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Abstract— This paper is concerned with solving
online nonconvex optimization problems using simple
gradient-based algorithms with an arbitrary initial-
ization. The main objective is to understand how
the natural data variation of an online optimization
problem affects finding its time-varying global minima.
To this end, we investigate the properties of a time-
varying gradient flow system with inertia, which can
be regarded as the continuous-time limit of the online
tracking scheme obtained by working through the
optimality conditions for a discretized sequential opti-
mization problem with a proximal regularization. We
introduce the notion of the dominant trajectory and
show that the inherent temporal variation of the prob-
lem could re-shape the landscape and help a proximal
algorithm escape the spurious local minimum trajecto-
ries if the global minimum trajectory is dominant. By
studying the three notions of jumping, tracking and
escaping for nonlinear dynamical systems, sufficient
conditions are derived to guarantee that no matter
how the local search method is initialized, it will find
and track a time-varying global solution after some
time.

I. INTRODUCTION

In this paper, we study the following unconstrained
online time-varying optimization problem:

min
x(t)∈Rn

f(x(t), t) (1)

where t ≥ 0 denotes the time and x(t) is the optimization
variable that depends on t. For each time t, the function
f(x(t), t) could potentially be nonconvex in x(t) with
many local minima. The objective is to solve the above
problem in an online fashion under the assumption
that at any given time τ the function f(x, t) is known
for all t ≤ τ while no knowledge about f(x, τ) may
be available for any t > τ . Therefore, the functions
f(x, ·)’s cannot be minimized off-line and should be
solved sequentially. Another issue is that the optimization
problem at each time instance could be highly complex
due to NP-hardness, which is an impediment to finding
its global minima. This paper aims to investigate under
what conditions simple local search algorithms can solve
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the above online optimization problem to almost global
optimality after some finite time.

If f(x, t) does not change over time, the problem re-
duces to a classic (time-invariant) nonconvex optimization
problem. It is known that simple local search methods,
such as stochastic gradient descent (SGD) [11], may be
able to find a global minimum of such time-invariant
problem (under certain conditions) for almost all initial-
izations due to the randomness embedded in SGD [13], [8],
[16]. The objective of this paper is to significantly extend
the above result from a single optimization problem to
infinitely-many problems parametrized by time t. In other
words, it is desirable to investigate the following question:
Can the temporal variation in the landscape of
time-varying nonconvex optimization problems
enable online local search methods to find and
track global trajectories? To answer this question,
we study a first-order time-varying ordinary differential
equation:

ẋ = − 1
α
∇xf(x, t), x(0) = x0 (ODE)

where α > 0 is a constant parameter named inertia due
to a proximal regularization. A system of the form
(ODE) is called a time-varying gradient system with
inertia α.

In this work we prove that the natural temporal
variation of the time-varying optimization problem encour-
ages the exploration of the state space and re-shaping
the landscape of the objective function by making it
one-point strongly convex over a large region during
some time interval. We introduce the notion of the
dominant trajectory and show that if a given spurious
local minimum trajectory is dominated by the global
minimum trajectory, then the temporal variation of the
time-varying optimization would trigger escaping the
spurious local minimum trajectory for free. We develop
the sufficient conditions under which the ODE solution
will jump from a certain local minimum trajectory to a
more desirable local minimum trajectory. We then derive
sufficient conditions on the inertia α to guarantee that the
solution of (ODE) can track a global minimum trajectory.
This work generalizes the notion of spurious solutions from
static optimization to dynamic optimization, and also its
framework can be used to study when stochastic gradient
descent is able to escape undesirable local minima.



A. Related work
Online time-varying optimization problems:

There are many papers on designing efficient online
algorithms for tracking optimizers of time-varying convex
problems [21], [7], [2], [20]. With respect to time-varying
nonconvex problems, [25], [24], [18] develop algorithms
to track the local optimal solution of the time-varying
optimization problems. The recent paper [5] poses the
question of whether the natural temporal variation in a
time-varying nonconvex optimization problem could help
a local tracking method escape spurious local minimum
trajectories, but it lacks mathematical conditions to
guarantee this desirable behavior. The paper [19] also
studies this phenomenon in a discrete setting in the
context of power systems and verifies on real data for
California that the natural load variation enables escaping
local minima of the optimal power flow problem. The
current work significantly generalizes the results of [5] and
[19] by mathematically studying when such an escaping
is possible.
Local search methods for global optimization: It
has been recently shown that simple local search meth-
ods, such as gradient-based algorithms, have a superb
performance in solving nonconvex optimization problems.
For example, [13], [8] prove that a perturbed gradient
descent and SGD could escape the saddle points efficiently.
Furthermore, it has been shown that certain nonconvex
optimization problems [3], [9], [27], [6], [14], [23] have
benign landscape, implying that they are free of spurious
local minima. The work [16] proves that SGD could help
escape sharp local minima of a loss function. However,
these results are all for time-invariant optimization
problems. In contrast, many real-world problems should
be solved sequentially over time with time-varying data.
Therefore, it is essential to study the effect of the temporal
variation on the landscape of time-varying nonconvex
problems.
Continuous-time interpretation of discrete numer-
ical algorithms: Many iterative numerical optimization
algorithms for time-invariant optimization problems can
be interpreted as a discretization of a continuous-time
process. Then, several new insights have been obtained
due to the known results for continuous-time dynamical
systems [15], [10]. The recent papers [22], [17], [26] study
accelerated gradient methods for convex optimization
problems from a continuous-time perspective. It is nat-
ural to analyze the continuous-time limit of an online
algorithm for tracking a KKT trajectory of time-varying
optimization problem [21], [24], [18], [5].

B. Notations
The notation ‖·‖ shows the Euclidian norm. The

interior of the interval I is denoted by int(I). The symbol
Br(h(t)) = {x ∈ Rn : ‖x− h(t)‖ ≤ r} denotes the region
centered around a trajectory h(t) with radius r at time
t. We denote the solution of ẋ = f(x, t) starting from x0
at the initial time t0 with x(t, t0, x0) or the short-hand

notation x(t) if the initial condition (t0, x0) is clear from
the context.

II. Motivation: case study on power systems

In this section, we present an empirical study on the
dynamic landscape of the optimal power flow problem to
illustrate the role of data variation in online optimization.
Consider the time-varying optimal power flow (OPF)
problem, as the most fundamental problem for the
operation of electric power grids that aims to match
supply with demand while satisfying network and physical
constraints. Let f(x, t) be the function to be minimized
at time t, which is the sum of the total energy cost and
a penalty term taking care of all the constraints of the
problem. Assume that the load data corresponds to the
California data for August 2019. As discussed in [19], the
function f(x, t) has 16 local minima at t=0 and many
more for some values of t > 0. However, if (ODE) is run
from any of these local minima, the 16 trajectories will all
converge to the globally optimal trajectory, as shown in
Figure 1. This implies that local search methods are able
to find global minima of the optimal power flow problem
at future times even when they start from poor local
minima at the initial time. This observation has been
made in [19] for a discrete-time version of the problem,
but it also holds true for the continuous-time (ODE)
model.

Fig. 1. |x(t)| (magnitude of the solution of (ODE)).

III. Preliminaries and Problem Formulation

A. Time-varying optimization
We assume that f : Rn × [0,∞)→ R is twice continu-

ously differentiable in x and continuously differentiable
in t ≥ 0. Moreover, suppose that f is uniformly bounded
from below. The first-order stationary condition for (1)
is as follows:

0 = ∇xf(x(t), t) (2)



In this work, we assume that the real roots of (2) are all
isolated at each time t (i.e., stationary trajectories do not
intersect in time). An isolated stationary trajectory can
theoretically be a mix of local minima, local maxima
and saddle points of the function f(x, t) at different
times. However, the goal of this work is to study only
isolated local minimum trajectories of the time-varying
optimization (1).

Definition 1. A continuous trajectory h(t) : [0,∞)→ Rn
is said to be a local (or global) minimum trajectory of
the time-varying optimization (1) if each point of h(t) is a
local (or global) minimum of the time varying optimization
(1) at time t ∈ [0,∞).

After freezing the time t in (1) at a particular value,
one may use local search methods to minimize f(x, t).
The notion of region of attraction is defined by resorting
to the continuous-time model of local search algorithms.

Definition 2. The region of attraction of a local
minimum point h(t) of f(·, t) at a given time is defined
as:

RA(h(t)) =
{
x0 ∈ Rn

∣∣ lim
t̃→∞

x(t̃) = h(t),where

dx̃(t̃)
dt̃

= −∇xf(x̃(t̃), t) and x̃(0) = x0
}

Definition 3. Consider arbitrary positive scalars c and r.
The function f(x, t) is said to be locally (c, r)-one-point
strongly convex around the local minimum trajectory
h(t) if

∇xf(e+ h(t), t)>e ≥ c ‖e‖2 , ∀e ∈ D, ∀t ∈ [0,∞)
(3)

where D = {e ∈ Rn : ‖e‖ ≤ r}. The region D = {e ∈ Rn :
‖e‖ ≤ r} is called the region of locally (c, r)-one-point
strong convexity around h(t).

Note that (3) resembles the (locally) strong convexity
condition for the function f(x, t), but it is only expressed
around the point h(t). This restriction to a single point
constitutes the definition of one-point strong convexity
and it does not imply that the function is convex.

B. Derivation of time-varying gradient flow system
In many real-world applications, it is neither practical

nor realistic to have solutions that abruptly change
over time. To meet this requirement, we impose a soft
constraint to the objective function by penalizing the
deviation of its solution from the one obtained in the
previous time step. This leads to the following sequence
of optimization problems with proximal regularization
(except for the initial optimization problem):

min
x∈Rn

f(x, τ0), (4a)

min
x∈Rn

f(x, τi) +
α
∥∥x− x∗i−1

∥∥2

2(τi − τi−1) , i = 1, 2, . . . (4b)

where x∗i−1 denotes an arbitrary local minimum of the
modified optimization problem (4) obtained using a local
search method at time iteration i − 1. Due to the first-
order optimality condition, the local minimum x∗i of (4)
at time step τi satisfies the equation:

∇xf(x∗i , τi) + α
x∗i − x∗i−1
τi − τi−1

= 0 (5)

We study the continuous-time limit of (5) as the time
step τi+1− τi attenuates to zero. This yields the ordinary
differential equation:

αẋ(t) = −∇xf(x(t), t), x(0) = x∗0 (6)

When α = 0, the differential equation (6) reduces to the
algebraic equation (2), which is indeed the first-order
stationary condition for (1). When α > 0, we will show
that (ODE) has a unique solution defined for all t ≥ 0
under the assumption that the solutions of (ODE) lie in
a compact set1.

Proposition 1 (Existence and uniqueness). Suppose that
f(x, t) is continuous in t, and that its gradient is locally
Lipschitz in x for all t ≥ 0 and x ∈ Rn. Let D be a compact
subset of Rn containing x0 such that every solution of
(ODE) lies entirely in D. Then, (ODE) has a unique
solution starting from x0 ∈W and is defined for all t ≥ 0.

Proof. This results follows from [15, Theorem 3.3].

Furthermore, in online optimization, it is desirable to
predict the solution at a future time (namely, τi) only
based on the information at the current time (namely,
τi−1). This can be achieved by implementing the forward
Euler method of (ODE):

x̄∗i = x̄∗i−1 −
τi − τi−1

α
∇xf(x̄∗i−1, τi−1) (7)

(note that x̄∗0, x̄∗1, x̄∗2, ... show the approximate solutions).
The following theorem explains the reason behind study-
ing the continuous-time problem (ODE) in the remainder
of this paper.

Proposition 2 (Convergence). Given a local minimum
x∗0 of (4a), as the time difference ∆τ = τi+1 − τi
approaches zero, any sequence of discrete local trajectories
(x∆
k ) converges to the (ODE) in the sense that for all fixed

T > 0:

lim
∆τ→0

max
0≤k≤ T

∆τ

∥∥x∆
k − x(τk, τ0, x∗0)

∥∥ = 0 (8)

and any sequence of (x̄∆
k ) updated by (7) converges to the

(ODE) in the sense that for all fixed T > 0:

lim
∆τ→0

max
0≤k≤ T

∆τ

∥∥x̄∆
k − x(τk, τ0, x∗0)

∥∥ = 0 (9)

Proof. The first part follows from Theorem 2 in [5]. For
the second part, a direct application of the classical

1Checking the compactness assumption can be done via the
Lyapunov’s method without solving the differential equation.



results on convergence of the forward Euler method [12]
immediately shows that the solution of (ODE) starting
at a local minimum of (4a) is the continuous limit of
the discrete local trajectory of the sequential regularized
optimization (4).

C. Jumping, tracking and escaping
In this paper, the objective is to study the case where

there are at least two local minimum trajectories of the
online time-varying optimization problem. Consider two
local minimum trajectories h1(t) and h2(t).

Definition 4. It is said that the solution of (ODE) (v,u)-
jumps from h1(t) to h2(t) over the time interval [t1, t2]
if there exist u > 0 and v > 0 such that

Bv(h1(t1)) ⊆ RA(h1(t1))
Bu(h2(t2)) ⊆ RA(h2(t2))
∀x1 ∈ Bv(h1(t1)) =⇒ x(t2, t1, x1) ∈ Bu(h2(t2))

Definition 5. It is said that x(t, t0, x0) u-tracks h2(t)
if there exist a finite time T > 0 and a constant u > 0
such that

x(t, t0, x0) ∈ Bu(h2(t)), ∀t ≥ T
Bu(h2(t)) ⊆ RA(h2(t)), ∀t ≥ T

In this paper, the objective is to study the scenario
where a solution x(t, t0, x0) tracking a poor solution h1(t)
at the beginning ends up tracking a better solution h2(t)
after some time. This needs the notion of “escaping” which
is a combination of jumping and tracking.

Definition 6. It is said that the solution of (ODE) (v,u)-
escapes from h1(t) to h2(t) if there exist T > 0, u > 0
and v > 0 such that

Bv(h1(t0)) ⊆ RA(h1(t0))
Bu(h2(t)) ⊆ RA(h2(t)),∀t ≥ T
∀x0 ∈ Bv(h1(t0)) =⇒ x(t, t0, x0) ∈ Bu(h2(t)),∀t ≥ T

Fig. 2. Illustration of jumping and tracking.

Figure 2 illustrates the definitions of jumping and
tracking.

IV. Optimization landscape after a change of
variables

Given two isolated local minimum trajectories h1(t) and
h2(t), one may use the change of variables x(t, t0, x0) =
e(t, t0, e0) + h2(t) to transform (ODE) into the form

ė(t) =− 1
α
∇xf(e(t) + h2(t), t)− ḣ2(t) (13)

We use e(t, t0, e0) to denote the solution of this differential
equation starting at time t = t0 with the initial point
e0 = x0 − h2(t0) and use − 1

αU(e, t, α) to denote the
righthand side of (13). Note that h1(t) and h2(t) are local
solutions of f(x, t) and as long as f(x, t) is time-varying,
these functions cannot satisfy (ODE) in general.

A. Inertia creating a one-point strongly convex landscape
The differential equation (13) can be written as

ė(t) = − 1
α
∇e
(
f(e(t) + h2(t), t) + αḣ2(t)>e(t)

)
(14)

This can be regarded as a time-varying gradient flow
system of the original objective function f(e+h2(t), t) plus
a time-varying perturbation αḣ2(t)>e. During some time
interval [t1, t2], the time-varying perturbation αḣ2(t)>e
may enable that the time-varying objective function
f(e + h2(t), t) + αḣ2(t)>e over the neighborhood of
h1(t) becomes one-point strongly convexified with
respect to h2(t). Under such circumstances, the time-
varying perturbation αḣ2(t)>e prompts the solution of
(14) starting in a neighborhood of h1(t) to move to a
neighborhood of h2(t). Before analyzing this phenomenon,
we illustrate the concept in an example.

Example 1. Consider f(x, t) := g(x− b sin(t)),where

g(y) := 1/4y4 + 2/3y3 − 1/2y2 − 2y

This time-varying objective has a spurious local mini-
mum trajectory at −2 + b sin(t), a local maximum trajec-
tory at −1 + b sin(t), and a global minimum trajectory at
1+b sin(t). In Figure 3, we show a bifurcation phenomenon
numerically. The red lines are the solutions of (ODE) with
the initial point −2. In the case with α = 0.3 and b = 5,
the solution of (ODE) winds up in the region of attraction
of the global minimum trajectory. However, for the case
with α = 0.1 and b = 5, the solution of (ODE) remains
in the region of attraction of the spurious local minimum
trajectory.

In this example, the equation (14) can be expressed as
ė(t) = − 1

α∇e
(
g(1 + e(t)) + 5α cos(t)e(t)

)
. The landscape

of the new time-varying function g(1 + e) + 5α cos(t)e
with the variable e is shown for two cases α = 0.3 and
α = 0.1 in Figure 4. The red curves are the solutions of
(14) starting from e = −3. One can observe that when
α = 0.3, the new landscape becomes one-point strongly
convex around h2(t) over the whole region for some time
interval, which provides (14) with the opportunity of
escaping from the region around h1(t) to the region
around h2(t). However, when α = 0.1, there are always



(a) α = 0.3, b = 5 (b) α = 0.1, b = 5

Fig. 3. Illustration of Example 1 (in order to increase visibility,
the objective function values are rescaled).

two locally one-point strongly convex regions around
h1(t) and h2(t) and, therefore, (14) fails to escape the
region around h1(t). To further inspect the case α = 0.3,

(a) g(1 + e) + 1.5 cos(t)e (b) g(1 + e) + 0.5 cos(t)e

Fig. 4. Illustration of time-varying landscape after change of
variables for Example 1.

observe in Figure 5(a) that the landscape of the objective
function g(1 + e) + 1.5 cos(0.9π)e shows that the region
around the spurious local minimum trajectory h1(t) is
one-point strongly convexified with respect to h2(t) at
time t = 0.9π. This is consistent with the fact that the
solution of ė = − 1

0.3∇xg(1 + e) − 5 cos(t) starting from
e = −3 jumps to the neighborhood of 0 around time
t = 0.9π, as demonstrated in Figure 5(c). Furthermore,
if the time interval [t1, t2] is relatively large enough
to allow transition from a neighborhood of h1(t) to a
neighborhood of h2(t), then the solution of (14) would
move to the neighborhood of h2(t). In contrast, the region
around h2(t) is never one-point strongly convexified with
respect to h1(t), as shown in Figure 5(b). In the next
subsection, we introduce the notion of the dominant
trajectory after averaging to formally describe when the
time-varying linear perturbation αḣ2(t)>e could help
re-shape the objective landscape to become one-point
strongly convexified.

B. Notion of the dominant trajectory after averaging

To avoid directly analyzing the time-varying system, we
first introduce the notion of averaging of a time-varying
function over a time interval [t1, t2].

Definition 7. A function Uav(e, α) is said to be the
average function of U(e, t, α) over the time interval

[t1, t2] if

Uav(e, α) = 1
t2 − t1

∫ t2

t1

U(e, t, α)dτ

The time-invariant partial interval averaged system of
(13) over the time interval [t1, t2] can be written as

ė = − 1
α
Uav(e, α) (15)

Then, (13) can be regarded as a time-invariant system (15)
with the time-varying perturbation term p(e(t), t, α) =
− 1
α (U(e(t), t, α)− Uav(e, α)).
In the rest of the paper, we consider two local minimum

trajectories h1(t) and h2(t) such that the time-varying
function f(x, t) is locally (c2, r2)-one-point strongly con-
vex with respect to x around h2(t) in the region Br2(0)
and that h2(t) is continuously differentiable. Now, we
introduce the notion of the dominant trajectory after
averaging.

Definition 8. It is said that h2(t) is a (α,w)-dominant
trajectory after averaging with respect to h1(t) during
[t1, t2] over the region Dv,ρ,r2 if the time variation of
h2(t) makes the average function Uh2

av (e.α) in (15) become
one-point strongly monotone over Dv,ρ,r2 , i.e.,

Uav(e, α)>(e− ē) ≥ w ‖e− ē‖2 , ∀e ∈ Dv,ρ,r2 (16)

where w > 0 is a constant., ē is defined in (17) and Dv,ρ,r2

is defined as follows:
• Dv,ρ,r2 is a compact positively invariant subset such

that

e1 ∈ Dv,ρ,r2 ⇒ e(t, t1, e1) ∈ Dv,ρ,r2 ,∀t ∈ [t1, t2].

where e(t, t1, e1) is the solution of (13) staring from
the initial point e1 at the initial time t1.

• Dv,ρ,r2 ⊃ D′v ∪ Bρ(0) where

D′v ={e1 ∈ Rn : e1 + h2(t1) ∈ Bv(h1(t1))
⊆RA(h1(t1))},

ρ ≥ sup
ē:‖ē‖<r2,0=Uav(ē,α)

‖ē‖ . (17)

V. Main results
In this part, we derive different sufficient conditions un-

der which the solution of (ODE) jumps from a poor local
minimum trajectory to a better (or global) trajectory.

A. Jumping
In this subsection, we study the jumping property

of (ODE) when h2(t) is a dominant trajectory after
averaging.

Theorem 1 (Sufficient conditions for jumping from
h1(t) to h2(t)). Suppose that h2(t) is a (α,w)-dominant
trajectory after averaging with respect to h1(t) during
[t1, t2] over the region Dv,ρ,r2 . Assume that the following
conditions are satisfied:



(a) g(1 + e) + 1.5 cos(0.9π)e (b) g(1 + e) + 1.5 cos(0)e (c) solution of ė = − 1
0.3∇xg(1 + e)− 5 cos(t)

starting from e0 = −3

Fig. 5. Illustration of one-point strong convexification for Example 1.

1) There exist some time-varying scalar functions
δ1(α, t) and δ1(α, t) such that

‖p(e(t), t, α)‖ ≤ δ1(α, t) ‖e− ē‖+ δ2(α, t), (18)

for all t ∈ [t1, t2] and there exist some positive
constants η1(α) and η2(α) such that:∫ t

t1

δ1(α, τ)dτ ≤ η1(α)(t− t1) + η2(α). (19)

2) For β1(α) = w
α − η1(α) > 0 and β2(α) = eη2(α) ≥ 1,

it holds that:

β2(α) ‖e1 − ē‖ e−β1(α)(t2−t1) + β2(α) (20)∫ t2

t1

e−β1(α)(t2−τ)δ2(α, τ)dτ ≤ r2 − ρ,∀e1 ∈ D′v

Then, the solution of (ODE) will (v, r2)-jump from h1(t)
to h2(t) over the time interval [t1, t2].

Proof. First, notice that since Dv,ρ,r2 is a compact
positively invariant set with respect to the dynamics
(13), it follows from Proposition 1 that (13) has a unique
solution defined for t ∈ [t1, t2] whenever e1 ∈ Dv,ρ,r2 . By
using V (e) = 1

2 ‖e− ē‖
2 : Dv,ρ,r2 → R as the Lyapunov

function for the system (13), the derivative of V (e) along
the trajectories of (13) can be obtained as

V̇ (e) = (e− ē)>
(
− 1
α
Uav(e, α) + p(e, α, t)

)
≤ −w

α
‖e− ē‖2 + δ1(α, t) ‖e− ē‖2 + δ2(α, t) ‖e− ē‖

Since V (e) = 1
2 ‖e− ē‖

2, one can derive an upper bound
on V̇ as

V̇ (e) ≤ −
[2w
α
− 2δ1(α, t)

]
V (e) + δ2(α, t)

√
2V (e)

To obtain a linear differential inequality, we consider
W (t) =

√
V (e(t)). When V (e(t)) 6= 0, it holds that Ẇ =

V̇ /2
√
V and

Ẇ ≤ −
[w
α
− δ1(α, t)

]
W + δ2(α, t)√

2
(21)

When V (e(t)) = 0, we have e(t) = ē. Writing the Tylor
expansion of e(t+ ε) for a sufficiently small ε yields that

e(t+ ε) =e(t) + ε
(
− 1
α
Uav(e, α) + p(e, α, t)

)
+ o(ε)

=ē+ εp(ē, α, t) + o(ε)

This implies that

V (e(t+ ε)) = ε2

2 ‖p(ē, α, t)‖
2 + o(ε2).

Therefore,

D+W (t) = lim sup
ε→0+

W (t+ ε)−W (t)
ε

= lim sup
ε→0+

√
ε2

2 ‖p(ē, α, t)‖
2 + o(ε2)

ε

= 1√
2
‖p(ē, α, t)‖

≤ 1√
2
δ2(α, t)

(22)

Thus, (21) is also satisfied when V = 0, and accordingly
D+W (t) satisfies (21) for all values of V . Since W is scalar
and the right-hand side of (21) is continuous in t and
locally Lipschitz in W for all t ∈ [t1, t2] and W ≥ 0, the
comparison lemma is applicable. In addition, the right-
hand side of (21) is linear and a closed-form expression for
the solution of the first-order linear differential equation
of W can be obtained. Hence, W (t) satisfies

W (t) ≤ φ(t, t1)W (t1) + 1√
2

∫ t

t1

φ(t, τ)δ2(α, τ)dτ (23)

where the translation function φ(t, t1) is given by

φ(t, t1) = exp
[
− w

α
(t− t1) +

∫ t

t1

δ1(α, τ)dτ
]
. (24)

‖e(t)− ē‖ ≤ φ(t, t1) ‖e1 − ē‖+
∫ t

t1

φ(t, τ)δ2(α, τ)dτ

(25)
Since

∫ t
t1
δ1(α, τ)dτ ≤ η1(α)(t − t1) + η2(α), and using

β1(α) = w
α − η1(α) > 0 and β2(α) = eη2(α) ≥ 1 in (25), it



holds that

‖e(t)− ē‖ ≤β2(α) ‖e1 − ē‖ e−β1(α)(t−t1)

+ β2(α)
∫ t

t1

e−β1(α)(t−τ)δ2(α, τ)dτ (26)

By taking e1 ∈ D′v ⊂ Dv,ρ,r2 , since Dv,ρ,r2 retains trajec-
tories starting from a feasible initial point with respect to
the dynamics (13) for t ∈ [t1, t2], any trajectory of (13)
starting from D′v will stay in Dv,ρ,r2 . Thus, the bound in
(26) is valid. If t2 satisfies

β2(α) ‖e1 − ē‖ e−β1(α)(t2−t1)

+ β2(α)
∫ t2

t1

e−β1(α)(t2−τ)δ2(α, τ)dτ ≤ r2 − ρ

then ‖e(t2)− ē‖ ≤ r2 − ρ. Since ē ∈ Bρ(0), we have
‖e(t2)‖ ≤ r2. This shows that the solution of (13) jumps
from h1(t) to h2(t) during the time interval [t1, t2].

Remark 1. Condition (1) in Theorem 1 means that the
original time-varying system is not too distant from the
time-invariant averaged system, and Condition (2) means
that [t1, t2] needs to be large enough to allow the transition
of points from a neighborhood of h1(t) to a neighborhood
of h2(t).

B. Tracking
In this subsection, we study the tracking property of

the local minimum trajectory h2(t). First, notice that if
h2(t) is not constant, the right-hand side of (ODE) is
nonzero while the left-hand side is zero. Therefore, h2(t)
is not a solution of (ODE) in general. This is because the
solution of (ODE) approximates the continuous limit of
a discrete local trajectory of the sequential regularized
optimization problem (4). However, to preserve the
optimality of the solution with regards to the original
time-varying optimization problem without any proximal
regularization, it is required to guarantee that the solution
of (ODE) is close to h2(t). The next theorem shows that
every local minimum trajectory can be tracked for a
sufficiently small α.

Theorem 2 (Sufficient condition for tracking). Assume
that the time-varying function f(x, t) is locally (c2, r2)-
one-point strongly convex around h2(t). Then, h2(t) can be
tracked if α is sufficiently small. In particular, given 0 <
θ′ < 1, γ := supt≥0

∥∥ḣ2(t)
∥∥ , u := αγ

θ′c2
, ‖x0 − h2(0)‖ ≤ r2

and α < c2θ
′r2
γ , the solution x(t, t0, x0) will u-track h2(t)

exponentially with the convergence rate (1−θ′) c2α , namely,

for t0 ≤ t ≤ t0 + α

c2(1− θ′) ln(r2

u
) :

‖x(t, t0, x0)− h2(t)‖ ≤ r2 exp−(1− θ′)c2
α

(t− t0),

for t > t0 + α

c2(1− θ′) ln(r2

u
) :

‖x(t, t0, x0)− h2(t)‖ ≤ u.

Proof. The proof is based on Lemma 9.2 in [15] and the
details of the proof are deferred to the technical report
[4] due to the space restriction.

C. Escaping
Combining Theorem 1 with Theorem 2 immediately

yields a sufficient condition on escaping from one local
minimum trajectory to the dominant trajectory. The proof
is omitted for brevity.

Theorem 3 (Sufficient conditions for escaping). Suppose
that h2(t) is a (α,w)-dominant trajectory after averaging
with respect to h1(t) during [t1, t2] over the region Dv,ρ,r2 .
Let γ = supt≥0

∥∥ḣ2(t)
∥∥, 0 < θ′ < 1, Bv(h1(t1)) ⊆

RA(h1(t1)) and u = αγ
θ′c2

. Under the conditions of
Theorem 1 , if α < r2c2θ

′

γ , the solution of (ODE) will
(v, r2)-escape from h1(t) to h2(t) after t ≥ t2.

VI. Illustrative Example
Example 2. We study a low-dimensional example for
which one can visualize the aforementioned conditions.
Consider the non-convex function

g(x) =0.5e+ 20e−d − 20e−
√

0.5(x2
1+x2

2)+d2 (27)
− 0.5e(0.5(cos(2πx1)+cos(2πx2))).

This function has a global minimum at (0, 0) with the
optimal value 0 and many spurious local minima. Its
landscape is shown in Figure 6. When d = 0, this function
is called the Ackley function [1], which is a benchmark
function for global optimization algorithms. To make
this function twice continuously differentiable, we take
d = 0.01. Consider the time-varying objective function
f(x, t) = g(x − z(t)), where z(t) = [7 sin(t), 7 cos(t)]>.
Two local minimum trajectories are h1(t) = [1.95, 0.97]>+
z(t) and h2(t) = [0, 0]> + z(t). It can be shown that g(x)
is locally (3.3, 1.1)-one-point strongly convex with respect
to the origin, which implies that f(x, t) is locally (3.3, 1.1)-
one-point strongly convex around h2(t). To ensure that
the solution of (ODE) will track h2(t), we need to take
α ≤ c2r2

supt≥0‖ż(t)‖
. In this case, α = 0.5 simply satisfies the

tracking condition. This corresponding averaged system
(15) has an equilibrium point at [−0.0034, 0.0007]>. Then
we can take ρ = 0.01. Let Bρ(0) = B0.01(0), D′v =
{e ∈ Rn : e1 + h2(t1) ∈ B0.1(h1(t1)) and Dv,ρ,r2 =
[−0.2, 2.1] × [−0.1, 1.1]. In addition, on the boundary
points e1 = 2.1 and e1 = −0.2, the derivative of e1 along
the dynamics (13) is negative and positive, respectively,
for all e2 ∈ [−0.1, 1.1] and t ∈ [0, π8 ]. Similarly, on the
boundary points e2 = 1.1 and e2 = −0.1, the derivative
of e2 along the dynamics (13) is negative and positive,
respectively, for all e1 ∈ [−0.2, 2.1] and t ∈ [0, π8 ]. This
implies that the set Dv,ρ,r2 retains trajectories with
respect to (13) for t ∈ [0, π8 ]. Then, it can be shown that
h2(t) is a (0.5, 1.3)−dominant trajectory with respect to
h1(t) in Dv,ρ,r2 during [0, π8 ]. Furthermore, the conditions
in the theorem 1 are satisfied. Thus, the conditions of
Theorem 3 are all met, and therefore the solution of (13)



will (0.1, 1.1)-escape from h1(t) to h2(t). Furthermore,
we have verified for 1000 runs of random initialization
over x(0) − z(0) ∈ [−5, 5] × [−5, 5] that all solutions of
the corresponding (ODE) will sequentially jump over the
local minimum trajectories and end up tracking the global
trajectory [0, 0]> + z(t) after t ≥ 10π.

Fig. 6. Illustration of the objective landscape of (27)

VII. Conclusion
In this work, we study the landscape of time-varying

nonconvex optimization problems. The objective is to
understand when simple local search algorithms can find
(and track) time-varying global solutions of the problem
over time. We introduce a time-varying gradient flow
system with controllable inertia. Via a change of variables,
the time-varying gradient flow system is regarded as
a composition of a time-varying gradient term and a
time-varying perturbation term due to the inertia. We
introduce the notion of the dominant trajectory and show
that the time-varying perturbation term due to the inertia
re-shapes the landscape by potentially making it one-
point strongly convex over a large region during some
time interval. We also introduce the notions of jumping,
tracking and escaping, and use them to develop sufficient
conditions under which the time-varying solution escapes
from a poor local trajectory when the global minimum
trajectory is dominant.
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