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Abstract—The goal of optimal power flow (OPF) is to find a
minimum cost production of committed generating units while
satisfying technical constraints of the power system. To ensure
robustness of the network, the system must be able to find
new operating points within the technical limits in the event of
component failures such as line and generator outages. However,
finding an optimal, or even a feasible, preventive/corrective
action may be difficult due to the innate nonconvexity of the
problem. With the goal of finding a global solution to the
post-contingency OPF problem of a stressed network, e.g. a
network with a line outage, we apply a homotopy method to
the problem. By parametrizing the constraint set, we define a
series of optimization problems to represent a gradual outage
and iteratively solve these problems using local search. Under
the condition that the global minimum of the OPF problem
for the base-case is attainable, we find theoretical guarantees
to ensure that the OPF problem for the contingency scenario
will also converge to its global minimum. We show that this
convergence is dependent on the geometry of the homotopy path.
The effectiveness of the proposed approach is demonstrated on
Polish networks.

I. INTRODUCTION

Optimal power flow (OPF) is a fundamental tool for power
system network analysis. The goal of OPF is to find a
minimum cost production of the committed generating units
while satisfying the technical constraints of the power system.
To ensure security, additional care must be taken so that the
system is able to operate within the technical limits even in
the event of component failures (i.e. contingencies). Finding a
global optimum for a large-scale OPF problem modeled with
AC power flow equations is a difficult task due to the innate
nonconvexity of the problem.

The ability to find a feasible and globally optimal solution
to the OPF problems is crucial for the reliable and efficient
operation of power systems. The difference between a global
minimum of the OPF problem and sub-optimal/approximate
solutions obtained using the heuristics adopted by the power
industry is estimated at billions of dollars each year in the
United States. A mere 1% improvement in OPF solution
quality would save up to 5 billion dollars annually in the
U.S. [1]. Initiated by the work [2], conic optimization has
been extensively studied in recent years and proven to be
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a powerful technique for solving OPF to global or near-
global optimality. The paper [2] has indeed shown that a
semidefinite programming (SDP) relaxation is able to find a
global minimum of OPF for a large class of practical systems,
and [3] has discovered that the success of this method is related
to the underlying physics of power systems. [4] and [5] have
developed different sufficient conditions under which the SDP
relaxation of OPF provides zero duality gap. Moreover, [6] has
found an upper bound on the the rank of the minimum rank
solution of the SDP relaxation of the OPF problem, which
is leveraged in [7] to find a near globally optimal solution
of OPF via a penalized SDP technique in the case where the
SDP relaxation fails to work. These ideas have been refined
in many papers to improve the relaxations via branch-and-cut
approaches, conic hierarchies, and valid inequalities [8]–[11].
The reader is referred to the survey paper [12] for more details.

Power operators are concerned with security-constrained
OPF (SCOPF) instead of an idealistic OPF problem. SCOPF
can be regarded as a large number (as high as 10,000) of
OPF problems coupled to each other via physical constraints,
where the first OPF corresponds to the operating point of the
system under the normal condition and the remaining ones
are associated with contingencies. It is shown in [7] that
SDP relaxations are able to obtain high-quality solutions of
SCOPF. However, since SCOPF is a gigantic problem with
an enormous number of variables, even simple local search
methods are ineffective for real-world systems. The common
practice is to approximate SCOPF as a single OPF for the
base case subject to many surrogate contingency constraints
expressed in terms of the variables of the base case. SDP and
many other methods may be used to solve such problems,
but that would only find the voltages for the base case. It
is essential for the operators to determine the values of the
controllable parameters for each contingency in advance. This
leads to a high number of decoupled optimization problems.
The objective of this paper is to solve each of these prob-
lems, named contingency-OPF, to global optimality using fast
algorithms.

A. Homotopy in Optimization

Homotopy methods have been used to improve the conver-
gence of optimization problems. While convergence to a global
minimum with probability one is guaranteed for a convex
problem [13], this is not true for nonconvex problems. In
order to understand when homotopy can be effective in finding
a global solution for nonconvex optimization, we explore a
minimization problem of the form: (P o) minx f(x) where



Fig. 1. Evaluating the performance of homotopy on one-dimensional uncon-
strained minimization problems. The figure compares two different problems
(1) and (2), with two different methods (a) and (b). The dotted lines show how
the solution from the previous iteration is used in local search algorithms to
solve the next problem. The red dots show the solution at each iteration using
the position of the dotted lines as the initial point. For the one-shot method
(a), the result of P o is used as the initial point for P f . For the homotopy
method (b), the base problem P o is gradually transformed to P f over three
iterations, updating the initial point as the solution to the previous problem.

f : Rn → R is a nonconvex function of x ∈ Rn. Note
that the function f(·) can incorporate exact/inexact penalty
functions to enforce constraints on x, implying that this
formulation is general for both unconstrained and constrained
optimization [14]. We will call (P o) the “base case” problem.
We generate a new problem, a deformed version of the base
case, which is also a nonconvex minimization problem. Let
the deformed problem be: (P f ) minx f̃(x). We explore two
possible methods for solving the deformed problem that are
based on local search:

1) One-shot method: Use the solution of P o as the initial
point for any descent numerical algorithm to solve P f .
2) Homotopy method: Generate a (discretized) homotopy
map from P o to P f . Use the solution of P o as the initial
point, but update it at each step of the homotopy by solving
an intermediate problem using local search that is initialized
at the solution of the previous step. A linear (un-discretized)
homotopy map can be defined as:

P (λ) = min
x

{
λf̃(x) + (1− λ)f(x)

}
, 0 ≤ λ ≤ 1

with the property that P (0) = P o and P (1) = P f .
Depending on f(x) and f̃(x), homotopy may or may not

lead to better results than solving the deformed problem in
one shot. In Figure 1, we see an example where homotopy is
effective to find the global minimum of a deformed function
and another example where homotopy leads to a non-global
local minimum whereas solving the problem in one shot leads
to the global minimum. Knowing when homotopy will be
effective is highly dependent on understanding how the shape
of the function changes from the base case to the deformed
problem. In the current literature, there is a lack of theoretical
results to characterize the performance of homotopy in finding
a global optimum.

B. Contributions

In this paper, we develop a homotopy method to improve
the quality of the contingency-OPF solution. Instead of solving
for the solution to a contingency-OPF problem via a descent
numerical algorithm directly, we generate and solve (using
local search) a series of optimization problems wherein we
gradually remove a component of the power system. We
show that the effectiveness of homotopy to find a global
solution of the contingency-OPF problem is dependent on the
homotopy path, and we introduce new theory to characterize
desirable homotopy paths. Note that it is essential to find a
global solution because constraint violations in the case of
a contingency are very expensive to deal with and a global
solution corresponds to the minimum violation.

C. Notations

The symbols R and C denote the sets of real and complex
numbers, respectively. RN and CN denote the spaces of
N -dimensional real and complex vectors, respectively. The
symbols (·)T and (·)∗ denote the transpose and conjugate
transpose of a vector or matrix. Re{·} and Im{·} denote
the real and imaginary part of a given scalar or matrix. The
symbol | · | is the absolute value operator if the argument is
a scalar, vector, or matrix; otherwise, it is the cardinality of a
measurable set. The imaginary unit is denoted by j =

√
−1.

II. FORMULATION OF THE DISPATCH PROBLEMS

In this section, we present the mathematical formulations for
the base-OPF with security constraints and the contingency-
OPF. To begin, let the power network be defined by a graph
G(V, E) with the set of generators R, where V and E are the
vertex set and the edge set of this graph, respectively. The
“classic” optimal power flow problem without contingency
considerations is a static optimization problem formulated as

min
v

f(v) + ψ(v)

subject to pgi −
∑

(i,j)∈E

pij = P di ∀i ∈ V

qgi −
∑

(i,j)∈E

qij = Qdi ∀i ∈ V

pij = Re{vi(vi − vj)∗Y ∗ij} ∀(i, j) ∈ E
qij = Im{vi(vi − vj)∗Y ∗ij} ∀(i, j) ∈ E

where f(·) represents the operating cost (usually a quadratic
function of the active power generations) and ψ(·) represents
the exact penalty or inexact penalty function that forces the
variables to stay within the feasible set defined by:

Ψ =

{
v

∣∣∣∣∣
Pmin

i ≤pgi≤P
max
i ∀i∈R

Qmin
i ≤qgi≤Q

max
i ∀i∈R

Vmin
i ≤|vi|≤Vmax

i ∀i∈V
|pij+jqij |≤Smax

ij ∀(i,j)∈E

}
(1)

In this problem, the decision variable v represents the vector
of complex voltages of the power system, and vi is the voltage
at the i-th bus. Furthermore, pgi , q

g
i , pij , qij , P

d
i and Qdi are the

active/reactive power generation at the i-th bus, active/reactive
power flow from bus i to j, and active/reactive power demand



at bus i, respectively. Yij = Gij + jBij is the line admittance,
whose real and imaginary parts are the line conductance
and susceptance, respectively. The constraints model technical
limits, such as the power flow equations, bounds on voltage
magnitudes, and bounds on power generations and flows.
Nonlinearities are introduced to the constraints with the AC
power flow equations, and these nonlinearities with the voltage
magnitude lower bounds result in the nonconvexity of the
problem. In a standardized optimization form, the “classic”
OPF problem can be expressed in a compact form as follows
(note that h(·) is a vector):

min
v

f(v) + ψ(v)

subject to h(v) = 0
(2)

A. Security-constrained optimal power flow

Suppose that there is a set of possible contingencies, namely
K, where each contingency corresponds to a line or generator
outage. Each contingency k ∈ K introduces a new set of
voltage variables vk, and therefore, for a network with N
buses and |K| contingencies, the SCOPF problem will involve
optimizing over N(|K|+ 1) complex scalar voltage variables.
The contingencies also add operational constraints of their
own. In addition, there are physical limitations on how the
post-contingency network can adapt from the base case, and
these limits are added as constraints that are functions of
the base case voltages. However, since this extremely high-
dimensional problem is cumbersome to solve due to the large
number of variables, in practice the contingency constraints
are approximated via methods such as LODF and PTDF [15].
In essence, this approximates the contingency voltage vk

as a function of the base case voltage v. Therefore, post-
contingency operating constraints for contingency k are ap-
proximated by a composite function of the following form:

hk(v) , ck(ak(v))

where ak(v) represents the control actions that are taken in
the event of a contingency.

Finally, another important consideration is how SCOPF
performs when the problem is infeasible. In other words,
the SCOPF modeling should be flexible enough to return a
“best possible solution” when all of the physical constraints
cannot be met simultaneously. Therefore, we model some
operational limits using soft constraints with extra variables
that capture the amount of violation. The objective function
that is minimized is the sum of active power generation costs
in the base case as well as a weighted sum of constraint
violation penalties in the base case and contingencies. The
standard optimization form is presented below:

[base-OPF]
min
v,σ,σk

f(v) + ψ(v) + φ(σ) +

|K|∑
k=1

φk(σk)

s.t. h(v) = σ

hk(v) = σk for k = 1, . . . , |K|

(3)

where φ(·) and φk(·) represent the penalty functions for the
violations. We denote this SCOPF problem as the base-OPF,
distinguishing it from the contingency-OPF presented next.

B. Contingency-OPF

Recall that the SCOPF solves for the base case oper-
ating point by taking into account the possible failures in
the network. In the process, it approximates the relationship
between the contingency operation point vk and the base case
operating point v. However, it does not actually solve for the
vk’s. Therefore, for each contingency we need to solve the
contingency-OPF formulated below to find the best operating
point for the specific contingency scenario, given the base
solution. This problem resembles the “classic” OPF problem,
except that there are additional coupling constraints that tie
the problem to the original base case. For instance, the voltage
magnitude at a bus must be equal to its base case value unless
the reactive capacity of the generators at that bus is exhausted.

We model a contingency, such as a line or generator outage,
by changing the constraints from the base-OPF. For example, a
line outage physically means that power cannot flow over that
connection, which can be modeled by setting the resistance
of the line to a very high value. In this paper, we focus only
on line outages, but an extension to generator outages can be
easily done in a similar way. In the event of a line outage, the
power is re-routed through a different path and therefore the
loss is changed throughout the system. However, the difference
in loss is small enough such that there is no need for additional
participation from other generators, unlike in the scenario of
a generator outage. Therefore, we can fix the active power
generation to be equal to the base case values and solve for the
vk’s such that the violations for the bus balance equations are
spread out as much as possible. This is because a concentrated
violation in a few buses can result in serious issues for the
power network, whereas small power mismatches can be taken
care of by real-time feedback controllers. Taking these into
consideration, the contingency-OPF under study is given as

min
v,σp,σq

φ(σp, σq) + ψ(v)

subject to P gi −
∑

(i,j)∈E

pij = P di + σPi ∀i ∈ V

qgi −
∑

(i,j)∈E

qij = Qdi + σQi ∀i ∈ V

pij = Re{vi(vi − vj)∗Y ∗ij} ∀(i, j) ∈ E
qij = Im{vi(vi − vj)∗Y ∗ij} ∀(i, j) ∈ E
|vi| = |vi|base ∀i ∈ V \ Vq

where ψ(·) represents a exact/inexact penalty function that
forces the variables to stay within the feasible set defined
by Ψ in (1). The set Vq is the set of buses that hit their
upper or lower reactive power generation bounds in the base
case, and |vi|base,∀i ∈ V is the voltage magnitude of bus
i in the base case. Note that active power generation is
now a fixed parameter obtained from a solution of the base-
OPF and therefore has been denoted by capital P g . Denoting
x = [v, σp, σq] as the combined variable, contingency-OPF in
a standard optimization form would be:

[contingency-OPF]
min
x

f(x)

subject to h(x) = 0
(4)



Note that f(·) is the not the same as the objective function
used in (2) or (3) but a comprehensive objective function that
includes both the generation cost functions and the violation
penalty functions. Similarly, h(·) is the not the same as the
constraint functions used in (2) or (3).

If the optimal objective value of the contingency-OPF is
zero, it means that the solution of the base case could be
modified to stay feasible in case of the contingency. However,
the focus of the paper is on hard instances with a nonzero
optimal cost, meaning that some of the constraints must be
violated to accommodate the outage. In these cases, since
taking corrective actions to deal with nodal power violations
is expensive, it is essential to find a global solution.

III. BACKGROUND ON HOMOTOPY METHODS

Homotopy and continuation methods have long been used
in mathematics and engineering to solve systems of nonlinear
algebraic equations [16]. Continuation methods in mathemat-
ics describe the continuous transformation of an easy problem
into the given hard problem [17]. The benefit of homotopy
methods compared to other iterative methods is that homotopy
methods may yield global rather than local convergence. These
methods are most useful for problems where convergence to
a global solution is heavily dependent on a good initial point,
which can be hard to obtain.

The development of probability-one homotopy methods in
the 1970s created a globally-convergent framework for solving
nonlinear systems of equations [18]. For these probability-one
methods, almost all choices of parameter for the homotopy
map yield no singular points in the Jacobian and thereby global
convergence. While homotopy methods have been shown to be
accurate and robust, they are computationally expensive and
should be reserved for highly nonlinear problems for which a
good initial point is hard to find [17].

More recently, these probability-one homotopy methods
have been applied to solving optimization problems. The
applications include optimal control ([19], [20]) and statistical
learning [21]. Typically the homotopy methods in optimization
focus on cases when the Karush-Kuhn-Tucker (KKT) opti-
mality conditions are parametrized ([17], [22]) or when the
objective is ([13], [23]). Our method is similar to the homotopy
optimization method described in [13], wherein a series of
local minimization problems are solved, rather than tracing
a path of zeros to the KKT conditions. However, we will
focus on a more generalized theoretical analysis of homotopy,
allowing for a homotopy map on the set of constraints.

Homotopy methods have also been applied in the field of
power systems, primarily to solve the power flow (PF) problem
for cases that do not converge. The continuation power flow
(CPF) problem is used to find a set of solutions of the power
flow problem, starting at some base load and ending at an
operating point near the voltage stability limit [24]. The power
flow Jacobian is singular at the voltage stability limit, which
results in convergence issues for solving PF; however, the CPF
formulation allows the problem to stay well-conditioned at all
possible loading conditions. Homotopy methods are also used
to solve the PF problem when the convergence of the problem
is dependent on a good initial point, which may be hard to

find. It has been shown that standard iterative methods for
power flow, such as Newton-Raphson, may diverge due to a
poor initial point [25]. Homotopy methods have been shown
to improve convergence of the PF problem ([26], [27]) as well
as compute all possible solutions to the PF problem [28].

A. Classical Homotopy Framework

Let the given hard problem be to find x such that f(x) = 0
and an easy (fictitious) version of the problem be to find x such
that s(x) = 0. Assume that we choose s(x) such that s(x) =
0 has a unique solution x0. We introduce the continuation
parameter λ to generate a homotopy map. A linear homotopy
map may be defined as:

H(λ, x) = λf(x) + (1− λ)s(x), 0 ≤ λ ≤ 1

We solve H(λ, x) = 0 as we continuously vary λ from 0 to 1.
Starting from λ = 0, we can solve the easy problem s(x) = 0
to find the unique solution x0. The goal is to track the solutions
of the problems so that at λ = 1, we find a solution x̄ where
f(x̄) = 0.

However, the continuous variation of λ is not implemented
in practice, i.e. we discretize λ and solve the series of problems
H(λi, x) = 0, where λi = λi−1+∆λ, for i = 1, ..., I . Modern
homotopy methods allow the discretization of λ, as long as
∆λ is sufficiently small [17]. If there are singularities or
divergence issues, the homotopy method will not converge to a
solution of f(x) = 0. However, we can construct a homotopy
map so that with probability-one, the Jacobian matrix of the
homotopy map has full rank [17]. For almost all choices of the
homotopy map, there exists a homotopy path that converges
to the global solution with probability-one, in a sense of the
Lebesgue measure.

In the following section, we present a homotopy method that
parametrizes the constraint set of contingency-OPF to model
a line or a generator outage, which is analogous to the “de-
formed problem” discussed in the one-dimensional example
above. In Section IV-A, we develop a theory to characterize
cases when homotopy will lead to a global solution of the
deformed problem.

IV. METHODS

A. Homotopy Method for the Contingency-OPF

In order to solve the contingency-OPF problem, we in-
troduce a homotopy method that gradually changes certain
parameters of the problem, rather than physically changing
the structure of the network. For instance, a transmission line
outage can be modeled by physically removing the line from
the network, by limiting the apparent power flow over the
line, or by assigning a high resistance and reactance value to
the line such that effectively no power flows through it. We
use the third method to construct a homotopy map for a line
outage. In other words, we solve a series of contingency-OPF
problems, each with a slightly higher impedance value than
the previous problem which uses the solution of the previous
problem as an initial point.

Let ` ∈ E be a line that connects bus i and j. Now,
consider a contingency scenario in which the line ` is out.



The active and reactive power over line ` can be expressed by
the following power flow equations:

pij = Re{vi(vi − vj)∗Y ∗ij} (5)

qij = Im{vi(vi − vj)∗Y ∗ij} (6)

We introduce the homotopy parameter λ = (λ1, λ2) ∈ R2 to
create the following homotopy map:

Yij(λ) = G0
ijλ1 + jB0

ijλ2 (7)

where G0
ij and B0

ij represent the initial admittance of line `. By
varying λ from λo = (1, 1) to λf = (0, 0), the homotopy map
allows us to trace a gradual line outage event, rather than an
abrupt jump in the system. The series of homotopy problems,
H(λ), parametrized by λ can be written in the standard form:[

homotopy-OPF
H(λ)

] min
x

f(x, λ)

subject to h(x, λ) = 0
(8)

A generator outage can also be modeled in a similar way by
gradually removing it and adjusting the participation of other
generators to compensate for the loss in power.

B. Connecting the contingency-OPF with the base-OPF

Starting with a solution to the base-OPF, we aim to iter-
atively solve a series of homotopy-OPF to eventually arrive
at the contingency-OPF. In order to proceed, we assume that
the base-OPF has a unique global solution that is available
(known). The availability of a global solution is a reasonable
assumption because a good initial point is usually provided
for the base-OPF, and also because more time is allocated
to solving it compared to a large set of contingency-OPF
problems for different outages, allowing the use of various
convex-relaxation techniques.

If the violation cost at the base case is non-zero, the global
solution will be unique with overwhelming probability. Fur-
thermore, even if the violation cost at the base case is zero, it
will immediately become non-zero during the next homotopy
iteration if removing that line introduces inflexibilities that the
network cannot accommodate. In fact, these near-infeasible
problems where a contingency will make the system “stressed”
are the cases where homotopy can be useful and is the focus
of this paper.

C. Implementation of Homotopy-OPF

This section describes how the solution to the base-OPF can
be used to find the solution to the contingency-OPF via a ho-
motopy method. First, a series of homotopy-OPF problems is
formulated as a parametrization of the contingency-OPF prob-
lem (as in Section IV-A). To define a physically implementable
homotopy map, we must discretize the homotopy parameter
λ. Then, the first homotopy-OPF problem is initialized as the
solution to the base-OPF problem. The series of homotopy-
OPF problems is solved with local search methods, and the
initial point is updated at each iteration of homotopy to be the
solution of the last homotopy-OPF problem. See Algorithm 1
for the complete details.

To develop intuition on when a homotopy method may or
may not lead to the global solution, we consider the basin

Algorithm 1 Homotopy-OPF Algorithm for Line Outages
Given:

1. Power network G(V, E) and generators R
2. Set of contingencies K with line outages lk ∈ E
3. Homotopy scheme: I iterations of homotopy

with parameter λi ∈ R2 at each i ∈ {0, ..., I}
such that λ0 = (1, 1) and λI = (0, 0)

Initialize: Solve base-OPF problem given by Equation (3)
to find a base case solution (v0, σ, σk) and
obtain pg1, σ

p, σq through calculation.
Formulate the contingency-OPF problem in Equation (4):

1. Fix real power generation to base case solution:
P gi = pgi ∀i ∈ R

2. Find Vq , the set of buses that hit their upper or lower
reactive power generation bounds in the base case

for k ∈ K do
Define (i,j) as the from and to buses of line lk
Define G0

ij , B
0
ij as the initial admittance values

Let (ṽ, σ̃p, σ̃q)← (v0, σ
p, σq)

for i ∈ {1, ..., I} do
Yij ← G0

ijλ
i
1 + jB0

ijλ
i
2

Use local search to solve contingency-OPF with up-
dated Yij using initial point (ṽ, σ̃p, σ̃q) and obtain a
solution (v, σp, σq)
Update (ṽ, σ̃p, σ̃q)← (v, σp, σq)

end for
Return (v, σp, σq) and violation cost φ(σp, σq)

end for

of attraction of the global solution to the contingency-OPF
problem. The “basin of attraction” of a local solution is the
set of initial points that lead to the solution using an iterative
search method. Note that the size of the basin of attraction is
dependent on both the problem geometry and the choice of
search method.

Because we employ a local search method at each step of
homotopy, each point along the homotopy path is a local (or
saddle), if not global, minimum of the function as defined for
that iteration. At each iteration of homotopy, the problem is
initialized as the solution to the previous problem with the
hope that the previous point will be in the basin of attraction
of the new solution. The homotopy method will find the
global solution of the final problem if at some point along the
homotopy path, the solution to the intermediate problem enters
and stays within the basin of attraction of the global solution
to the final problem. Because of this, homotopy is only useful
for problems where the initial point, i.e. the solution to base-
OPF, is not in the basin of attraction of the global minimum
of the final problem, contingency-OPF. If the initial point is
within the basin of attraction of the global solution to the final
problem, then the intermediate problems are unnecessary.

Proposition 1. If the global solution along the homotopy path
is unique, then a sufficiently small step-size ∆λ will ensure that
the solution to each intermediate problem is a global solution.

Under the uniqueness assumption mentioned above, the
solution to some intermediate problem will enter and remain



within the basin of attraction of the global solution to the final
problem, and we will obtain the global minimum of the final
problem. In the next section, we find some conditions under
which the global solution along the path is unique.

V. ANALYSIS OF HOMOTOPY PATHS

While probability-one homotopy methods almost surely
guarantee algorithm convergence, they do not necessarily re-
sult in convergence to a global minimum [13]. In Section I-A,
we offered two examples of nonconvex optimization: one in
which the homotopy method resulted in the global minimum
and another in which the homotopy method resulted in a
local minimum (see Figure 1). In this section, we describe
a theoretical framework that describes when homotopy can be
used to obtain a global minimum. We apply this framework
to analyze the performance of homotopy-OPF in finding the
global solution of the contingency-OPF. The results developed
in this section have implications for homotopy methods in a
broad range of optimization problems.

Remark 1. To simplify the presentation, we make the as-
sumption that homotopy-OPF has a unique global solution at
the initial point of the path. The “uniqueness” of the global
solution (in this assumption and Theorem 1 to be presented
next) can be replaced by the “connectivity” of the set of all
global solutions (this allows having infinitely many possible
solutions for post-contingency OPF with a zero violation cost).

A. Characterization of desirable homotopy path

The path we take to change the homotopy parameter λ
defines how the constraints and objective function of H(λ)
will change, and this in turn affects the series of global so-
lutions obtained throughout the homotopy process. Therefore,
choosing a good homotopy path is directly correlated with
the success of the method. Note that even though Algorithm
1 works on a discretized homotopy path, its analysis requires
working on the continuous path. In Figure 5 of Section VIII-A,
we have presented an example in which homotopy fails to find
the global solution of the final problem. The major cause of
this breakdown is the emergence of two global solutions in the
(continuous) homotopy path, which is followed by a change in
the relative positions of the global solution and next best local
solution. In order to better characterize this, consider the KKT
conditions for the homotopy-OPF problem defined in (8):

∇f(x, λ) + νT∇h(x, λ) = 0

h(x, λ) = 0
(9)

where ν is the vector of dual variables. We assume that
constraint qualification holds for the problem H(λ) defined
in (8) for all λ ∈ Λ, which implies the KKT conditions are
satisfied for every local minimum. The set Λ can be defined
as a box region containing the relevant homotopy path. For
a given λ, let X (λ) be the set of all x that satisfy the KKT
conditions in equation (9). Note that the goal is not to solve
the KKT conditions directly but is to merely use them as a
necessary condition for all local solutions. Before proceeding
to the main theorem of this work, below we make one basic

assumption on the KKT conditions and define a concept called
the “dividing midpoint zone” (DMZ).

Assumption 1. The cardinality of set X (λ) as a function of
λ is constant for all λ ∈ Λ.

Assumption 1 is essential to guarantee that a local solution is
not suddenly created or disappeared along the homotopy path,
in which case we cannot trace it back to the local solutions of
the original problem to track it. Using techniques in algebraic
geometry, one can study the satisfaction of Assumption 1 [29].

Definition 1. At λo, we order all the elements in X (λo) in a
way such that f(x(1), λo) < f(x(2), λo) ≤ ... ≤ f(x(|X |), λo).
Furthermore, let a be the midpoint objective value of the first
and second best KKT points. In other words,

a =
f(x(1), λo) + f(x(2), λo)

2

Define S to be the set of all λ for which there exists a KKT
point with the objective value equal to a:

S = {λ ∈ Λ | f(x, λ) = a for some x ∈ X (λ)} (10)

Here we define a to be the “dividing midpoint” between
f(x(1), λo) and f(x(2), λo). In practice, a wide range of values
that are slightly above or below the point a, within the DMZ,
would lead to the same implications. The optimal choice of
a depends on the knowledge of how the shape of the curve
changes with respect to λ. We are now ready to state the first
theorem.

Theorem 1. Let ρ(λ) = 0 be a homotopy path of λ with two
end-points λo and λf . In other words, the set of λ’s satisfying
ρ(λ) = 0 can be parametrized by t ∈ [0, T ] such that λ(0) =
λo and λ(T ) = λf . If ρ(λ) = 0 does not intersect with the
set S, then the homotopy problem (8) has a unique global
minimum for all values of λ along the path ρ(λ) = 0.

proof. The proof is provided in the Appendix.

According to Theorem 1, the success of homotopy in finding
the global optimum depends on the geometry of the set S. To
illustrate this, suppose that the set S is described by the blue
area in Figure 2. We wish to design a homotopy method that
starts from λo = (1, 1) and ends at λf = (0, 0). However,
this is not possible without crossing the set S because it fully
encompasses the final λf and blocks any path from entering.

Directly analyzing the geometry of the set S is not an easy
job. Therefore, we introduce a method to certify whether a path
is a successful homotopy path or not. The following theorem
offers a dual certificate.

Theorem 2. Let ρ(λ) = 0 define the homotopy path used to
solve the homotopy-OPF problem (8). Consider the following
feasibility problem and denote it by (P ) :

(P ) p(x∗, λ∗, µ∗) = min
x,λ,µ

0

s.t. ∇f(x, λ) + µT∇h(x, λ) = 0 (11)
h(x, λ) = 0 (12)
f(x, λ) = a (13)



Fig. 2. An example of the set S (shown in blue) where the homotopy path
(shown in red) cannot reach the origin without passing through a point in S.

p12 p21

pd1 pd2

v1

∼
v2

∼
y = (λ̄1g)− j(λ̄2b)

Fig. 3. A two-bus network

ρ(λ) = 0 (14)

Let the corresponding dual problem be denoted by (D), writ-
ten as maxω1,ω2,ω3,ω4 d(ω1, ω2, ω3, ω4) where ω1, ω2, ω3, ω4

are the dual variables for the constraints (11), (12), (13) and
(14). If there exists a quadruplet (ω1, ω2, ω3, ω4) such that
d(ω1, ω2, ω3, ω4) > 0, then the homotopy-OPF problem (8)
attains a unique global minimum along the path ρ(λ) = 0.

proof. The proof is provided in the Appendix.

Note that the dual problem is convex and finding it is easy
for certain problems, for example in the case where homo-
topy-OPF is cast as a non-convex quadratically-constrained
quadratic program. In essence, finding a dual feasible point
(ω1, ω2, ω3, ω4) for which d(ω1, ω2, ω3, ω4) > 0 provides a
certificate that guarantees that the homotopy path ρ(λ) will
never intersect with set S. Then, by Theorem 1, we can
conclude that the homotopy method will have a unique global
minimum along its path and therefore Algorithm 1 is able
to solve contingency-OPF to global optimality using iterative
local search due to Proposition 1.

B. Geometry of the homotopy path: Two-bus example

Consider a simple two-bus example as shown in Figure 3.
Each bus has a corresponding voltage magnitude and voltage
angle associated with it. The voltage magnitude of bus i is
denoted by |vi| and the voltage angle of bus i is denoted by
θi. The line connecting the two buses have admittance y =
(λ̄1g)− j(λ̄2b). The active power injection and demand at bus
i are denoted by pinj

i and P di > 0, respectively. Furthermore,
there is a lower bound Qmin on reactive power injection at
both buses. Assume the following:

1) |v1| = |v2| = 1
2) −∆ ≤ θ1 − θ2 ≤ ∆
3) 0 < Qmin < q(∆)

where ∆ = tan−1(λ2b/λ1g) and q(·) denotes the reactive
power injection as a function of the soley the angle difference,
which is due to the fact that voltage magnitudes are fixed. Note
that the second constraint on angle difference is reasonable
for the secure operation of power systems and is also used
in [5] in order to restrict the two-bus active power injection
reagion to be the Pareto front of the original feasible region.
In mathematical terms, suppose that the corresponding OPF
problem takes the following form:

min
pinj
1 ,pinj

2

(pinj1 + P d1 )2 + c(pinj2 + P d2 )2

subject to h(pinj1 , pinj2 ) = 0 (15)

The feasible set of the two-bus injection region is the Pareto
front of an ellipse, which is partially removed due to the
reactive power constraints (the details can be found in [5]). The
following lemma characterizes the set of homotopy parameters
for which there are at least two global solutions.

Lemma 1. Denote α = cos−1(−Q
min+bλ2

|y| ), and define two
polynomial functions of λ = (λ1, λ2) as follows:

w1(λ1, λ2) =
2λ2b

|y|
(
λ2b · sinα+ α · λ1g

)
w2(λ1, λ2) = 2λ1g −

2λ1g

|y|
(
− λ1g · sinα+ α · λ2b

)
Define also the set S̃ as:

S̃ = {λ ∈ R2 | (1− c) · w1(λ1, λ2) · w2(λ1, λ2)

+ 2P d1 · w1(λ1, λ2)− 2cP d2 · w1(λ1, λ2) = 0}

If (λ̄1, λ̄2) ∈ S̃, then the two-bus OPF problem has two global
solutions.

proof. The proof is provided in the Appendix.

We can view this set S̃ as an equivalent if not a subset of
S. This is a set of measure zero in general and as long as the
homotopy path does not intersect with this set, Algorithm 1
will work (see Appendix for more details).

VI. SIMULATIONS

In order to implement the contingency-OPF using the MAT-
POWER format, we introduce virtual generators that allow
for violations of real and reactive power balances at all nodes
after an outage occurs. These violations are penalized in a
modified objective function. The benefit of this formulation is
that there always exists a feasible solution to contingency-OPF.
By adding power generation flexibility with virtual generators,
we aim to find a feasible point (equivalent to a zero objective
value) or an infeasible point for the network but with the
minimum violations (such solutions could yet be implemented
via corrective actions taken by real-time feedback controllers).

Three different homotopy schemes are tested and compared
to the performance of local search without homotopy:
• Scheme 1: Continuously decrease in λ from (1, 1)→ (0, 0)
• Scheme 2: Decrease λ1 from 1→ 0, then λ2 from 1→ 0
• Scheme 3: Decrease λ2 from 1→ 0, then λ1 from 1→ 0



Fig. 4. Performance of proposed homotopy method on the 3375-bus Polish
network with single line outages. Note that this test case is case3375wp
with real and reactive power demand scaled up by 10% of their original values.
In the top figure, the ID of the line out is 719, and in the bottom figure, the
ID of the line out is 1031. For more simulations, see Appendix.

We run the homotopy simulations with the MATPOWER
Interior Point Solver (MIPS). By testing different line outages
on Polish networks, we were able to identify cases where
the using homotopy to solve contingency-OPF resulted in a
significantly better performance. These are hard contingency
instances where an outage has a real impact on the network.

Figure 4 shows a case for which the homotopy method
results in an objective value that is significantly lower than that
obtained with the one-shot method. For the first line outage
(top figure), all three homotopy schemes result in a violation
cost for contingency-OPF over 103 times less than the one
obtained without deploying homotopy. For the second line
outage (bottom figure), only one homotopy scheme results in a
violation cost lower than the one obtained without homotopy.
Note that each of the homotopy schemes for this 3375-bus
network took less than 30 seconds to solve on a standard
laptop. The simulations are aligned with our message delivered
in section V stating that choosing the correct homotopy path
is significant for the success of the method.

VII. CONCLUSIONS

This paper studies the contingency-OPF problem, which is
used to find an optimal operating point in the case of a line or
generator outage. Unlike OPF which is a single optimization
problem, there are many contingency-OPF problems, which
should all be solved in a short period of time. Recognizing
that the contingency-OPF problem is a more challenging
version of the classical OPF problem, we introduce a new
homotopy method to find the best solution of the contingency-
OPF problem. By solving the contingency-OPF problem over
a series of optimization problems using simple local search
methods, we can ensure convergence to a global solution
under certain conditions. We show on Polish networks that
the homotopy method can result in a lower value of the

objective, and we introduce theoretical notions to understand
when homotopy works on a given problem.
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VIII. APPENDIX

A. Additional Figures

In this section, we report some additional figures that did not
make to the main body of the paper due to page limitations.
Figure 5 explains the intuition behind the definition of set S
and also provides insight into the proof of Theorem 1. Figure 6
is referenced in the proof of Lemma 1. Figures 7 through 9
provide additional results of the proposed homotopy method’s
performance on Polish networks with line outages.

Fig. 5. Red dots denote the global min of the functions. Homotopy may not
be effective for cases where the global minimum of the base case becomes a
local minimum for the deformed problem. For any problem where a global
minimum for the initial problem is transformed into a non-global local solution
for the final problem, by continuity, there must exist a point along the
deformation path where the problem has two global minima. In this example,
continuously changing from the initial curve (1) to the final curve (4) requires
passing through curves (3) with two global minima. Point a is defined in
Definition 1.

B. Proof of Theorem 1

Let the homotopy-OPF problem at λo, H(λo), have a set of
KKT points X (λo) = {x(1), . . . , x(|X |)} that are ordered in a
way such that f(x(1), λo) < f(x(2), λo) ≤ ... ≤ f(x(|X |), λo).
The first strict inequality between the global minimum and the
next best local minimum implies that there is a unique global
minimum x(1), which is the assumption made in Remark 1.
Therefore, by definition, λo /∈ S . Let’s prove the theorem
by proving its contrapositive. Suppose that there exists a τ ∈

Fig. 6. An example of two-bus network for which there are two global
solutions to the OPF.

Fig. 7. Performance of proposed homotopy method on the 3012-bus Polish
network (case3012wp with real and reactive power demand scaled up by
8%) with single line outages. Homotopy scheme 1, as described in Section
VI, is tested with a varying number of homotopy iterations. In the top figure
(line out ID: 332), we see a case where the one-shot and 2-iteration homotopy
methods result in much higher objective values than the 5 and 10-iteration
homotopy methods. In the bottom figure (line out ID: 1604), we see a case
where the 2, 5, and 10-iteration homotopy methods result in an objective value
much lower than that obtained by the one-shot method. For this scenario, by
introducing even a 2-iteration homotopy scheme we outperform the one-shot
method.

[0, T ] for which the homotopy-OPF problem H(λ(τ)) has two
global solutions, x(1)τ and x(2)τ . To show that the contrapositive
is true, we have to show that the path described by ρ(λ) = 0
intersects with the set S. There are two scenarios that can
happen:

(i) When f(x
(1)
τ , λ(τ)) = f(x

(2)
τ , λ(τ)) ≥ a

(ii) When f(x
(1)
τ , λ(τ)) = f(x

(2)
τ , λ(τ)) < a

Note that a is defined in Definition 1. For scenario (i), since
f(x(1), λo) < a, ∃t ∈ [0, τ ] such that f(x

(1)
t , λ(t)) = a where

ρ(λ(t)) = 0. This is due to Assumption 1 and the fact that the



Fig. 8. Performance of proposed homotopy method on the 3120-bus Polish
network (case3120sp with original real and reactive power demand) with
a single line outage (line out ID: 1602). Homotopy schemes 1 through 3, as
described in Section VI, are tested with 10 iterations. For this example, ho-
motopy schemes 1 and 2 result in an objective value higher than that obtained
by the one-shot method, while the third homotopy scheme outperforms the
one-shot method. This example shows that convergence to a global minimum
is dependent on the choice of homotopy path.

Fig. 9. Performance of proposed homotopy method on the 3120-bus Polish
network (case3120sp with real and reactive power demand scaled up
by 10%) with a multiple line outages. Homotopy schemes 1 through 3, as
described in Section VI, are tested with 10 iterations. By introducing multiple
line outages, we make the contingency-OPF problem more difficult to solve,
which makes it a good candidate for the proposed homotopy method. In the
top figure, the IDs of the outed lines are 31 and 32, and in the bottom figure,
the IDs of the outed lines are 438, 439, and 3150.

KKT points change continuously with respect to the parameter
λ. Similarly, for scenario (ii), since f(x(2), λo) > a, ∃t ∈
[0, τ ] such that f(x

(2)
t , λ(t)) = a where ρ(λ(t)) = 0. In both

scenarios, the path described by ρ(λ) = 0 intersects with the
set S, which proves the contrapositive and completes the proof.

C. Proof of Theorem 2

Due to Theorem 1, it is sufficient to show the equivalence
between the following two statements:

(i) The path described by ρ(λ) = 0 does not intersect with
the set S.

(ii) There exists a dual variable quadruplet (ω1, ω2, ω3, ω4)
such that d(ω1, ω2, ω3, ω4) > 0.

By definition of the set S, statement (i) is equivalent to saying
that the following set of equations do not have a solution:

∇f(x, λ) + µT∇h(x, λ) = 0

h(x, λ) = 0

f(x, λ) = a

ρ(λ) = 0

In other words, the following feasibility problem is infeasible:

(P ) min
x,λ,µ

0

s.t. ∇f(x, λ) + µT∇h(x, λ) = 0

h(x, λ) = 0

f(x, λ) = a

ρ(λ) = 0

By duality theory, if the dual problem (D) is unbounded, then
the primal problem (P) must be infeasible. However, since the
primal objective value is zero and the dual problem should
provide a lower bound to the primal, finding a dual certificate
that gives a positive dual objective value is sufficient in proving
that the primal problem is infeasible. This completes the proof.

D. Proof of Lemma 1

Let us start with the equation for the reactive power injec-
tions. Let θ1 and θ2 denote the voltage phasor angles at bus 1
and 2, respectively. Then after denoting θ = θ1− θ2, we have
the following:

qinj1 = λ2b− λ1g · sin θ − λ2b · cos θ

qinj2 = λ2b+ λ1g · sin θ − λ2b · cos θ

A lower bound of Qmin on qinj1 results in the following
calculations:

Qmin ≤ λ2b− λ1g · sin θ − λ2b · cos θ

⇐⇒ −Qmin + λ2b ≥ λ1g · sin θ + λ2b · cos θ

=
√

(λ1g)2 + (λ2b)2 · cos (θ −∆)

where ∆ = tan−1
(
λ1g

λ2b

)
⇐⇒ cos (θ −∆) ≤ −Qmin + b · λ2√

(λ1g)2 + (λ2b)2

⇐⇒ θ ≥ cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
+ ∆

or θ ≤ − cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
+ ∆ (16)

From the lower bound on qinj2 , we can perform a similar
derivation and arrive at the following inequality:

θ ≥ cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
−∆



or θ ≤ − cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
−∆. (17)

Therefore, combining inequalities (16) and (17), we derive the
following inequality:

θ ≥ cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
+ ∆

or θ ≤ − cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
−∆. (18)

Furthermore, we assume that

− tan−1

(
λ2b

λ1g

)
≤ θ ≤ tan−1

(
λ2b

λ1g

)
which is equivalent to the following using basic trigonometry:

−
(π

2
−∆

)
≤ θ ≤

(π
2
−∆

)
(19)

Combining the two inequalities (18) and (19), and using the
definition of α, we get the final constraint on θ:

α+ ∆ ≤ θ ≤

(
π

2
−∆

)
or

−

(
π

2
−∆

)
≤ θ ≤ −α−∆. (20)

This feasible region of θ is reflected in the feasible region of
the active power injections, as shown in the bolded part of
the ellipse in Figure 6. As illustrated in the figure, the two red
points are active power injections, corresponding to θ = α+∆
and θ = −α − ∆. Let the first red point, (P inj1 , P inj2 ), be
generated by θ = α+∆. Then, the following is true for P inj1 :

P inj1 = λ1g + λ2b · sin θ − λ1g · cos θ

= λ1g + λ2b · sin (α+ ∆)− λ1g · cos (α+ ∆)

= λ1g + λ2b · (sinα · cos ∆ + α sin ∆)

− λ1g · (α cos ∆− sinα · sin ∆)

= λ1g +
λ2b

|y|
(λ2b · sinα+ α · λ1g)

− λ1g

|y|
(α · λ2b− λ1g · sinα)

Similarly, if we let the second red point (P̄ inj1 , P̄ inj2 ), be
generated by θ = −α−∆, we have

P̄ inj1 = λ1g −
λ2b

|y|
(λ2b · sinα+ α · λ1g)

− λ1g

|y|
(α · λ2b− λ1g · sinα)

Also, note that due to symmetry, P inj2 = P̄ inj1 and P̄ inj2 =
P inj1 . Let’s define the following two functions:

w1(λ1, λ2) = P inj1 − P̄ inj1 =
2λ2b

|y|
(
λ2b · sinα+ α · λ1g

)
w2(λ1, λ2) = P inj1 + P̄ inj1

= 2λ1g −
2λ1g

|y|
(
− λ1g · sinα+ α · λ2b

)
.

If the two points (P inj1 , P inj2 ) and (P̄ inj1 , P̄ inj2 ) are both
globally optimal, their objective values must be equal. In other
words,

(P inj1 + P d1 )2 + c(P inj2 + P d2 )2

= (P̄ inj1 + P d1 )2 + c(P̄ inj2 + P d2 )2

⇐⇒(1− c){(P inj1 )2 − (P̄ inj1 )2}+ 2P d1 (P inj1 − P̄ inj1 )

− 2cP d2 (P inj1 − P̄ inj1 ) = 0

⇐⇒(1− c) · w1(λ1, λ2) · w2(λ1, λ2) + 2P d1 · w1(λ1, λ2)

− 2cP d2 · w1(λ1, λ2) = 0

This completes the proof.
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