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Abstract. In this paper, we give a new penalized conic programming relaxation for non-convex quadratically-4
constrained quadratic programs (QCQPs). Incorporating the penalty terms into the objective of convex relaxations5
enables the retrieval of feasible and near-optimal solutions for non-convex QCQPs. We introduce a generalized linear6
independence constraint qualification (GLICQ) criterion and prove that any GLICQ regular point that is sufficiently7
close to the feasible set can be used to construct an appropriate penalty term and recover a feasible solution. As a8
consequence, we describe a simple sequential penalized conic optimization procedure that preserves feasibility and9
aims to improve the objective of the solutions at each iteration. Numerical experiments on large-scale system iden-10
tification problems as well as benchmark instances from the QPLIB library of quadratic programming demonstrate11
the ability of the proposed penalized conic relaxations in finding near-optimal solutions for non-convex QCQPs.12
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1. Introduction. Semi-definite programming (SDP) [39] has been critically important15
for constructing strong convex relaxations of non-convex optimization problems. In particu-16
lar, forming hierarchies of SDP relaxations [11,19,25–28,35,40,42] has been shown to yield17
the convex hull of non-convex problems. Geomans and Williamson [15] show that the SDP18
relaxation objective is within 14% of the optimal value for the MAXCUT problem. SDP19
relaxations have played a central role in developing numerous approximation algorithms for20
non-convex optimization problems [16, 17, 29, 38, 47–50]. They are also used within branch-21
and-bound algorithms [8, 10] for non-convex optimization. One of the primary challenges22
for the application of SDP hierarchies beyond small-scale instances is the rapid growth of23
dimensionality. In response, some studies have exploited sparsity and structural patterns to24
boost efficiency [5, 22, 23, 36, 37]. Another direction, pursued in [1, 2, 7, 31, 34, 41], is to25
use lower-complexity relaxations as alternatives to computationally demanding semidefinite26
programming relaxations. A relaxation is said to be exact if it has the same optimal objective27
value as the original problem. The exactness of the SDP relaxation has been verified for a28
variety of problems [9, 22, 24, 44, 45].29

1.1. Contributions. This paper is concerned with non-convex quadratically-constrained30
quadratic programs (QCQPs) for which SDP or its low order conic relaxations are inexact.31
In order to recover feasible points to QCQP, we incorporate a linear penalty term into the32
objective of the conic relaxations and show that feasible and near-globally optimal points can33
be obtained for the original QCQP by solving the resulting penalized conic relaxation prob-34
lem. The penalty term is based on an arbitrary initial point for the original QCQP. Our first35
result states that if the initial point is feasible and satisfies the linear independence constraint36
qualification (LICQ) condition, then the penalized conic relaxation has a unique solution that37
is feasible for the original QCQP and its objective value is not worse than that of the initial38
point. Our second result states that if the initial point is infeasible, but instead is sufficiently39
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close to the feasible set and satisfies a generalized LICQ condition, then the unique optimal40
solution to the penalized relaxation is feasible for the QCQP. Lastly, motivated by these re-41
sults on constructing a feasible solution, we propose a sequential procedure for QCQP and42
demonstrate its performance on benchmark instances from the QPLIB library as well as on43
large-scale system identification problems.44

The success of sequential frameworks and penalized cone programming relaxations in45
solving bilinear matrix inequalities (BMIs) is demonstrated in [18, 20, 21]. In [4], it is shown46
that penalized SDP relaxation is able to find the roots of overdetermined systems of poly-47
nomial equations. Moreover, the incorporation of penalty terms into the objective of conic48
relaxations is proven to be effective for solving non-convex optimization problems in power49
systems [30, 33, 51, 52]. These papers show that penalizing certain physical quantities in50
power network optimization problems such as reactive power loss and thermal loss facilitates51
the recovery of feasible points from convex relaxations. In [18], a sequential framework is52
introduced for solving BMIs without theoretical guarantees. Papers [20, 21] investigate this53
approach further and offer theoretical results through the notion of generalized Mangasarian-54
Fromovitz regularity condition. However, these conditions are not valid in the presence of55
equality constraints and for general QCQPs. Motivated by the success of penalized relax-56
ations, this paper offers a theoretical framework for penalized conic relaxation of general57
QCQP and, by extension, polynomial optimization problems.58

1.2. Notations. Throughout the paper, scalars, vectors, and matrices are respectively59
shown by italic letters, lower-case italic bold letters, and upper-case italic bold letters. The60
symbols R, Rn, and Rn×m denote the sets of real scalars, real vectors of size n, and real61
matrices of size n × m, respectively. The set of n × n real symmetric matrices is shown62
by Sn. For a given vector a and a matrix A, the symbols ai and Aij respectively indicate63
the ith element of a and the (i, j)th element of A. The symbols 〈· , ·〉 and ‖ · ‖F denote the64
Frobenius inner product and norm of matrices, respectively. The notation | · | represents either65
the absolute value operator or cardinality of a set, depending on the context. The notation ‖·‖266
denotes the `2 norm of vectors, matrices, and matrix pencils. The n × n identity matrix is67
denoted by In. The origin of Rn is denoted by 0n. The superscript (·)> and the symbol tr{·}68
represent the transpose and trace operators, respectively. Given a matrix A ∈ Rm×n, the69
notation σmin(A) represents the minimum singular value of A. The notation A � 0 means70
thatA is symmetric positive-semidefinite. For a pair of n×n symmetric matrices (A,B) and71
proper cone C ⊆ Sn, the notationA �C B means thatA−B ∈ C, whereasA �C B means72
thatA−B belongs to the interior of C. Given an integer r > 1, define Cr as the cone of n×n73
symmetric matrices whose r×r principal submatrices are all positive semidefinite. Similarly,74
define C∗r as the dual cone of Cr, i.e., the cone of n×n symmetric matrices with factor-width75
bounded by r. Given a matrixA ∈ Rm×n and two sets of positive integers S1 and S2, define76
A{S1,S2} as the submatrix of A obtained by removing all rows of A whose indices do not77
belong to S1, and all columns of A whose indices do not belong to S2. Moreover, define78
A{S1} as the submatrix of A obtained by removing all rows of A that do not belong to S1.79
Given a vector a ∈ Rn and a set F ⊆ Rn, define dF (a) as the minimum distance between a80
and members of F . Given a pair of integers (n, r), the binomial coefficient “n choose r” is81
denoted by Cnr . The notations∇xf(a) and∇2

xf(a), respectively, represent the gradient and82
Hessian of the function f , with respect to the vector x, at a point a.83

1.3. Outline. The remainder of the paper is organized as follows. In section 2, we re-84
view the basic lifted and RLT formulations as well as the standard conic relaxations. Section 385
presents the main results of the paper: the penalized conic relaxation, its theoretical analysis86
on producing a feasible solution along with a generalized linear independence constraint qual-87
ification, and finally the sequential penalization procedure. In Section 4 we present numerical88
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experiments to test the effectiveness of the sequential penalization approach for non-convex89
QCQPs from the library of quadratic programming instances (QPLIB) as well as large-scale90
system identification problems. Finally, we conclude in section 5 with a few final remarks.91

2. Preliminaries. In this section, we review the lifting and reformulation-linearization92
as well as the standard convex relaxations of QCQP that are necessary for the development of93
the main results on penalized conic relaxations in Section 3. Consider a general quadratically-94
constrained quadratic program (QCQP):95

minimize
x∈Rn

q0(x)(2.1a)96

s.t. qk(x) ≤ 0, k ∈ I(2.1b)97

qk(x) = 0, k ∈ E ,(2.1c)9899

where I and E index the sets of inequality and equality constraints, respectively. For every100
k ∈ {0} ∪ I ∪ E , qk : Rn → R is a quadratic function of the form qk(x) , x>Akx +101
2b>k x + ck, where Ak ∈ Sn, bk ∈ Rn, and ck ∈ R. Denote F as the feasible set of the102
QCQP (2.1a)–(2.1c). To derive the optimality conditions for a given point, it is useful to103
define the Jacobian matrix of the constraint functions.104

DEFINITION 2.1 (Jacobian Matrix). For every x̂ ∈ Rn, the Jacobian matrix J (x̂) for105
the constraint functions {qk}k∈I∪E is106

J (x̂) , [∇xq1(x̂), . . . ,∇xq|I∪E|(x̂)]>.(2.2a)107108

For every Q ⊆ I ∪ E , define JQ(x̂) as the submatrix of J (x̂) resulting from the rows that109
belong to Q.110

Given a feasible point for the QCQP (2.1a)–(2.1c), the well-known linear independence111
constraint qualification (LICQ) condition can be used as a regularity criterion.112

DEFINITION 2.2 (LICQ Condition). A feasible point x̂ ∈ F is LICQ regular if the rows113
of JB̂(x̂) are linearly independent, where B̂ , {k ∈ I ∪ E | qk(x̂) = 0} denotes the set of114
binding constraints at x̂.115

Finding a feasible point for the QCQP (2.1a)–(2.1c), however, is NP-hard as the Boolean116
Satisfiability Problem (SAT) is a special case. Therefore, in Section 3, we introduce a notion117
of generalized LICQ as a regularity condition for both feasible and infeasible points.118

2.1. Lifting and reformulation-linearization. A common approach for tackling the119
non-convex QCQP (2.1a)–(2.1c) introduces an auxiliary variable X ∈ Sn accounting for120
xx>. Then, the objective function (2.1a) and constraints (2.1b)–(2.1c) can be written as121
linear functions of x andX . For every k ∈ {0} ∪ I ∪ E , define q̄k : Rn × Sn → R as122

q̄k(x,X) , 〈Ak,X〉+ 2b>k x+ ck.(2.3)123124

Moreover, in the presence of affine constraints, the reformulation-linearization technique125
(RLT) of Sherali and Adams [43] can be used to produce additional inequalities with re-126
spect to x andX to strengthen convex relaxations. Define L as the set of affine constrains in127
the QCQP (2.1a)–(2.1c), i.e., L , {k ∈ I ∪ E | Ak = 0n}. Define also128

H , [B{L ∩ I}>, B{L ∩ E}>,−B{L ∩ E}>]>,(2.4a)129

h , [ c{L ∩ I}> , c{L ∩ E}> ,− c{L ∩ E}> ]>,(2.4b)130131
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whereB , [b1, . . . , b|I∩E|]> and c , [c1, . . . , c|I∩E|]>. Every x ∈ F satisfies132

Hx+ h ≤ 0,(2.5)133134

and, as a result, all elements of the matrix135

Hxx>H> + hx>H> +Hxh> + hh>(2.6)136137

are nonnegative if x is feasible. Hence, the inequality138

e>i V (x,xx>)ej ≥ 0(2.7)139140

holds true for every x ∈ F and (i, j) ∈ H ×H, where V : Rn × Sn → S|H| is defined as141

V (x,X) ,HXH> + hx>H> +Hxh> + hh>,(2.8)142143

H , {1, 2, . . . , |L ∩ I|+ 2|L ∩ E|}, and e1, . . . , e|H| denote the standard bases in R|H|.144

2.2. Convex relaxation. Consider the following relaxation of QCQP (2.1a)–(2.1c):145

minimize
x∈Rn,X∈Sn

q̄0(x,X)(2.9a)146

s.t. q̄k(x,X) ≤ 0, k ∈ I(2.9b)147

q̄k(x,X) = 0, k ∈ E(2.9c)148

X − xx> �Cr 0(2.9d)149

e>i V (x,X)ej ≥ 0, (i, j) ∈ V(2.9e)150151

where V ⊆ H×H is a selection of RLT inequalities, the additional conic constraint (2.9d) is152
a convex relaxation of the equationX = xx> and153

Cr,
{
Y
∣∣ Y {K,K}�0, ∀ K⊆{1, . . . , n}∧|K|=r

}
.(2.10)154155

If V 6= Ø, we refer to the convex problem (2.9a)–(2.9e) as the rth-order conic programming156
relaxation of the QCQP (2.1a)–(2.1c) with RLT inequalities from V . The choices r = n157
and r = 2 yield the well-known semidefinite programming (SDP) and second-order conic158
programming (SOCP) relaxations, respectively.159

If the relaxed problem (2.9a)–(2.9e) has an optimal solution (
∗
x,

∗
X) that satisfies

∗
X =160

∗
x
∗
x>, then the relaxation is said to be exact and ∗x is a globally optimal solution for the QCQP161

(2.1a)–(2.1c). The next section offers a penalization method for addressing the case where162
the relaxation is not exact.163

3. Penalized conic relaxation. If the conic relaxation problem (2.9a)–(2.9e) is not ex-164
act, the resulting solution is not necessarily feasible for the original QCQP (2.1a)–(2.1c). In165
this case, we use an initial point x̂ ∈ Rn (either feasible or infeasible) to revise the objective166
function, resulting in a penalized conic programming relaxation of the form:167

minimize
x∈Rn,X∈Sn

q̄0(x,X) + η(tr{X} − 2x̂>x+ x̂>x̂)(3.1a)168

s.t. q̄k(x,X) ≤ 0, k ∈ I(3.1b)169

q̄k(x,X) = 0, k ∈ E(3.1c)170

X − xx> �Cr 0(3.1d)171

e>i V (x,X)ej ≥ 0, (i, j) ∈ V,(3.1e)172173

where η > 0 is a fixed penalty parameter. Note that the penalty term tr{X} − 2x̂>x+ x̂>x̂174
equals zero for X = x̂x̂>. The penalization is said to be tight if problem (3.1a)–(3.1e)175

has a unique optimal solution (
∗
x,

∗
X) that satisfies

∗
X =

∗
x
∗
x>. In the next section, we give176

conditions under which the penalized conic programming relaxation is tight.177
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3.1. Theoretical analysis. The following theorem guarantees that if x̂ is feasible and178
satisfies the LICQ regularity condition (in Section 2), then the solution of (3.1a)–(3.1e) is179
guaranteed to be feasible for the QCQP (2.1a)–(2.1c) for an appropriate choice of η.180

THEOREM 3.1. Let x̂ be a feasible point for the QCQP (2.1a)–(2.1b) that satisfies the181
LICQ condition. For sufficiently large η > 0, the convex problem (3.1a)–(3.1e) has a unique182

optimal solution (
∗
x,

∗
X) such that

∗
X =

∗
x
∗
x>. Moreover, ∗x is feasible for (2.1a)–(2.1c) and183

satisfies q0(
∗
x) ≤ q0(x̂).184

If x̂ is not feasible, but satisfies a generalized LICQ regularity condition, introduced185
below, and is close enough to the feasible set F , then the penalization is still tight for large186
enough η > 0. This result is described formally in Theorem 3.4. First, we define a distance187
measure from an arbitrary point in Rn to the feasible set of the problem.188

DEFINITION 3.2 (Feasibility Distance). The feasibility distance function dF : Rn → R189
is defined as190

dF (x̂) , min{‖x− x̂‖2 |x ∈ F}·(3.2)191192

DEFINITION 3.3 (Generalized LICQ Condition). For every x̂ ∈ Rn, the set of quasi-193
binding constraints is defined as194

B̂ , E ∪
{
k∈I

∣∣∣∣qk(x̂)+‖∇qk(x̂)‖2dF (x̂)+
‖∇2qk(x̂)‖2

2
dF (x̂)2 ≥ 0

}
·(3.3)195

196

The point x̂ is said to satisfy the GLICQ condition if the rows of JB̂(x̂) are linearly indepen-197
dent. Moreover, the singularity function s : Rn → R is defined as198

s(x̂),

{
σmin(JB̂(x̂)) if x̂ satisfies GLICQ
0 otherwise,(3.4)199

200

where σmin(JB̂(x̂)) denotes the smallest singular value of JB̂(x̂).201

Observe that if x̂ is feasible, then dF (x̂) = 0, and GLICQ condition reduces to the LICQ202
condition. Moreover, GLICQ is satisfied if and only if s(x̂) > 0.203

THEOREM 3.4. Let x̂ ∈ Rn satisfy the GLICQ condition for the QCQP (2.1a)-(2.1b),204
and assume that205

dF (x̂) <
s(x̂)

2 (1 + Cn−1,r−1) ‖P ‖2
·(3.5)206

207

If η is sufficiently large, then the convex problem (3.1a)–(3.1e) has a unique optimal solution208

(
∗
x,

∗
X) such that

∗
X =

∗
x
∗
x> and ∗x is feasible for (2.1a)–(2.1c).209

The rest of this section is devoted to proving Theorems 3.1 and 3.4. The next definition210
introduces the notion of matrix pencil corresponding to the QCQP (2.1a)–(2.1c), which will211
be used as a sensitivity measure.212

DEFINITION 3.5 (Pencil Norm). For the QCQP (2.1a)-(2.1c), define the corresponding213
matrix pencil P : R|I| × R|E| → Sn as follows:214

P (γ,µ) ,
∑

k∈I
γkAk +

∑

k∈E
µkAk.(3.6)215

216

Moreover, define the pencil norm ‖P ‖2 as217

‖P ‖2 , max
{
‖P (γ,µ)‖2

∣∣ ‖γ‖22 + ‖µ‖22 = 1
}
,(3.7)218219

which is upperbounded by
√∑

k∈I∪E ‖Ak‖22 .220
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In order to prove Theorems 3.1 and 3.4, it is convenient to consider the following opti-221
mization problem:222

minimize
x∈Rn

q0(x) + η‖x− x̂‖22(3.8a)223

s.t. qk(x) ≤ 0, k ∈ I(3.8b)224

qk(x) = 0, k ∈ E .(3.8c)225226

Consider an α > 0 for which the inequality227

|q0(x)| ≤ α‖x− x̂‖22 + α,(3.9)228229

is satisfied for every x ∈ Rn. If η > α, then the objective function (3.8a) is lower bounded230
by −α and its optimal value is attainable within any closed and nonempty subset of Rn.231

LEMMA 3.6. Given an arbitrary x̂ ∈ Rn and ε > 0, for sufficiently large η > 0, every232
optimal solution ∗x of the problem (3.8a)-(3.8c) satisfies233

0 ≤ ‖ ∗x− x̂‖2 − dF (x̂) ≤ ε.(3.10)234235

Proof. Consider an optimal solution ∗
x. Due to Definition 3.2, the distance between x̂236

and every member of F is not less than dF (x̂), which concludes the left side of (3.10). Let237
xd be an arbitrary member of the set {x ∈ F | ‖x − x̂‖2 = dF (x̂)}. Due to the optimality238
of ∗x, we have239

q0(
∗
x) + η‖ ∗x− x̂‖22 ≤ q0(xd) + η‖xd − x̂‖22.(3.11)240241

According to the inequalities (3.11) and (3.9), one can write242

(η − α)‖ ∗x− x̂‖22 − α ≤ (η + α)‖xd − x̂‖22 + α(3.12a)243

⇒ ‖ ∗x− x̂‖22 ≤ ‖xd − x̂‖22 +
2α

η − α (1 + ‖xd − x̂‖22)(3.12b)244

⇒ ‖ ∗x− x̂‖22 ≤ dF (x̂)2 +
2α

η − α (1 + dF (x̂)2),(3.12c)245
246

which concludes the right side of (3.10), provided that η ≥ α + 2α(1 + dF (x̂)2)[ε2 +247
2εdF (x̂)]−1.248

LEMMA 3.7. Assume that x̂ ∈ Rn satisfies the GLICQ condition for the problem (3.8a)–249
(3.8c). Given an arbitrary ε > 0, for sufficiently large η > 0, every optimal solution ∗x of the250
problem satisfies251

s(x̂)− s( ∗x) ≤ 2dF (x̂)‖P ‖2 + ε.(3.13)252253

Proof. Let B̂ and
∗
B denote the sets of quasi-binding constraints for x̂ and binding con-254

straints for ∗x, respectively (based on Definition 3.3). Due to Lemma 3.6, for every k ∈ I \ B̂255
and every arbitrary ε1 > 0, we have256

qk(
∗
x)−qk(x̂)= 2(Akx̂+bk)>(

∗
x− x̂)+(

∗
x− x̂)>Ak(

∗
x− x̂)257

≤ ‖∇qk(x̂)‖2‖ ∗x− x̂‖2 + ‖Ak‖2‖ ∗x− x̂‖22258

≤ ‖∇qk(x̂)‖2dF (x̂) + ‖Ak‖2dF (x̂)2 + ε1<−qk(x̂),(3.14)259260
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if η is sufficiently large, which yields
∗
B ⊆ B̂. Let ν ∈ R|B̂| be the left singular vector of261

JB̂(
∗
x), corresponding to the smallest singular value. Hence262

s(
∗
x) = σmin{J ∗B(

∗
x)} ≥ σmin{JB̂(

∗
x)}=‖JB̂(

∗
x)>ν‖2(3.15a)263

≥ ‖JB̂(x̂)>ν‖2 − ‖[JB̂(x̂)− JB̂(
∗
x)]>ν‖2(3.15b)264

≥ σmin{JB̂(x̂)}‖ν‖2 − 2‖P ‖2‖x̂− ∗
x‖2‖ν‖2(3.15c)265

≥ s(x̂)− 2‖P ‖2‖x̂− ∗
x‖2(3.15d)266

≥ s(x̂)− 2dF (x̂)‖P ‖2 − ε,(3.15e)267268

if η is large, which concludes the inequality (3.13).269

LEMMA 3.8. Let ∗x be an optimal solution of the problem (3.8a)–(3.8c), and assume that270
∗
x is LICQ regular. There exists a pair of dual vectors (

∗
γ,
∗
µ) ∈ R|I|+ × R|E| that satisfies the271

following Karush-Kuhn-Tucker (KKT) conditions:272

2(ηI+A0)(
∗
x−x̂)+2(A0x̂+ b0)+J (

∗
x)>[

∗
γ>,

∗
µ>]>= 0,(3.16a)273

∗
γkqk(

∗
x) = 0, ∀k ∈ I.(3.16b)274275

Proof. Due to the LICQ condition, there exists a pair of dual vectors (
∗
γ,
∗
µ) ∈ R|I|+ ×276

R|E|, which satisfies the KKT stationarity and complementary slackness conditions. Due to277
stationarity, we have278

0 = ∇x L(
∗
x,
∗
γ,
∗
µ)/2279

= η(
∗
x− x̂)+(A0

∗
x+b0)+P (

∗
γ,
∗
µ)
∗
x+

∑

k∈I

∗
γkbk+

∑

k∈E

∗
µkbk280

= (ηI+A0)(
∗
x−x̂)+(A0x̂+b0)+J (

∗
x)>[

∗
γ>,

∗
µ>]>/2.(3.17)281282

Moreover, (3.16b) is concluded from the complementary slackness.283

LEMMA 3.9. Consider an arbitrary ε > 0 and suppose x̂ ∈ Rn satisfies the inequality284

s(x̂) > 2dF (x̂)‖P ‖2.(3.18)285286

If η is sufficiently large, for every optimal solution ∗x of the problem (3.8a)–(3.8c), there exists287

a pair of dual vectors (
∗
γ,
∗
µ) ∈ R|I|+ × R|E| that satisfies the inequality288

1

η

√
‖ ∗γ‖22 + ‖ ∗µ‖22 ≤

2dF (x̂)

s(x̂)− 2dF (x̂)‖P ‖2
+ ε(3.19)289

290

as well as the equations (3.16a) and (3.16b).291

Proof. Due to Lemma 3.8, there exists (
∗
γ,
∗
µ) ∈ R|I|+ × R|E| that satisfies the equations292

(3.16a) and (3.16b). Let τ , [
∗
γ>,

∗
µ>]> and let

∗
B be the set of binding constraints for ∗x.293

Due to equations (3.16a) and (3.16b), one can write294

2(ηI +A0)(
∗
x− x̂) + 2(A0x̂+ b0) + J ∗B(

∗
x)>τ{

∗
B} = 0.(3.20)295296

Let φ , s(x̂)− 2dF (x̂)‖P ‖2 and define297

ε1 , φ× ε− 2η−1φ−1(‖A0x̂+b0‖2 + dF (x̂)‖A0‖2)

ε+ 2 + 2η−1‖A0‖2 + 2φ−1dF (x̂)
·(3.21)298

299
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If η is sufficiently large, ε1 is positive and based on Lemmas 3.6 and 3.7, we have300

‖τ‖2
η

=
‖τ{

∗
B}‖2
η

≤ 2‖(ηI +A0)(
∗
x− x̂) + (A0x̂+ b0)‖2

ησmin{J ∗B(
∗
x)}301

≤ 2η‖ ∗x− x̂‖2 + 2‖A0‖2‖ ∗x− x̂‖2 + 2‖A0x̂+ b0‖2
ηs(

∗
x)

302

≤ 2(dF (x̂)+ε1)+2η−1[‖A0‖2(dF (x̂)+ε1)+‖A0x̂+b0‖2]

s(x̂)− 2dF (x̂)‖P ‖2 − ε1
303

=
2dF (x̂)

s(x̂)− 2dF (x̂)‖P ‖2
+ ε,(3.22)304

305

where the last equality is a result of the equation (3.21).306

LEMMA 3.10. Consider an optimal solution ∗
x of the problem (3.8a)–(3.8c), and a pair307

of dual vectors (
∗
γ,
∗
µ) ∈ R|I|+ × R|E| that satisfies the conditions (3.16a) and (3.16b). If the308

matrix inequality309

ηI +A0 + P (
∗
γ,
∗
µ) �Dr 0,(3.23)310311

holds true, then the pair (
∗
x,
∗
x
∗
x>) is the unique primal solution to the penalized convex312

relaxation problem (3.1a)–(3.1e).313

Proof. With no loss of generality, it suffices to prove the lemma for the case V = Ø only.314
Let Λ ∈ S+n denotes the dual variable associated with the conic constraint (3.1d). Then, the315
KKT conditions for the problem (3.1a)-(3.1e) can be written as follows:316

∇x L̄(x,X,γ,µ,Λ) = 2

(
Λx− ηx̂+ b0 +

∑

k∈I

∗
γkbk+

∑

k∈E

∗
µkbk

)
= 0,(3.24a)317

∇X L̄(x,X,γ,µ,Λ) = ηI +A0 + P (γ,µ)−Λ = 0,(3.24b)318

γkqk(x) = 0, ∀k ∈ I(3.24c)319

〈Λ, xx>−X〉 = 0,(3.24d)320321

where L̄ : Rn×Sn×R|I|×R|E|×Sn → R is the Lagrangian function, equations (3.24a) and322
(3.24b) account for stationarity with respect to x and X , respectively, and equations (3.24c)323
and (3.24d) are the complementary slackness conditions for the constraints (3.1b) and (3.1d),324
respectively. Define325

∗
Λ , ηI +A0 + P (

∗
γ,
∗
µ).(3.25)326327

Due to Lemma (3.8), if η is sufficiently large, ∗x and (
∗
γ,
∗
µ) satisfy the equations (3.16a) and328

(3.16b), which yield the optimality conditions (3.24a)-(3.24d), if x =
∗
x, X =

∗
x
∗
x>, γ =

∗
γ,329

µ =
∗
µ, and Λ =

∗
Λ. Therefore, the pair (

∗
x,
∗
x
∗
x>) is a primal optimal points for the penalized330

convex relaxation problem (3.1a)-(3.1e).331
Since the KKT conditions hold for every pair of primal and dual solutions, we have332

∗
x =

∗
Λ−1

(
ηx̂− b0 −

∑

k∈I

∗
γkbk−

∑

k∈E

∗
µkbk

)
(3.26)333

334

and
∗
X =

∗
x
∗
x>, according to the equations (3.24a) and (3.24d), respectively, which implies335

the uniqueness of the solution.336
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LEMMA 3.11. Consider an optimal solution ∗
x of the problem (3.8a)-(3.8c), and a pair337

of dual vectors (
∗
γ,
∗
µ) ∈ R|I|+ × R|E| that satisfies the conditions (3.16a) and (3.16b). If the338

inequality,339

1

η

√
‖ ∗γ‖22 + ‖ ∗µ‖22 <

1

Cn−1,r−1‖P ‖2
− ‖A0‖2
η‖P ‖2

(3.27)340
341

holds true, then the pair (
∗
x,
∗
x
∗
x>) is the unique primal solution to the penalized convex342

relaxation problem (3.1a)–(3.1e).343

Proof. Based on Lemma 3.10, it suffices to prove the conic inequality (3.23). Define344

K , A0 + P (
∗
γ,
∗
µ).(3.28)345346

It follows that347

‖K‖2 ≤ ‖A0‖2 +
∑

k∈I

∗
γk‖Ak‖2 +

∑

k∈E

∗
µk‖Ak‖2,(3.29a)348

≤ ‖A0‖2 + ‖P ‖2
√
‖ ∗γ‖22 + ‖ ∗µ‖22 .(3.29b)349

350

LetR be the set of all r-member subsets of {1, 2, . . . , n}. Hence,351

ηI +K =
∑

K∈R
I{K}>RK I{K},(3.30)352

353

where354

RK =

(
n− 1

r − 1

)−1
[ηI{K,K}+K{K,K}].(3.31)355

356

Due to the inequalities (3.27) and (3.29), we have RK � 0 for every K ∈ R, which proves357
that ηI +K �Dr 0.358

Proof of Theorem 3.4. Let ∗x be an optimal solution of the problem (3.8a)–(3.8c). Ac-359
cording to the assumption (3.5), the inequality (3.18) holds true, and due to Lemma 3.9, if η360
is sufficiently large, there exists a corresponding pair of dual vectors (

∗
γ,
∗
µ) that satisfies the361

inequality (3.19). Now, according to the inequality (3.5), we have362

2dF (x̂)

s(x̂)− 2dF (x̂)‖P ‖2
≤ 1

Cn−1,r−1‖P ‖2
(3.32)363

364

and therefore (3.19) concludes (3.27). Hence, according to Lemma 3.11, the pair (
∗
x,
∗
x
∗
x>)365

is the unique primal solution to the penalized convex relaxation problem (3.1a)–(3.1e).366

Proof of Theorem 3.1. If x̂ is feasible, then dF (x̂) = 0. Therefore, the tightness of the367
penalization for Theorem 3.1 is a direct consequence of Theorem 3.4. Denote the unique op-368
timal solution of the penalized relaxation as (

∗
x,
∗
x
∗
x>). Then it is straightforward to verify the369

inequality q0(
∗
x) ≤ q0(x̂) by evaluating the objective function (3.1a) at the point (x̂, x̂x̂>).370

3.2. Sequential penalization procedure. In practice, the penalized conic programming371
relaxation (3.1a)–(3.1e) can be initialized by a point that may not satisfy the conditions of372
Theorem 3.1 or Theorem 3.4 as these conditions are only sufficient, but not necessary. If the373
chosen initial point x̂ does not result in a tight penalization, the penalized convex relaxation374
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Algorithm 3.1 Sequential Penalized Conic Relaxation.

initiate {qk}k∈{0}∪I∪E , r ≥ 2, x̂ ∈ Rn, and the fixed parameter η > 0
while stopping criterion is not met do

solve the penalized problem (3.1a)–(3.1e) with the initial point x̂ to obtain (
∗
x,

∗
X)

set x̂← ∗
x

end while
return ∗

x

(3.1a)–(3.1e) can be solved sequentially by updating the initial point until a feasible and near-375
optimal point is obtained. This procedure is described in Algorithm 3.1.376

According to Theorem (3.4), once x̂ is close enough to the feasible set F , the relaxation377
becomes tight, i.e., a feasible solution ∗x is recovered as the unique optima solution to (3.1a)–378
(3.1e). Afterwards, in the subsequent iterations, according to Theorem (3.1), feasibility is379
preserved and the objective value does not increase. The following example illustrates the380
application of Algorithm 3.1 for a polynomial optimization problem.381

Example 3.12. Consider the following three-dimensional polynomial optimization:382

minimize
a,b,c∈R

a(3.33a)383

s.t. a5 − b4 − c4 + 2a3 + 2a2b− 2ab2 + 6abc− 2 = 0(3.33b)384385

To derive a QCQP reformulation of the problem (3.33a)–(3.33b), we consider a variable386
x ∈ R8, whose elements account for the monomials a, b, c, a2, b2, c2, ab, and a3, respectively.387
This leads to the following QCQP:388

minimize
x∈R8,

x1(3.34a)389

s.t. x4x8 − x25 − x26 + 2x1x4 + 2x2x4 − 2x1x5 + 6x3x7 − 2 = 0(3.34b)390

x4 − x21 = 0(3.34c)391

x5 − x22 = 0(3.34d)392

x6 − x33 = 0(3.34e)393

x7 − x1x2 = 0(3.34f)394

x8 − x1x4 = 0(3.34g)395396

The transformation of the polynomial optimization to QCQP is standard and it is described in397
Appendix A for completeness. The global optimal objective value of the above QCQP equals398
−2.0198 and the lower-bound, offered by the standard SDP relaxation equals −89.8901. In399
order to solve the above QCQP, we run Algorithm 3.1, equipped with the SDP relaxation400
(no additional valid inequalities) and penalty term η = 0.025. The trajectory with three401
different initializations x̂1 = [0, 0, 0, 0, 0, 0, 0]>, x̂2 = [−3, 0, 2, 9, 0, 4, 0, 27]>, and x̂3 =402
[0, 4, 0, 0, 16, 0, 0, 0]> are given in Table 1 and shown in Fig. 1. In all three cases, the403
algorithm achieves feasibility in 1–8 rounds. Moreover, a feasible solution with less than404
%0.2 gap from global optimality is attained within 10 rounds in all three cases. The example405
illustrates that Appendix A is not sensitive to the initial point.406
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Fig. 1: Trajectory of Algorithm 3.1 for three different initializations. The yellow surface represents the
feasible set and the blue, red and green points correspond to x̂1, x̂2 and x̂3, respectively.

Table 1: Trajectory of Algorithm 3.1 for three different initializations.

Round x̂1 x̂2 x̂3

a (obj.) b c tr{
∗
X − ∗

x
∗
x>} a (obj.) b c tr{

∗
X − ∗

x
∗
x>} a (obj.) b c tr{

∗
X − ∗

x
∗
x>}

0 0.0000 0.0000 0.0000 - -3.0000 0.0000 2.0000 - 0.0000 4.0000 0.0000 -
1 -1.2739 0.6601 -0.4697 2.1884 -2.5377 1.2831 -0.7380 138.9796 -1.5721 2.6848 -0.9492 39.2455
2 -1.5173 1.1445 -1.0128 < 10−11 -2.4389 2.0715 -1.3946 51.1170 -1.5749 2.7588 -1.3854 13.5140
3 -1.6882 1.3773 -1.2015 < 10−11 -2.2889 2.2685 -1.7098 23.0050 -1.6678 2.6583 -1.5228 0.9995
4 -1.8021 1.5739 -1.3561 < 10−11 -2.1878 2.3416 -1.8442 11.4963 -1.8322 2.6083 -1.5587 < 10−11

5 -1.8824 1.7447 -1.4873 < 10−11 -2.1194 2.3621 -1.9007 5.9206 -1.9460 2.5261 -1.6624 < 10−11

6 -1.9386 1.8930 -1.5992 < 10−11 -2.0733 2.3611 -1.9250 2.9082 -2.0002 2.4391 -1.7847 < 10−11

7 -1.9760 2.0180 -1.6923 < 10−11 -2.0423 2.3526 -1.9352 1.1594 -2.0156 2.3824 -1.8598 < 10−11

8 -1.9985 2.1175 -1.7656 < 10−11 -2.0214 2.3426 -1.9393 0.0938 -2.0189 2.3532 -1.8938 < 10−11

9 -2.0104 2.1907 -1.8193 < 10−11 -2.0197 2.3352 -1.9302 < 10−11 -2.0196 2.3387 -1.9079 < 10−11

10 -2.0160 2.2408 -1.8559 < 10−11 -2.0198 2.3304 -1.9240 < 10−11 -2.0197 2.3313 -1.9135 < 10−11

4. Numerical experiments. In this section we describe numerical experiments to test407
the effectiveness of the sequential penalization method for non-convex QCQPs from the li-408
brary of quadratic programming instances (QPLIB) [13] as well as large-scale system identi-409
fication problems [12].410

4.1. QPLIB problems. The experiments are performed on a desktop computer with a411
12-core 3.0GHz CPU and 256GB RAM. MOSEK v8.1 [3] is used through MATLAB 2017a412
to solve the resulting convex relaxations.413

4.1.1. Sequential penalization. Tables 2, 3, 4, and 5 report the results of Algorithm 3.1414
for SOCP, SOCP+RLT, SDP, and SDP+RLT relaxations, respectively. The following valid415
inequalities are imposed on all of the convex relaxations:416

Xkk − (xlbk + xubk )xk + xlbk x
ub
k ≤ 0, ∀k ∈ {1, . . . , n}(4.1a)417

Xkk − (xubk + xubk )xk + xubk x
ub
k ≥ 0, ∀k ∈ {1, . . . , n}(4.1b)418

Xkk − (xlbk + xlbk )xk + xlbk x
lb
k ≥ 0, ∀k ∈ {1, . . . , n}(4.1c)419420
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where l,u ∈ Rn are given lower and upper bounds on x. Problem (2.9a)–(2.9e) is solved421
with the following four settings:422

• SOCP relaxation: r = 2 and valid inequalities (4.1a) – (4.1c).423
• SOCP+RLT relaxation: V = H×H and r = 2.424
• SDP relaxation: r = n and valid inequalities (4.1a) – (4.1c).425
• SDP+RLT relaxation: V = H×H and r = n.426

Let (
∗
x,

∗
X) denote the optimal solution of the convex relaxation (2.9a)-(2.9e). We use the427

point x̂ =
∗
x as the initial point of the algorithm. For each benchmark QCQP and convex428

relaxation, the optimal cost of convex relaxation is reported as LB , q0(
∗
x,

∗
X).429

The penalty parameter η is chosen via bisection as the smallest number of the form430
α × 10β , which results in a tight relaxation during the first six rounds, where α ∈ {1, 2, 5}431
and β is an integer. In all of the experiments, the value of η has remained static throughout432
Algorithm 3.1. Denote the sequence of penalized relaxation solutions obtained by Algorithm433
3.1 as434

(x(1),X(1)), (x(2),X(2)), (x(3),X(3)), . . .435436

The smallest i such that437

tr{X(i) − x(i)(x(i))>} < 10−7(4.2)438439

is denoted by ifeas, i.e., it is the number of rounds that Algorithm 3.1 needs to attain a tight440
penalization. Moreover, the smallest i such that441

q0(x(i−1))− q0(x(i))

|q0(x(i))| ≤ 5× 10−4(4.3)442
443

is denoted by istop, and UB , q0(x(istop)). The following formula is used to calculate the444
final percentage gaps from the optimal costs reported by the QPLIB library:445

GAP(%) = 100× qstop0 − q0(xQPLIB)

|q0(xQPLIB)| .(4.4)446
447

Moreover, t(s) denotes the cumulative solver time in seconds for the istop rounds. Our re-448
sults are compared with BARON [46] and COUENNE [6] by fixing the maximum solver449
times equal to the accumulative solver times spent by Algorithm 3.1. We ran BARON and450
COUENNE through GAMS v25.1.2 [14]. The resulting lower bounds, upper bounds and451
GAPs (from the equation (4.4)) are reported in Tables 2, 3, 4, and 5.452

As demonstrated in the tables, penalized SOCP+RLT, SDP, and SDP+RLT relaxations453
have successfully obtained feasible points within 4% gaps from QPLIB solutions. Sequential454
SDP requires a smaller number of rounds compared sequential SOCP to meet the stopping455
criterion (4.3). Using any of the relaxations, the infeasible initial points can be rounded to a456
feasible point with only two round of Algorithm 3.1 and all relaxations arrive at satisfactory457
gaps percentages.458

Figures 2, shows the convergence of Algorithm 3.1 for cases 1507. The choice of η for459
all curves are taken from the corresponding rows of the Tables 2, 3, 4, and 5.460

4.1.2. Choice of the penalty parameter η. In this experiment the sensitivity of different461
convex relaxations to the choice of the penalty parameter η is tested. To this end, one round462
of the penalized relaxation problem (3.1a)-(3.1e) is solved for a wide range of η values. The463
benchmark case 1143 is used for this experiment. If η is small, none of the proposed penalized464
relaxations are tight for the case 1143. As the value of η increases, the feasibility violation465
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Table 2: Sequential penalized SOCP relaxation.

Inst Sequential SOCP relaxation BARON COUENNE
η ifeas istop t(s) LB UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343 5e+2 1 100 75.27 -223.281 -5.882 7.89 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 1e+1 1 29 22.91 -76.432 -30.675 4.58 -172.777 0.000 100 -172.777 -31.026 3.49
0975 5e+0 6 18 46.36 -78.263 -36.434 3.75 -47.428 -37.801 0.14 -171.113 -37.213 1.69
1055 1e+1 1 22 14.39 -94.532 -32.620 1.26 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 2e+1 1 44 25.68 -178.842 -55.417 3.20 -69.522 -57.247 0.00 -384.45 -56.237 1.76
1157 2e+0 2 9 9.01 -18.715 -10.938 0.10 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 5e+0 1 48 84.90 -22.310 -7.700 0.19 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 5e+0 1 29 17.44 -31.719 -14.684 1.90 -16.313 -14.968 0.00 -76.13 -14.871 0.65
1437 5e+0 1 36 54.57 -26.473 -7.785 0.06 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 2e+1 4 21 20.86 -226.152 -85.598 2.26 -135.140 -87.577 0.00 -468.04 -86.860 0.82
1493 2e+1 1 18 14.49 -137.428 -41.910 2.90 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 2e+0 1 15 8.98 -16.635 -8.289 0.15 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 5e+0 1 26 28.16 -40.236 -10.948 5.51 -13.407 -11.397 1.63 -107.86 -11.398 1.63
1619 5e+0 1 39 32.34 -31.294 -9.210 0.08 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 5e+0 1 32 87.50 -44.147 -15.666 1.81 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 2e+1 1 21 36.38 -197.509 -75.485 0.24 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 5e+1 2 30 31.82 -408.812 -130.902 1.43 -180.935 -132.802 0.00 -929.92 -132.802 0.00
1745 2e+1 1 26 22.15 -133.719 -71.704 0.93 -77.465 -72.377 0.00 -317.99 -72.377 0.00
1773 5e+0 1 56 148.79 -48.971 -14.154 3.34 -21.581 -14.642 0.00 -118.65 -14.642 0.00
1886 2e+1 1 34 26.82 -163.362 -78.604 0.09 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 1e+1 1 28 21.91 -82.384 -51.889 0.42 -68.555 -52.109 0.00 -164.26 -51.478 1.21
1922 1e+1 1 23 11.16 -62.466 -35.437 1.43 -121.872 -35.951 0.00 -123.2 -35.951 0.00
1931 1e+1 1 13 8.78 -102.943 -53.684 3.64 -85.196 -55.709 0.00 -204.08 -54.290 2.55
1967 5e+1 1 32 27.23 -306.859 -105.570 1.87 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 33.9 1.4 31.2 36.68 2.04 8.41 0.58
Max 500 6 100 148.79 7.89 100 3.34

1 2 3 4 5 6 7 8 9 10
Rounds (k)

-12
-11
-10
-9
-8
-7
-6
-5

q 0
(x

(k
) ;

X
(k

) )

 SOCP
 SOCP+RLT
 SDP
 SDP+RLT

Fig. 2: Convergence of sequential SOCP, SOCP+RLT, SDP, and SDP+RLT relaxations for inst. 1507.

tr{
∗
X − ∗

x
∗
x>} abruptly vanishes once crossing η = 1.9, η = 7.7, and η = 19.6, for the466

penalized SOCP, SDP and SDP+RLT relaxations, respectively. Remarkably, if ∗xSDP+RLT467
is used as the initial point and η ' 2, then the penalized SDP+RLT relaxation (3.1a)-(3.1e)468
produces a feasible point for the benchmark case 1143 whose objective value is within %0.2469
of the reported optimal cost q0(xQPLIB).470

4.2. Large-scale system identification problems. Following [12], this case study is471
concerned with the problem of identifying the parameters of a linear dynamical system given472
limited observation and non-uniform snapshots of the state vector. Consider a discrete-time473
linear system described by the system of equations:474

z[τ + 1] = Az[τ ] +Bu[τ ] +w[τ ] τ = 1, 2, . . . , T − 1(4.5a)475476
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Table 3: Sequential penalized SOCP+RLT relaxation.

Inst Sequential SOCP+RLT relaxation BARON COUENNE
η ifeas istop t(s) LB UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343 1e+2 4 24 25.23 -7.269 -5.945 6.91 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 1e+1 1 33 27.69 -73.061 -30.923 3.81 -172.777 -32.148 0.00 -172.777 -31.026 3.49
0975 5e+0 6 15 4.10 -74.194 -36.300 13.17 -47.428 -37.794 0.16 -171.113 -36.812 2.75
1055 1e+1 1 24 16.78 -90.430 -32.666 1.12 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 2e+1 1 30 32.66 -109.302 -55.507 3.04 -69.522 -57.247 0.00 -384.45 -56.237 1.76
1157 2e+0 1 0 1.14 -10.948 -10.948 0.00 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 1e+0 3 11 19.41 -10.256 -7.711 0.05 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 2e+0 3 14 16.41 -22.462 -14.730 1.59 -16.313 -14.968 0.00 -76.13 -14.871 0.65
1437 5e-1 4 8 21.62 -9.268 -7.788 0.02 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 2e+1 2 36 100.50 -185.434 -87.502 0.09 -135.140 -87.577 0.00 -468.04 -87.283 0.34
1493 1e+1 3 13 13.69 -61.053 -41.804 3.14 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 1e+0 6 13 10.31 -11.862 -8.295 0.08 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 2e+0 3 23 83.47 -21.065 -11.241 2.98 -13.407 -11.586 0.00 -107.86 -11.398 1.62
1619 2e+0 3 20 35.62 -17.163 -9.213 0.05 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 1e+0 3 8 35.85 -19.439 -15.666 1.81 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 1e+1 3 11 41.30 -121.753 -75.537 0.17 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 2e+1 5 22 62.63 -250.703 -131.330 1.11 -180.935 -132.802 0.00 -929.92 -132.802 0.00
1745 5e+0 4 19 40.44 -92.924 -72.351 0.04 -77.465 -72.377 0.00 -317.99 -72.377 0.00
1773 5e+0 1 56 120.65 -29.962 -14.176 3.19 -21.581 -14.642 0.00 -118.65 -14.642 0.00
1886 2e+1 1 35 28.19 -155.747 -78.620 0.07 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 5e+0 4 18 15.10 -75.555 -51.879 0.44 -68.555 -52.109 0.00 -164.26 -51.348 1.46
1922 1e+1 1 26 13.22 -57.575 -35.451 1.39 -121.872 -35.951 0.00 -123.2 -35.951 0.00
1931 1e+1 1 13 8.59 -97.100 -53.709 3.59 -85.196 -55.709 0.00 -204.08 -54.290 2.55
1967 5e+1 1 38 33.01 -297.981 -105.616 1.83 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 13.4 2.7 21.3 33.65 2.07 4.17 0.61
Max 100 6 56 120.65 13.17 100 3.49

where477
• {z[τ ] ∈ Rn}Tτ=1 are the state vectors that are known at times τ ∈ {τ1, . . . , τo},478
• {u[τ ] ∈ Rm}Tτ=1 are the known control command vectors.479
• A ∈ Rn×n andB ∈ Rn×m are fixed unknown matrices, and480
• {w[τ ] ∈ Rn}Tτ=1 account for the unknown disturbance vectors.481

Our goal is to estimate the pair of ground truth matrices (Ā, B̄), given a sample trajec-482
tory of the control commands {ū[τ ] ∈ Rn}Tτ=1 and the incomplete state vectors {z̄[τ ] ∈483
Rn}τ∈{τ1,...,τo}. To this end, we employ the minimum least absolute value estimator which484
amounts to the following QCQP:485

minimize
{y[τ ]∈Rn}T−1

τ=1

{z[τ ]∈Rn}Tτ=1

A∈Rn×n
B∈Rn×m

T−1∑

τ=1

1>n y[τ ](4.6a)486

subject to y[τ ] ≥ +z[τ + 1]−Az[τ ]−Bū[τ ] τ ∈ {1, 2, . . . , T − 1},(4.6b)487

y[τ ] ≥ −z[τ + 1] +Az[τ ] +Bū[τ ] τ ∈ {1, 2, . . . , T − 1},(4.6c)488

z[τ ] = z̄[τ ] τ ∈ {τ1, . . . , τo}.(4.6d)489490

For every τ ∈ {1, 2, . . . , T − 1}, the auxiliary variable y[τ ] ∈ Rn accounts for |z[τ + 1] −491
Az[τ ]−Bū[τ ]|. This relation is imposed through the pair of constraints (4.6b) and (4.6c).492

The problem (4.6a)–(4.6d), can be cast in the form of (2.1a)-(2.1c), with respect to the493
vector494

x , [z[1]>, . . . , z[T ]>, vec{A}>, αy[1]>, . . . , αy[T − 1]>, αvec{B}>],(4.7)495496
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Table 4: Sequential penalized SDP relaxation.

Inst Sequential SDP relaxation BARON COUENNE
η ifeas istop t(s) LB UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343 1e+2 1 53 29.24 -99.082 -6.379 0.12 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 2e+0 1 9 5.19 -36.068 -31.811 1.05 -172.777 0.000 100 -172.777 -31.026 3.49
0975 2e+0 2 13 8.18 -41.989 -37.845 0.02 -47.428 -37.794 0.16 -171.113 -36.812 2.75
1055 5e+0 1 8 4.36 -36.760 -32.528 1.54 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 5e+0 4 15 7.89 -68.328 -55.606 2.87 -69.522 -57.247 0.00 -384.45 -53.367 6.78
1157 1e+0 1 5 3.15 -12.392 -10.945 0.03 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 1e+0 1 10 6.12 -9.047 -7.712 0.03 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 1e+0 1 5 3.28 -15.933 -14.676 1.95 -16.313 -14.968 0.00 -76.13 -14.078 5.94
1437 1e+0 1 7 4.30 -10.185 -7.787 0.03 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451† 5e+0 2 6 5.09 -109.318 -85.972 1.83 -135.140 - - -468.04 - -
1493 5e+0 1 6 4.10 -52.396 -43.160 0.00 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 5e-1 3 6 3.28 -9.433 -8.291 0.12 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 1e+0 1 16 13.05 -13.916 -11.363 1.93 -13.407 -11.397 1.63 -107.86 -11.398 1.63
1619 1e+0 1 7 4.64 -10.376 -9.213 0.05 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 1e+0 1 12 7.57 -18.440 -15.955 0.00 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 5e+0 1 5 3.75 -93.125 -75.550 0.16 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 1e+1 1 10 6.96 -152.774 -132.539 0.20 -180.935 -131.466 1.01 -929.92 - -
1745† 5e+0 1 8 4.75 -81.668 -71.828 0.76 -77.465 -72.377 0.00 -317.99 -72.377 0.00
1773 1e+0 1 8 5.44 -17.307 -14.633 0.06 -21.581 -14.642 0.00 -118.65 -14.636 0.04
1886 5e+0 2 9 5.84 -87.184 -78.659 0.02 -135.615 -49.684 36.84 -324.87 -78.672 0.00
1913 5e+0 1 20 12.48 -57.441 -51.866 0.47 -68.555 -52.109 0.00 -164.26 -51.348 1.46
1922 5e+0 1 7 4.34 -39.969 -35.452 1.39 -121.872 -35.916 0.10 -123.2 -35.951 0.00
1931 5e+0 1 10 5.87 -60.460 -54.894 1.46 -85.196 -55.709 0.00 -204.08 -54.290 2.55
1967 1e+1 1 6 5.49 -121.990 -104.752 2.63 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 7.6 1.3 11.1 6.92 0.76 10.85 1.12
Max 100 4 53 29.24 2.87 100 6.78
† Rows 1751 and 1745 are excluded from average and maximum computations due to missing entries.

where α is a preconditioning constant. To solve the resulting problem, we use the sequential497
Algorithm 3.1 equipped with the SOCP relaxation and the initial point x̂ = 0.498

We consider system identification problems with n = 25, m = 20, T = 500 and499
o = 400. In every experiment, {τ1, . . . , τo} is a uniformly selected subset of {1, 2, . . . , T}.500
The resulting QCQP variable x is 23605-dimensional and the problem is 16100-dimensional501
if we exclude the known state vectors {z̄[τ ] ∈ Rn}τ∈{τ1,...,τo}. Due to sparsity of the QCQP502
(4.6a)-(4.6d) each round of the penalized SOCP relaxation is solved within 30 minutes, by503
omitting the elements of the lifted variable X that do not appear in the objective and con-504
straints. All of the convex relaxations are solved using MOSEK v8.1 [3] through MATLAB505
2017a and on a desktop computer with a 12-core 3.0GHz CPU and 256GB RAM.506

The ground truth values are chosen as follows:507
• The elements of Ā ∈ R25×25 have zero-mean Gaussian distribution and the matrix508

is scaled in such a way that the largest singular value is equal to 0.5.509
• Every element of B̄ ∈ R25×20, {ū[τ ] ∈ R20}Tτ=1 and z̄[1] ∈ R25 have standard510

normal distribution.511
• The elements of {w̄[τ ] ∈ R25}T−1τ=1 have independent zero-mean Gaussian distribu-512

tion with the standard deviation σ ∈ {0.01, 0.02, 0.05, 0.10}.513
For each experiment, we ran Algorithm 3.1 for 10 rounds. The preconditioning and penalty514
terms are set to α = 10−3 and η = 40, respectively. For each σ ∈ {0.01, 0.02, 0.05, 0.10},515
we have run 10 random experiments resulting in the average recovery errors 0.0005, 0.0010,516
0.0026, and 0.0062, respectively, for ‖Ā−A(10)‖F /n, and the average errors 0.0014, 0.0028,517

0.0070, and 0.0141, respectively, for ‖B̄−B(10)‖F /
√
mn. In all of the trials, a feasible point518

is obtained in the first round of Algorithm 3.1. Figure 3 illustrates the convergence behavior519
of the objective functions for one of the trials for each disturbance level.520
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Table 5: Sequential penalized SDP+RLT relaxation.

Inst Sequential SDP+RLT relaxation BARON COUENNE
η ifeas istop t(s) LB UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343 0e+0 0 0 1.42 -6.386 -6.386 0.00 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 2e-1 4 5 13.08 -32.982 -32.147 0.00 -172.777 0.000 100 -172.777 -31.026 3.49
0975 2e-1 3 5 12.75 -38.633 -37.852 0.00 -47.428 -37.794 0.16 -171.113 -36.812 2.75
1055 1e+0 5 8 9.56 -33.909 -32.874 0.49 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 5e-1 4 5 7.27 -58.908 -57.241 0.01 -69.522 -57.247 0.00 -384.45 -53.367 6.78
1157 0e+0 0 0 0.88 -10.948 -10.948 0.00 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 0e+0 0 0 0.45 -7.714 -7.714 0.00 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 2e-1 1 2 2.82 -15.154 -14.929 0.25 -16.313 -14.968 0.00 -76.13 -14.078 5.94
1437 1e-2 1 2 7.02 -7.795 -7.789 0.00 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 2e+0 2 5 24.45 -94.346 -87.573 0.01 -135.140 -87.577 0.00 -468.04 -86.860 0.82
1493 5e-1 1 2 2.76 -43.883 -43.160 0.00 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 0e+0 0 0 0.61 -8.301 -8.301 0.00 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 5e-1 1 10 38.01 -12.203 -11.536 0.43 -13.407 -11.397 1.63 -107.86 -11.398 1.62
1619 0e+0 0 0 2.38 -9.217 -9.217 0.00 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 1e-1 1 2 12.88 -16.028 -15.955 0.00 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 5e-1 4 0 4.22 -76.342 -75.669 0.00 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 2e+0 1 3 13.50 -137.543 -132.626 0.13 -180.935 -132.381 0.32 -929.92 -132.802 0.00
1745† 1e+0 6 0 2.53 -73.773 -72.376 0.00 -77.465 - - -317.99 -72.377 0.00
1773 2e-1 3 4 18.01 -15.490 -14.626 0.11 -21.581 -14.642 0.00 -118.65 -14.636 0.04
1886 2e+0 2 4 9.05 -81.846 -78.643 0.04 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 1e+0 2 6 11.49 -53.290 -52.108 0.00 -68.555 -52.109 0.00 -164.26 -51.348 1.46
1922 2e+0 1 5 3.35 -38.075 -35.556 1.10 -121.872 -35.741 0.58 -123.2 -35.951 0.00
1931 1e+0 1 2 2.99 -56.165 -55.674 0.06 -85.196 -53.760 3.50 -204.08 -54.290 2.55
1967 5e+0 1 8 16.11 -113.802 -107.052 0.49 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 0.8 1.7 3.39 9.35 0.14 8.96 1.11
Max 5 5 10 38 1.1 100 6.78
† Row 1745 is excluded from average and maximum computations due to missing entries.
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Fig. 3: Convergence of the sequential penalized SOCP relaxation for large-scale system identification
with different disturbance levels.

5. Conclusions. This paper introduces a penalized conic relaxation approach for con-521
structing feasible and near-optimal solutions to nonconvex quadratically-constrained quadratic522
programming (QCQP) problems. Given an arbitrary initial point (feasible or infeasible) for523
the original QCQP, a penalized relaxation is formulated by adding a linear term to the ob-524
jective. A generalized linear independence constraint qualification (LICQ) condition is intro-525
duced as a regularity criterion for the initial points, and it is shown that the solution of the526
penalized relaxation is feasible for QCQP if the initial point is regular and close to the feasi-527
ble set. We show that the proposed penalized conic programming relaxations can be solved528
sequentially in order to improve the objective of the feasible solution. Numerical experiments529
on QPLIB benchmark cases demonstrate that the proposed sequential approach compares fa-530
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vorably with nonconvex optimizers BARON and COUENNE. Moreover, the scalability of531
the proposed method is demonstrated on large-scale system identification problems.532
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Appendix A. Application to polynomial optimization. In this section, we show that651
the proposed penalized conic relaxation approach can be used for polynomial optimization as652
well. A polynomial optimization problem is formulated as653

minimize
x∈Rn

u0(x)(A.1a)654

s.t. uk(x) ≤ 0, k ∈ I(A.1b)655

uk(x) = 0, k ∈ E ,(A.1c)656657

for every k ∈ {0} ∪ I ∪ E , where each function uk : Rn → R is a polynomial of arbitrary658
degree. Problem (A.1a)–(A.1c) can be reformulated as a QCQP of the form:659

minimize
x∈Rn,y∈Ro

w0(x,y)(A.2a)660

s.t. wk(x,y) ≤ 0, k ∈ I(A.2b)661

wk(x,y) = 0, k ∈ E(A.2c)662

vi(x,y) = 0, i ∈ O,(A.2d)663664

where y ∈ R|O| is an auxiliary variable, and v1, . . . , v|O| and w0, w1, . . . , w|{0}∪I∪E| are665
quadratic functions with the following properties:666

• For every x ∈ Rn, the function v(x, ·) : R|O| → R|O| is invertible,667
• If v(x,y) = 0n, then wk(x,y) = uk(x) for every k ∈ {0} ∪ I ∪ E .668

Based on the above properties, there is a one-to-one correspondence between the feasible669
sets of (A.1a)–(A.1c) and (A.2a)–(A.2d). Moreover, a feasible point (

∗
x,
∗
y) is an optimal670

solution to the QCQP (A.2a)–(A.2d) if and only if ∗x is an optimal solution to the polynomial671
optimization problem (A.1a)–(A.1c).672

THEOREM A.1 ([32]). Suppose that {uk}k∈{0}∪I∪E are polynomials of degree at most673
d, consisting of m monomials in total. There exists a QCQP reformulation of the polynomial674
optimization (A.1a)–(A.1c) in the form of (A.2a)–(A.2d), where |O| ≤ mn (blog2(d)c+ 1).675

The next proposition shows that the LICQ regularity of a point x̂ ∈ Rn is inherited by676
the corresponding point (x̂, ŷ) ∈ Rn × Ro of the QCQP reformulation (A.2a)-(A.2d).677

PROPOSITION A.2. Consider a pair of vectors x̂ ∈ Rn and ŷ ∈ R|O| satisfying v(x̂, ŷ) =678
0n. The following two statements are equivalent:679

1. x̂ is feasible and satisfies the LICQ condition for the polynomial optimization prob-680
lem (A.1a)–(A.1b).681

2. (x̂, ŷ) is feasible and satisfies the LICQ condition for the QCQP (A.2a)–(A.2d).682

Proof. From u(x̂) = w(x̂, ŷ) and the invertiblity assumption for v(x̂, ·), we have683

∂u(x̂)

∂x
=
[
∂w(x̂,ŷ)
∂x

∂w(x̂,ŷ)
∂y

][
I −

(
∂v(x̂,ŷ)
∂y

)−1
∂v(x̂,ŷ)
∂x

]>
684

=
∂w(x̂, ŷ)

∂x
− ∂w(x̂, ŷ)

∂y

(
∂v(x̂, ŷ)

∂y

)−1
∂v(x̂, ŷ)

∂x
.(A.3)685

686

Therefore, JPO(x̂) = ∂u(x̂)
∂x is equal to the Schur complement of687

JQCQP(x̂, ŷ) =

[
∂w(x̂,ŷ)
∂x

∂w(x̂,ŷ)
∂y

∂v(x̂,ŷ)
∂x

∂v(x̂,ŷ)
∂y

]
,(A.4)688

689

which is the Jacobian matrix of the QCQP (A.2a)–(A.2d) at the point (x̂, ŷ). As a result, the690
matrix JPO(x̂) is singular if and only if JQCQP(x̂, ŷ) is singular.691

This manuscript is for review purposes only.
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