
1

Constraint Screening for Security Analysis of Power Networks

Ramtin Madani, Javad Lavaei and Ross Baldick

Abstract—Consider a general security-constrained unit com-
mitment (SCUC) problem for an arbitrary power network. This
problem includes discrete variables corresponding to commit-
ment parameters as well as demand and generation constraints,
among others. Aside from its non-convexity, SCUC is a large-scale
problem for real-world systems due to the security constraints.
The main objective of this paper is to propose an algorithm
to eliminate a vast majority of linear security constraints in
the high-dimensional mixed-integer SCUC problem in order to
arrive at an equivalent reduced-order SCUC problem. To this
end, we develop a parallel and computationally cheap algorithm
for finding a minimal subset of security constraints whose
satisfaction guarantees the satisfaction of all security constraints.
The proposed algorithm does not depend on the unknown unit
commitment parameters and allows the load forecasts to be
imprecise. More specifically, a low-order model of the SCUC
problem is found based on the topology of the power system,
given lower and upper bounds on nodal power injections (to
accommodate uncertainties in loads and generation productions),
and the normal and emergency line ratings. This algorithm is
tested on several power systems with as many as 5500 buses,
for which each set of security constraints with millions of
conditions is reduced to a minimal subset with only a few hundred
conditions.

I. INTRODUCTION

Security analysis is an important aspect of both planning
and real-time operation of power networks. A modern grid
consists of a large number of components such as genera-
tors, transmission lines, transformers, phase shifters and other
power electronic devices. Each power component is subject
to a possible outage with some probability and its failure
affects the operation of other devices in the network [1],
[2]. A main job of the system operator is to ensure that the
demand, network, physical, and technological constraints are
all met satisfactorily under certain failure scenarios, named
contingency cases. If not controlled appropriately, a failure
could lead to a catastrophic event and impact the economy;
examples include major blackouts caused by cascading failures
in power grids [3], [4].

An extensive list of contingency cases is considered in
practice, along with a set of instantaneous and delayed cor-
rective actions associated with each case. In order to return
to a normal operating condition in case of a contingency,
corrective actions should be taken within specific time inter-
vals. Although major demand and technical constraints should
be met at all times, minor violations of certain constraints
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are permitted for a short period of time. For example, each
transmission line usually has multiple flow limits, referred to
as short-term and long-term limits or normal and emergency
ratings, where emergency ratings are higher than normal
ratings. These limits depend on the contingency time frame
and the pre-contingency operating point, and are obtained
based on the fact that the line temperature depends on not
only the magnitude of the current but also the period over
which the current has flowed in the line [5]. In other words,
the limits imposed on each component of the network during
a contingency are often less restrictive than those for the pre-
contingency condition of the component.

The real-time operation of power grids requires solving a
fundamental optimization problem with a large number of
continuous and discrete variables subject to market and tech-
nical constraints. This problem is referred to as the security-
constrained unit commitment (SCUC) problem. The large
number of constraints associated with different contingency
cases poses an important challenge for solving the mixed-
integer SCUC problem. Although the number of security con-
straints is theoretically prohibitive, empirical evidence shows
that a vast majority of the constraints are redundant and only
a small subset of constraints could be binding regardless
of the load profiles [6]. A well-known bounding technique,
for example, has long been used in order to obtain a set
of potentially binding constraints [7], [8]. The recent papers
[9] and [10] have also studied the problem of identifying
redundant security or flow constraints. The common practice
in the power industry includes an iterative procedure, where
each iteration involves the following steps: solving the unit
commitment problem with a smaller set of constraints, testing
the possible violation of ignored constraints, adding some of
the violated constraints to the problem, and then resolving the
modified problem in the next iteration [11], [12]. The violation
test is conducted through modules that are commonly regarded
as Network Security Monitoring (NSM) and Simultaneous
Feasibility Testing (SFT) [5], [13].

Such an iterative procedure, however, can be computation-
ally expensive and unnecessarily time consuming. A question
arises as to whether the performance of this procedure can
be improved dramatically. Motivated by the above-mentioned
challenges, this work is concerned with the identification
of a minimal set of potentially binding constraints prior to
solving the SCUC problem. In order to identify the redundant
constraints, we adopt an optimization-based bound tightening
scheme that relies on solving a collection of simple linear
programs in parallel, which obtains lower and upper bounds
on each scalar parameter of the pre-contingency network. An
interval arithmetic procedure can then be executed in order
to declare redundancies based on the calculated bounds [14],
[15]. More precisely, the proposed algorithm first obtains a
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hypercube containing the feasible set and then cancels the
constraints that do not intersect with the hypercube. Each
bound tightening linear program is solved subject to a modest
number of constraints as opposed to the entire set of security
constraints, with the aim of making the calculation of bounds
efficient. We have observed through extensive simulations on
real-world networks that the proposed algorithm is able to
declare more than 99.99% of the constraints as redundant.

Bound tightening algorithms have become an important
part of the preprocessing step for mixed-integer programming
(MIP) solvers. The main objectives of bound tightening in-
clude: strengthening convex relaxations, reducing the size of
the domain over which enumeration is performed, and facilitat-
ing the identification of redundant constraints. Optimization-
based bound tightening offers lower and upper bounds on
each variable by minimizing and maximizing the variable
over a relaxed feasible region [16]–[19]. Although solving
two optimization problems for every scalar parameter of MIP
can be expensive, we adopt efficient choices for the relaxed
feasible sets in order to reduce the computational burden. In
addition, we analyze an alternative approach from [20] for
obtaining easy-to-calculate lower and upper bounds, which
is shown to be capable of eliminating a large portion of
constraints in our experiments.

Interval arithmetic methods and bound tightening ap-
proaches have been previously applied to power system
analysis [21], as well as contingency analysis [12], and in
particular SCUC under uncertainty [22], [23]. In [23], an
interval optimization approach is adopted in order to accom-
modate uncertainty of wind generation for unit commitment.
A scenario reduction procedure is introduced in [23], through
which generator commitments are bounded and redundant
nodal injection scenarios are canceled accordingly. Through a
Benders’ cut decomposition scheme, the UC problem under
study is broken down into smaller subproblems associated
with the remaining scenarios. Moreover, certain necessary
conditions are developed in [22] in order to diagnose line
congestions during ramping, prior to solving UC. The paper
[12] offers a novel formulation by means of shift factor
coefficients that captures a variety of practical considerations
such as transmission contingency and wind uncertainty. Our
work is related to the recent papers [6] and [24], which offer
mathematically-rigorous integer programming schemes for the
elimination of redundant constraints. However, the above-
mentioned methods suffer from scalability issues as well
as restrictive assumptions, and the simulations performed in
those papers are limited to small-sized systems. For instance,
contingency cases are not considered in [23] and [22], and the
method proposed in [12] is only guaranteed to remain robust
to contingencies if the wind is realized at the expected level.
In contrast, the method proposed in this paper is designed to
handle real-world systems and ranges of generation and load.
The computational method developed in this work analyzes
those security constraints of the problem that are modeled
linearly with respect to the base-case parameters.

The rest of this paper is organized as follows: Section II
describes the modeling and formulation of the problem. Sec-
tion III develops a constraint screening algorithm. Section IV

offers simulation results on real-world systems, followed by
conclusions in Section V.

A. Notations

The symbol R denotes the set of real numbers. Matrices are
shown by capital and bold letters. The symbol (·)T denotes
the transpose operator. diag{A} denotes the diagonal vector
of the square matrix A. For two vectors v and u of the same
dimension, u ≤ v means that every entry of u is less than
or equal to the corresponding entry of v. The (i, j) entry of
A is denoted as Aij . The notation |·| denotes the entry-wise
absolute value. The k × k identity matrix is denoted as Ik×k.
The standard basis for Rn is denoted by e1, e2, . . . , en. For
a statement q, the notation Iq is reserved for the indicator
function that takes the value 1 if q is true and 0 otherwise.

II. PROBLEM FORMULATION AND MODELING

Consider a security-constrained unit commitment problem
with continuous and discrete variables, as well as linear and
nonlinear constraints. This problem can be formulated as (see
[11]):

minimize
y∈Rny

z∈F

h0(y, z) (1a)

subject to hi(y, z) = 0 i = 1, . . . ,m′ (1b)
hi(y, z) ≤ 0 i = m′ + 1, . . . ,m (1c)
By ≤ a. (1d)

The variables y = (y1,y2, . . . ,yt′) ∈ Rny and z ∈ F consist
of continuous and discrete system parameters over the time
horizon t = 1, 2, . . . , t′, respectively, where
• The vector yt is the set of continuous parameters at time
t ∈ {1, 2, . . . , t′} (e.g., power injections and line flows).

• The vector z contains all discrete variables of the problem
such as the on/off status of generators and lines.

• F ⊆ Rnz is an arbitrary feasible set for the vector z. For
example, this set could encode the integrality requirement
of the commitment variables.

For every i = 1, . . . ,m, the function hi(·, ·) : Rny×Rnz → R
is assumed to be arbitrary and accounts for network, physi-
cal, technological and nonlinear reliability constraints, among
others. In contrast, the linear constraints with respect to y are
given in (1d), for known matrices B ∈ Rna×ny and a ∈ Rna .
The cost function h0(·, ·) is also arbitrary.

There are pre-specified failure scenarios corresponding to
each time period. If any of these scenarios takes place, system
operators need to ensure that the lines of the system will not
be overheated and that the demand at important buses will
still be met. Define the base case (pre-contingency) of the
network as the normal operating scenario, where no fault has
happened and all of the committed generators, loads and lines
are in service. Our primary assumption in this work is that the
network equations are linearized in order to model most of the
contingencies. More precisely, similar to many prior papers
such as [25] and [11], we assume that, to a reasonable level
of approximation, security constraints associated with a time
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period t ∈ {1, 2, . . . , t′} can be estimated as linear constraints
in the form:

Bt yt ≤ at, (2)

which can then be captured by (1d). We will later demon-
strate through multiple examples that a variety of contingency
cases can be modeled linearly with respect to the base case
parameters, under some technical assumptions.

While the presence of nonlinear constraints and discrete
parameters contributes to the computational complexity, one
major challenge for solving (1) is the extensive number of
linear security constraints for the models used by independent
system operators. The objective of this paper is to introduce an
efficient model reduction algorithm to identify redundant linear
security constraints associated with different time periods
(based on a linear approximation of power flow equations).
The goal is to obtain a reduced-order model of the linear
security constraints. The proposed algorithm accommodates
uncertainties in load profiles and does not require any knowl-
edge of the unit commitment solutions, the cost function
h0(·, ·) and the nonlinear constraints of the problem.

A. Terminology

Suppose that the power system under study has nb buses,
ng generators, nd loads, and nl branches. The analysis to be
provided in this paper can be applied to each time instance
t0 ∈ {1, 2, ..., t′} separately. Consider a time instance t0, and
define dr as the amount of active power consumed by the
load r ∈ {1, . . . , nd} and gs as the amount of active power
produced by the generator s ∈ {1, . . . , ng} at time t0. Assume
that the network is lossless and, therefore, each line can be
characterized by a single flow as opposed to two flows at
each end. Hence, we orient the lines of the network arbitrarily
and define fq as the power flow over the directed line q ∈
{1, . . . , nl}. Let n , ng + nd + nl, and define

x , [ gT dT fT ]T ∈ Rn

to be a vector representing the base-case operating point of
the system, where

g , [gs]
ng

s=1, d , [dr]nd
r=1 and f , [fq]nl

q=1

are the power generation, demand and flow vectors, respec-
tively. Note that x plays the role of yt0 .

Throughout the paper, we assume that the on/off status of
generators, the amount of power produced at each bus and
the exact load values may be unknown. The only available
information is lower and upper limits for each entry of x,
which reflect physical and technological constraints as well as
the possibly uncertain forecast of the demand at time t0. To
formulate this, define

l ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n

to be the lower and upper bound vectors for x such that the
inequalities

l ≤ x ≤ u (3)

encapsulate all base-case conditions on the individual com-
ponents, including the capacity of each generator, demand
predictions, and long-term line ratings.

Multiple loads and generators can be connected to a single
bus. Define the incidence matrices D ∈ {0, 1}nb×nd and G ∈
{0, 1}nb×ng such that Dir = 1 if and only if the load r is
at bus i and Gis = 1 if and only if the generator s is at bus
i. Then, the nodal power injection vector p ∈ Rnb can be
defined in terms of g and d through the formula

p , Gg −Dd (4)

B. Linearization of Network Equations

For real-time operations, it is a common practice to obtain
a nominal base-case operating point x̂ by solving a nonlinear
AC power flow problem. The nominal point x̂ can then be
adopted as the point around which the linearization of the
power balance equations is performed. In this case, reactive
power flows and injections can also be included among the
network parameters.

For many applications, however, the DC modeling of power
systems can be adopted in which the voltage magnitudes are
all assumed to be 1 per unit, each branch is modeled as a
series inductor, and the phase angle difference across each
line is assumed to be relatively small. Under the DC modeling,
the changes of line flows with respect to the perturbations of
the real power injections can be described by the sensitivity
formula

∆f = H∆p, (5)

where H ∈ Rnl×nb is the power transfer distribution factor
(PTDF) matrix for the base case network [26]. Therefore, the
network equations can be represented in terms of x as

Ax = b, (6)

where

A ,
[
HG −HD −Inl×nl

]
(7)

and b ∈ Rn corresponds to non-passive components in the
network such as phase shifters.

The formulation given in (1) accepts both linear and non-
linear contingency constraints. As a common practice in the
power industry, most of contingency constraints are modeled
based on approximate linear relations between the pre- and
post-contingency operation states. As illustrated in the next
section, this assumption is met for common contingency
scenarios under both preventive control and corrective control
(such as transmission switching or the use of fast-ramping
generators as a recourse action), provided that the network
equations are linear. This is simply due to the linearization
of power flow equations and the fact that most corrective
actions in case of a contingency are simple policies (designed
offline) that satisfy the superposition property. Although we
adopt a DC model, it is possible to include reactive power and
power losses in the model by considering the flows in both
directions of each line in the state vector x and linearizing
the network equations around a point that corresponds to
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nonzero voltage angles. The objective of this work is to
eliminate the redundant linear security constraints, even in
presence of possibly nonlinear power flow equations for the
base case and arbitrary nonlinear security constraints in (1b)
and (1c). However, the underlying assumption is that most of
the security constraints are linear (as opposed to nonlinear),
and therefore it is beneficial to preprocess them and find a
reduced-order model.

C. Outages

Under the DC modeling assumption, suppose that there
are nc post-contingency cases, each involving the outage of
an arbitrary combination of generators, loads, and branches.
Let x(k) ∈ Rn denote the post-contingency operating point
corresponding to the case k ∈ {0, 1, . . . , nc}. Define l(k) and
u(k) as the (normal or emergency) lower and upper bounds
for x(k), where k = 0 represents the base case scenario, i.e.,

l(0) = l, u(0) = u and x(0) = x.

Therefore, the pre- and post-contingency constraints of the
network are as follows:

l(k) ≤ x(k) ≤ u(k), k = 0, 1 . . . , nc. (8)

In this paper, we consider a linear interrelation among the
pre- and post-contingency operating points. More precisely,
we assume that

x(k) = F(k)x (9)

for every k ∈ {0, 1, . . . , nc}, where F(k) ∈ Rn×n is a given
matrix associated with the operating case k. A large variety of
contingencies can be modeled through the equation (9) under
linearity assumptions. In order to illustrate this, four simple
examples for the simple 9-bus network depicted in Figure 1(a)
will be provided below.

Example 1 (Line outage). Consider the outage of branches
1 and 4. Suppose that the outage does not affect the power
injection vectors, i.e.,

p(1) = p(0). (10)

Given the assumption (10), this contingency can be mod-
eled using a Generalized Linear Outage Distribution Factor
(GLODF) matrix O ∈ Rnl×2 as

f (1) = f (0) + O

[
f
(0)
1

f
(0)
4

]
(11)

(see [27]). Therefore, we have a linear interrelation between
x(0) and x(1) in the form of (9), where

F(1)=

 Ing×ng
0ng×nd

0ng×nl

0nd×ng
Ind×nd

0nd×nl

0nl×ng 0nl×nd
Inl×nl

+ O [ẽ1 ẽ4]
T


and ẽ1, ẽ2, . . . , ẽnl

denote the standard basis for Rnl .

Example 2 (Generator outage). Consider the outage of gen-
erators 1 and 4. In order to preserve the network balance, it
is a common practice to assume that the amount of power

production for contingent generators would be distributed
among in-service generators after the outage, proportional to
their maximum capacity [26]. In other words, we can consider
a custom proportionality factor matrix Q ∈ Rng×2 such that

g(2) = g(0) + Q

[
g
(0)
1

g
(0)
4

]
, (12)

where

Q11 = −1, Q12 = 0, Q42 = −1, Q41 = 0 (13)

and
ng∑
i=1

Qi1 =

ng∑
i=1

Qi2 = 0. (14)

Then, according to (5), we have:

f (2) = f (0) + HQ

[
g
(0)
1

g
(0)
4

]
. (15)

Now, it can be easily observed that equations (12) and (15)
can be encapsulated into a relation of the form (9), where

F(2) =

 Ing×ng
+ Q [ê1 ê4]

T
0ng×nd

0ng×nl

0nd×ng
Ind×nd

0nd×nl

HQ [ê1 ê4]
T

0nl×nd
Inl×nl


and ê1, ê2, . . . , êng

denote the standard basis for Rng .

Example 3 (Islanding). A contingency may cause islanding,
which means the separation of a number of buses from the
main network. For example, consider the outage of branches
3, 7 and 8. The notion of GLODF is not well-defined in this
case since the removal of the branches 3, 7 and 8 disconnects
the network. Instead, this contingency can be modeled as two
consecutive contingencies:

1) Outage of the loads 4, 8 and 9,

2) Outage of the branch 3.

In this case, the post-contingency flows of branches 7 and 8
turn into negligible amounts due to zero injection at buses 4,
8 and 9 (post-contingency flows become zero if no demand is
considered at buses 4, 8 and 9 at the point of linearization x̂).

Example 4 (Disconnection). Consider the outage of the
branch 2 and suppose that the two disconnected parts of the
network must be operated independently after the outage and
continue to fulfill the demand. As before, the notion of GLODF
is not well-defined in this case and we need to model the
outage through a pre-specified proportionality factor matrix
Q ∈ Rng×1 as

g(4) = g(0) + Q× f (0)2 , (16a)

f (4) = f (0) + HQ× f (0)2 , (16b)

where

Q1 +Q2 +Q4 +Q5 = −1 and Q3 = 1.
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Fig. 1: (a) The 9-bus network discussed in Examples 1, 2, 3 and 4; (b) the 3-bus network discussed in Example 5.
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Fig. 2: This figure borrowed from [5] illustrates the variable
emergency rating of a transmission line as a function of its
pre-contingency flow.

Thus, we have

F(4) =

 Ing×ng 0ng×nd
QẽT2

0nd×ng
Ind×nd

0nd×nl

0nl×ng
0nl×nd

Inl×nl
+ HQẽT2

.
In this case, the post-contingency flow f

(4)
2 becomes zero and

the power balance is preserved for each part of the network
after the outage.

In the preventive control mode, contingency k ∈
{1, 2, ..., nc} can be modeled as the addition/removal of a set
of components, namely m contingent components. The corre-
sponding transition matrix F(k) can be generated according to
the formula

F(k) = F1 × F2 × . . .× Fm, (17)

where F1,F2, . . . ,Fm are the transition matrices associated
to the removal/addition of individual contingent components.
In most practical corrective control modes, an arbitrary com-
bination of outages and recourse actions that involve lines,
generators and loads of the network can also be modeled
through the equation (9).

D. Variable Emergency Ratings

In practice, it is often the case that the emergency rating
of a line is defined as a piecewise linear concave function
with respect to the pre-contingency flow of that line. Figure 2
shows an example of such function, which is borrowed from
[5]. Variable emergency ratings for a line q ∈ {1, . . . , nl} can
be imposed through multiple linear constraints as

|f (k)q | ≤ −a(k)q,m|fq|+ u(k)q,m, (18)

for every m ∈ {1, . . . ,mq} and k ∈ {1, . . . , nc}, where mq is
the number of segments that the rating function is described
by, and {a(k)q,m}zqm=1 and {u(k)q,m}zqm=1 are nonnegative constants.
With no loss of generality, we only consider constant ratings
in the remainder of this work. Note that our formulation can
be revised by introducing additional constraints corresponding
to (18) in order to include variable emergency ratings.

E. Safe Operating Region

Definition 1 (Safe operating region). Define the safe operating
region as the set S consisting of all vectors x ∈ Rn that satisfy
the pre- and post-contingency network constraints:

Ax = b, (19a)

l(k) ≤ F(k) x ≤ u(k) ∀k ∈ {0, 1, . . . , nc}. (19b)

The number of inequality constraints in (19b) is equal to
2 × (nc + 1) × n, which can be prohibitive for applications
that require solving mixed-integer optimization problems over
S. The main objective of this paper is to obtain a minimal
subset of constraints among the inequalities in (19b) that are
sufficient to characterize the set S.

III. CONSTRAINT SCREENING

In this section, we first derive easy-to-calculate lower and
upper bounds for the entries of x, and then exploit the bounds
to identify redundant constraints.

A. Accurate Reliable Bounds

In this subsection, we introduce an algorithm for obtaining
lower and upper bounds for the entries of x, which is based
on solving a set of linear programing (LP) problems. Two LPs
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need to be solved for each entry of x. Each LP aims to either
minimize or maximize one entry of x subject to a subset of
constraints in (19). The main difference between the approach
to be developed next and the bound tightening scheme in [16]
and [18] is that we exploit the sparse structure of the matrices
F(0),F(1), . . . ,F(nc) in order to define each LP based on a
small subset of constraints in (19b). This would lead to simple
LPs.

To obtain bounds on the network parameters, we adopt the
approach proposed in [6] for grouping the security constraints
in (19b) and performing cancellation within each group in
parallel. This approach includes two partitioning schemes:

1) Contingency-based partitioning: The constraints are di-
vided into nc groups based on their corresponding con-
tingency cases. More precisely, the following group of
constraints is considered for every contingency k:

l
(k)
i ≤ x(k)i ≤ u(k)i , ∀i ∈ {1, . . . , n}. (20)

2) Component-based partitioning: The partitioning of con-
straints is based on the component associated to each
constraint. More precisely, the pre- and post-contingency
constraints for the i-th component are all considered in
one group as follows:

l
(k)
i ≤ x(k)i ≤ u(k)i , ∀k ∈ {1, . . . , nc}. (21)

By exploiting the above-mentioned partitioning strategies, we
develop a method for obtaining lower and upper bounds on
the entries of x. For every i ∈ {1, . . . , n}, two LPs are solved
to obtain the bounds on xi, where each LP is subject to only
those security constraints in (19b) that either impose a limit on
component i or correspond to a contingency case that involves
the outage of component i.

Definition 2. For every i = 1, 2, . . . n, define Ri as the set of
operating points x ∈ Rn that satisfy the relations

Ax = b, (22a)
l ≤ x ≤ u, (22b)

l
(k)
j ≤ eTj F

(k) x ≤ u(k)j ∀k, j s.t. F
(k)
ji 6= 0. (22c)

The constraints in (22c) are the collection of those con-
straints in (19b) that directly involve xi. Note that S ⊆ Ri.
Let nc,i denote the number of contingency cases that involve
the outage of component i ∈ {1, . . . , n}. Observe that the
number of inequalities in (22c) is less than or equal to

2× nc,i × n+ 2× nc, (23)

which is likely to be much smaller than the total number of
security constraints (i.e., 2 × nc × n) for real-world systems.
Notice that the first term in (23) represents the number of
constraints associated with those contingencies that involve
the outage of component i, whereas the second term accounts
for the number of constraints that impose limits on one of the
quantities x(1)i , . . . , x

(nc)
i .

Definition 3 (Reliable bounds). For every i = 1, 2, . . . , n,

define

lreli , min{xi|x ∈ Ri} and ureli , max{xi|x ∈ Ri} (24)

as the accurate reliable lower and upper bounds for xi.
Moreover, define lrel , [lreli ]ni=1 and urel , [ureli ]ni=1 as the
vectors of accurate reliable lower and upper bounds.

The accurate reliable bounds defined in (24) can be found
efficiently by solving 2n linear programs in parallel, where
each involves a modest number of constraints. In order to
elaborate on the definition of accurate reliable bounds, a
simple example will be provided below.

Example 5. Consider two contingency cases for the 3-bus
network shown in Figure 1(b), where the first case involves
the single outage of generator 2 and the second case involves
the single outage of line 1. The vector

x = [g1 g2 d1 f1 f2 f3]T

describes the base case state of the system, where g1 and g2
denote the active power values produced by generators 1 and
2, d1 is the amount of power consumed by the single load
in the system at bus 3, and fi denotes the amount of power
transmitted through the line i of the network for i = 1, 2, 3. In
addition, the post-contingency state vectors can be obtained
as follows:

x(1) = [g
(1)
1 g

(1)
2 d

(1)
1 f

(1)
1 f

(1)
2 f

(1)
3 ]T,

x(2) = [g
(2)
1 g

(2)
2 d

(2)
1 f

(2)
1 f

(2)
2 f

(2)
3 ]T.

In order to ensure a secure operation, lower and upper bounds
should be imposed on the parameters of each component at
every operating scenario. Thus, according to (19), the safe
operating region for the network can be described using 2×
n× (nc + 1) = 36 inequalities.

In order to calculate the accurate reliable lower and upper
bounds for line 1, we need to perform two optimization
problems over the set R4 (since f1 is represented by the 4th

entry of x). According to Definition 2, the set R4 is described
by the inequalities

l
(k)
4 ≤ f (k)1 ≤ u(k)4 , ∀k ∈ {1, 2} (25a)

l
(2)
1 ≤ g(2)1 ≤ u(2)1 , l

(2)
2 ≤ g(2)2 ≤ u(2)2 , (25b)

l
(2)
5 ≤ f (2)2 ≤ u(2)5 , l

(2)
6 ≤ f (2)3 ≤ u(2)6 , (25c)

l
(2)
3 ≤ d(2)1 ≤ u(2)3 , (25d)

in addition to (22a) and (22b). The basic idea behind the
definition of R4 is that we only consider those security
inequalities that directly involve f1 (see (22c)). For example,
the constraints in (25a) represent all of the post-contingency
limits on line 1, and they directly involve f1 due to the
equations

f
(1)
1 = f1 + F

(1)
4,2 × g2, (26)

f
(2)
1 = F

(2)
4,4 × f1. (27)

Likewise, the remaining constraints in (25) involve f1 because
they correspond to the outage of line 1.
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B. Computationally Cheap Reliable Bounds

As an alternative to the method proposed above, a com-
putationally cheap approach can be adopted for obtaining
reliable bounds. This method obviates the need for solving
optimization problems [19].

For every x ∈ S , j ∈ {1, . . . , n} and k ∈ {0, 1, . . . , nc},
we have

l
(k)
j ≤

n∑
`=1

F
(k)
j` x` ≤ u

(k)
j . (28)

Assuming that F (k)
ji > 0 for an index i ∈ {1, . . . , n}, the

following bounds can be derived for xi:

xi ≤
1

F
(k)
ji

u(k)j −
∑
` 6=i

F
(k)
j` v

(k)
`j

 (29a)

xi ≥
1

F
(k)
ji

l(k)j −
∑
6̀=i

F
(k)
j` w

(k)
`j

 (29b)

where

v
(k)
`j , l` IF (k)

j` >0
+ u` IF (k)

j` <0
(30a)

w
(k)
`j , l` IF (k)

j` <0
+ u` IF (k)

j` >0
(30b)

If F (k)
ji < 0, two bounds similarly to (29) can also be obtained

for xi. Then, the tightest upper and lower bounds can be
chosen by searching through all pairs (j, k) ∈ {1, . . . , n} ×
{0, 1, . . . , nc}. We refer to the bounds obtained through this
procedure as computationally cheap reliable bounds for xi.

Unlike accurate reliable bounds that require solving lin-
ear programs, the vectors of computationally cheap reliable
bounds can be readily calculated through simple formulas. For
example, these bounds are found within one minute for large
systems such as the ERCOT 5506-bus system, using a laptop
computer with an Intel Core i7 quad-core 2.20 GHz CPU and
12GB RAM.

C. Constraint Screening Algorithm

The inequalities

lrel ≤ x ≤ urel, ∀x ∈ S (31)

can be used to eliminate some of the redundant scalar con-
straints in (19) through an interval arithmetic procedure [20].
The constraint screening algorithm provided in this section
formalizes this procedure. The outputs of the algorithm are two
sets A+,A− ⊆ {1, . . . , n} × {0, 1, . . . , nc} with the property
that

S =

{
x

∣∣∣∣ eTi F(k)x ≤ u(k)i (i, k) ∈ A+,

eTi F
(k)x ≥ l(k)i (i, k) ∈ A−

}
. (32)

In other words, the statement (i, k) /∈ A+ means that the
constraint x(k)i ≤ u(k)i is declared redundant and the statement
(i, k) /∈ A− means that the constraint x(k)i ≥ l

(k)
i is declared

redundant by the algorithm.

Algorithm 1 Constraint screening algorithm

Require: lrel ∈ ({−∞} ∪ R)
n and urel ∈ (R ∪ {∞})n

1: A+ ← {1, . . . , n} × {0, 1, . . . , nc}
2: A− ← {1, . . . , n} × {0, 1, . . . , nc}
3: for k = 0, 1 . . . , nc do

4: L(k) :=
[
lreli IF (k)

ji >0
+ ureli IF (k)

ji <0

]
i,j=1,...,n

5: U(k) :=
[
lreli IF (k)

ji <0
+ ureli IF (k)

ji >0

]
i,j=1,...,n

6: l̃(k) := diag{F(k)L(k)}
7: ũ(k) := diag{F(k)U(k)}
8: for i = 1 . . . , n do
9: if l(k)i < l̃

(k)
i then

10: A+ ← A+ \ {(i, k)}
11: end if
12: if ũ(k)i < u

(k)
i then

13: A− ← A− \ {(i, k)}
14: end if
15: end for
16: end for

Theorem 1. Suppose that A+ and A− are the outputs of the
constraint screening algorithm. Then, the constraints in (19b)
that correspond to the members of A+ and A− are sufficient
for describing the safe operating region S and the remaining
inequality constraints in (19b) are redundant.

Proof. According to Steps 6 and 7 of the algorithm, define

l̃(k) , diag{F(k)L(k)} and ũ(k) , diag{F(k)U(k)}.

To prove the theorem, it suffices to show that

l̃(k) ≤ x(k) ≤ ũ(k) (33)

for every x(k) = F(k)x, where x is a member of S . To this
end, one can write:

x ∈ S ⇒ lreli ≤ xi ≤ ureli , ∀i = 1, . . . , n

⇒ FjiL
(k)
ij ≤ Fjixi ≤ FjiU

(k)
ij , ∀i = 1, . . . , n

⇒
n∑

i=1

FjiL
(k)
ij ≤

n∑
i=1

Fjixi ≤
n∑

i=1

FjiU
(k)
ij

(9)⇒ l̃
(k)
j ≤ x(k)j ≤ ũ(k)j . (34)

The two inequalities in (34) imply the following: (i) if l(k)i <

l̃
(k)
i , then the constraint l(k)i ≤ x

(k)
i in (19b) can be declared

redundant, (ii) if ũ(k)i < u
(k)
i , then x(k)i ≤ u(k)i can be declared

redundant.

As will be shown in Section IV, a vast majority of redundant
constraints are identified by means of the constraint screening
algorithm for several real-world systems.

D. Exhaustive Search

The proposed constraint screening algorithm reduces the set
of inequalities required for the characterization of S, but it
does not necessarily yield a minimal set. To further reduce the
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Ratio of
Test cases post to pre- Number of Ratio for

fault ratings special lines special lines
of regular lines

Polish 2383wp 1.3 15 1.5
Polish 2736sp 1.2 21 4.0
Polish 2737sop 1.05 17 3.1
Polish 2746wop 1.05 21 2.0
Polish 2746wp 1.3 19 3.1
Polish 3012wp 1.5 0 1.5
Polish 3120sp 1.5 15 1.95
Polish 3375wp 1.3 13 1.5
PEGASE 1354 1.3 30 2.9
PEGASE 2869 1.3 21 2.5
ERCOT 5506 1.3 28 1.8

TABLE I: Description of the considered emergency ratings.

size of the set, an exhaustive search algorithm can be deployed.
Consider the optimization problem

minimize
x∈Rn

cTx (35a)

subject to λ
(k)
i : eTi F

(k)x ≤ u(k)i , ∀(i, k) ∈ A+ (35b)

γ
(k)
i : eTi F

(k)x ≥ l(k)i , ∀(i, k) ∈ A− (35c)

for some constant vector c, where λ
(k)
i ≥ 0 and γ

(k)
i ≤ 0

denote the Lagrange multipliers for the corresponding con-
straints. One can identify all of the redundant constraints
in (32) by solving a sequence of optimization problems of
the form (35) by choosing cTx as

cTx = eTi F
(k)x (36)

for every pair (i, k) ∈ A− and

cTx = −eTi F(k)x (37)

for every pair (i, k) ∈ A+. If the optimal objective value does
not reach the minimum value imposed by

l
(k)
i ≤ eTi F

(k)x ≤ u(k)i , (38)

then the corresponding constraint can be declared redundant.
In addition, every nonzero Lagrange multipliers certifies that
its corresponding constraint is not redundant and contributes
to the definition of S.

IV. SIMULATION RESULTS

In order to evaluate the performance of the proposed con-
straint screening algorithm, we aim to conduct extensive simu-
lations on Polish networks [28], Pan European Grid Advanced
Simulation and State Estimation (PEGASE) [29], and Electric
Reliability Council of Texas (ERCOT) data for planning. The
simulations are run on a laptop computer with an Intel Core i7
quad-core 2.20 GHz CPU and 12GB RAM. The computation
times reported in this section are for a serial implementation
in MATLAB and the decoupled LPs for finding the reliable
bounds are not solved in parallel. In all of the simulations, the
constraint redundancy test is applied to a single time slot of
the SCUC problem (because the proposed algorithm works
on different time instances of the problem independently).
Moreover, it is assumed that the total cost function (including
generation, startup and showdown costs) and the on/off status

of each generator are unknown. To account for this condition,
we impose the lower bound min{0, gmin

s } on gs for every
generator s ∈ {1, . . . , ng}, where gmin

s is the minimum output
of generator s when it is active.

According to the modeling discussed in Example 2, for
every post-contingency scenario that involves a power im-
balance, the amount of mismatch is compensated by in-
service generators proportional to their maximum capacity.
Moreover, according to Example 3, every disconnected load
and generator is treated as a contingent component in case
of islanding. First, the topology of post-contingent networks
corresponding to all cases is analyzed in order to diagnose
islanding and then the matrices F(0),F(1), . . . ,F(nc) are gen-
erated accordingly. The run time of this process does not
exceed 2 minutes for each of the test systems to be analyzed
next. In what follows, three experiments will be conducted
to evaluate the performance of the proposed method under
different conditions.

Experiment 1. Assume that the exact value of each load is
known and that the single outage of each line and generator is
considered as a contingency. We consider synthetic emergency
ratings that are obtained by solving a power flow problem for
the base case and examining the resulting post-contingency
flows. For each system, a number of lines whose post-
contingency flows are significantly higher than their normal
ratings for at least one of the contingency cases are labeled
as special lines. The emergency ratings for special lines are
set as up to 4 times larger than their normal ratings, while
this ratio is up to 1.5 for all other lines. Table I shows the
ratios and the number of special lines for each test case. Each
ratio is chosen through trial and error and is not more than
10% distanced from the minimum amount that is necessary
to assure the feasibility of the security problem. We have
observed that the performance of the proposed algorithm is
not sensitive to the choice of these ratios.

The results for Experiment 1 are summarized in Table II.
The third column indicates the total number of line flow
constraints for all pre- and post-contingency cases. The com-
putationally cheap and accurate reliable bounds are calculated
independently for every test case. The forth and fifth columns
show the numbers of branch flow constraints remained after
using the constraint screening through the computationally
cheap and accurate reliable bounds, respectively. Figures 3 and
4 depict comparative histograms of differences between the
upper and lower limits on line flows obtained by the accurate
and computationally cheap reliable bounds for the ERCOT
system.

The sixth column of Table II shows the run time (in
minutes) for obtaining the accurate reliable bounds without
parallel processing. For each test system, the computationally
cheap reliable bounds are derived in less than 2 minutes.
After calculating the reliable bounds, the run time of the
screening algorithm is less than 30 seconds for all of the
cases. For each test case, we have also obtained a minimal
set of inequality constraints on branch flows that describes the
set S. The minimal set for each case is obtained by running
the exhaustive search procedure explained in Section III on the
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Number Total Num. of undominated Num. of undominated Comp. time Size of the Running
Test cases of num. of line line constraints after line constraints after for obtaining minimal set time of

contingencies inequality screening through screening through accurate of line exhaustive
constraints comp. cheap bounds accurate bounds bounds constraints search

Polish 2383wp 3,223 18,673,408 46,995 329 48 m 70 2 m
Polish 2736sp 3,539 23,144,520 97,998 101 66 m 15 2 m
Polish 2737sop 3,488 22,811,082 150,492 101 66 m 14 2 m
Polish 2746wop 3,738 24,729,746 194,210 5,135 78 m 22 78 m
Polish 2746wp 3,735 24,500,688 62,535 69 84 m 14 1 m
Polish 3012wp 3,959 28,275,952 89,532 139 162 m 59 2 m
Polish 3120sp 3,991 29,484,912 149,561 4,172 174 m 79 126 m
Polish 3375wp 4,640 38,622,402 566,492 10,048 198 m 119 258 m
PEGASE 1354 2,251 6,449,728 15,408 1,652 30 m 259 12 m
PEGASE 2869 5,092 27,940,198 56,369 3,689 186 m 426 106 m
ERCOT 5506 7,120 91,675,754 74,721 827 258 m 100 36 m

TABLE II: The performance of the constraint screening algorithm followed by an exhaustive search for Polish, PEGASE and
ERCOT systems.

Num. of undominated Num. of undominated Size of the
Test cases line constraints after line constraints after minimal set

screening through screening through of line
comp. cheap bounds accurate bounds constraints

Polish 2383wp 176,453 1,951 312
Polish 2736sp 571,468 560 88
Polish 2737sop 701,546 789 57
Polish 2746wop 1,197,428 29,523 79
Polish 2746wp 442,135 448 83
Polish 3012wp 289,754 941 183
Polish 3120sp 798,094 33,507 216
Polish 3375wp 1,846,460 47,829 340
PEGASE 1354 132,819 11,867 418
PEGASE 2869 238,962 26,190 1,768
ERCOT 5506 289,251 2,148 267

TABLE III: The performance of the constraint screening algorithm followed by an exhaustive search for Polish, PEGASE and
ERCOT systems, with ±10% load uncertainty.

Total Num. of undominated Num. of undominated Size of the
Test cases num. of line line constraints after line constraints after minimal set

inequality screening through screening through of line
constraints comp. cheap bounds accurate bounds constraints

Polish 2383wp 11,589,792 23,313 816 128
Polish 2736sp 14,023,008 14,987 735 174
Polish 2737sop 14,031,012 16,079 294 65
Polish 2746wop 14,063,028 31,912 3,490 98
Polish 2746wp 14,063,028 17,782 2,142 188
Polish 3012wp 14,295,144 6,161 540 74
Polish 3120sp 14,779,386 16,838 1,490 91
Polish 3375wp 16,652,322 84,544 10,641 361
PEGASE 1354 7,967,982 31,833 4,259 168
PEGASE 2869 18,337,164 52,200 8,519 2,059
ERCOT 5506 26,681,334 22,037 6,026 467

TABLE IV: The performance of the constraint screening algorithm followed by an exhaustive search for Polish, PEGASE and
ERCOT systems, with ±10% load uncertainty and random contingencies.

set of undominated line constraints after screening through the
accurate bounds. In other words, the computationally cheap
bounds are not used for obtaining the minimal set in our
simulations. The sizes of these minimal sets are shown in the
seventh column of Table II, and the run time of the exhaustive
search is also shown in the last column.

In summary, the minimum number of constraints provided
in the seventh column of Table II is obtained by the following
sequence of actions:

1) Topology analysis of post-contingency networks and cal-
culation of the matrices F(0),F(1), . . . ,F(nc)

2) Calculation of the accurate reliable bounds explained in

Section III-A
3) Running the constraint screening algorithm explained in

Section III-C, using the accurate reliable bounds
4) The exhaustive search algorithm from Section III-D.

Note that solvers such as CPLEX have generic preproces-
sors for removing redundant constraints. However, the number
of security constraints in most of our simulations is so large
that such solvers may run out of memory or fail to remove
all redundant constraints. In contrast, the method proposed in
this work is tailored to eliminating the redundant constraints
by exploiting key features of the SCUC problem.



10

0 1000 2000 3000 4000 5000
0

1000
2000
3000
4000
5000

Absolute Deference Between Lower and Upper Bounds (MW)

N
um

be
r o

f L
in

es

Fig. 3: Histogram of absolute differences between the accurate
lower and upper reliable bounds on line flows for the ERCOT
system.
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Fig. 4: Histogram of absolute differences between the compu-
tationally cheap lower and upper reliable bounds on line flows
for the ERCOT system.

Experiment 2. This is built upon Experiment 1 by considering
a ±10% demand uncertainty. The main motivation is to test
the effectiveness of the proposed method under uncertainty.
It is aimed to demonstrate that the constraint screening can
be performed well before solving the SCUC problem if the
load prediction errors are known. All loads are assumed to
be unknown but away from their forecasts by at most 10%.
As before, emergency ratings are defined the same way as in
Experiment 1, and every single outage of lines and generators
is considered as a contingency. The results are shown in
Table III.

Experiment 3. Consider the previous experiment with a
±10% demand uncertainty, but assume that the set of contin-
gencies consists of 2000 randomly generated cases where each
may involve the outage of multiple components. Experiment 3
is conducted in order to test the effectiveness of the proposed
method for contingency cases of day-ahead SCUC problems
that involve multiple components simultaneously. The emer-
gency ratings for this experiment are up to 4 times larger
than their normal ratings in order to assure feasibility. The
following definition is necessary to explain the procedure for
constructing contingencies: a generator is adjacent to a line if
it belongs to one of its ends, two generators are adjacent if
they belong to the same node, and two lines are adjacent if
they share a node.

The set of contingent components Ck for each scenario
k ∈ {1, . . . , nc} is randomly constructed through the following
procedure:

1) Initiate C := {c0}, where c0 is a uniformly chosen line
or generator.

2) Stop with probability 0.7; otherwise, uniformly choose a
line or generator c′ /∈ C that is adjacent to one of the
members of C and set C := C ∪ {c′}.

3) Go back to Step 2.
The results for this experiment are shown in Table IV.

V. CONCLUSIONS

This paper studies the problem of screening redundant
security constraints for the safe operation of power grids. The
objective is to design a cheap, parallelizable computational
method that is able to find a minimal subset of security
constraints whose satisfaction is necessary and sufficient for
the satisfaction of all security constraints. The minimal subset
to be found is independent of the unknown unit commitment
parameters and uncertain load values. Instead, it mainly de-
pends on the network topology, the lower and upper bounds
on nodal power injections and the line flow ratings. The
proposed method involves solving a number of linear programs
in parallel. This algorithm can be utilized to obtain a small set
of potentially binding constraints prior to solving the security-
constrained unit commitment (SCUC) problem, and it serves
as a mechanism for finding a reduced-order model of security
constraints. Our simulations on real-world data verify that the
proposed algorithm is able to eliminate millions of redundant
constraints, leading to reduced-order models with only a
few hundred security constraints. The computational method
developed in this work analyzes the security constraints of the
problem that are modeled as linear inequalities with respect
to the base-case parameters.
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