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Abstract— It is critical to obtain stability certificate before
deploying reinforcement learning in real-world mission-critical
systems. This study justifies the intuition that smoothness (i.e.,
small changes in inputs lead to small changes in outputs)
is an important property for stability-certified reinforcement
learning from a control-theoretic perspective. The smoothness
margin can be obtained by solving a feasibility problem based
on semi-definite programming for both linear and nonlinear
dynamical systems, and it does not need to access the exact
parameters of the learned controllers. Numerical evaluation
on nonlinear and decentralized frequency control for large-
scale power grids demonstrates that the smoothness margin
can certify stability during both exploration and deployment
for (deep) neural-network policies, which substantially surpass
nominal controllers in performance. The study opens up new
opportunities for robust Lipschitz continuous policy learning.

I. INTRODUCTION

Reinforcement learning (RL) is a powerful tool for real-
world control, which aims at guiding an agent to perform a
task as efficiently and skillfully as possible through interac-
tions with the environment [1], [2]. This work investigates
the important role of smoothness to certify stability for
neural-network based reinforcement learning when deployed
in real-world control tasks (illustrated in Fig. 1). Consider
a deterministic, continuous-time dynamical system ẋ(t) =
ft(x(t),u(t)), with the state x(t) ∈ Rn and the control action
u(t) ∈ Rm. In general, ft can be a time-varying, nonlinear
function, but for the purpose of stability analysis, we focus
on the important case

ft(x,u) = Ax(t) + Bu(t) + gt(x(t)), (1)

where ft comprises of a linear time-invariant (LTI) component
A ∈ Rn×n, a control matrix B ∈ Rn×m, and a slowly time-
varying component gt that is allowed to be nonlinear and even
uncertain.1 For feedback control, we also allow the controller
to obtain observations of the form y(t) = Cx(t) ∈ Rn that
are a linear function of the state, where C ∈ Rn×n can
have any prescribed sparsity pattern to account for partial
observations in the context of decentralized control [3].

Suppose that u(t) = πt(y(t)) + e(t) is given by a neural
network output with the exploration e(t) that has bounded
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1This requirement is not difficult to meet in practice, because one can
linearize any nonlinear system around an equilibrium point to obtain a linear
component and a nonlinear part.
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Fig. 1: End-to-end reinforcement learning in real-world
dynamical system G. The agent optimizes policy π(y)
through exploration while receiving rewards r.

energy over time (‖e‖22 =
∫
‖e(t)‖22dt ≤ ∞). The neural

network can be learned by a reinforcement learning agent to
optimize some reward r(x,u) revealed through interactions
with the environment. The main goal is to analyze the stability
of the system under the policy πt in the sense of finite L2

gain [4].
Definition 1.1 (Input-output stability): The L2 gain of the

system G controlled by π is the worst-case ratio:

γ(G,π) = sup
e∈L2

‖y‖22
‖e‖22

, (2)

where L2 is the set of square-summable signals, and u(t) =
πt(y(t)) +e(t) is the control input with the exploration e(t).
If γ(G,π) <∞ is finite, then the interconnected system is
said to have input-output stability (or finite L2 gain).

Let L(πt) be the Lipschitz constant of πt(·) [5]. The
main result of this paper can be stated as follows (a formal
statement can be found in Theorem 4.4):

If there exists a constant L◦ such that the convex
program SDP(P,λ, γ, L◦) defined in (SDP-NL)
is numerically feasible, then the interconnected
system (Fig. 1) is certifiably stable for any smooth
controllers (i.e., L(πt) ≤ L◦).

This theoretical result is based on the intuition that a real-life
stable controlled system should be smooth, in the sense that
small input changes lead to small output changes. To compute
L◦, we borrow powerful ideas from the framework of integral
quadratic constraint (IQC) [6] and dissipation theory [7].

Even though IQC is celebrated for its non-conservativeness
in robustness analysis, existing libraries for multi-input multi-
output Lipschitz functions are very limited. One major
obstacle is the derivation of non-trivial bounds on smoothness.
To this end, we introduce a new quadratic constraint on



smooth functions by exploiting the input sparsity and output
non-homogeneity inherent in specific problems (Sec. IV-A).
An overview of smooth reinforcement learning is provided in
Sec. III. The method to compute stability-certified smoothness
margin is presented in Sec. IV-B, which is evaluated in
Sec. V for learning-based nonlinear decentralized control.
The bounds are shown to be non-trivial and satisfied by
performance-optimizing neural networks. Concluding remarks
are provided in Sec. VI.

II. RELATED WORK

This paper is closely related to the body of works on safe
reinforcement learning, defined in [8] as “the process of learn-
ing policies that maximize performance in problems where
safety is required during the learning and/or deployment.”
Risk-aversion can be specified in the reward function, for
example, by defining risk as the probability of reaching a
set of unknown states in a discrete Markov decision process
setting [9], [10]. Robust MDP has been designed to maximize
rewards while safely exploring the discrete state space [11],
[12]. For continuous states and actions, robust MPC can be
employed [13]. These methods require models for policy
learning. Recently, model-free policy optimization has been
successfully demonstrated in real-world tasks such as robotics,
smart grid and transportation [2]. Existing approaches to
guarantee safety are based on constraint satisfaction that
holds with high probability [14].

The present analysis approaches safe reinforcement learn-
ing from a robust control perspective [4]. Lyapunov function
and region of convergence have been widely used to analyze
and verify stability when the system and its controller are
known [4], [15]. Recently, learning-based Lyapunov stability
verification has been employed for physical systems [16].
The main challenge of these methods is to find a suitable
non-conservative Lyapunov function to conduct the analysis.

The framework of IQC has been widely used to analyze
large-scale complex systems due to its computational ef-
ficiency, non-conservativeness, and unified treatment of a
variety of nonlinearities and uncertainties [6]. It has also
been employed to analyze stability of small-sized neural
networks in reinforcement learning [17], [18]; however, in
these analyses, the exact coefficients of the neural network
need to be known a priori for the “static stability analysis”,
and a region of safe coefficients needs to be calculated at
each iteration for the “dynamic stability analysis.” This is
computationally intensive, and quickly becomes intractable
when the neural network size increases. On the contrary,
the present analysis is based on a broad characterization
of smoothness of the control function, and it does not need
to access the coefficients of the neural network. We are
able to reduce conservativeness of results by introducing
more informative quadratic constraints, which has not been
proposed before in the IQC literature to the best of the
knowledge of the authors. This significantly extends the
possibilities of stability-certified reinforcement learning to
large and deep neural networks in nonlinear large-scale
real-world systems.

III. SMOOTH REINFORCEMENT LEARNING

The goal of reinforcement learning is to maximize the
expected return over horizon T :

η(πθ) = E
[∑T

t=0
ρtr(xt,ut)

]
, (3)

where πθ(x) is the policy (e.g., neural network parameterized
by θ), ρ ∈ (0, 1] is the factor to discount future rewards,
r(x,u) is the reward at state x and action u, and E[·] is
the expectation operator. For continuous control, the actions
follow a multivariate normal distribution, where πθ(x) is the
mean, and the standard deviation in each action dimension is
set to be a diminishing number during exploration/learning
and 0 during actual deployment. With a slight abuse of
notations, we will also use πθ(u|x) to denote this normal
distribution over actions. Thus, the expectation is taken
over the policy, the initial state distribution and the system
dynamics (1).

Trust region policy optimization is an end-to-end policy
gradient learning that constrains the step length to be
within a “trust region” for guaranteed improvement. By
manipulating the expected return η(π), the “surrogate loss”
can be estimated with trajectories sampled from πold:

L̂πold(π) =
∑
t

π(ut|xt)
πold(ut|xt)

Λ̂πold(x,u), (4)

where the ratio is also known as the importance weight,
and Λ̂πold(x,u) is the advantage function that measures the
improvement of taking action u at state x over the old policy
in terms of the value functions V πold [19].

Natural gradient is defined by a metric in the probability
manifold induced by the Kullback–Leibler (KL) divergence,
and it makes a step invariant to reparametrization of parameter
coordinates [20]:

θt+1 ← θt − λM−1
θ gt, (5)

where gt is the standard gradient, λ is the step size, and Mθ

defined as

1

T

∑
t

(
∂

∂θ
πθ(log ut|xt)

)(
∂

∂θ
logπθ(ut|xt)

)>
is the Fisher information matrix estimated with the trajectory
data. Since the Fisher information matrix coincides with the
second-order approximation of the KL divergence, one can
perform back-tracking line search on the step size λ to ensure
that the updated policy stays within the trust region.

Smoothness penalty (SP) is employed in this study to
control the Lipschitz constants of πθ(·) during RL:

Lsmooth =
∑T

t=1

∥∥∥∥ ∂∂x
πθ(xt)

∥∥∥∥2
2

, (6)

which is added to L̂πold(π) (with a weight that yields this term
roughly 1/100 of the surrogate loss) to regularize the gradient
of the policy with respect to its inputs along the trajectories.
This term was first proposed in “double backpropagation”
[21], and recently rediscovered in [22], [23]. In addition,



we incorporate a hard threshold (HT) approach that rescales
the weight matrices at each layer Wl by (L◦/L(πθ))1/nL

if L(πθ) > L◦, where nL is the number of layers of the
neural network. This ensures that the Lipschitz constant of
the policy is bounded by a constant L◦.

IV. ANALYSIS OF STABILITY-CERTIFIED SMOOTHNESS
MARGIN

In this section, we introduce a new quadratic constraint
on Lipschitz functions and describe the computation of
smoothness margins for both linear and nonlinear systems.

A. Quadratic constraint on smooth functions

We start by recalling the definition of a Lipschitz continu-
ous function:

Definition 4.1 (Lipschitz continuous function): Consider
a function f : Rn → Rm:

(a) The function f is locally Lipschitz continuous on a set
B if there exists a constant L > 0 (a.k.a., Lipschitz
constant) such that

‖f(x)− f(y)‖ ≤ L‖x− y‖,∀ x,y ∈ B. (7)

(b) If f is Lipschitz continuous on Rn with constant L
(i.e., B = Rn in (7)), then f is called globally Lipschitz
continuous with Lipschitz constant L.

For the purpose of stability analysis, we can express (7) as
a point-wise quadratic constraint (where we use ? to denote
the symmetric component):[

x− y
f(x)− f(y)

]> [
L2In 0

0 −Im

] [
?
]
≥ 0,∀ x,y ∈ B. (8)

The above constraint, nevertheless, can be conservative,
because it does not explore the inherent structure of the
problem. To illustrate this fact, consider the function

f(x1, x2) =
[
tanh(0.5x1)− ax1, sin(x2)

]>
, (9)

where x1, x2 ∈ R and |a| ≤ 0.1 is a deterministic but
unknown parameter with bounded magnitude. Clearly, to
satisfy (7) on R2 for all possible a, x1, x2, we need to specify
the Lipschitz constant to be 1. However, this characterization
is too general, because it ignores the non-homogeneity of f1
and f2, as well as the sparsity of the inputs x1 and x2. Indeed,
f1 only depends on x1 with its slope restricted to [−0.1, 0.6]
for all possible values |a| ≤ 0.1, and f2 only depends on x2
with its slope restricted to [−1, 1]. In the context of controller
design, the non-homogeneity of control outputs often arises
from physical constraints and domain knowledge, and the
sparsity of the input is common in many problems such as
decentralized control. To explicitly address these requirements,
we state the following quadratic constraint.

Lemma 4.2: For a vector-valued function f : Rn → Rm
that is differentiable with bounded partial derivatives on B
(i.e., bij ≤ ∂jfi(x) ≤ bij , for all x ∈ B),2 the following

2The analysis can be extended to non-differentiable but Lipschitz con-
tinuous functions (e.g., ReLU max{0, x}) using the notion of generalized
gradient [24, Chap. 2].

quadratic constraint is satisfied for all λij ≥ 0, i ∈ [m],
j ∈ [n],3 and x,y ∈ B,[

x− y
q

]>
Mπ(λ)

[
?
]
≥ 0, (10)

where Mπ(λ) is given bydiag
({∑

i λij(c
2
ij−c2ij)

})
Λ({λij , cij})>

Λ({λij , cij}) diag
(
{−λij}

)
 ,

and q =
[
q11, ..., q1n, ..., qm1, ..., qmn

]> ∈ Rmn is a function
of x and y, {−λij} follows the same index order as q,
Λ({λij , cij})> =

[
diag

(
{λ1jc1j}

)
... diag

(
{λmjcmj}

)]
∈

Rn×mn, cij = 1
2

(
bij + bij

)
, cij = bij−cij , and q is related

to the output of f by the constraint:

f(x)− f(y) =
[
Im ⊗ 11×n

]
q = Wq, (11)

where ⊗ denotes the Kronecker product.
Proof: See Appendix A.

This bound is a direct consequence of standard tools in
real analysis, partially inspired by [25]. To understand this
result, note that (10) is equivalent to:∑

ij

λij

(
(c2ij−c2ij)(xj−yj)2+2cijqij(xj−yj)−q2ij

)
≥0 (12)

for all nonnegative numbers λij ≥ 0, with fi(x)− fi(y) =∑n
j=1 qij . Since (12) holds for all λij ≥ 0, it is equivalent

to the condition that (c2ij − c2ij)(xj − yj)2 + 2cijqij(xj −
yj)− q2ij ≥ 0 for all i ∈ [m], j ∈ [n], which is a direct result
of the bounds imposed on the partial derivatives of fi. To
illustrate its usage, let us apply it to example (9), where b11 =
−0.1, b11 = 0.6, b22 = −1, b22 = 1, and all the other bounds
(b12, b12, b21, b21) are zero. This yields a more informative
constraint than simply relying on the Lipschitz constraint (8).
In fact, for Lipschitz functions, we have bij = −bij = L,

and by limiting the choice of λij =

{
λ if i = 1

0 if i 6= 1
, (12) is

reduced to (8). Nonetheless, Lemma 4.2 can incorporate richer
information about input sparsity and output structures, thus
it can yield non-trivial stability bounds in practice.

The constraint introduced above is not a standard IQC,
since it involves an intermediate variable q that relates to
the output f through a set of linear equalities. In relation to
existing IQCs, it has wider applications to characterize smooth
functions. The Zames-Falb IQC introduced in [26] has been
widely used for single-input single-output function f : R→
R, but it requires the function to be monotone with slope
restricted to [α, β] and α ≥ 0, i.e., 0 ≤ α ≤ f(x)−f(y)

x−y ≤ β
for x 6= y. The multi-input multi-output extension holds true
only if the nonlinearity f : Rn → Rn is restricted to be the
gradient of a convex real-valued function [27]. The sector
IQC is in fact (8). By contrast, the quadratic constraint in
Lemma 4.2 can be applied to non-monotone, vector-valued
Lipschitz functions.

3We use the set notation [n] = {1, ..., n}.



B. Computation of smoothness margin

We illustrates the computation of smoothness margin for
an LTI system G with the state-space representation:{

ẋG = AxG + Bu

y = xG
, (13)

where xG ∈ Rn is the state and y ∈ Rn is the output. We
can connect this linear system in feedback with a Lipschitz-
continuous controller π : Rn → Rm such that{

u = e + w

w = π(Cπy)
, (14)

where e ∈ Rm is the exploration vector introduced in
reinforcement learning, w ∈ Rm is the policy action, and
Cπ ∈ Rn×n is an observation matrix that determines the set
of states observable for the reinforcement agent (this matrix
is absorbed into the partial gradient specifications in Lemma
4.2). Assume that the policy π satisfies the conditions in
Lemma 4.2, then we can express w = Wq using the internal
signal q ∈ Rmn, which satisfies the quadratic constraint (10).

We are interested in certifying the largest Lipschitz constant
L◦ (i.e., smoothness margin) of π(·) such that the intercon-
nected system is input-output stable at all time T ≥ 0, i.e.,∫ T

0

∥∥y(t)
∥∥2
2
dt ≤ γ2

∫ T

0

∥∥e(t)
∥∥2
2
dt, (15)

where γ2 is a finite upper bound for the L2 gain. To this end,
define the SDP(P,λ, γ, L) as follows:

SDP(P,λ, γ, L) :

[
O(P,λ, L) S(P)
S(P)> −γIm

]
� 0, (16)

where � indicates negative semi-definite, P = P> � 0, L is
the Lipschitz upper bound of π, O(P,λ, L) is given by[

A>P + PA + 1
γ In PBW

W>B>P 0mn,mn

]
+ Mπ(λ, L),

and
S(P) =

[
PB

0mn,m

]
,

where Mπ(λ, L) is defined in (10) with |bij | ≤ L, |bij | ≤ L
(and 0 if the j-th observation is not used for the i-th action)
and multipliers λ = {λij} for i ∈ [m], j ∈ [n]. The next
theorem can be used to certify stability of the interconnected
system.

Theorem 4.3: Let π ∈ Rn → Rm be a bounded causal
controller. Assume that:

(i) the interconnection of G and π is well-posed;
(ii) π is L-Lipschitz with bounded partial derivatives on
B (i.e., bij ≤ ∂jπi(x) ≤ bij , and |bij |, |bij | ≤ L for all
x ∈ B, i ∈ [m] and j ∈ [n]);

(iii) there exist P = P> � 0 and a scaler γ > 0 such that
SDP(P,λ, γ, L) is feasible.

Then the interconnection of G and π is stable.
Proof: See Appendix B.

The above result offers a computational approach to
certify the maximal Lipschitz constant of a generic nonlinear
controller. Given an LTI system (13), the first step is to
represent the reinforcement policy as a “black box” in a
feedback interconnection. Because the controller parameters
can not be known a priori and will be continuously updated
during learning, we use the smoothness property and some
high-level domain knowledge in the form of refined partial
gradient bounds. A simple but conservative choice is a L2-
gain bound IQC; nevertheless, to achieve a less conservative
result, we can employ Lemma 4.2 to exploit both the sparsity
of the inputs and the non-homogeneity of the outputs. For
a given Lipschitz constant L, we find the smallest γ such
that SDP(P,λ, γ, L) is feasible, which also corresponds to
the upper bound on the L2 gain of the interconnected system
both during learning (with exploration excitation e) and actual
deployment. If γ is finite, then the system is provably stable.

We remark that SDP(P,λ, γ, L) is quasiconvex, in the
sense that it reduces to a standard LMI with fixed γ and L
[28]. To solve it numerically, we start with a small Lipschitz
constant L and gradually increase γ until a solution (P,λ)
is found. Then, we increase L and repeat the process. Each
iteration (i.e., LMI for a given set of γ and L) can be solved
efficiently by interior-point methods.

C. Extension to nonlinear systems with uncertainty

The analysis for LTI systems can be extended to a generic
nonlinear system described in (1). The key idea is to model
the nonlinear and potentially time-varying part gt(x(t)) as
an uncertain block with IQC constraints on its behavior.
Specifically, consider the LTI component G:{

ẋG = AxG + Bu + v

y = xG
, (17)

where xG ∈ Rn is the state and y ∈ Rn is the output. The
nonlinear part is connected in feedback:

u = e + w

w = π(Cπy)

v = gt(y)

, (18)

where e ∈ Rm, w ∈ Rm and Cπ ∈ Rn×n are defined
as before, and gt : Rn → Rn is the nonlinear and time-
varying component. In addition to characterizing π(·) using
the Lipschitz property (10), we assume that gt : Rn → Rn
satisfies the IQC defined by (Ψ,Mg) (see [29] for more
details). The system Ψ : Rn × Rn → Rn has the state-space
representation:{

ψ̇ = Aψψ + Bv
ψv + By

ψy

z = Cψψ + Dv
ψv + Dy

ψy
, (19)

where ψ ∈ Rn is the internal state and z ∈ Rn is the filtered

output. By denoting x =
[
x>G ψ>

]>
∈ R2n as the new

state, we can combine (17) and (19) by reducing y and letting



w = Wq:

ẋ =

[
A 0n,n

By
ψ Aψ

]
︸ ︷︷ ︸

A

x+

[
B

0n,m

]
︸ ︷︷ ︸

Be

e+

[
BW

0n,mn

]
︸ ︷︷ ︸

Bq

q+

[
In

Bv
ψ

]
︸ ︷︷ ︸

Bv

v

z =
[
Dy
ψ Cψ

]
︸ ︷︷ ︸

C

x + Dv
ψv

,

(20)
where A, Be, Bq, Bv and C are matrices of proper
dimensions. Similar to the case of LTI systems, the objective
is to find an upper bound L◦ on the Lipschitz constant of
π(·) such that the system is stable. In the same vein, we
define SDP(P,λ, γ, L):O(P,λ, L) Ov(P) S(P)

Ov(P)> Dv>
ψ MqD

v
ψ 0n,n

S(P)> 0n,n −γIm

 � 0, (SDP-NL)

where P = P> � 0, L is the Lipschitz upper bound of π,
and

O(P,λ, L) =

[
A>P + PA + C>MgC PBq

B>q P 0mn,mn

]

+ Mπ(λ, L) +
1

γ

[
In

0(m+1)n×(m+1)n

]
,

Ov(P) =

[
C>MqD

v
ψ + PBv

0mn,n

]
,S(P) =

[
PBe

0mn,m

]
,

where Mπ(λ, L) is defined in (10). The next theorem
provides stability certificate for the nonlinear time-varying
system (1).

Theorem 4.4: Let π ∈ Rn → Rm be a bounded causal
controller. Assume that:

(i) the interconnection of G, π, and gt is well-posed;
(ii) π is L-Lipschitz with bounded partial derivatives on
B (i.e., bij ≤ ∂jπi(x) ≤ bij , and |bij |, |bij | ≤ L for all
x ∈ B, i ∈ [m] and j ∈ [n]);

(iii) gt ∈ IQC(Ψ,Mg), where Ψ is stable;
(iv) there exist P = P> � 0 and a scaler γ > 0 such that

SDP(P,λ, γ, L) is feasible.
Then, the feedback interconnection of the nonlinear system
(1) and π is stable (i.e., it satisfies (15)).

Proof: See Appendix C.

V. CASE STUDY

In this section, we empirically study the smoothness margin
for reinforcement learning agents in a real-world problem,
namely power grid frequency regulation [30], [31]. The IEEE
39-Bus New England Power System under analysis is shown
in Fig. 2. Under the star-connected information structure, each
generator can only share its rotor angle and frequency infor-
mation with a pre-specified set of geographically separated
counterparts. Decentralized control has been long known to
be an NP-hard problem in general [3]. End-to-end multi-agent
reinforcement learning comes in handy, because it does not

Fig. 2: New England Power System with a star-connected
information structure.

require model information [32]. The main task is to adjust
the mechanical power inputs to each generator such that the
phases and frequencies at each bus stabilizes after possible
perturbation. If θi denotes the voltage angle at a generator
bus i (in rad), the physics of power systems can be modeled
by the per-unit swing equation:

Qiθ̈i +Kiθ̇ = PMi − PEi ,

where PMi
is the mechanical power input to the generator at

bus i (in p.u.), PEi
is the electrical active power injection at

bus i (in p.u.), Qi is the inertia coefficient of the generator
at bus i (in p.u.-sec2/rad), and Ki is the damping coefficient
of the generator at bus i (in p.u.-sec/rad). The electrical real
power injection PEi

depends on the voltage angle difference
in a nonlinear way, as governed by the AC power flow
equation:

PEi=

n∑
j=1

|Vi||Vj |
(
Gij cos(θi−θj)+Sij sin(θi−θj)

)
,

where n is the number of buses in the system, Gij and Sij are
the conductance and susceptance of the transmission line that
connects buses i and j, Vi is the voltage phasor at bus i, and
|Vi| is its voltage magnitude. Because the conductance Gij
is typically several magnitudes smaller than the susceptance
Sij , for the simplicity of mathematical treatment, we omit
the cos(·) term and only keep the sin(·) term. This leads to a
less conservative approximation compared to the well-known
DC model.

Let the rotor angle states and the frequency states be
denoted as θ =

[
θ1 · · · θn

]>
and ω =

[
ω1 · · · ωn

]>
,

and the generator mechanical power injections be denoted as
PM =

[
PM1

· · · PMn

]>
. Then, the state-space represen-

tation of the nonlinear system is given by:[
θ̇
ω̇

]
=

[
0 I

−Q−1L −Q−1K

]
︸ ︷︷ ︸

A

[
θ
ω

]
︸︷︷︸
x

+

[
0

Q−1

]
︸ ︷︷ ︸

B

PM+

[
0

g(θ)

]
︸ ︷︷ ︸
g(x)



where g(θ) =
[
g1(θ) · · · gn(θ)

]>
with

gi(θ) =
∑n
j=1

Sij

Qi

(
(θi − θj)− sin(θi − θj)

)
, and

Q = diag
(
{Qi}ni=1

)
, K = diag

(
{Ki}ni=1

)
, and L is

a Laplacian matrix whose entries are specified in [30, Sec.
IV-B]. For linearization (also known as DC approximation),
the nonlinear part g(x) is assumed to be zero when the
phase differences are small [30], [31]. On the contrary, we
deal with this term in the smoothness margin analysis to
demonstrate its capability of producing non-conservative
certificates even for nonlinear systems. We assume that there
exists a distributed nominal controller that stablizes the
system, which may be designed by H∞-controller synthesis
[4] and is out of the scope of this paper.

Smoothness margin analysis: The nonlinearities in g(x)
are in the form of ∆θij − sin ∆θij , where ∆θij = θi − θj
represents the phase difference, which has a slope restricted
to [0, 1− cos(θ)] for ∆θij ∈ [−θ, θ] and thus can be treated
using the Zames-Falb IQC. In the smoothness margin analysis,
we assume θ = π

3 , which requires the phase angle difference
to be within [−π3 , π3 ]. To study the stability of the multi-agent
policies, we adopt a black-box approach by simply considering
the input-output constraint. By applying the L2 constraint in
(8), we can only certify stability for Lipschitz constants up
to 0.4. Because the distributed control has natural structures
of input sparsity, we can characterize it by setting the lower
and upper bounds bij = bij = 0 for agent i that does not
utilize observation j, and bij = −bij = L otherwise, where
L is the Lipschitz constant to be certified. This information
can be encoded in SDP(P,λ, γ, L) in (SDP-NL), which can
be solved for L up to 0.8 (doubling the certificate provided
by L2 constraint).
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Fig. 3: Certified L2 gain (γ in (2)) for smoothness margins in
nonlinear decentralized power frequency stabilization, given
by the constraint (8) and Lemma 4.2 with input sparsity and
output nonhomogeneity.

Due to the problem nature, we further observe that for each
agent, the partial gradient of the policy with respect to certain
observations is primarily one-sided. With a band of ±0.1, the
partial gradients remain within either [−0.1, 1] or [−1, 0.1]
throughout the learning process. This information is revealed
at the early stage, typically after several iterations, when the
Lipschitz constants of the agents are far less than 0.8 (the
certificate provided by Theorem 4.4). When we incorporate
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Fig. 4: Trajectories of rewards during reinforcement learning
for various neural networks (each hidden layer consists of 3
neurons). The plot shows a running average of rewards for
every 10 iterations.

this characterization into the partial gradient bounds (e.g.,
bij = −0.1L and bij = L for each agent i that exhibits
a positive gradient with respect to observation j), we can
extend the certificate up to 1.1, as shown in Fig. 3.

Policy gradient reinforcement learning: To conduct
multi-agent reinforcement learning, each controller PMi is
considered to be a neural network that takes inputs of observed
phases and frequencies to determine the mechanical power
injection at bus i. In this experiment, the unknown reward
is a quadratic function that weighs the square of each state
variable x by 10 and the square of each control input by 0.1.
Since we aim at designing a generic controller that allows
the initial state to vary in a large operating region (between
-0.5 and 0.5), and we do not assume the knowledge of the
true reward, the methods proposed in [30], [31] for linear
distributed controller design cannot be employed. We employ
TRPO [19] with natural gradient [20] as the baseline, in
addition to smooth RL methods with SP and HT in Sec. III.

The reward trajectories are shown in Fig. 4. The SP method
has higher initial learning rates, and all methods significantly
improve the performance after 150 iterations (each iteration
includes 100 independent policy evaluations, which amounts
to 25 minutes of data if deployed in real power systems). The
learned policy demonstrates faster stabilization of power grid
frequencies compared to the nominal (cost 23.9 for neural
network versus 50.8 for nominal controller). More importantly,
we are able to certify stability of the policies throughout
the exploration and deployment phases by monitoring the
Lipschitz constants (Fig. 6 demonstrates the case of HT).
This comprises a key step towards safe deployment of
reinforcement learning in real-world environments.

VI. CONCLUSION

We proposed a method to certify stability of reinforcement
learning in real-world dynamical systems. The analysis is
based on a general characterization of smoothness measured
by Lipschitz constants, and is applicable to a large class
of nonlinear controllers such as (deep) neural networks. A
numerical evaluation on decentralized power grid frequency
regulation demonstrated that the learned policies significantly
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Fig. 5: Typical examples of system behaviors under the
nominal controller (cost: 50.8) and neural network given
by reinforcement learning (cost: 23.9).
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Fig. 6: Monitoring of Lipschitz constants of agent policies
during learning. With hard thresholding, they remain bounded
below the certified margin (grey band).

surpass nominal controllers in performance while maintaining
strong stability certificates. The results are parallel to the study
of security and robustness of neural networks to adversarial
data injections.
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APPENDIX

A. Proof of Lemma 4.2

For a vector-valued function f : Rn → Rm that is
differentiable with bounded partial derivatives on B (i.e.,
bij ≤ ∂jfi(x) ≤ bij , for all x ∈ B), there exist functions
δij : Rn×Rn → R bounded by bij ≤ δij(x,y) ≤ bij for all
i ∈ [m], j ∈ [n] such that

f(x)− f(y) =


∑n
j=1 δ1j(x,y)(xj − yj)

...∑n
j=1 δmj(x,y)(xj − yj)

 . (21)

By defining qij = δij(x,y)(xj − yj), since(
δij(x,y)− cij

)2 ≤ c2ij , it follows that

[
xj − yj
qij

]> [
c2ij − c2ij cij
cij −1

] [
?
]
≥ 0. (22)

The result follows by introducing nonnegative multipliers
λij ≥ 0, and the fact that fi(x)− fi(y) =

∑m
j=1 qij .

B. Proof of Theorem 4.3

By multiplying
[
x>G q> e>

]>
to the left and its

transpose to the right of the augmented matrix in (16), and
using the constraints w = Wq and y = xG, SDP(P,λ, γ, L)
can be written as a dissipation inequality:

V̇ (xG) +

[
xG
q

]>
Mπ

[
xG
q

]
≤ γe>e− 1

γ
y>y,

where V (xG) = x>GPxG is known as the storage function,
and V̇ (·) is its derivative with respect to time t. Because the
second term is guaranteed to be non-negative by Lemma 4.2,
if SDP(P,λ, γ, L) is feasible with a solution (P,λ, γ, L),
we have:

V̇ (xG) +
1

γ
y>y − γe>e ≤ 0, (23)

which is satisfied at all times t. From well-posedness, the
above inequality can be integrated from t = 0 to t = T , and
then it follows from P � 0 that:∫ T

0

‖y(t)‖2dt ≤ γ2
∫ T

0

‖e(t)‖2dt. (24)

Hence, the interconnected system with L-Lipschitz reinforce-
ment policy is stable.

C. Proof of Theorem 4.4

The proof is in the same vein as that of Theorem 4.3.
The main technical difference is the consideration of filtered
states ψ and outputs z to impose IQC constraints on
the nonlinearities gt(y) in the dynamical system [6]. The
dissipation inequality follows by multiplying both sides of

the matrix in (SDP-NL) by
[
x> q> v> e>

]>
and its

transpose:

V̇ (x)+z>Mgz+

[
xG
q

]>
Mπ

[
xG
q

]
≤γe>e− 1

γ
y>y,

where x and z are defined in (20), and V (x) = x>Px is
the storage function with V̇ (·) as its time derivative. The
first term is non-negative because gt ∈ IQC(Ψ,Mg), and the
second term is non-negative due to the smoothness quadratic
costraint in Lemma 4.2. Thus, integrating the inequality from
t = 0 to t = T , and if there exists a feasible solution P � 0
to SDP(P,λ, γ, L), it yields that:∫ T

0

‖y(t)‖2dt ≤ γ2
∫ T

0

‖e(t)‖2dt. (25)

Hence, the nonlinear system interconnected with L-Lipschitz
continuous reinforcement policies is certifiably stable in the
sense of finite L2 gain.
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