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Abstract. This work is concerned with finding a global optimization technique for a broad class
of nonlinear optimization problems, including quadratic and polynomial optimization problems. The
main objective of this paper is to investigate how the (hidden) structure of a given real/complex-
valued optimization problem makes it easy to solve. To this end, three conic relaxations are proposed.
Necessary and sufficient conditions are derived for the exactness of each of these relaxations, and it
is shown that these conditions are satisfied if the optimization problem is highly structured. More
precisely, the structure of the optimization problem is mapped into a generalized weighted graph,
where each edge is associated with a weight set extracted from the coefficients of the optimization
problem. In the real-valued case, it is shown that the relaxations are all exact if each weight set is
sign definite and in addition a condition is satisfied for each cycle of the graph. It is also proved that
if some of these conditions are violated, the relaxations still provide a low-rank solution for weakly
cyclic graphs. In the complex-valued case, the notion of “sign definite complex sets” is introduced for
complex weight sets. It is then shown that the relaxations are exact if each weight set is sign definite
(with respect to complex numbers) and the graph is acyclic. Three other structural properties are
derived for the generalizedweighted graph in the complex case, each of which guarantees the exactness
of some of the proposed relaxations. This result is also generalized to graphs that can be decomposed
as a union of edge-disjoint subgraphs, where each subgraph has certain structural properties. As an
application, it is proved that a relatively large class of real and complex optimization problems over
power networks are polynomial-time solvable (with an arbitrary accuracy) due to the passivity of
transmission lines and transformers.
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1. Introduction. Several classes of optimization problems, including polyno-
mial optimization problems and quadratically-constrained quadratic programs (QC-
QPs) as a special case, are nonlinear/non-convex and NP-hard in the worst case. The
paper [15] provides a survey on the computational complexity of optimizing various
classes of continuous functions over some simple constraint sets. Due to the complex-
ity of such problems, several convex relaxations based on semidefinite programming
(SDP) and second-order cone programming (SOCP) have gained popularity [5, 6].
These techniques enlarge the possibly non-convex feasible set into a convex set char-
acterizable via convex functions, and then provide the exact value or a lower bound
on the optimal objective value. The paper [8] shows how SDP relaxation can be
used to find better approximations for maximum cut (MAX CUT) and maximum
2-satisfiability (MAX 2SAT) problems. Another approach is proposed in [9] to solve
the max-3-cut problem via complex SDP. The approaches in [8] and [9] have been
generalized in several papers, including [20, 30, 29, 32, 33, 19, 12, 11].

The SDP relaxation converts an optimization problem with a vector variable
to a convex optimization problem with a matrix variable, via a lifting technique.
The exactness of the relaxation can then be interpreted as the existence of a low-
rank (e.g., rank-1) solution for the SDP relaxation. Several papers have studied the
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existence of a low-rank solution to matrix optimization problems with linear matrix
inequality (LMI) constraints [7, 24]. The papers [2] and [23] provide an upper bound
on the lowest rank among all solutions of a feasible LMI problem. A rank-1 matrix
decomposition technique is developed in [27] to find a rank-1 solution whenever the
number of constraints is small. This technique is extended in [13] to the complex
SDP problem. The paper [1] presents a polynomial-time algorithm for finding an
approximate low-rank solution.

This work is motivated by the fact that real-world optimization problems are
highly structured in many ways and their structures could in principle help reduce
the computational complexity. For example, transmission lines and transformers used
in power networks are passive devices, and as a result optimization problems defined
over electrical power networks have certain structures which distinguish them from
abstract optimization problems with random coefficients. The high-level objective of
this paper is to understand how the computational complexity of a given nonlinear
optimization problem is related to its (hidden) structure. This work is concerned with
a broad class of nonlinear real/complex optimization problems, including QCQPs.
The main feature of this class is that the argument of each objective and constraint
function is quadratic (as opposed to linear) in the optimization variable and the goal
is to use three conic relaxations (SDP, reduced SDP and SOCP) to convexify the
argument of the optimization problem.

In this work, the structure of the nonlinear optimization problem is mapped
into a generalized weighted graph, where each edge is associated with a weight set
constructed from the known parameters of the optimization problem (e.g., the co-
efficients). This generalized weighted graph captures both the sparsity of the opti-
mization problem and possible patterns in the coefficients. First, it is shown that the
proposed relaxations are exact for real-valued optimization problems, provided a set
of conditions is satisfied. These conditions need each weight set to be sign definite
and each cycle of the graph to have an even number of positive weight sets. It is
also shown that if some of these conditions are not satisfied, the SDP relaxation is
guaranteed to have a rank-2 solution for weakly cyclic graphs, from which an ap-
proximate rank-1 solution may be recovered. To study the complex-valued case, the
notion of “sign-definite complex weight sets” is introduced and it is then proved that
the relaxations are exact for a complex optimization problem if the graph is acyclic
with sign definite weight sets (with respect to complex numbers). The complex case
is further studied and it is proved that the SDP relaxation is tight for four types of
graphs as well as any acyclic combination of these types of graphs. As an application,
it is also shown that a large class of energy optimization problems may be convexified
due to the physics of power networks. The results of this paper extend the recent
works on energy optimization problems [17, 16, 25, 26, 18, 31] and general quadratic
optimization problems [14, 4].

In the next section, we formally state the optimization problem and then survey
two related works. The main contributions of the paper are outlined in Section 2.4,
where the plan for the rest of the paper is also given.

2. Problem Statement and Contributions. Before introducing the problem,
we need to make several notations and definitions.

2.1. Notations. Essential notations and definitions will be provided below.

Notation 1. In this work, scalars, vectors and matrices will be shown by lower-
case, bold lowercase and uppercase letters (e.g., x, x and X). Furthermore, xi denotes
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Fig. 2.1. In Figure (a), there exists a line separating the points marked as × (elements of T )
from the points marked as  (elements of −T ) so the set T is sign definite. In Figure (b), this is
not the case. Figure (c) shows the weighted graph G studied in Example 2.

the ith entry of a vector x, and Xij denotes the (i, j)th entry of a matrix X.
Notation 2. R, C, Sn and Hn denote the sets of real numbers, complex numbers,

n × n symmetric matrices and n × n Hermitian matrices, respectively.
Notation 3. Re{M}, Im{M}, MH , rank{M} and trace{M} denote the real

part, imaginary part, conjugate transpose, rank and trace of a given scalar/matrix M ,
respectively. The notation M � 0 means that M is symmetric/Hermitian and positive
semidefinite.

Notation 4. The symbol ](x) represents the phase of a complex number x. The
imaginary unit is denoted as “ i”, while “i” is used for indexing.

Notation 5. Given an undirected graph G, the notation i ∈ G means that i is a
vertex of G. Moreover, the notation (i, j) ∈ G means that (i, j) is an edge of G and
besides i < j.

Notation 6. Given a set T , |T | denotes its cardinality. Given a graph G, |G|
shows the number of its vertices. Given a number (vector) x, |x| denotes its absolute
value (2-norm).

Definition 1. A finite set T ⊂ R is said to be sign definite with respect to R
if its elements are either all negative or all nonnegative. T is called negative if its
elements are negative and is called positive if its elements are nonnegative.

Definition 2. A finite set T ⊂ C is said to be sign definite with respect to C if
when the sets T and −T are mapped into two collections of points in R2, then there
exists a line separating the two sets (note that any or all elements of the sets T and
−T are allowed to lie on the separating line).

To illustrate Definition 2, consider a complex set T with four elements, whose
corresponding points are labeled as 1, 2, 3 and 4 in Figure 2.1(a). The points corre-
sponding to −T are labeled as 1’, 2’, 3’ and 4’ in the same picture. Since there exists
a line separating the points marked as × (elements of T ) from the points marked
as  (elements of −T ), the set T is sign definite. In contrast, if the elements of T are
distributed according to Figure 2.1(b), the set will no longer be sign definite. Note
that Definition 2 is inspired by the fact that a real set T is sign definite with respect
to R if T and −T are separable via a point (on the horizontal axis).

Definition 3. Given a graph G, a cycle space is the set of all possible cycles in
the graph. An arbitrary basis for this cycle space is called a “cycle basis”.

Definition 4. In this work, a graph G is called weakly cyclic if every edge of the
graph belongs to at most one cycle in G (i.e., the cycles of G are all edge-disjoint).

Definition 5. Consider a graph G, a subgraph Gs of this graph and a matrix



4

X ∈ C|G|×|G|. Define X{Gs} as a sub-matrix of X obtained by picking every row and
column whose index belongs to the vertex set of Gs. For instance, X{(i, j)}, where
(i, j) ∈ G, has rows i, j and columns i, j of X.

2.2. Problem Statement. Consider an undirected graph G with n vertices
(nodes), where each edge (i, j) ∈ G has been assigned a nonzero edge weight set
{c1

ij, c
2
ij, ..., c

k
ij} with k real/complex numbers (note that the superscripts in the weights

are not exponents). This graph is called a generalized weighted graph as every edge is
associated with a set of weights as opposed to a single weight. Consider an unknown
vector x =

[

x1 · · ·xn

]

belonging to Dn, where D is either R or C. For every i ∈ G,
xi is a variable associated with node i of the graph G. Define:

y =
{

|xi|2
∣

∣ ∀i ∈ G
}

, z =
{

Re
{

ct
ijxix

H
j

} ∣

∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}

Note that according to Notation 5, (i, j) ∈ G means that (i, j) is an edge of the graph
and that i < j. The sets y and z can be regarded as two vectors, where

• y collects the quadratic terms |xi|2’s (one term for each vertex).
• z collects the cross terms Re{ct

ijxix
H
j }’s (k terms for each edge).

Although the above formulation deals with Re
{

ct
ijxix

H
j

}

whenever (i, j) ∈ G, it can

handle terms of the form Re{αxjx
H
i } and Im{αxix

H
j } for a complex weight α. This

can be carried out using the following transformations:

Re{αxjx
H
i } = Re{(αH)xix

H
j }, Im{αxix

H
j } = Re{(−αi)xix

H
j }

This work is concerned with the optimization problem:

min
x∈Dn

f0(y, z)

subject to fj(y, z) ≤ 0, j = 1, 2, ...,m
(2.1)

for given functions f0, ..., fm. The computational complexity of the above optimiza-
tion problem depends in part on the structure of the functions fj ’s. Regardless of
these functions, the optimization problem (2.1) is intrinsically hard to solve (NP-hard
in the worst case) because y and z are both nonlinear functions of x. The objective is
to convexify the second-order nonlinearity embedded in y and z. To this end, notice
that there exist two linear functions l1 : Cn×n → Rn and l2 : Cn×n → Rkτ such that
y = l1

(

xxH
)

and z = l2
(

xxH
)

, where τ denotes the number of edges in G. Moti-
vated by the above observation, if xxH is replaced by a new matrix variable X, then
y and z both become linear in X. This implies that the non-convexity induced by
the quadratic terms Re{ct

ijxixj}’s and |xi|’s all disappear if the optimization prob-
lem (2.1) is reformulated in terms of X. However, the optimal solution X may not
be decomposable as xxH unless some additional constraints are imposed on X. It is
straightforward to verify that the optimization problem (2.1) is equivalent to

min
X

f0(l1(X), l2(X)) (2.2a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (2.2b)

X � 0, (2.2c)

rank{X} = 1 (2.2d)

where there is an implicit constraint that X ∈ Sn if D = R and X ∈ Hn if D = C.
To reduce the computational complexity of the above problem, two actions can be
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taken: (i) removing the nonconvex constraint (2.2d), (ii) relaxing the convex, but
computationally-expensive, constraint (2.2c) to a set of simpler constraints on certain
low-order submatrices of X. Based on this methodology, three relaxations will be
proposed for the optimization problem (2.1) next.

SDP relaxation: This optimization problem is defined as

min
X

f0(l1(X), l2(X)) (2.3a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (2.3b)

X � 0 (2.3c)

Reduced SDP relaxation: Choose a set of cycles O1, ....,Op in the graph G
such that they form a cycle basis. Let Ω denote the set of all subgraphs O1, ....,Op as
well as all edges of G that do not belong to any cycle in the graph (i.e., bridge edges).
The reduced SDP relaxation is defined as

min
X

f0(l1(X), l2(X)) (2.4a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (2.4b)

X{Gs} � 0, ∀Gs ∈ Ω (2.4c)

SOCP relaxation: This optimization problem is defined as

min
X

f0(l1(X), l2(X)) (2.5a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (2.5b)

X{(i, j)} � 0, ∀(i, j) ∈ G (2.5c)

The reason why the above optimization problem is called an SOCP problem is that
the condition X{(i, j)} � 0 can be replaced by the linear and norm constraints

Xii, Xjj ≥ 0, Xii + Xjj ≥
∣

∣

∣

∣

[

Xii Xjj

√
2Xij

]

∣

∣

∣

∣

The main idea behind the introduction of the above SDP, reduced SDP and
SOCP relaxations is to remove the non-convexity caused by the nonlinear relationship
between x and (y, z). Note that these optimization problems are convex relaxations
only when the functions f0, ..., fm are convex. If any of these functions is nonconvex,
additional relaxations might be needed to convexify the SDP, reduced SDP or SOCP
optimization problem. Define f∗, f∗

SDP, f∗
r-SDP and f∗

SOCP as the optimal solutions of
the optimization problems (2.2), (2.3), (2.4) and (2.5), respectively. By comparing
the feasible sets of these optimization problems, it can be concluded that

f∗
SOCP ≤ f∗

r-SDP ≤ f∗
SDP ≤ f∗ (2.6)

Given a particular optimization problem of the form (2.1), if any of the above in-
equalities for f∗ turns into an equality, the associated relaxation could be used to
find the solution of the original optimization problem. In this case, it is said that the
relaxation is “tight” or “exact”. The objective of this paper is to relate the exact-
ness of the proposed relaxations to the topology of the graph G and its weight sets
{c1

ij, c
2
ij, ..., c

k
ij}’s.

It is noteworthy that the aforementioned problem formulation can be easily gen-
eralized in two directions:
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• Allowance of weight sets with different cardinalities: The above problem for-
mulation assumes that every edge weight set has k elements. However, if the
weight sets have different sizes, the trivial weight 0 can be added to each set
multiple times in such a way that all expanded sets reach the same cardinality.

• Inclusion of linear terms in x: The optimization problem (2.1) is formulated
with respect to xxH , but with no linear term in x. This issue can be fixed by

defining an expanded vector x̃ as
[

1 xH
]H

. Then, the matrix x̃x̃H needs

to be replaced by a new matrix variable X̃ under the constraint X̃11 = 1.

Remark 1. A cycle basis is required in order to construct the reduced SDP
relaxation. To design such a basis, consider an arbitrary spanning forest of the graph
G. If any edge of the graph that does not belong to the spanning forest is added to
the forest, a unique cycle will be created. The union of all those cycles forms a cycle
basis [28]. Note that there may exist an exponential number of cycle bases and the
solution of the reduced SDP relaxation depends on the choice of the cycle basis. For
example, if the graph G contains a Hamiltonian cycle and this cycle belongs to the
selected cycle basis, then the SDP and reduced SDP relaxations will lead to the same
solution (because the constraint X � 0 corresponding to the Hamiltonian cycle will be
a part of the reduced SDP relaxation). Hence, the gap between the optimal objective
values of the SDP and reduced SDP relaxations could, in principle, change with the
choice of the cycle basis.

Remark 2. A main contributor to the computational complexity of each of the
abovementioned relaxations is the number of “important” variables, where an impor-
tant variable is defined as an entry of X that has a nonzero coefficient in either the
objective function or one of the constraints of the optimization (the cost of evaluating
the functions fj ’s and the number of constraints are considered as secondary factors
for simplicity). The SDP relaxation has O(n2) important variables, whereas the SOCP
relaxation has only O(n+τ ) important variables with τ defined as the number of edges
of G. In particular, the number of important variables of the SOCP relaxation is O(n)
if the graph G is planar, and this property makes the SOCP relaxation far more ap-
pealing than the SDP relaxation for planar graphs. The number of important variables
of the reduced SDP relaxation depends on the lengths of the cycles O1, ..., Op, as well
as the overlaps between these cycles (for example, an edge (i, j) creates at most one
variable even if it appears in multiple cycles). The number of important variables of
the reduced SDP relaxation is upper bounded by the sum of the lengths of O1, ..., Op.
Note that a cycle basis with a minimum length sum is called “minimum cycle basis”
and such a basis can be found in polynomial time [28].

2.3. Related Work. Consider the QCQP optimization problem:

min
x∈Dn

xHM1x s.t. xHMjx ≤ 0 j = 2, ..., k (2.7)

for given matrices M1, ..., Mk ∈ Hn. This problem is a special case of the optimization
problem (2.1), where its generalized weighted graph G has two properties:

• Given two nodes i, j ∈ {1, ..., n} such that i < j, there exists an edge between
nodes i and j if and only if the (i, j) off-diagonal entry of at least one of the
matrices M1, ..., Mk is nonzero.

• For every (i, j) ∈ G, the weight set {c1
ij, c

2
ij, ..., c

k
ij} is the union of the (i, j)th

entries of M1, ..., Mk.
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Due to the relation xHMix = trace{MixxH} for i = 1, ..., k, the SDP relaxation of
the optimization problem (2.7) turns out to be

min
X

trace{M1X} s.t. trace{MjX} ≤ 0 j = 2, ..., k, X � 0

The SOCP relaxation of the optimization problem (2.7) is obtained by replacing the
constraint X � 0 with X{(i, j)} � 0 for every (i, j) ∈ G. The relationship between
the optimization problem (2.7) and its relaxations have been studied in two special
cases in the literature:

• Consider the case D = R. It has been shown in [14] that f∗
SOCP = f∗

SDP = f∗

if −M0 , ...,−Mk are all Metzler matrices (a Metzler matrix is a matrix in
which the off-diagonal entries are all nonnegative). This result implies that
the proposed relaxations are all exact, independent of the topology of G, as
long as the set {c1

ij, c
2
ij, ..., c

k
ij} is negative for all (i, j) ∈ G.

• Consider the case D = C. It has been shown in the recent work [4] that
f∗
SDP = f∗ if three conditions hold:
1. G is a tree graph.
2. M1 is a positive semidefinite matrix.
3. For every (i, j) ∈ G, the origin (0, 0) is not an interior point of the convex

hull of the 2-d polytope induced by the weight set {c1
ij, c

2
ij, ..., c

k
ij}.

It can be shown that Condition (3) implies that the complex set {c1
ij, c

2
ij, ..., c

k
ij} is

sign definite (see Definition 2).
As a special case of (2.7), the paper [21] studies an unconstrained quadratic

zero-one program for which a quadratic objective is to be minimized subject to the
constraint that each variable is either 0 or 1. The work [21] proves that this problem
can be solved using a linear programming relaxation under various graph conditions
(e.g., the acyclicity of the graph G).

The above results all together suggest that the polynomial-time solvability (up to
an arbitrary accuracy) of certain classes of QCQP problems might be inferred from
some weak properties of their underlying generalized weighted graphs.

2.4. Contributions. Throughout this paper, we assume that fj(y, z) is mono-
tonic in every entry of z for j = 0, 1, ..., m (but possibly nonconvex in y and z). With
no loss of generality, suppose that fj(y, z) is an increasing function with respect to
all entries of z (to ensure this property, it may be needed to change the sign of some
edge weights and then redefine the functions). A few of the results to be developed
in this work do not need this assumption, in which cases the name of the function fj

will be changed to gj to avoid any confusion in the assumptions.
The objective of this paper is to study the interrelationship between f∗

SOCP,
f∗
r-SDP, f∗

SDP and f∗. In particular, it is aimed to understand what properties the
generalized weighted graph G should have to guarantee the exactness of some of the
proposed relaxations. Another goal is to find out how low rank the solution of the
SDP relaxation will be in the case when the relaxation is not exact.

In section 3, we derive necessary and sufficient conditions for the exactness of the
each of the three aforementioned relaxations in both real and complex cases.

In Section 4, we consider the real-valued case D = R and show that the SOCP,
reduced SDP and SDP relaxations are all tight, provided each weight set {c1

ij, ..., c
k
ij}

is sign definite with respect to R and
∏

(i,j)∈Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p}
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where σij shows the sign of the weight set associated with the edge (i, j) ∈ G. This
condition is naturally satisfied in three special cases:

• G is acyclic with arbitrary sign definite edge sets.
• G is bipartite with positive weight sets.
• G is arbitrary with negative weight sets.

It is also shown that if the SDP relaxation is not exact, it still has a low rank (rank-2)
solution in two cases:

• G is acyclic (but with potentially indefinite weight sets).
• G is a weakly-cyclic bipartite graph with sign definite edge sets.

In section 5, we consider the complex-valued case D = C under the assumption
that each edge set {c1

ij, ..., c
k
ij} is sign definite with respect to C. This assumption is

trivially met if k ≤ 2 or the weight set contains only real (or imaginary) numbers.
Some of the results developed in that section are:

• The SOCP, reduced SDP and SDP relaxations are all tight if G is acyclic.
• The SOCP, reduced SDP and SDP relaxations are tight if each weight set

contains only real or imaginary numbers and

∏

(i,j)∈~Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p}

where σij ∈ {0,±1,±i} shows the sign of each weight set and ~Or denotes a
directed cycle corresponding to Or .

• The reduced SDP and SDP relaxations (but not necessarily the SOCP relax-
ation) are exact if G is bipartite and weakly cyclic with positive or negative
real weight sets.

• The reduced SDP and SDP relaxations (but not necessarily the SOCP relax-
ation) are exact if G is a weakly cyclic graph with imaginary weight sets and
nonzero signs σij’s.

We also show that if the graph G can be decomposed as a union of edge-disjoint sub-
graphs in an acyclic way such that each subgraph has one of the above four structural
properties, then the SDP relaxation is exact.

In Section 6, a detailed discussion is given to demonstrate how the results of this
paper can be used for optimization over power networks. Finally, five illustrative
examples are provided in section 7.

3. SDP, Reduced-SDP and SOCP Relaxations. In this section, the ob-
jective is to derive necessary and sufficient conditions for the exactness of the SDP,
reduced-SDP and SOCP Relaxations. For every r ∈ {1, 2, ..., p}, let ~Or denote a di-
rected cycle corresponding to Or, meaning that all edges of the undirected cycle Or

has been oriented consistently.

Theorem 1. The following statements hold true in both real and complex cases
D = R and D = C:

i) The SDP relaxation is exact (i.e., f∗
SDP

= f∗) if and only if it has a rank-1
solution X∗.

ii) The reduced SDP relaxation is exact (i.e., f∗
r-SDP

= f∗) if and only if it has
a solution X∗ such that

rank{X∗{Gs}} = 1, ∀Gs ∈ Ω (3.1)

iii) The SOCP relaxation is exact (i.e., f∗
SOCP

= f∗) if and only if it has a
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solution X∗ such that

rank{X∗{(i, j)}} = 1, ∀(i, j) ∈ G

and that

∑

]X∗
ij = 0, ∀r ∈ {1, 2, ..., p} (3.2)

where the sum is taken over all directed edges (i, j) of the oriented cycle ~Or.
Moreover, the same result holds even if the condition (3.2) is replaced by
(3.1).

Proof of Part (i): The proof is omitted due to its simplicity.
Proof of Part (ii): To prove the ”only if” part, let x∗ denote an arbitrary solution

of the optimization problem (2.1). If f∗
r-SDP = f∗, then X∗ = (x∗)(x∗)H is a solution

of the reduced SDP relaxation, which satisfies the condition (3.1).
To prove the ”if” part, consider a matrix X∗ satisfying (3.1). For every r ∈

{1, ..., p}, since X{Or} is positive semidefinite and rank-1, it can be written as the
product of a vector and its transpose. This yields that

∑

]X∗
ij = 0, ∀r ∈ {1, 2, ..., p} (3.3)

where the sum is taken over all directed edges (i, j) of the oriented cycle ~Or. Let T
be an arbitrary spanning tree of G. The vertices of T can be iteratively labeled by
some real numbers (angles) θ1, ..., θn in such a way that θi − θj = ]X∗

ij , ∀(i, j) ∈ T ,

and that these numbers belong to the discrete set {0, 1800} in the case C = R. It can
be inferred from (3.3) that θi − θj = ]X∗

ij for every (i, j) ∈ G. Now, define x∗ as

[ √
X11e

−θ1 i
√

X22e
−θ2i · · ·

√
Xnne−θni

]H

Observe that (x∗)(x∗)H and X∗ are the same on the diagonal and have identical off-
diagonal (i, j)th entries for every (i, j) ∈ G. This implies that (x∗)(x∗)H is a rank-1
solution of the reduced SDP relaxation. Therefore, the relaxation is exact.

Proof of Part (iii): The proof is omitted due to its similarity to the proof of
Part (ii) provided above. �

Theorem 1 provides necessary and sufficient conditions for the exactness of the
SDP, reduced SDP and SOCP relaxations. As mentioned before, one can write
f∗
SOCP ≤ f∗

r-SDP ≤ f∗
SDP ≤ f∗. Using the matrix completion theorem and chordal

extension, two conclusions can be made [10]:
• If G is an acyclic graph, then the relation f∗

SOCP = f∗
r-SDP = f∗

SDP holds, even
in the case where f∗

SDP 6= f∗.
• Expand the graph G by connecting all vertices inside each cycle Or to each

other for r = 1, 2, ..., p. Then, the relation f∗
r-SDP = f∗

SDP holds (independent
of whether or not f∗

SDP = f∗) if the expanded graph is chordal and every
maximal clique of this graph corresponds to a single edge of G or one of the
cycles O1, ...,Op. This condition is met for weakly cyclic graphs as well as a
broad class of planar graphs.

Part (iii) of Theorem 1 shows that the SOCP relaxation is exact if two conditions
are satisfied for an optimal solution X∗ of this optimization problem: (1) every 2× 2
edge submatrix X∗{(i, j)} loses rank, and (2) if the phase of X∗

ij is assigned to the edge
(i, j) of the graph G for every (i, j) ∈ G, then the sum of the edge phases becomes zero
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for every cycle in the cycle basis. As will be shown throughout this paper, Condition
(1) is satisfied by imposing a sign definiteness constraint on each edge weight set. In
contrast, Condition (2) is strongly related to the graph topology and weakly related
to the structure of each edge weight set.

Remark 3. Condition (3.2) requires that the edge angles around the oriented

cycle ~Or add up to zero. However, since sin(θij) is a periodic function of θij, equa-
tion (3.2) can be replaced by

∑

]X∗
ij = 2lrπ (3.4)

for every integer number lr. More precisely, the number “zero” in the right side of
equation (3.2) can be interpreted as “zero angle” and therefore it can take any value
of the form 2lrπ. To prove this statement, let θij denote the phase of X∗

ij. Then,
]X∗

ij can be considered as θij + 2lπ for any integer number l, and as a result there is
some degree of freedom in defining ]X∗

ij . It is straightforward to show that if (3.4) is
satisfied for r = 1, ..., p, then ]X∗

ij ’s can all be redefined (using their periodic nature)
to meet Condition (3.2). Hence, “zero angle” means 2lπ throughout this paper.

4. Real-valued Optimization Problems. In this section, the optimization
problem (2.1) will be studied in the real-valued case D = R. Since x ∈ Rn, one
can write Re

{

ct
ijxix

H
j

}

= Re
{

Re{ct
ij}xix

H
j

}

, for all (i, j) ∈ G and t ∈ {1, ..., k}.
Hence, changing the complex weight ct

ij to Re{ct
ij} does not affect the optimization

problem. Therefore, with no loss of generality, assume that the edge weights are all
real numbers. For every edge (i, j) ∈ G, define the edge sign σij as follows:

σij =







1 if c1
ij, ..., c

k
ij ≥ 0

−1 if c1
ij, ..., c

k
ij ≤ 0

0 otherwise
(4.1)

By convention, we define σij = −1 if c1
ij = · · · = ck

ij = 0.
Theorem 2. The relations f∗

SOCP
= f∗

r-SDP
= f∗

SDP
= f∗ hold for the optimiza-

tion problem (2.1) in the real-valued case D = R if

σij 6= 0, ∀(i, j) ∈ G (4.2a)
∏

(i,j)∈Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p} (4.2b)

Proof: In light of the relation f∗
SOCP ≤ f∗

r-SDP ≤ f∗
SDP ≤ f∗, it suffices to prove

that f∗ ≤ f∗
SOCP. Consider an arbitrary feasible point X of the optimization prob-

lems (2.5). It is enough to show the existence of a feasible point x for the optimization
problem (2.1) with the property that the objective value of this optimization problem
at x is lower than or equal to the objective value of the SOCP relaxation at the point
X. For this purpose, choose an arbitrary spanning tree T of the graph G. A set of ±1
numbers σ1, σ2, ..., σn can be iteratively assigned to the vertices of this tree in such
a way that σiσj = −σij for every (i, j) ∈ T (this is due to (4.2a)). Now, it can be
deduced from (4.2b) that

σiσj = −σij, ∀(i, j) ∈ G

Corresponding to the feasible point X of the SOCP relaxation, define the vector x as

[

σ1

√
X11 σ2

√
X22 · · · σn

√
Xnn

]H
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(note that X11, ..., Xnn ≥ 0 due to the conditions X{(i, j)} � 0 for every (i, j) ∈ G).
Observe that

|xi|2 = Xii, i = 1, ..., n (4.3)

On the other hand, (2.5c) yields

|Xij| ≤
√

Xii

√

Xjj, ∀(i, j) ∈ G

and therefore

ct
ijXij ≥ −|ct

ij|
√

Xii

√

Xjj = −ct
ijσij

√

Xii

√

Xjj

= ct
ijσiσj

√

Xii

√

Xjj = ct
ijxixj, ∀(i, j) ∈ G

(4.4)

for t = 1, 2, ..., k. It can be concluded from (4.3) and (4.4) that

l1
(

xxH
)

= l1(X), l2
(

xxH
)

≤ l2(X)

Hence, since f0(·, ·) is increasing in its second vector argument, one can write:

fj(y, z) ≤ fj(l1(X), l2(X))

for j = 0, 1, ...,m, where y = l1
(

xxH
)

and z = l2
(

xxH
)

. This implies that x is a
feasible point of the optimization problem (2.1) whose corresponding objective value is
smaller than or equal to the objective value for the feasible point X of the optimization
problem (2.5). This proves the claim f∗ ≤ f∗

SOCP and thus completes the proof. �

Condition (4.2a) ensures that each edge weight set is sign definite. Theorem 2
states that the SDP, reduced SDP and SOCP relaxations are exact for the original
optimization problem (2.1) under the above sign definite condition, provided that
each cycle in the cycle basis has an even number of edges with positive signs. Note
that the exactness of the SDP relaxation does not imply that the relaxation has
a unique rank-1 solution. In particular, if a sample of the SDP relaxation is solved
numerically, the obtained solution may be high rank. In this case, a rank-1 solution X∗

is hidden and needs to be recovered (following the constructive proof of the theorem).
The conditions offered in Theorem 2 hold true in three important special cases, as
explained below.

Corollary 1. The relations f∗
SOCP

= f∗
r-SDP

= f∗
SDP

= f∗ hold for the opti-
mization problem (2.1) in the case D = R if one of the following happens:

1) G is acyclic with arbitrary sign definite edge sets (with respect to R).
2) G is bipartite with positive weight sets.
3) G is arbitrary with negative weight sets.

Proof: The proof follows immediately from Theorem 2 by noting that a bipartite
graph has no odd cycle. �

Assume that the edge sets of the graph G are all sign definite. Corollary 1 implies
a trade-off between the topology and the edge signs σij’s. On one extreme, the edge
signs could be arbitrary as long as the graph has a very sparse topology. On the
other extreme, the graph topology could be arbitrary (sparse or dense) as long as the
edge signs are all negative. The following theorem proves that if σij’s are zero, the
optimization problem (2.1) becomes NP-hard even for an acyclic graph G.

Theorem 3. Finding an optimal solution of the optimization problem (2.1) is an
NP-hard problem for an acyclic G with sign-indefinite weight sets (even if k = 2).
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Proof: Given a set of real numbers {ω1, ..., ωt}, the number partitioning problem
(NPP) aims to find out whether there exists a sign set {s1, ..., st} with the property

t
∑

i=1

siωi = 0, s1, ..., st ∈ {−1, 1} (4.5)

This decision problem is known to be NP-complete. NPP can be written as the
following quadratic optimization problem:

min
s1,...,st+1

0 s.t. st+1 ×
t

∑

i=1

siωi = 0, s2
1 = · · · = s2

t+1 = 1,

where st+1 is a new slack variable, which is either −1 or 1 and has been introduced to
make the first constraint of the above optimization problem quadratic. By defining n

as t + 1 and x as
[

s1 s2 · · · st+1

]

, the above optimization problem reduces to:

min
x

0 s.t.
n−1
∑

i=1

xixnωi ≤ 0,

n−1
∑

i=1

xixn(−ωi) ≤ 0, x2
1 = · · · = x2

n = 1

Since NPP is NP-hard, solving the above optimization problem is NP-hard as well. On
the other hand, the generalized weighted graph for the above optimization problem
has the following form: node n is connected to node i with the weight set {ωi,−ωi}
for i = 1, ..., n− 1. Hence, optimization over this acyclic graph is NP-hard. �

Theorem 3 states that optimization over a very sparse generalized weighted graph
(acyclic graph with only two elements in each weight set) is still hard unless the weight
sets are sign definite. However, it will be shown in the next subsection that the SDP
relaxation always has a rank-2 solution for this type of graph, which may be used to
find an approximate solution to the original problem.

4.1. Low-Rank Solution for SDP Relaxation. Suppose that the conditions
stated in Theorem 2 do not hold. The SDP relaxation may still be exact (depending
on the coefficients of the optimization problem (2.1)), in which case the relaxation
has a rank-1 solution X∗. A question arises as to whether the rank of X∗ is yet small
whenever the relaxation is inexact. The objective of this subsection is to address this
problem in two important scenarios. Given the graph G and the parameters x, y, z

introduced earlier, consider the optimization problem

min
x∈Rn

g0(y, z) s.t. gj(y, z) ≤ 0, j = 1, 2, ..., m (4.6)

for arbitrary functions gi(·, ·), i = 0, 1, ..., m. The difference between the above op-
timization problem and (2.1) is that the functions gi(·, ·)’s may not be increasing in
z. In line with the technique used in Section 2 for the nonconvex optimization prob-
lem (2.1), an SDP relaxation can be defined for the above optimization problem. As
expected, this relaxation may not have a rank-1 solution, in which case the relaxation
is not exact. Nevertheless, it is beneficial to find out how small the rank of an optimal
solution of this relaxation could be. This problem will be addressed next for an acyclic
graph G.

Theorem 4. Assume that the graph G is acyclic. The SDP relaxation for the
optimization problem (4.6) always has a solution X∗ whose rank is at most 2.
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Proof: The SDP relaxation for the optimization problem (4.6) is as follows:

min
X∈Sn

g0(l1(X), l2(X)) s.t. gj(l1(X), l2(X)) ≤ 0 j = 1, ..., m, X � 0 (4.7)

This is indeed a real-valued SDP relaxation. One can consider a complex-valued SDP
relaxation as

min
X̃∈Hn

g0(l1(X̃), l2(X̃)) s.t. gi(l1(X̃), l2(X̃)) ≤ 0 j = 1, ..., m, X̃ � 0 (4.8)

where its matrix variable, denoted as X̃, is complex. Observe that l1(X̃) = l1(Re{X̃})
and l2(X̃) = l2(Re{X̃}) for every arbitrary Hermitian matrix X̃ , due to the fact
that the edge weights of the graph G are all real. This implies that the real and
complex SDP relaxations have the same optimal objective value (note that Re{X̃} � 0
if X̃ � 0). In particular, if X̃∗ denotes an optimal solution of the complex SDP
relaxation, Re{X̃∗} will be an optimal solution of the real SDP relaxation. As will be
shown later in Theorem 7, the optimization problem (4.8) has a rank-1 solution X̃∗.
Therefore, X̃∗ can be decomposed as (x̃∗)(x̃∗)H for some complex vector x̃∗. Now,
one can write:

Re{X̃∗} = Re{x̃}Re{x̃}H + Im{x̃}Im{x̃}H

Hence, Re{X̃∗} is a real-valued matrix with rank at most 2 (as it is the sum of two
rank-1 matrices), which is also a solution of the real SDP relaxation. �

Theorem 4 states that the SDP relaxation of the general optimization prob-
lem (4.6) always has a rank 1 or 2 solution if its sparsity can be captured by an
acyclic graph. This result makes no assumptions on the monotonicity of the functions
gj(·, ·)’s. Note that the SDP relaxation for the optimization problem (4.6) may not
have a unique solution, but a solution with rank at most 2 may be found using the
constructive proof developed in the theorem.

If the functions gj(·, ·)’s are convex, then the SDP relaxation becomes a convex
program. In this case, a low-rank solution X∗ can be found with an arbitrary accuracy
in polynomial time. If X∗ has rank-1, then the relaxation is exact. Otherwise, X∗

has rank 2 from which an approximate rank-1 solution may be found by making the
smallest nonzero eigenvalue of X∗ equal to 0. A more powerful strategy is to force the
undesirable nonzero eigenvalue towards zero by penalizing the objective function of
the SDP relaxation via a regularization term such as α× trace{X} for an appropriate
value of α. The graph of the penalized SDP relaxation is still acyclic and therefore the
penalized optimization problem will have a rank-1 or 2 solution. Since X∗ has only
one undesirable eigenvalue that needs to be eliminated (converted to zero), the wealth
of results in the literature of compressed sensing justifies that the above penalization
technique might be an effective heuristic method.

Theorem 4 studies the SDP relaxation for only acyclic graphs. Partial results will
be provided below for cyclic graphs.

Theorem 5. Assume that G is a weakly-cyclic bipartite graph, and that

σij 6= 0 ∀(i, j) ∈ O1 ∪O2 ∪ · · · ∪ Op

The SDP relaxation (2.3) for the optimization problem (2.1) in the real-valued case
D = R has a solution X∗ whose rank is at most 2.
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Proof: Consider the complex-valued SDP relaxation:

min
X̃∈Hn

f0(l1(X̃), l2(X̃)) (4.9a)

s.t. fj(l1(X̃), l2(X̃)) ≤ 0, j = 1, ..., m (4.9b)

X̃ � 0 (4.9c)

As discussed in the proof of Theorem 4, three properties hold:
• The real and complex SDP relaxations have the same optimal objective value.
• If X̃∗ denotes an optimal solution of the complex SDP relaxation, Re{X̃∗}

turns out to be an optimal solution of the real SDP relaxation
• If X̃∗ is positive semidefinite and rank-1, its real part Re{X̃∗} is positive

semidefinite and rank 1 or 2.
Hence, to prove the theorem, it suffices to show that the complex-valued optimization
problem (4.9) has a rank-1 solution. Since every cycle of G has an even number of
vertices (as it is bipartite), a diagonal matrix T with entries from the set {0, 1, i} can
be designed in such a way that

Tii × Tjj = i, ∀(i, j) ∈ G (4.10)

The next step is to change the variable X̃ in the optimization problem (4.9) to TX̄TH ,
where X̄ is a Hermitian matrix variable. Equation (4.10) yields

X̃ii = X̄ii, ∀i ∈ G (4.11a)

X̃ij = αijX̄ij, ∀(i, j) ∈ G (4.11b)

where αij ∈ {−i, i}. Therefore, by defining c̄t
ij as αijc

t
ij, one can write:

Re{ct
ijX̃ij} = Re{c̄t

ijX̄ij} (4.12)

for every t ∈ {1, 2..., k}. It results from (4.11a) and (4.12) that if the complex-valued
SDP relaxation (4.9) is reformulated in terms of X̄ , its underlying graph looks like G
with the only difference that the weights ct

ij’s are replaced by c̄t
ij ’s. On the other hand,

since ct
ij is a real number, c̄t

ij is purely imaginary. Hence, it follows from Theorem 11
(stated later in the paper) that the reformulated complex SDP relaxation has a rank-1
solution X̄∗ because its graph is weakly cyclic with purely imaginary weights. Now,
X̃∗ = TX̄∗TH becomes rank one. In other words, the complex SDP relaxation has a
rank-1 solution X̃∗. This completes the proof. �

There are several applications, where the goal is to find a low-rank positive
semidefinite matrix X satisfying a set of constraints (such as linear matrix inequal-
ities). Theorems 4 and 5 provide sufficient conditions under which the feasibility
problem

fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m

X � 0,
(4.13)

has a low rank solution, where the rank does not depend on the size of the problem.

5. Complex-Valued Optimization Problems. In this section, the optimiza-
tion problem (2.1) will be studied in the complex-valued case D = C. Several scenarios
will be explored below.
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5.1. Acyclic Graph with Complex Edge Weights. Consider the case where
each edge weight set is complex and sign definite with respect to C.

Theorem 6. The relations f∗
SOCP

= f∗
r-SDP

= f∗
SDP

= f∗ hold in the complex-
valued case D = C, provided that the graph G is acyclic and the weight set {c1

ij, c
2
ij, ..., c

k
ij}

is sign definite with respect to C for all (i, j) ∈ G.
Proof: The decomposition technique developed in [25] will be deployed to prove

this theorem. Similar to Theorem 2, it is enough to show that f∗ ≤ f∗
SOCP. To

this end, consider an arbitrary feasible solution of the optimization problem (2.5),
denoted as X. Given an edge (i, j) ∈ G, since the set {c1

ij, c
2
ij, ..., c

k
ij} is sign definite,

it follows from the hyperplane separation theorem that there exists a nonzero real
vector (αij, βij) such that

Re{ct
ij(αij + βij i)} = Re{ct

ij}αij − Im{ct
ij}βij ≤ 0 (5.1)

for every t ∈ {1, 2, ..., k}. On the other hand, (2.5c) yields

|Xij| ≤
√

Xii

√

Xjj, ∀(i, j) ∈ G (5.2)

Consider the function

∣

∣Xij + γij(αij + βij i)
∣

∣

2 − XiiXjj

in which γij is an unknown real number. This function is negative at γ = 0 (because
of (5.2)) and positive at γ = +∞. Hence, due to the continuity of this function, there
exists a positive number γij such that

∣

∣Xij + γij(αij + βij i)
∣

∣

2
= XiiXjj (5.3)

Define θij as the phase of the complex number Xij + γij(αij + βij i). A set of angles
{θ1, θ2, ..., θn} can be found iteratively by exploiting the tree topology of the graph G
in such a way that

θi − θj = θij , ∀(i, j) ∈ G (5.4)

Define the vector x as

[ √
X11e

−θ1 i
√

X22e
−θ2i · · ·

√
Xnne−θni

]H
(5.5)

Using (5.1), (5.3) and (5.4), one can write:

Re{ct
ijxix

H
j } = Re

{

ct
ij

√

Xii

√

Xjje
(θi−θj)i

}

= Re
{

ct
ij

√

Xii

√

Xjje
θiji

}

= Re
{

ct
ij(Xij + γij(αij + βij i))

}

= Re{ct
ijXij} + γijRe

{

ct
ij(αij + βiji)

}

≤ Re{ct
ijXij}

for every t ∈ {1, 2, ..., k}. Having shown the above relation, the rest of the proof is in
line with the proof of Theorem 2. More precisely, the above inequality implies that

l1
(

xxH
)

= l1(X), l2
(

xxH
)

≤ l2(X)

and therefore

fj(y, z) ≤ fi(l1(X), l2(X)), j = 0, 1, ...,m
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where y = l1
(

xxH
)

and z = l2
(

xxH
)

. Hence, x is a feasible point of the optimization
problem (2.1) whose corresponding objective value is smaller than or equal to the ob-
jective value for the feasible point X of the optimization problem (2.5). Consequently,
f∗ ≤ f∗

SOCP. This completes the proof. �

The quadratically-constrained quadratic program (2.7) is a special case of the
optimization problem (2.1). Hence, the SDP relaxation is tight for this QCQP problem
if G is acyclic with sign definite weight sets. This result improves upon the result
developed in [4] by removing the assumption M0 � 0 (see Section 2.3).

Corollary 2. The relations f∗
SOCP

= f∗
r-SDP

= f∗
SDP

= f∗ hold in the complex-
valued case D = C if the graph G is acyclic and k ≤ 2.

Proof: The proof is an immediate consequence of Theorem 6 and the fact that
every complex set with one or two elements is sign definite. �

Corollary 2 states that the optimization problem (2.1) in the complex-valued case
can be solved through three relaxations if its structure can be captured by an acyclic
graph with at most two weights on each of its edges.

5.2. Weakly Cyclic Graph with Real Edge Weights. It is shown in the
preceding subsection that the SDP relaxation is exact, provided G is acyclic and each
weight set is sign definite with respect to C. This result requires the assumption of
monotonicity of fj(y, z) in z for j = 0, 1, ..., m. The first objective of this part is to
show that this assumption is not needed as long as the weight sets are real. To this
end, consider the optimization problem

min
x∈Cn

g0(y, z) s.t. gj(y, z) ≤ 0, j = 1, 2, ...,m (5.6)

for arbitrary functions gi(·, ·), i = 0, 1, ...,m. The difference between the above opti-
mization problem and (2.1) is that the functions gj(·, ·)’s may not be increasing in z.
One can derive the SDP, reduced SDP and SOCP relaxations for the above optimiza-
tion problem by replacing f0, ..., fm with g0, ..., gm in (2.3)-(2.5). This part aims to
investigate the case when the edge weights are all real numbers, while the unknown
parameter x is complex.

Theorem 7. Consider the complex-valued case D = C and assume that the edge
weights of G are all real numbers. The SDP, reduced SDP and SOCP relaxations
associated with the optimization problem (5.6) are all exact if the graph G is acyclic.

Proof: It is straightforward to show that every real set is sign definite with respect
to C. Therefore, the edge weight sets of G are all sign definite. Let X denote an
arbitrary feasible point of the SOCP relaxation. Define (αij, βij) as (0, 1) for every
(i, j) ∈ G. Then,

Re{ct
ij(αij + βij i)} = Re{ct

ij}αij − Im{ct
ij}βij = 0

for every t ∈ {1, ..., k} (note that ct
ij ∈ R by assumption). Following the proof of

Theorem 6, define x as the vector given in (5.5). Therefore,

Re{ct
ijxix

H
j } = Re{ct

ijXij} + γijRe
{

ct
ij(αij + βiji)

}

= Re{ct
ijXij}

Now, the rest of the proof is in line with the proof of Theorem 6. More precisely,

l1
(

xxH
)

= l1(X), l2
(

xxH
)

= l2(X)

Given an arbitrary feasible point X for the SOCP relaxation, the above equality
implies that x is a feasible point of the original optimization problem (5.6) and that
X and x both give rise to the same objective value. This completes the proof. �
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Consider the general optimization problem (5.6) in the case when G is acyclic
with real edge weights. As discussed before, the associated SDP relaxation may not
be tight if its variable x is restricted to real numbers. However, Theorem 7 shows that
the relaxation is exact if x is a complex-valued variable. In what follows, the results
of Theorem 7 will be generalized to cyclic graphs for the optimization problem (2.1).

Theorem 8. Assume that {c1
ij, ..., c

k
ij} is a positive or negative real set for every

(i, j) ∈ G. The relations f∗
r-SDP

= f∗
SDP

= f∗ hold for the optimization problem (2.1)
in the complex-valued case D = C if the graph G is bipartite and weakly cyclic.

Proof: Following the proof of Theorem 5, consider the matrix T defined in (4.10),
and change the variable X in the SDP relaxation to X̄ through the relation X =
TX̄TH . This implies that the real weights ct

ij’s will change to the imaginary weights
c̄t
ij’s defined in the proof of Theorem 5. Hence, the reformulated SDP optimization

problem is over a graph with purely imaginary weights. The existence of a rank-1
solution X̄∗ (and hence a rank-1 matrix X∗) is guaranteed by Theorem 10. �

Note that the SOCP relaxation may not be exact under the assumptions of The-
orem 8. As a direct application of this theorem, the class of quadratic optimization
problems proposed later in Example 3 is polynomial-time solvable with an arbitrary
precision.

5.3. Cyclic Graph with Real and Imaginary Edge Weights. In this part,
there is no specific assumption on the topology of the graph G, but it is assumed that
each edge weight is either real or purely imaginary. The definition of the edge sign
σij introduced earlier for real-valued weight sets can be extended as follows:

σij =























1 if c1
ij, ..., c

k
ij ≥ 0

−1 if c1
ij, ..., c

k
ij ≤ 0

i if c1
ij × i, ..., ck

ij × i ≥ 0

−i if c1
ij × i, ..., ck

ij × i ≤ 0
0 otherwise

, ∀(i, j) ∈ G

By convention, σij = −1 if c
(1)
ij = · · · = c

(k)
ij = 0. Define also σji as σH

ij for every (i, j) ∈
G. The parameter σij being nonzero implies that the elements of each edge weight
set {c1

ij, ..., c
k
ij} are homogeneous in type (real or imaginary) and in sign (positive or

negative).
Theorem 9. The relations f∗

SOCP
= f∗

r-SDP
= f∗

SDP
= f∗ hold for Optimiza-

tion (2.1) in the complex-valued case D = C with real and purely imaginary edge
weight sets if

σij 6= 0, ∀(i, j) ∈ G (5.7a)
∏

(i,j)∈ ~Or

σij = (−1)|Or |, ∀r ∈ {1, ..., p} (5.7b)

Proof: Consider an arbitrary feasible point X for the SOCP relaxation. Choose
a spanning tree of G and denote it as T . In light of (5.7a), n numbers σ1, σ2, ..., σn

belonging to the set {±1,±i} can be iteratively designed with the property that

σiσ
H
j = −σij , ∀(i, j) ∈ T (5.8)

This relation together with (5.7b) yields that σiσ
H
j = −σij for every (i, j) ∈ G. Now,

define x as
[

σH
1

√
X11 σH

2

√
X22 · · · σH

n

√
Xnn

]H
(5.9)
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As before, it can be shown that l1
(

xxH
)

= l1(X) and l2
(

xxH
)

≤ l2(X). Therefore,

it holds that fj(y, z) ≤ fj(l1(X), l2(X)) for j = 0, 1, ..., m, where y = l1
(

xxH
)

and

z = l2
(

xxH
)

. This means that corresponding to every feasible point X of the SOCP
relaxation, the original optimization has a feasible point x with a lower or equal
objective value. Therefore, f∗ ≤ f∗

SOCP. The proof is completes by combining this
inequality with f∗

SOCP ≤ f∗
r-SDP ≤ f∗

SDP ≤ f∗. �

5.4. Weakly Cyclic Graph with Imaginary Edge Weights. If G has at
least one odd cycle whose edge weight sets consist only of imaginary numbers, then
the conditions given in Theorem 9 are violated. The reason is that the product of
an odd number of imaginary numbers (edge signs) can never become a real number.
The high-level goal of this part is to show that the SDP relaxation can still be tight
in presence of such cycles, while the SOCP relaxation is not guaranteed to be exact.
In this subsection, we assume that G is weakly cyclic.

To proceed with the paper, a new SOCP relaxation needs to be introduced. This
optimization problem assigns one real scalar variable qi to every vertex i ∈ G and one
2 × 2 block matrix variable

[

U(Gs) V (Gs)
V (Gs)

H W (Gs)

]

to every subgraph Gs ∈ Ω, where U(Gs), W (Gs) ∈ S|Gs| and V (Gs) ∈ R|Gs|×|Gs|. Let
U , V and W denote the parameter sets {U(Gs) | ∀Gs ∈ Ω}, {V (Gs) | ∀Gs ∈ Ω} and
{W (Gs) | ∀Gs ∈ Ω}, respectively.

Notation 7. For every Gs ∈ Ω, we arrange the elements in the vertex set of Gs

in an increasing order. Then, we index the rows and columns of each of the matrices
U(Gs), V (Gs), V (Gs) according to the ordered vertex set of Gs. For example, if Gs has
three vertices 5, 7, 1, the ordered set becomes {1, 5, 7}, and therefore the three rows of
U(Gs) are called row 1, row 5 and row 7. As an example, U17(Gs) refers to the last
entry on the first row of U(Gs) .

For every r ∈ {1, 2, ...., p}, let µr denote the largest index in the vertex set of Or.
Define q as the vector corresponding to the set {q1, ..., qn}. Recall that

l2(xxH) =
{

Re
{

ct
ijxix

H
j

} ∣

∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}

Define l̄(V ) as a vector obtained from l2(xxH) by replacing each entry Re
{

ct
ijxix

H
j

}

with a new term Im{ct
ij}× (Vij(Gs)−Vji(Gs)), where Gs denotes the unique subgraph

in Ω containing the edge (i, j) (the uniqueness of such subgraph is guaranteed by the
weakly cyclic property of G).

Expanded SOCP: This optimization problem is defined as

min
q,U,V,W

f0(q, l̄(V )) (5.10a)

subject to:

fj(q, l̄(V )) ≤ 0, j = 1, 2, ..., m (5.10b)

Uii(Gs) + Wii(Gs) = qi, ∀Gs ∈ Ω, i ∈ Gs (5.10c)
[

Uii(Gs) Vij(Gs)
Vij(Gs) Wjj(Gs)

]

� 0, ∀Gs ∈ Ω, (i, j) ∈ Gs (5.10d)

[

Ujj(Gs) Vji(Gs)
Vji(Gs) Wii(Gs)

]

� 0, ∀Gs ∈ Ω, (i, j) ∈ Gs (5.10e)

Wµrµr
(Or) = 0, r = 1, 2, ..., p (5.10f)
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Similar to the argument made for the SOCP relaxation (2.5), the above opti-
mization problem is in the form of an SOCP program because its constraints (5.10d)
and (5.10e) can be replaced by linear and norm constraints. Moreover, this optimiza-
tion problem can be regarded as an expanded version of the SOCP relaxation (2.5).
Denote the optimal objective value of this optimization problem as f∗

e-SOCP.

Theorem 10. Consider the optimization problem (2.1) in the complex-valued
case D = C, and assume that the graph G is weakly cyclic with only purely imaginary
edge weights. The following statements hold:

i) The expanded SOCP is a relaxation for the optimization problem (2.1), mean-
ing that f∗

e-SOCP
≤ f∗.

ii) The expanded SOCP relaxation is exact if and only if it has a solution (q∗, U∗,

V ∗, W ∗) for which all 2 × 2 matrices given in (5.10d) and (5.10e) have rank
1.

iii) f∗
SOCP

≤ f∗
e-SOCP

.
iv) f∗

e-SOCP
≤ f∗

r-SDP
.

v) The relations f∗
e-SOCP

= f∗
r-SDP

= f∗
SDP

= f∗ hold if σij 6= 0 for every
(i, j) ∈ G.

Proof: Since the proof is long and involved, it has been moved to the appendix. �

Assume that the graph G is weakly cyclic and its edge weights are all imaginary
numbers. Theorem 10 shows that f∗

SOCP ≤ f∗
e-SOCP ≤ f∗

r-SDP ≤ f∗
SDP ≤ f∗, and

that the relations f∗
e-SOCP = f∗

r-SDP = f∗
SDP = f∗ hold if each edge weight set has

homogeneous elements (σij = i or −i). Note that the SOCP relaxation may not be
exact, and one needs to use the expanded SOCP relaxation in this case. Interestingly,
this result makes no assumption on the signs of the edges belonging to the same cycle
in the cycle basis (unlike (5.7b)).

Although Theorem 10 deals with imaginary coefficients, some of the results de-
rived in this paper for complex/real optimization problems with real coefficients are
based on this powerful theorem. This is due to the fact that real numbers may be
converted to imaginary numbers through a simple multiplication.

5.5. General Graph with Complex Edge Weight Sets. Given an arbitrary
subgraph G̃s of the graph G, four important types will be defined for this subgraph in
the following:

• Type I: G̃s is acyclic with complex weight sets such that {c1
ij, ..., c

k
ij} is sign

definite with respect to C for every (i, j) ∈ G̃s.
• Type II: G̃s is weakly cyclic with imaginary weight sets and nonzero sign σij

(i.e., σij = ±i) for every (i, j) ∈ G̃s.

• Type III: G̃s is bipartite and weakly cyclic with the property that {c1
ij, ..., c

k
ij}

is a real weight set with nonzero sign σij (i.e., σij = ±1) for every (i, j) ∈ G̃s.

• Type IV: G̃s has only real and imaginary weights with the property that

σij 6= 0, ∀(i, j) ∈ G̃s (5.11a)
∏

(i,j)∈ ~Or

σij = (−1)|Or |, ∀Or ∈ {O1, ...,Op} ∩ G̃s (5.11b)

By assuming G̃s = Gs, it follows from the theorems developed earlier in this paper
that the SDP relaxation is exact for the optimization problem (2.1) if G is Type I, II,
III or IV. In this part, the objective is to show that the relaxation is still tight if G
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can be decomposed into a number of Type I-IV subgraphs in an acyclic way.

Theorem 11. Assume that G can be decomposed as the union of a number of
edge-disjoint subgraphs G̃1, ..., G̃ω in such a way that

i) G̃s is Type I, II, III or IV for every s ∈ {1, ..., ω}.
ii) The cycle Or is entirely inside one of the subgraphs G̃1, ..., G̃ω for every r ∈

{1, ..., p}.
Then, the relations f∗

r-SDP
= f∗

SDP
= f∗ hold for the optimization problem (2.1) in

the complex-valued case D = C.

Proof: Given an arbitrary solution X∗ of the reduced SDP relaxation, consider
the optimization problem:

min
X

f0(l1(X), l2(X)) (5.12a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ..., m (5.12b)

X{Or} � 0, r = 1, ..., p (5.12c)

X{(i, j)} � 0, ∀(i, j) ∈ G (5.12d)

Xii = X∗
ii, ∀i ∈ G (5.12e)

Xij = X∗
ij , ∀(i, j) ∈ G\G̃s (5.12f)

for any subgraph G̃s ∈ {G̃1, ..., G̃ω} (G\G̃s means to exclude the edges of G̃s from
G). The above optimization problem is obtained from the reduced SDP relaxation
by setting certain entries of the variable X equal to their optimal values extracted
from X∗. More precisely, this optimization problem aims to optimize the off-diagonal
entries of X corresponding to the edges of G̃s. It is obvious that X = X∗ is a solution
of the above optimization problem. On the other hand, since G̃s is Type I, II, III or
IV, it follows from Theorems 6, 8, 9 and 10 that the above optimization problem has
an optimal solution for which the matrices given in (5.12c) and (5.12d) become rank-1
for every (i, j) and Or belonging to G̃s. By making this argument on all subgraphs
G̃1, ..., G̃ω and using Property (ii) stated in the theorem, one can design a solution for
the reduced SDP relaxation for which condition (3.1) holds. Therefore, the SDP and
reduced SDP relaxations will both be exact in light of Theorem 1. �

5.6. Roles of Graph Topology and Sign Definite Weight Sets. Part (iii)
of Theorem 1 states that the optimization problem (2.1) is polynomial-time solvable
with an arbitrary accuracy if the SOCP relaxation (2.5) has a solution X∗ satisfying
two conditions:

1) X∗{(i, j)} has rank 1 for every (i, j) ∈ G.
2)

∑

]X∗
ij is equal to zero for every r ∈ {1, 2, ..., p}, where the sum is taken

over all directed edges (i, j) of the oriented cycle ~Or.

Since X∗{(i, j)} is a 2× 2 matrix corresponding to a single edge of the graph, Condi-
tion (1) is strongly related to the properties of the edge set {c1

ij, ..., c
k
ij}. In contrast,

the graph topology (namely its cycle basis) plays an important role in Condition (2).
The goal of this part is to understand how these conditions are satisfied for various
graphs studied earlier in the complex-valued case D = C.

To explore Condition (1), consider an edge (i, j) ∈ G. Observe that the set
{c1

ij, ..., c
k
ij} can be mapped into k vectors

~c t
ij =

[

Re{ct
ij} Im{ct

ij}
]H

, t = 1, 2, ..., k
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Fig. 5.1. (a) This figure shows the cones Cij and −Cij, in addition to the position of the
complex point X∗

ji
; (b) an example of the power circuit studied in Section 6.

in R2. Define the following vector corresponding to X∗
ji:

~X∗
ji =

[

Re{X∗
ij} −Im{X∗

ij}
]H

Recall that X∗
ij plays the role of (x∗

i )(x
∗
j )

H whenever the SOCP relaxation is tight.
Now, one can write

Re{ct
ijX

∗
ij} = ~c t

ij · ~X∗
ji = |~c t

ij|| ~X∗
ji| cos(]~c t

ij − ] ~X∗
ji) (5.13)

where “·” stands for inner product. Define Cij as the smallest convex cone in R2

containing the vectors ~c 1
ij , ..., ~c k

ij . Let B{Cij} denote the boundary of the cone Cij.

The set {c1
ij, ..., c

k
ij} being sign definite is equivalent to the condition

{Cij ∩ (−Cij)} ⊆ B{Cij}, (5.14)

meaning that Cij and its mirror set can have common points only on their boundaries.
This fact is illustrated in Figure 5.1(a). Suppose that the weight set {c1

ij, ..., c
k
ij} is

sign definite. Since f0, ..., fm are all increasing in z or equivalently in ~c t
ij · ~X∗

ji for every
(i, j) ∈ G and t ∈ {1, ..., k}, it is easy to verify that (see the proof of Theorem 6):

~X∗
ji ∈ −Cij (5.15)

This property is illustrated in Figure 5.1(a). Moreover, the monotonicity of f0, ..., fm

forces | ~X∗
ij| to have the largest possible value, i.e.,

| ~X∗
ji| = |X∗

ij| =
√

X∗
iiX

∗
jj,

which makes X∗{(i, j}) rank 1. This implies that the sign definiteness of the set
{c1

ij, ..., c
k
ij} guarantees the satisfaction of Condition (1) stated above.

So far, it is shown that ~X∗
ji belongs to the cone −Cij . Now, to satisfy Condition (2)

required for the exactness of the SOCP relaxation, the sum of the angles of the vectors
~X∗

ji’s must be zero over each cycle in the cycle basis. This trivially happens in two
cases:

• If the graph G is acyclic, then there is no cycle to be concerned about.
• Consider the cycle Or for some r ∈ {1, 2, ..., k}. If each cone Cij is one

dimensional for every (i, j) ∈ Or , then it suffices to have
∑

](−Cij) = 0,

where the sum is taken over all directed edges (i, j) of the oriented cycle ~Or

(note that ](−Cij) denotes the angle of the 1-d cone −Cij.)
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To understand the merit of the above insights, consider the optimization prob-
lem (2.1) in the case when the graph G is bipartite and each complex weight ct

ij has
positive real and imaginary parts for every (i, j) ∈ G and t ∈ {1, ..., k}. Denote the
two disjoint vertex sets of the bipartite graph G as S1 and S2, and with no loss of
generality, assume that i ∈ S1 and j ∈ S2 for every (i, j) ∈ G. Suppose that the
constraints of the optimization problem (2.1) are in such a way that the inequality

|]x∗
i − ]x∗

j | ≤
π

2
, ∀(i, j) ∈ G (5.16)

is satisfied for an optimal solution x∗ of this optimization problem. For instance, as
will be discussed in the next section, phasor voltages in a power network are forced
to satisfy the above condition due to the operational constraints of such networks.
Under this circumstance, one can modify the SOCP relaxation by including the extra
constraints Re{Xij} ≥ 0, ∀(i, j) ∈ G, to account for (5.16). Since Cij is a subset of
a first quadrant in R2, {c1

ij, ..., c
k
ij} is a sign definite set and therefore Condition (1)

holds. Let X∗ denote a solution of the modified SOCP problem. Following the
argument leading to (5.15), it can be shown that X∗

ji is a negative imaginary number

for every (i, j) ∈ G, meaning that ~X∗
ji has the maximum possible angle with respect

to all vectors ~c 1
ij , ..., ~c k

ij . Since G is assumed to be bipartite, Condition (2) holds as a
result of this property. Hence, the SOCP, reduced SDP and SDP relaxations are all
exact for such graphs G.

The above insight into Conditions (1) and (2) was based on the SOCP relaxation.
The same argument can be made about the expanded SOCP relaxation to understand
Theorem 10 for weakly cyclic graphs with imaginary weights, for which the regular
SOCP relaxation may not be tight.

6. Application in Power Systems. A majority of real-world optimization
problems can be regarded as ‘optimization problems with graph structures”, mean-
ing that each of those problems has an underlying graph structure characterizing a
physical system. For example, optimization problems in circuits, antenna systems
and communication networks fall within this category. Then, the question of inter-
est is: how does the computational complexity of an optimization problem relate to
the structure of the system over which the optimization problem is performed? This
question will be explored here in the context of electrical power grids. Assume that
the graph G corresponds to an AC power network, where:

• The power network has |G| nodes.
• For every (i, j) ∈ G, nodes i and j are connected to each other in the power

network via a transmission line with the admittance gij + biji.
• Each node i ∈ G of the network is connected to an external device, which

exchanges electrical power with the power network.

Figure 5.1(b) exemplifies a sample power network in which two external devices gen-
erate power while the remaining ones consume power. As shown in Figure 6.1(a),
each line (i, j) ∈ G is associated with four power flows:

• pij: Active power entering the line from node i

• pji: Active power entering the line from node j

• qij: Reactive power entering the line from node i

• qji: Reactive power entering the line from node j

Note that pij + pji and qij + qji represent the active and reactive losses incurred in
the line. Let xi denote the complex voltage (phasor) for node i ∈ G. One can write:
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Fig. 6.1. (a) This figure illustrates that each transmission line has four flows; (b) graph G

corresponding to minimization of f0(x1, x2) given in (7.1).

pij(x) = Re
{

xi(xi − xj)
H(gij − biji)

}

, pji(x) = Re
{

xj(xj − xi)
H(gij − biji)

}

qij(x) = Im
{

xi(xi − xj)
H(gij − biji)

}

, qji(x) = Im
{

xj(xj − xi)
H(gij − biji)

}

Note that since the flows all depend on x, the argument x has been added to the above
equations (e.g., pij(x) instead of pij). The flows pij(x), pji(x), qij(x) and qji(x) can
all be expressed in terms of |xi|2, |xj|2 and Re

{

ck
ijxix

H
j

}

for k = 1, 2, 3, 4, where

c1
ij = −gij + biji, c2

ij = −gij − biji, c3
ij = bij + giji, c4

ij = bij − giji

(note that Re{αxjx
H
i } = Re{αHxix

H
j } and Im{αxjx

H
i } = Re{(−αi)xix

H
j } for every

value of α). Define

p(x) =
{

pij(x), pji(x)
∣

∣ ∀(i, j) ∈ G
}

, q(x) =
{

qij(x), qji(x)
∣

∣ ∀(i, j) ∈ G
}

Consider the optimization problem

min
x∈Cn

h0(p(x), q(x), y(x))

s.t. hj(p(x), q(x), y(x)) ≤ 0, j = 1, 2, ...,m
(6.1)

for given functions h0, ..., hm, where y(x) is the vector of |xi|2’s. Assume for now that
the function hj(·, ·, ·) accepting three arguments (inputs) is monotonic with respect
to its first and second vector arguments. The above optimization problem aims to
optimize the flows in a power grid. The constraints of this optimization problem
are meant to limit line flows, voltage magnitudes, power delivered to each load, and
power supplied by each generator. Observe that p(x) and q(x) are both quadratic
in x. Since the above optimization problem can be cast as (2.1), the SDP, reduced
SDP and SOCP relaxations introduced before can be used to eliminate the effect of
quadratic terms. To study under what conditions the relaxations are exact, note that
each edge (i, j) of G has the weight set {c1

ij, c
2
ij, c

3
ij, c

4
ij}. A customary transmission

line is a passive device with nonnegative resistance and inductance, leading to the
inequalities gij ≥ 0 and bij ≤ 0. As a result of this property, the set {c1

ij, c
2
ij, c

3
ij, c

4
ij}

turns out to be sign definite (see Definition 2). Now, in light of Theorem 11, the
relaxations are all exact as long as G is acyclic.1

The optimization of power flows is a fundamental problem, which is solved every 5
to 15 minutes for power grids in practice. This problem, named Optimal Power Flow
(OPF), has several variants that are used for different purposes (real-time operation,
electricity market, security assessment, etc.).

1This result also holds for cyclic power networks with a sufficient number of phase shifters (the
graph for a mesh power network with phase shifters can be converted to an acyclic one) [25].
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Line flows are restricted in practice to achieve various goals such as avoiding line
overheating and guaranteeing the stability of the network [3]. More precisely, it is
known that:

i) A thermal limit can be imposed by restricting the line active power flow
pij, the line apparent power flow |pij + qiji| or the line current magnitude.
The maximum allowable limits on these parameters can be determined by
analyzing the material characteristics of the line. Thermal limits are often
imposed on pij , in practice.

ii) A stability limit may be translated into a constraint on the voltage phase
difference across the line, i.e., |]xi − ]xj|.

These constraints have different implications in the power engineering, but can all
be described in terms of p(x), q(x), y(x). We will elaborate on this property for the
current and angle constraints below:

• Current constraint: For every (i, j) ∈ G, the line current magnitude |(xi −
xj)(gij + biji)| cannot exceed a maximum number Imax. This constraint can
be written as:

|xi|2 + |xj|2 − 2Re{xix
H
j } ≤ I2

max

|gij + biji|2
(6.2)

• Angle constraint: For every (i, j) ∈ G. the absolute angle difference |]xi −
]xj| should not exceed a maximum angle θmax

ij ∈ [0, 90◦] (due to stability
and thermal limits). This constraint can be written as

Im{xix
H
j } ≤ | tan θmax

ij | × Re{xix
H
j }

or equivalently

− tan θmax
ij × Re{xix

H
j } + Re{(+i) xix

H
j } ≤ 0

− tan θmax
ij × Re{xix

H
j } + Re{(−i) xix

H
j } ≤ 0

(6.3)

Since (6.2) and (6.3) are quadratic in x, they can easily be incorporated into the
optimization problem (6.1) and its relaxations. However, the edge set {c1

ij, c
2
ij, c

3
ij, c

4
ij}

should be extended to {c1
ij, c

2
ij, c

3
ij, c

4
ij,−1, i,−i} for every (i, j) ∈ G. It is interesting

to note that this set is still sign definite and therefore the conclusion made earlier
about the exactness of various relaxations is valid under this generalization.

Another interesting case is the optimization of active power flows for lossless
networks. In this case, gij is equal to zero for every (i, j) ∈ G. Hence, pji(x) can be
simply replaced by −pij(x). Motivated by this observation, define the reduced vector
of active powers as pr(x) =

{

pij(x)
∣

∣ ∀(i, j) ∈ G
}

, and consider the optimization
problem

min
x∈Cn

h̄0(pr(x), y(x)) s.t. h̄j(pr(x), y(x)) ≤ 0, j = 1, 2, ...,m

for some functions h̄0(·, ·), ..., h̄m(·, ·), which are assumed to be increasing in their
first vector argument. Now, each edge (i, j) of the graph G is accompanied by the
singleton weight set {biji}. Due to Theorem 10, the SDP and reduced SDP relaxations
are exact if G is weakly cyclic. This is the generalization of the result obtained in [31]
for optimization over lossless networks.

Remark 4. For simplicity in the presentation, a transmission line was modeled
in this work as a series admittance without taking the capacitive effect of the line into
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account. To make our model more realistic, a shunt element gii + biii should be added
to each node i ∈ G. The complex power injected into the network through this shunt
element is equal to gii|xi|2 − bii|xi|2i. This quadratic expression is only in terms of
one variable xi and therefore it does not directly introduce any element to the weight
sets of the network. However, the addition of shunt elements may change the weights
associated with the line current magnitude or apparent power.

Remark 5. The objective function commonly used for the OPF problem is the
total cost of the active power generated by the power plants. The generation cost for
a single power plant is a function of its fuel cost (among others), which depends on
the type of its consumed fuel (e.g., coal or gas). Based on the simple rule of “the
more fuel consumed, the higher amount of electricity generated”, the generation cost
is usually an increasing function of p(x) and the shape of the function depends on
the type of the generator. For simplify, this function is often considered as piece-
wise linear for clearing an electricity market and considered as quadratic for solving
a real-time dispatch problem.

The results developed in this section are more general than the existing ones in
the literature for the conventional OPF problem [17, 16, 25, 26, 31, 4]. In particular,
the conventional OPF problem optimizes the nodal powers, whereas the formulation
proposed here can also optimize the electrical power at the level of line flows rather
than the aggregated nodal flows. In addition, the traditional OPF problem previously
studied in the literature is confined to a simple quadratic formulation, but this work
considers a far more generic formation of the problem. Unlike the existing algebraic
proofs reported in the aforementioned papers, this section offers a new insight about
the role of “passivity of transmission lines” in reducing the complexity of energy
optimization problems. Since most distribution power networks are acyclic graphs,
this work implies that energy optimization problems are easy to solve at that level. In
contrast, transmission networks are made to be cyclic. Although several papers have
observed that the SDP relaxation is exact for many instances of OPF over transmission
networks, our current results cannot fully explain this observation (except for certain
lossless networks) and a more comprehensive study is required. Note that we have
observed in multiple simulations in [25] that the cycle condition (3.2) is satisfied for
almost all cycles of a transmission network.

7. Examples. In this section, five examples will be provided to illustrate various
contributions of this work in certain special cases.

Example 1: The minimization of an unconstrained bivariate quartic polynomial
can be carried out via an SDP relaxation obtained from the first-order sum-of-squares
technique [22]. In this example, we demonstrate how a computationally cheaper SOCP
relaxation (in comparison to the aforementioned SDP relaxation) can be used to solve
the minimization of a structured bivariate quartic polynomial subject to an arbitrary
number of structured bivariate quartic polynomials. To this end, we first consider the
unconstrained case, where the goal is to minimize the polynomial

f0(x1, x2) = x4
1 + ax2

2 + bx2
1x2 + cx1x2 (7.1)

with the real-valued variables x1 and x2, for arbitrary coefficients a, b, c ∈ R. In
order to find the global minimum of this optimization problem, the standard convex
optimization technique cannot readily be used due to the possible non-convexity of
f(x1, x2). To address this issue, the above unconstrained minimization problem will
be converted to a constrained quadratic optimization problem. More precisely, the
problem of minimizing f0(x1, x2) can be reformulated in terms of x1, x2 and two
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auxiliary variables x3, x4 as:

min
x∈R4

x2
3 + ax2

2 + bx3x2 + cx1x2 (7.2a)

subject to x2
1 − x3x4 = 0, x2

4 − 1 = 0 (7.2b)

where x =
[

x1 x2 x3 x4

]H
. The above optimization problem can be recast as

follows:

min
x∈R4,X∈R4×4

X33 + aX22 + bX23 + cX12 (7.3a)

subject to X11 − X34 ≤ 0, X44 − 1 = 0 (7.3b)

and subject to the additional constraint X = xxH . Note that X11 − X34 ≤ 0 should
have been X11 − X34 = 0, but this modification does not change the solution. To
eliminate the non-convexity induced by the constraint X = xxH , one can use an
SOCP relaxation obtained by replacing the constraint X = xxH with the convex
constraints X = XH , X{(1, 2)} � 0, X{(2, 3)} � 0 and X{(3, 4)} � 0. To understand
the exactness of this relaxation, the weighted graph G capturing the structure of
the optimization problem (7.2) should be constructed. This graph is depicted in
Figure 6.1(b). Due to Corollary 1, since G is acyclic, the SOCP relaxation is exact for
all values of a, b, c. Note that this does not imply that every solution X of the SOCP
relaxation has rank 1. However, there is a simple systematic procedure for recovering
a rank-1 solution from an arbitrary optimal solution of this relaxation.

Now, consider the constrained optimization case where a set of constraints

fj(x1, x2) = x4
1 + ajx

2
2 + bjx

2
1x2 + cjx1x2 ≤ dj j = 1, ..., m

is added to the optimization problem (7.1) for given coefficients aj , bj, cj, dj. In this
case, the graph G depicted in Figure 6.1(b) needs to be modified by replacing its
edge sets {b} and {c} with {b, b1, ..., bm} and {c, c1, ..., cm}, respectively. Due to
Corollary 1, the SOCP and SDP relaxations corresponding to the new optimization
problem are exact as long as the sets {c, c1, ..., cm} and {b, b1, ..., bm} are both sign
definite. Moreover, in light of Theorem 4, if these sets are not sign definite, then the
SDP relaxation will still have a low rank (rank 1 or 2) solution.

Example 2: Consider the optimization problem

min
x∈C7

xHMx s.t. |xi| = 1, i = 1, 2, ..., 7 (7.4)

where M is a given Hermitian matrix. Assume that the weighted graph G depicted
in Figure 2.1(c) captures the structure of this optimization problem, meaning that (i)
Mij = 0 for every pair (i, j) ∈ {1, 2, ...7} such that (i, j) 6∈ G, (j, i) 6∈ G and i 6= j, (ii)
Mij is equal to the edge weight cij for every (i, j) ∈ G. The SDP relaxation of this
optimization problem is as follows:

min
X∈C7×7

trace{MX} s.t. X11 = · · · = X77 = 1, X = XH � 0

Define O1 and O2 as the cycles induced by the vertex sets {1, 2, 3} and {1, 4, 5}, re-
spectively. Now, the reduced SDP and SOCP relaxations can be obtained by replacing
the constraint X = XH � 0 in the above optimization problem with certain small-
sized constraints based on O1 and O2, as mentioned before. In light of Theorem 11,
the following statements hold:
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• The SDP, reduced SDP and SOCP relaxations are all exact in the case where
c12, c13, c14, c15, c23, c45 are real numbers satisfying the inequalities c12c13c23 ≤
0 and c14c15c45 ≤ 0.

• The SDP, reduced SDP and SOCP relaxations are all exact in the case where
each of the sets {c12, c13, c23} and {c14, c15, c45} has at least one zero element.

• The SDP and reduced SDP are exact in the case where c12, c13, c14, c15, c23, c45

are imaginary numbers. Note that the SOCP relaxation may not be tight.
To illustrate this fact, assume that the weights of the graph G are all equal
to +i and that the diagonal entries of the matrix M are zero. In this case,
the SDP relaxation is known to be tight, but the optimal objective values of
the SOCP and SDP relaxations are equal to two different numbers -16 and
-14.3923. Hence, the SOCP relaxation cannot be exact.

The above results demonstrate how the combined effect of the graph topology and
the edge weights makes various relaxations exact for the quadratic optimization prob-
lem (7.4).

Example 3: Consider the optimization problem

min
x∈Cn

xHMx s.t. |xj| = 1, j = 1, 2, ...,m (7.5)

where M is a symmetric real-valued matrix. It has been proven in [33] that this
problem is NP-hard even in the case when M is restricted to be positive semidefinite.
Consider the graph G associated with the matrix M . As an application of Theo-
rem 8, the SDP and reduced SDP relaxations are exact for this optimization problem
and therefore this problem is polynomial-time solvable with an arbitrary accuracy,
provided that G is bipartite and weakly cyclic. To understand how well the SDP
relaxation works, we pick G as a cycle with 4 vertices. Consider a randomly generated
matrix M :

M =









0 −0.0961 0 −0.1245
−0.0961 0 −0.1370 0

0 −0.1370 0 0.7650
−0.1245 0 0.7650 0









After solving the SDP relaxation numerically, an optimal solution X∗ is obtained as

X∗ =









1.0000 0.1767 −0.5516 0.6505
0.1767 1.0000 0.7235 −0.6327
−0.5516 0.7235 1.0000 −0.9923
0.6505 −0.6327 −0.9923 1.0000









This matrix has rank-2 and thus it seems as if the SDP relaxation is not exact.
However, the fact is that this relaxation has a hidden rank-1 solution. To recover
that solution, one can write X∗ as the sum of two rank-1 matrices, i.e., X∗ =
(u1)(u1)

H +(u2)(u2)
H for two real vectors u1 and u1. It is straightforward to inspect

that the complex-valued rank-1 matrix (u1 + u2i)(u1 + u2i)
H is another solution of

the SDP relaxation. Thus, x∗ = u1 + u2i is an optimal solution of the optimization
problem (7.5).

As stated before, the SDP and reduced SDP relaxations are exact in this example.
To evaluate the SOCP relaxation, it can be shown that the optimal objective values
of the SDP and SOCP relaxations are equal to -1.9124 and -2.2452, respectively. The
discrepancy between these two numbers implies that the SOCP relaxation is not exact.
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Example 4: Consider the optimization problem

min
x∈Cn

xHM0x s.t. xHMjx ≤ 0, j = 1, 2, ..., m

where M0, ...., Mm are symmetric real matrices, while x is an unknown complex vector.
Similar to what was done in Example 1, a generalized weighted graph G can be
constructed for this optimization problem. Regardless of the edge weights, as long
as the graph G is acyclic, the SDP, reduced SDP and SOCP relaxations are all tight
(see Theorem 6). As a result, this class of optimization problems is polynomial-time
solvable with an arbitrary accuracy.

Example 5: As a generalization of linear programs, consider the non-convex
optimization problem

min
x∈Rn

k
∑

i=1

a0ie
x

HM0ix +

l
∑

i=k+1

xHM0ix + bT
0 x

s.t.

k
∑

i=1

ajie
x

HMjix +

l
∑

i=k+1

xHMjix + bT
j x ≤ 0, j = 1, 2, ...,m

where aij’s are scalars, bj’s are n × 1 vectors , and Mij’s are n × n symmetric ma-
trices. This problem involves linear terms, quadratic terms, and exponential terms
with quadratic exponents. Using the technique stated in Section 2.2, the above op-
timization problem can be reformulated in terms of the rank-1 matrix x̃x̃H where

x̃ =
[

1 xH
]H

, from which an SDP relaxation can subsequently be obtained by

replacing the matrix x̃x̃H with a new matrix variable X̃ under the constraint X̃11 = 1.
By mapping the structure of the optimization into a generalized weighted graph and
noticing that ex is an increasing function in x, it can be concluded that the SDP
relaxation is exact if the following conditions are all satisfied:

• aji is nonnegative for every j ∈ {0, ..., m} and i ∈ {1, ..., k}.
• bj is a non-positive vector for every j ∈ {0, ..., m}.
• Mji has only non-positive off-diagonal entries for every j ∈ {0, ..., m} and

i ∈ {1, ..., l}.
8. Conclusions. This work deals with three conic relaxations for a broad class of

nonlinear real/complex optimization problems, where the argument of each objective
and constraint function is quadratic (as opposed to linear) in the optimization variable.
Several types of optimization problems, including polynomial optimization, can be
cast as the problem under study. To explore the exactness of the proposed relaxations,
the structure of the optimization problem is mapped into a generalized weighted
graph with a weight set assigned to each edge. In the case of real-valued optimization
problems, it is shown that the relaxations are exact if a set of conditions are satisfied,
which depend on some weak properties of the underlying generalized weighted graph.
A similar result is derived in the complex-valued case after introducing the notion of
“sign-definite complex weight sets”, under the assumption that the graph is acyclic.
The complex case is further studied for general graphs, and it is shown that if the
graph can be decomposed as the union of edge-disjoint subgraphs, each satisfying one
of the four derived structural properties, then two relaxations are exact.

In the past five years, several papers have reported that a specific SDP relaxation
would be exact for many instances of power optimization problems. The present
paper provides an insight into this observation and partly relates the exactness of
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the relaxation to the passivity of transmission lines. This paper also proves that the
relaxation is exact for power networks with acyclic graphs. A deeper understanding of
the SDP relaxation for mesh power networks would shed light on the true complexity
of practical energy optimization problems. This is left for future work. An optimal
power flow problem (OPF) is often formulated in terms of nodal voltages and this
amounts to O(n) variables. To convexify the problem through an SDP relaxation, the
problem size is increased to O(n2). Given that a large-scale OPF problem must be
solved every 5 to 15 minutes in practice, it would be challenging to handle this increase
in the size of the problem. As far as the computational complexity is concerned, the
reduced SDP and SOCP relaxations are far more appealing for implementation. For
instance, the number of important variables associated with an SOCP relaxation is
O(n) as opposed to O(n2), under a reasonably practical assumption that the graph
of the power network is planar.

9. Appendix. In what follows, Theorem 10 will be proved.

Proof of Part (i): Let x∗ denote an arbitrary solution of (2.1). For every Gs ∈ Ω,
define α(Gs) as:

• If Gs ∈ Ω\(O1 ∪ · · · ∪ Op), then we set α(Gs) equal to any arbitrary complex
number with norm 1.

• If (Gs) = Or for some r ∈ {1, ..., p}, then we set α(Gs) equal to e−(]x∗

µr
i).

For every i ∈ G, define qo
i as |x∗

i |2. In addition, for every Gs ∈ Ω and (i, j) ∈ Gs,
define:

Uo
ii(Gs) = Re{x∗

i α(Gs)}2, Uo
jj(Gs) = Re{x∗

jα(Gs)}2

W o
ii(Gs) = Im{x∗

i α(Gs)}2, W o
jj(Gs) = Im{x∗

jα(Gs)}2

V o
ij(Gs) = Re{x∗

i α(Gs)}Im{x∗
jα(Gs)}, V o

ji(Gs) = Re{x∗
jα(Gs)}Im{x∗

i α(Gs)}
(9.1)

Consider those entries of Uo(Gs), V
o(Gs), W

o(Gs) that are not specified above as ar-
bitrary. The first goal is to show that (q, U, V, W ) = (qo, Uo, V o, W o) is a feasible
solution of the expanded SOCP problem. To this end, it is straightforward to verify
that (5.10d) and (5.10e) are satisfied. Moreover, for every Gs ∈ Ω and (i, j) ∈ Gs, one
can write:

qo
i = |x∗

i |2 = |x∗
i α(Gs)|2 = Uo

ii(Gs) + W o
ii(Gs) (9.2)

Besides,

W o
µrµr

(Or) = Im{x∗
µr

α(Or)}2 = Im{x∗
µr

e−(]x∗

µr
i)}2 = 0

for every r ∈ {1, 2, ..., p}. Hence, (qo, Uo, V o, W o) satisfies (5.10c)-(5.10f). On the
other hand, for every (i, j) ∈ G, there is a unique subgraph Gs ∈ Ω such that (i, j) ∈ Gs

(because G is weakly cyclic by assumption). Now, since the edge weights are imaginary
numbers, one can write:

Re
{

ct
ij(x

∗
i )(x

∗
j )

H)
}

= −Im{ct
ij} × Im

{

(x∗
i α(Gs))(x

∗
jα(Gs))

H)
}

= Im{ct
ij}(V o

ij(Gs) − V o
ji(Gs))

(9.3)

for every t ∈ {1, ..., k}. It follows from (9.2) and (9.3) that

qo = l1
(

(x∗)(x∗)H
)

, l̄(V o) = l2
(

(x∗)(x∗)H
)

(9.4)
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Therefore,

0 ≥ fj

(

l1
(

(x∗)(x∗)H
)

, l2
(

(x∗)(x∗)H
))

= fj(q
o, l̄(V o)), j = 1, 2, ...,m

This means that (q, U, V, W ) = (qo, Uo, V o, W o) is a feasible solution of the expanded
SOCP problem. Similarly,

f∗ = f0

(

l1
(

(x∗)(x∗)H
)

, l2
(

(x∗)(x∗)H
))

= f0(q
o, l̄(V o)) ≥ f∗

e-SOCP

Proof of Part (ii): Given an arbitrary solution x∗ of the optimization prob-
lem (2.1), consider (qo, Uo, V o, W o) defined in (9.1). As shown in the proof of Part
(i), this is a feasible solution of the expanded SOCP relaxation. Furthermore, observe
that

[

Uo
ii(Gs) V o

ij(Gs)
V o

ij(Gs) W o
jj(Gs)

]

=

[

Re{x∗
i α(Gs)}

Im{x∗
jα(Gs)}

]

[

Re{x∗
i α(Gs)} Im{x∗

jα(Gs)}
]

,

[

Uo
jj(Gs) V o

ji(Gs)
V o

ji(Gs) W o
ii(Gs)

]

=

[

Re{x∗
jα(Gs)}

Im{x∗
i α(Gs)}

]

[

Re{x∗
jα(Gs)} Im{x∗

i α(Gs)}
]

This implies that the above matrices have rank 1, which completes the proof of the
”only if” part. To prove the ”if” part, let (q∗, U∗, V ∗W ∗) be a solution of the expanded
SOCP relaxation satisfying the rank condition stated in Part (ii). Therefore, for every
Gs ∈ Ω and (i, j) ∈ Gs, one can decompose the 2 × 2 matrices in (5.10d) and (5.10e)
at the point (q, U, V, W ) = (q∗, U∗, V ∗W ∗) as

[

U∗
ii(Gs) V ∗

ij(Gs)
V ∗

ij(Gs) W ∗
jj(Gs)

]

=

[

u∗
i (Gs)

w∗
j (Gs)

] [

u∗
i (Gs)

w∗
j (Gs)

]H

,

[

U∗
jj(Gs) V ∗

ji(Gs)
V ∗

ji(Gs) W ∗
ii(Gs)

]

=

[

u∗
j (Gs)

w∗
i (Gs)

] [

u∗
j (Gs)

w∗
i (Gs)

]H

for some real numbers u∗
i (Gs), u

∗
j (Gs), w

∗
i (Gs), w

∗
j (Gs). Following the proof of Part (i)

and by making a comparison with (9.5), it suffices to show the existence of a vector
x∗ and a complex set {σ(Gs) | ∀Gs ∈ Ω} satisfying the relations:

u∗
i (Gs) + w∗

i (Gs)i = x∗
i α(Gs), ∀Gs ∈ Ω, i ∈ Gs (9.6a)

|σ(Gs)| = 1, ∀Gs ∈ Ω\(O1 ∪ · · · ∪ Op) (9.6b)

σ(Or) = e−(]x∗

µr
i), ∀r ∈ {1, ...., p} (9.6c)

It can be verified that

q∗i = |u∗
i (Gs) + w∗

i (Gs)i|2, ∀Gs ∈ Ω, i ∈ Gs

Hence, the equations in (9.6) consistently find |x∗
i | as |x∗

i |2 =
√

q∗i for every i ∈ G.
Now, it remains to find the phase of x∗

i . To this end, (9.6) can be equivalently
expressed as:

• If Gs = Or for some r ∈ {1, 2, ..., p}, then

]x∗
i − ]x∗

µr
= tan−1 w∗

i (Or)

u∗
i (Or)

(9.7)
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• If Gs ∈ Ω\(O1 ∪ · · · ∪ Op), then

]x∗
i + ]σ(Gs) = tan−1 w∗

i (Gs)

u∗
i (Gs)

(9.8)

Note that if the index i in (9.7) is chosen as µr, then the left side of this equation
becomes zero. Equation (5.10f) guarantees that the right side of (9.7) is also zero in
this case. The goal is to show that (9.7) and (9.8) have a solution {]x∗

1, ..., ]x∗
n}.

For this purpose, we order the subgraphs in the set Ω in such a way that every two
consecutive subgraphs in the ordered set share a vertex. Denote the ordered set as
{G1, ..., G|Ω|}. Since the graph G is weakly cyclic, G1 ∪ · · · ∪ Gs and the subgraph
Gs+1 share exactly one vertex for every r ∈ {1, 2, ...., |Ω| − 1}. Hence, the following
algorithm can be used to find {]x∗

1, ..., ]x∗
n}:

Step 1: Set s = 1 and ]x∗
i = 0 for an arbitrary vertex i of the subgraph G1.

Step 2: So far, the elements of x corresponding to all vertices of G1∪· · ·∪Gs−1

and only one vertex of Gs have been found. Let j denote the index of the only
vertex of Gs for which x∗

j has been obtained. Now, depending on whether or
not Gs belongs to Ω\(O1 ∪ · · · ∪Op), (9.7 ) or (9.8) can be uniquely solved to
find all entries of x∗ corresponding to the vertices of Gs.
Step 3: Increment s and jump to Step 2 unless s = |Ω|.

Proof of Part (iii): Given an arbitrary feasible point (q, U, V, W ) of the expanded
SOCP relaxation, consider the entries of X in the SOCP relaxation (2.5) as:

• For every i ∈ G, set Xii equal to qi.
• For every (i, j) ∈ G, find the unique subgraph Gs ∈ Ω such that (i, j) ∈ Gs,

and set Xij = XH
ji = Vji(Gs) − Vij(Gs).

• Choose the remaining entries of X arbitrarily.
By adopting the argument leading to (9.4), it can be shown that

fj(l1(X), l2(X)) = fj(q, l̄(V )), j = 0, 1, ...,m (9.9)

Thus, it only remains to prove that the defined X is a feasible point of the SOCP
relaxation (2.5). Given an edge (i, j) ∈ G, let Gs ∈ Ω be the subgraph containing this
edge. One can write:

X{(i, j)} =

[

Uii(Gs) −Vij(Gs)i
Vij(Gs)i Wjj(Gs)

]

+

[

Wii(Gs) Vji(Gs)i
−Vji(Gs)i Ujj(Gs)

]

Since X{(i, j)} has been expressed as the sum of two positive semidefinite matrices,
it must be a positive semidefinite matrix. This implies that X is a feasible point of
the SOCP relaxation.

Proof of Part (iv): Let X denote an arbitrary feasible point of the reduced SDP
relaxation. Given a subgraph Gs ∈ Ω, the matrix X{Gs} can be decomposed as
D{Gs}D{Gs}H , where D{Gs} is a matrix in C|Gs|×|Gs| whose last row is entirely real
valued. Such a decomposition can be obtained using the eigen-decomposition method.

Now, consider the matrix variable

[

U(Gs) V (Gs)
V (Gs)

H W (Gs)

]

in the expanded SOCP re-

laxation as
[

Re{D(Gs)}Re{D(Gs)}H Re{D(Gs)}Im{D(Gs)}H

Im{D(Gs)}Re{D(Gs)}H Im{D(Gs)}Im{D(Gs)}H

]

Moreover, consider qi as Xii for every i ∈ G. It is straightforward to show that (9.9)
holds for this choice of (q, U, V, W ), and that (q, U, V, W ) is a feasible point of the
expanded SOCP relaxation. This completes the proof.



32

Proof of Part (v): Consider the optimization problem

min
u,w

f0(q, l̄(V )) (9.10a)

subject to:

fj(q, l̄(V )) ≤ 0, j = 1, ..., m (9.10b)

Uii(Gs) + Wii(Gs) = qi, ∀Gs ∈ Ω, i ∈ Gs (9.10c)

Uii = ui(Gs)
2, ∀Gs ∈ Ω, i ∈ Gs (9.10d)

Wii = wi(Gs)
2, ∀Gs ∈ Ω, i ∈ Gs (9.10e)

Vij = ui(Gs)wj(Gs), ∀Gs ∈ Ω, (i, j) ∈ Gs (9.10f)

Vji = uj(Gs)wi(Gs), ∀Gs ∈ Ω, (i, j) ∈ Gs (9.10g)

Wµrµr
(Or) = 0, r = 1, 2, ..., p (9.10h)

where u = {ui(Gs) | ∀Gs ∈ Ω, i ∈ Gs} and w = {wi(Gs) | ∀Gs ∈ Ω, i ∈ Gs}.
Note that U, V, W are considered as implicit (dependent) variables in the optimiza-
tion problem (9.10), because they can be readily expressed in terms of u and w.
The optimization problem (9.10) is real-valued and can be cast in the form of (2.1).
Therefore, one can find its SDP, reduced SDP and SOCP relaxations. It is easy to
verify that the SOCP relaxation for this optimization problem is indeed the expanded
SOCP relaxation (5.10). Assume that this relaxation is tight for (5.10). Then, it
follows from Theorem 1 that the expanded SOCP relaxation has a solution for which
the matrices in (5.10d) and (5.10e) have rank 1. In this case, the proof of Part (v)
is an immediate consequence of Parts (ii)-(iv). Therefore, it suffices to show that the
relaxation (5.10) is tight for the optimization problem (9.10). To this end, according
to Corollary 1, it is enough to show that the graph capturing the structure of the
optimization problem (9.10) is acyclic. To construct this graph, notice that not every

quadratic term in the matrix

[

u

w

] [

u

w

]H

appears in the constraints of the opti-

mization problem (9.10). The ones creating an edge in the graph of this optimization
problem are given by the set

{

ui(Gs)wj(Gs), uj(Gs)wi(Gs)
∣

∣ ∀Gs ∈ Ω, (i, j) ∈ Gs

}

.
This graph is cyclic. However, since wµr

(Or) is equal to zero for r = 1, ..., p, all ver-
tices associated with wµr

(Or)’s can be removed from the graph. Now, the remaining
graph becomes acyclic (given that G is weakly cyclic). This completes the proof. �
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