltage
constraints. One can make this definition more comprehensive
by incorporating reactive-power constraints.

Definition 3. Define the convexified flow region Fc as the set
of all flow vectors F = [Plm | (l,m) ∈ L] for which there
exists a matrix W ∈ Hn

+ such that

Plm = Re {(Wll −Wlm)y∗lm} (11a)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )

2 (11b)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (11c)

for every (l,m) ∈ L and k ∈ N . Define also the convexified
injection region Pc as M · Fc.

It is straightforward to verify that P ⊆ Pc and F ⊆ Fc.

A. Lossless cycles

A lossless network has the property that Plm+Pml = 0 for
every (l,m) ∈ L, or alternatively Re{ylm} = 0. Since real-
world transmission networks are very close to being lossless,
we study lossless mesh networks here. The flow region F has
been defined in terms of two flows Plm and Pml for each
line (l,m) ∈ L. Due to the relation Pml = −Plm for lossless
networks, one can define a reduced flow region Fr based on
one flow Plm for each line (l,m).

The reduced flow region Fr has been plotted in Figure 4(a)
for a cyclic three-bus network under the voltage setting
V min
k = V max

k for k = 1, 2, 3 and some arbitrary capacity
limits. This feasible set is a non-convex 2-dimensional curvy
surface in R3. The corresponding injection region P can be
obtained by applying an appropriate linear transformation to
Fr. Surprisingly, this set becomes convex, as depicted in
Figure 4(b). More precisely, it can be shown that P = Pc

in this case. The goal of this part is to investigate the
convexity of P for a single cycle. Assume for now that the

power network is composed of a single cycle with the links
(1, 2), . . . , (n− 1, n), (n, 1).

Theorem 3. Consider a lossless n-bus cycle with n ≥ 3.
The reduced flow region Fr is always non-convex if V min

k =
V max
k , k = 1, 2, ..., n.

Proof: The reduced flow region Fr consists of all vectors
of the form (α1 sin(θ12), α2 sin(θ23), . . . αn sin(θn1)), where
θ12+θ23+ · · ·+θn1 = 0 and αk = |Vk||Vk+1|Im{y∗k,k+1} for
k ∈ N . Therefore, Fr can be characterized in terms of n− 1
independent angle differences θ12, ..., θ(n−1),n. This implies
that Fr is an (n − 1)-dimensional surface embedded in Rn.
On the other hand, this region cannot be embedded in Rn−1

due to its non-zero curvature. Thus, Fr cannot be a convex
subset of Rn. �

Since V min
k ≃ V max

k in practice, it follows from Theorem 3
that the reduced flow region is expected to be non-convex
under a normal operation.

Theorem 4. Consider a lossless n-bus cycle. The following
statements hold:

a) For n = 2 and n = 3, the injection region P is convex
and in particular P = Pc.

b) For n ≥ 5, the injection region P is non-convex if

V min
k = V max

k = V max, k ∈ N
∆V max

lm = ∆V max, (l,m) ∈ L
(12)

for any arbitrary numbers V max and ∆V max.

Proof of Part (a): Consider an arbitrary injection vector P̄
belonging to the convexified injection region Pc. In order to
prove Part (a), it suffices to show that P̄ is contained in P .
Alternatively, it is enough to prove that the SDP relaxation of
OPF with the capacity constraint (3d) and the parameters

Pmax
k = Pmin

k = P̄k (13a)

Qmax
k = +∞, Qmin

k = −∞, (13b)

has a rank-1 solution W. This follows directly from Part (a)
of Theorem 2.
Sketch of Proof for Part (b): Define

θmax = cos−1

(
1− (∆V max)2

2

)
(14)

As pointed out in the proof of Theorem 3, the re-
duced flow region Fr contains all vectors of the form
(α1 sin(θ12), α2 sin(θ23), . . . αn sin(θn1)), where θ12 + θ23 +
. . . + θn1 = 0 and |θ12|, ..., |θn1| ≤ θmax. Four observations
can be made here:

i) The mapping from Fr to P is linear.
ii) The kernel of the map from Fr to P has dimension 1.

iii) Due to (i) and (ii), it can be proved that the restriction
of Fr to the angles θ12 = θmax and θn1 = −θmax is a
convex set whenever P is convex.

iv) The restriction of Fr to the angles θ12 = θmax and θn1 =
−θmax amounts to the reduced flow region for a single
cycle of size n − 2. In light of Theorem 3, this set is
nonconvex if n− 2 ≥ 3.

The proof of Part (b) follows from the above facts. �
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Theorem 4 states that the injection region is convex only
for small values of n.

B. Weakly-cyclic networks

In this part, the objective is to study the convexity of the
injection region for a class of mesh networks. Although the
class under investigation is simple and far from practical, its
study gives rise to a good insight into the complexity of OPF.
Notice that the injection region P is not necessarily convex
for lossy networks. For example, the set P corresponding to
a three-bus mesh network with nonzero loss is a curvy 2-
dimensional surface in R3. The objective of this part is to
show that the front of this non-convex feasible set is convex
in some sense.

Definition 4. Given a set T ⊆ Rn, define its Pareto front as
the set of all points (a1, ..., an) ∈ T for which there does not
exist a different point (b1, ..., bn) in T such that bi ≤ ai for
i = 1, ..., n.

Pareto front is an important subset of T because the
solution of an arbitrary optimization over T with an increasing
objective function must lie on the Pareto front of T .

Theorem 5. The following statements hold for a weakly-cyclic
network with cycles of size 3:

a) If the network is lossless, then the injection region P is
convex and in addition P = Pc.

b) If the network is lossy, then the injection region P and
the convexified region Pc share the same Pareto front.

Proof: The proof of Part (a) of Theorem 4 also works for a
general lossless weakly-cyclic network, leading to Part (a) of
the present theorem.

In order to prove Part (b), we employ the same strategy
as in the proof of Theorem 4. Assume that P̄ belongs to the
Pareto front of the convexified injection region Pc. Consider
the OPF problem (1) with the capacity constraint (3d) and let

Pmax
k = P̄k, Pmin

k = −∞, (15a)

Qmax
k = +∞, Qmin

k = −∞. (15b)

The objective function of the OPF problem can be replaced
by a certain linear function in such a way that P̄ becomes a
solution of the SDP relaxation of this problem. On the other
hand, it follows form Part (b) of Theorem 2 that there exists
a solution (Popt,Qopt,Wopt) for this problem where Wopt

is a rank-1 matrix. Since P̄ belongs to the Pareto front of Pc,
we have Popt = P̄ . Hence, Popt also belongs to P and that
completes the proof. �

IV. PENALIZED SDP RELAXATION

So far, it has been shown that the SDP relaxation is exact
for certain systems such as weakly-cyclic networks, provided a
good mathematical formulation is deployed. Nevertheless, the
SDP relaxation may not remain exact for mesh networks with
large cycles. The objective of this section is to remedy this
shortcoming for general networks. To this end, we first study
the rank of the minimum-rank solution of the SDP relaxation

and then introduce a penalization technique to enforce the rank
of this solution matrix to become one. This will ultimately
lead to a near-global solution of OPF with some measure of
the optimality degree.

A. Low-rank solution for SDP relaxation

In this part, we first introduce some graph-theoretic param-
eters and then utilize them to relate the network topology to
the existence of a low-rank solution for the SDP relaxation
method.

Definition 5. Let H be a simple graph. Define M(H) as the
set of all matrices M ∈ Hn

+ for which each off-diagonal entry
Mlm is nonzero if and only if (l,m) ∈ EH. The minimum
semidefinite rank (msr) of H is defined as [21]:

msr(H) , min{rank(M) |M ∈ M(H)}. (16)

The next theorem studies the rank of a solution of the SDP
relaxation of the OPF problem under the load over satisfaction
assumption

Pmin
k = Qmin

k = −∞ for k ∈ N . (17)

A general version of this theorem with no extra assumption
has been developed in the technical report [20].

Theorem 6. Consider the OPF problem given in (1) subject
to the capacity constraints (3a), (3b) and (3d), under the
assumption Pmin

k = Qmin
k = −∞ for every k ∈ N . If this

problem is feasible, then its corresponding SDP relaxation has
a solution (Wopt,Popt

G ,Qopt
G ) such that

rank{Wopt} ≤ |H| −msr(H), (18)

where H can be any arbitrary simple graph with the property
that VH = N and L ⊆ EH.

Proof: Since the OPF problem is feasible by assumption, there
exists an optimal solution (W0,Popt

G ,Qopt
G ) for this problem.

Now, consider the optimization problem:

min
W∈Hn

+

−
∑

(l,m)∈EH

Re{Wlm} (19a)

s.t. Wkk =W 0
kk, k ∈ N (19b)

Re{Wlm} ≥ Re{W 0
lm}, (l,m) ∈ L (19c)

Im{Wlm} = Im{W 0
lm}, (l,m) ∈ L (19d)

Let Wopt denote an arbitrary solution of the above opti-
mization. Since the resistance and inductance of each line
(l,m) ∈ L are considered as nonnegative numbers in this
paper, it is straightforward to verify that (Wopt,Popt

G ,Qopt
G )

is an optimal solution of the SDP relaxation under the load
over-satisfaction assumption. Now, it remains to prove that
Wopt satisfies the inequality rank{Wopt} ≤ n−msr(H).

To proceed with the proof, we aim to take the Lagrangian
of Optimization (19). Let A ∈ Hn

+ denote the dual variable
corresponding to the constraint W ≽ 0. By noting that the
positions of the nonzero off-diagonal entries of the matrix A
correspond to the edges of the graph H, it follows from the
definition of “msr” that

rank{Aopt} ≥ msr(H). (20)
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(a) (b)

Fig. 5: Two graphs with η = 1.

On the other hand, the complementary slackness condition
trace{Wopt Aopt} = 0 yields that

rank{Aopt}+ rank{Wopt} ≤ n. (21)

The proof is completed by combining (20) and (21). �
Roughly speaking, Theorem 6 aims to relate the computa-

tional complexity of the OPF problem to the topology of the
power network by quantifying how inexact the SDP relaxation
is.

Definition 6. Define η(H) as the minimum number of vertices
whose removal from the graph H eliminates all cycles of the
graph.

To illustrate the definition of η, observe that this number is
equal to 0 for a graph representing an acyclic network and is
equal to 1 if all cycles of the network share a common node.
Two graphs with η = 1 are depicted in Figure 5.

Theorem 7. Consider the OPF problem given in (1) subject
to the capacity constraints (3a), (3b) and (3d), under the as-
sumption Pmin

k = Qmin
k = −∞ for every k ∈ N . Let H be the

graph that describes the topology of the power network under
study. If the OPF problem is feasible, then its corresponding
SDP relaxation has a solution (Wopt,Popt

G ,Qopt
G ) such that

rank{Wopt} ≤ η(H) + 1.

Proof: Let J denote an induced subgraph of the power
network with no cycles. One can expand J into a tree T
by adding a minimal set of additional edges to this possibly
disconnected subgraph. Let H′ , (VH, EH ∪ ET ). According
to Theorem, 6 there exists a solution (Wopt,Popt

G ,Qopt
G ) such

that
rank{Wopt} ≤ |H′| −msr(H′). (22)

It also follows from [21] that

msr(H′) ≥ |H′| − η(H′)− 1. (23)

Combining (22) and (23) yields

rank{Wopt} ≤ η(H′) + 1. (24)

For an optimal choice of J with the maximum number of
vertices |J | = |H| − η(H), we have η(H′) = η(H). This
completes the proof. �

There is a large body of literature on computing η, which
signifies that this number is small for a very broad class
of graphs, including mostly planar graphs. To illustrate the
application of Theorem 7, consider the distribution network
depicted in Figure 5(a). This network has three cycles,
possibly used for exchanging renewable energy between the

load buses without going through the feeder (the node shown
in gray). Since removing this node eliminates all cycles of the
network, it follows from Theorem 7 that the SDP relaxation
of OPF has a solution with the property rank{Wopt} ≤ 2.

Remark 1. The power balance equations (1a) and (1b) are
equality constraints. One may relax these equations to inequal-
ity constraints so that each bus k ∈ N can be oversupplied.
This notion is called over-satisfaction and has been considered
in a number of papers (see [4], [2] and the references therein).
The main idea is that whenever a power network operates
under a normal condition, it is expected that the solution of
the OPF problem remains intact or changes insignificantly
under the load over-satisfaction assumption. The condition
Pmin
k = Qmin

k = −∞ in Theorem 7 can be supplanted by
the load over-satisfaction assumption

Remark 2. Given a general graph H, finding the parameter
η(H) and its associated maximal induced forest J is known
to be an NP-complete problem. Nevertheless, as shown in
the proof of Theorem 7, any arbitrary set of nodes whose
removal eliminates all cycles of the network leads to a solution
Wopt together with an upper bound on its rank. In addition,
the identification of J is mostly a one-time process and the
algorithm proposed in [22] can be used for that purpose.

B. Recovery of near-optimal solution for OPF

As discussed in the preceding subsection, the SDP relax-
ation is expected to have a low-rank solution. This solution
may be used to find an approximate rank-1 solution. Another
technique is to enforce the SDP relaxation to eliminate the
undesirable nonzero eigenvalues of the low-rank solution by
incorporating a penalty term into its objective. The recent
literature of compressed sensing suggests the penalty term
ε × trace{W} for some coefficient ε ∈ R+ [23]. However,
this idea fails to work for OPF since all feasible solutions of
the SDP relaxation have almost the same trace (because V min

k

and V max
k are normally close to each other for k = 1, ..., n).

We propose a different penalty function in this paper.

Penalized SDP relaxation: This optimization is obtained
from the SDP relaxation of the OPF problem by replacing
its objective function with∑

k∈G

fk(PGk
) + ε

∑
k∈G

QGk
(25)

for a given positive number ε.
There are two independent reasons behind the introduction

of the penalty term
∑

k∈G QGk
:

• Consider a positive semidefinite matrix X with constant
(fixed) diagonal entries X11, . . . , Xnn and variable off-
diagonal entries. If we maximize a weighted sum of the
off-diagonal entries of X with positive weights, then
it turns out that Xlm =

√
XllXmm for all l,m ∈

{1, . . . , n}, in which case X becomes rank-1. Motivated
by this fact, we employ the idea of elevating the off-
diagonal entries of W to obtain a low-rank solution. For
a lossless network, the above penalty term increases the
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weighted sum of the real parts of the off-diagonal entries
of W.

• Denote the set of all feasible vectors (PG,QG) satisfying
the constraints of OPF as T . The OPF problem minimizes
the cost function

∑
k∈G fk(PGk

) over the projection of
T onto the space for PG, which is referred to as P in
this work. The projection from T to P maps multiple
(possibly an uncountable number of) points into the same
vector PG. This becomes a critical issue after removing
the constraint rank{W} = 1 from OPF. The main reason
is that those multiple points with the same projection
could correspond to different values of W with disparate
ranks. The penalty term ε

∑
k∈G QGk

aims to guide the
numerical algorithm by speculating that the right point
(PG,QG) would cause the lowest reactive loss.

Let (Wopt,Popt
G ,Qopt

G ) and (Wε,Pε
G,Q

ε
G) denote arbitrary

solutions of the SDP and penalized SDP relaxations, respec-
tively. Assume that Wopt does not have rank 1, whereas Wε

has rank 1. It can be observed that the optimal objective
value of OPF is lower and upper bounded by the respec-
tive numbers

∑
k∈G fk(P

opt
Gk

) and
∑

k∈G fk(P
ε
Gk

). Moreover,
(Wε,Pε

G,Q
ε
G) can be mapped into the feasible solution

(Vε,Pε
G,Q

ε
G) of the OPF problem, where Vε(Vε)∗ = Wε.

As a result, whenever the penalized SDP relaxation has a
rank-1 solution, a feasible solution of OPF can be readily
constructed and its sub-optimality degree can be measured
subsequently. Note that a gradient descent algorithm can then
be exploited to produce a local (if not global) solution from
(Vε,Pε

G,Q
ε
G). Since the SDP relaxation of OPF possesses

a low-rank solution in most cases, it is anticipated that the
penalized SDP relaxation generates a global or near-global
solution. We conducted extensive simulations on IEEE systems
with more than 7000 different cost functions and observed that
the penalized SDP relaxation always had a rank-1 solution. In
addition, the obtained feasible solution of OPF was not only
near optimal but also almost a local solution (satisfying the
first order optimality conditions with some small error) in more
than 95% of the trials. This observation will be elaborated
in the next section. In what follows, we will provide partial
theoretical results supporting our penalization technique.

Theorem 8. Consider a weakly-cyclic network with cycles of
size 3. Given an arbitrary strictly positive number ε, every
solution of the penalized SDP relaxation with the capacity
constraint (4d) has rank-1, provided

a) Qmin
k = −∞ for every k ∈ N in the lossless case;

b) Pmin
k = Qmin

k = −∞ and Qmax
k = ∞ for every k ∈ N

in the lossy case.

Proof: This theorem can be proved in line with the technique
developed in the proof of Theorem 2. �

V. SIMULATIONS

Consider the IEEE 14-bus system with the cost function∑
k∈G ckPGk

, where the coefficients ck’s are provided in
Table II(a). Let λ1 and λ2 denote the two largest eigenvalues
of the matrix solution Wopt

ε of the penalized SDP relaxation.
Solving this relaxation with ε = 0 gives rise to λ1 = 15.1617
and λ2 = 0.0138, implying that the matrix Wopt

ε is nearly

rank-1. However, λ2 being nonzero is an impediment to the
recovery of a feasible solution of OPF. To address this issue,
we solve the penalized SDP relaxation with ε = 0.012. This
leads to a rank-1 matrix Wopt

ε . The results are summarized
in Table II(a). It can be seen that changing the penalty
coefficient ε from 0 to 0.012 has a negligible effect on PG

but a significant impact on QG. As a result, the proposed
penalization method corrects the vector of reactive powers
and the upshot of this correction is the recovery of a feasible
solution for OPF. Notice that the cost for this feasible solution
is equal to 316.13, while the optimal cost for the globally
optimal solution of OPF is lower bounded by 316.08, i.e., the
solution of the SDP relaxation. This means that although it is
hard to argue whether the feasible solution retrieved from the
rank-1 matrix Wopt

ε for ε = 0.012 is globally optimal for OPF,
its sub-optimality degree is at least %99.98 (this number is
obtained by contrasting the cost 316.13 with the lower bound
316.08). It is even more interesting to note that the feasible
solution recovered for OPF coincides with the solution found
by the interior point method implemented in MATPOWER.
This implies that the attained feasible solution is a local near-
global (if not global) solution of OPF.

To gain some insight into the selection of the penalty
coefficient ε, the cost f opt

ε =
∑

k∈G fk(P
ε
Gk

) is plotted in
Figure 6(a). It can be observed that this function is strictly
increasing at the beginning, but there is a breakpoint at which
the function becomes almost flat. Interestingly, the matrix
Wopt

ε has rank 2 before the breakpoint ε = 0.012 and rank 1
after this point. Consequently, there is a range of values for ε
(as opposed to a single number) that makes the matrix Wopt

ε

rank 1 and keeps the cost at the lowest level (due to the almost
flat part of the curve f opt

ε ).
The above experiment was repeated on two very extreme

cases for IEEE 30 and 57-bus systems with linear cost
functions. The results are summarized in Tables II(b)-(c) and
Figures 6(b)-(c). The observations made for each of these
cases conform with the previous ones: (i) there is a turning
point at which the cost function f opt

ε becomes almost flat and
concurrently the matrix Wopt

ε becomes rank 1, (ii) the feasible
solution of OPF recovered from a rank-1 matrix Wopt

ε is not
only near-optimal but also a local solution. The phenomenon
of the “almost flat part segment” in the curve f opt

ε has been
observed in numerous cases examined by the authors for
which the (unpenalized) SDP relaxation did not have a rank-1
solution.

Some modifications on the IEEE test cases and other well
known examples have been proposed in [15] and [16], which
make the SDP relaxation method fail to work. Consider the
case “modified 14-bus” from [16] and “modified 118-bus”
from [15] to evaluate the performance of the penalized SDP
method:

• For the case “modified 14-bus” from [16], the (unpenal-
ized) SDP lower bound on the optimal cost of the solution
is 8092.36. A rank-1 solution can be obtained at ε = 80
with the cost 8092.72.

• For the case “modified 118-bus” from [15], the diagram
of the optimal cost versus the penalty coefficient ε is
shown in Figure 7. This system has at least 3 local
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IEEE-14

ϵ 0 0.012
λ1 15.1617 15.1340
λ2 0.0138 0

Cost $316.08 $316.13

k ck PGk
QGk

PGk
QGk

1 3 25.36 0 25.38 0.85
2 1 140 25.44 140 22.25
3 4 0 28.77 0 27.11
6 1 100 -6 100 -6
8 4 0 9.16 0 6.42

(a)

IEEE-30

ϵ 0 0.55
λ1 30.6789 30.8677
λ2 0.4986 0

Cost $414.34 $438.40

k ck PGk
QGk

PGk
QGk

1 1 80 11.11 80 -4.60
2 10 0 39.16 0 -2.10
13 1 40 44.70 40 44.70
33 10 23.98 35.26 27.32 33.36
23 100 0 33.39 0 15.62
27 1 54.55 25.65 45.22 21.33

(b)

IEEE-57

ϵ 0 1.5
λ1 57.1776 56.8887
λ2 0.0767 0

Cost $259.70 $272.73

k ck PGk
QGk

PGk
QGk

1 0.1 575.88 78.60 575.88 111.87
2 0.1 100 50 100 50
3 100 0 60 0 44.29
6 0.1 100 25 100 25
8 10 13.11 117.90 14.41 159.64
9 0.1 100 9 100 9
12 0.1 410 96.91 410 -6.29

(c)

TABLE II: Three case studies for IEEE systems: (a) IEEE-14; (b) IEEE-30; (c) IEEE-57.

Rank 1 

Rank 2 

Optimal 

(a)

Rank 1 

Rank 2 

Optimal 

(b)

Rank 1 Rank 2 

Optimal 

(c)

Fig. 6: (a) IEEE-14; (b) IEEE-30; (c) IEEE-57

Rank 1 

Rank 2 

Fig. 7: The modified 118-bus system [15]

minima with the associated costs 129625.03, 177984.32
and 195695.54. The penalized SDP relaxation gives rise
to the best minimum among these local minima for
ε ≃ 0.2.

To demonstrate the merit of the penalized SDP relaxation,
we generated more than 7000 cost functions for IEEE 14, 30
and 57-bus systems with the network parameters obtained from
MATPOWER test data files—including constraints limiting
the apparent power for each line—where the cost coeffi-
cients ck’s were chosen from the discrete set {1, 2, 3, 4}. We
then conducted the above experiment on all these generated

OPF problems and tabulated the findings in the supplement
http://www.columbia.edu/∼rm3122/research.html. The results
are encapsulated below:

• There were many cases for which the penalized SDP
relaxation with ε = 0 had a rank-1 solution. This means
that the unpenalized SDP relaxation was able to find a
global solution of OPF in many cases.

• There were cases for which the numerical solution of
the SDP relaxation was not rank 1, but the penalized
SDP relaxation produced a rank-1 solution for a very
small number ε. For example, this occurs for the IEEE-
30 bus system with ck = 1 for which Wopt has two
non-zero eigenvalues 32.3437 and 0.0112, while Wopt

ϵ

has only one nonzero eigenvalue equal to 32.3433 for
ϵ = 10−5. Under this circumstance, the SDP relaxation
has multiple solutions, including a hidden rank-1 solution
that can be obtained through the penalized SDP relaxation
with a very small ϵ.

• In many cases, there exists an ε1 > 0 such that the
penalized SDP relaxation always yields a rank-1 solution
for every ε > ε1 and that there exists an interval
(ε1, ε2) in which the resulting cost changes very slightly
(as shown in Figures 6 and 7). Although the cost can
increase dramatically for ε > ε2, like the case shown
in Figure 6(c), we observed that the interval (ε1, ε2) of
interest is relatively large and an ε inside that interval can
be spotted with 2 or 3 trial and errors.

• Whenever the SDP relaxation failed to work for each
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of the generated cases (counting over 7000 OPFs), the
penalized SDP relaxation always had a rank-1 solution
with a carefully chosen ε. In addition, the recovered
near-optimal solution of OPF almost satisfied the KKT
conditions (subject to some small error) in 100%, 96.6%
and 95.8% of cases for IEEE 14, 30 and 57-bus systems,
respectively. This means that these sub-optimal points
would be almost globally optimal.

VI. CONCLUSIONS

We have recently shown that the semidefinite programming
(SDP) can be used to find a global solution of the OPF
problem for IEEE benchmark power systems. Although the
exactness of the SDP relaxation for acyclic networks has been
successfully proved, a recent work has witnessed the failure of
this technique for a three-bus cyclic network. Inspired by this
observation, the present paper is concerned with understanding
the limitations of the SDP relaxation for cyclic power net-
works. First, it is shown that the injection region of a weakly-
cyclic network with cycles of size 3 is convex in the lossless
case and has a convex Pareto front in the lossy case. It is then
proved that the SDP relaxation works for this type of network.
This result implies that the failure of the SDP relaxation for
a three-bus network recently reported in the literature can be
fixed by utilizing a good modeling of the line capacity. As a
more general result, it is then shown that whenever the SDP
relaxation does not work, it is expected to have a low-rank
solution in practice. Finally, a penalized SDP relaxation is
proposed from which a near-global solution of OPF may be
recovered. The performance of this method is tested on IEEE
systems with over 7000 different cost functions.
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APPENDIX

Proof of Theorem 1: In order to prove the equivalence of the
constraints (3a) and (3b) at the nominal voltage magnitudes,
notice that

Plm = Re {Vl(V ∗
l − V ∗

m)y∗lm}
= Re{(1− eθlmi)y∗lm}
= |y∗lm| [cos(]y∗lm)− cos(θlm + ]y∗lm)] . (26)

By inspecting the sinusoidal term inside the expression of Plm,
it is straightforward to verify that |Plm| attains its maximum
value at θlm = α. For the constraints (3c) and (3d), one can
write:

|Slm|2 = |Vl(V ∗
l − V ∗

m)y∗lm|2

= |y∗lm|2
∣∣(1− eiθlm)

∣∣2 (27)

= 2 |y∗lm|2 (1− cos(θlm)) (28)

and

|Vl − Vm|2 = |Vl|2 + |Vm|2 − 2|Vl||Vm| cos(θlm)

= 2(1− cos(θlm)). (29)

By inspecting the term cos(θlm) and using the assumption
α ∈ [0, π/2), it follows from the above relations that

θlm ∈ [−α, α] ⇔ |Slm| ≤ Smax
lm (α)

⇔ |Vl − Vm| ≤ ∆V max
lm (α) (30)

This completes the proof. �
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Proof of Theorem 2: The proof is trivial for a 2-bus net-
work. Assume for now that the network is composed of a
single cycle of size 3. In order to prove the theorem in
this case, consider an arbitrary solution (Pinit

G ,Qinit
G ,Winit)

of the SDP relaxation. It suffices to show that there exists
another solution (Popt

G ,Qopt
G ,Wopt) with the same cost as

(Pinit
G ,Qinit

G ,Winit) such that rank{Wopt} = 1. Alterna-
tively, it is enough to prove that the feasibility problem

Pmin
k ≤ PDk

+
∑

l∈N (k)

Re {(Wkk −Wkl)y
∗
kl} ≤ P init

Gk
(31a)

Qmin
k ≤ QDk

+
∑

l∈N (k)

Im {(Wkk −Wkl)y
∗
kl} ≤ Qmax

Gk
(31b)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (31c)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )

2 (31d)
W ≽ 0 (31e)

∀ k ∈ N , (l,m) ∈ L, has a rank-1 solution Wopt. To this end,
we convert the above feasibility problem into an optimization
by adding the objective function

min
W∈Hn

−
∑
k∈G

QGk
(32)

to the problem. Let νk, λk, µk
∈ R+, νk, λk, µk, ψlm ∈ R+,

and A ∈ H3
+ denote the Lagrange multipliers corresponding

to the lower bounding constraints (31a), (31b), (31c), upper
bounding constraints (31a), (31b), (31c), (31d), and (31e),
respectively. It can be shown that

Alm = − Im{y∗lm} − ψlm − ψml

− (νl − νl)y
∗
lm + (νm − νm)ylm

2

− (λl − λl)y
∗
lm − (λm − λm)ylm

2i
(33)

for every (l,m) ∈ L. Define νk , νk−νk and λk , λk−λk,
for every k ∈ N . Then, (33) can be rewritten as

Alm = −ψlm − ψml

−Re{y∗lm}
[
νl + νm − (λl − λm)i

2

]
−Im{y∗lm}

[
1 +

λl + λm + (νl − νm)i

2

]
(34)

for every (l,m) ∈ L. Moreover, the complementary slackness
condition yields that trace{WoptAopt} = 0 at optimality. To
prove that Wopt has rank 1, it suffices to show that Aopt has
rank n− 1 = 2. To prove the later statement by contradiction,
assume that Aopt has rank 1. Therefore, the determinant of
each 2× 2 submatrix of Aopt must be zero. In particular,

det

[
Aopt

12 Aopt
13

Aopt
22 Aopt

23

]
= Aopt

12A
opt
23 −Aopt

13A
opt
22 = 0 (35)

=⇒ ]Aopt
12 + ]Aopt

23 − ]Aopt
13 = ]Aopt

22 . (36)

Since Aopt is Hermitian, we have

]Aopt
22 = 0 and ]Aopt

13 = −]Aopt
31 (37)

and hence the following relation must hold:

]Aopt
12 + ]Aopt

23 + ]Aopt
31 = 0. (38)

On the other hand, under the assumptions of the theorem, we
have

Re{y∗lm} = 0, λk ≥ 0 (39)

for Part (a) and
λk = 0, νk ≥ 0 (40)

for Part (b). Hence, it can be concluded from (34) and each
set of equations (39) or (40) that

Re{Aopt
12},Re{A

opt
23},Re{A

opt
31} < 0 (41a)

Im{Aopt
12}

Im{y∗12}
+

Im{Aopt
23}

Im{y∗23}
+

Im{Aopt
31}

Im{y∗31}
= 0. (41b)

(recall that y∗lm has nonnegative real and imaginary parts due
to the positivity assumption of the resistance and reactance of
each line). It can be concluded from (41b) that the elements
of the set

{
Im{Aopt

12}, Im{Aopt
23}, Im{Aopt

31}
}

are neither all
positive nor all negative. With no loss of generality, it suffice
to study the following two cases:

i) If

Im{Aopt
12}, Im{Aopt

23} ≥ 0 and Im{Aopt
31} ≤ 0, (42)

then according to (41a), we have:

π/2 < ]Aopt
12 ≤ π (43a)

π/2 < ]Aopt
23 ≤ π (43b)

π ≤ ]Aopt
31 < 3π/2. (43c)

ii) If

Im{Aopt
12}, Im{Aopt

23} ≤ 0 and Im{Aopt
31} ≥ 0, (44)

then according to (41a), we have:

π ≤ ]Aopt
12 < 3π/2 (45a)

π ≤ ]Aopt
23 < 3π/2 (45b)

π/2 < ]Aopt
31 ≤ π. (45c)

Both (43) and (45) yield that

2π < ]Aopt
12 + ]Aopt

23 + ]Aopt
31 < 4π (46)

implying that the angle relation (38) does not hold. This
contradiction completes the proof for both Parts (a) and (b).

For a general network with multiple cycles, let O denote
the set of all 3-bus cyclic subgraphs of the power network.
Define Ō as the set of all bridge edges (i.e., those edges whose
removal makes the graph disconnected). By adapting the proof
delineated above for a single link and a single cycle, it can be
shown that the SDP relaxation has a solution Wopt with the
property

rank(W opt(S)) = 1 for all S ∈ O ∪ Ō, (47)
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where W opt(S) is a sub-matrix of Wopt obtained by picking
every row and column of Wopt whose index corresponds to a
vertex of the subgraph S. The above relation yields that

|W opt| =
√
W opt

ll W
opt
mm, (l,m) ∈ L (48)

and that

]W opt(S)1,2 + ]W opt(S)2,3 + ]W opt(S)3,1 = 0 (49)

for every S ∈ O. It follows from the above equation that there
exist some angles θ1, . . . , θn ∈ [−π, π] such that

θl − θm = ]W opt
lm for all (l,m) ∈ L (50)

Now, it is easy to verity that Vopt(Vopt)∗ is a rank-1 solution
of the SDP relaxation, where

Vopt =

[√
W opt

11 e
−θ1i,

√
W opt

22 e
−θ2i, . . . ,

√
W opt

nne
−θni

]∗
(51)

This completes the proof. �
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