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Optimal power flow (OPF) is a fundamental problem in power systems analysis for determining the steady-

state operating point of a power network that minimizes the generation cost. In anticipation of component

failures, such as transmission line or generator outages, it is also important to find optimal corrective actions

for the power flow distribution over the network. The problem of finding these post-contingency solutions to

the OPF problem is challenging due to the nonconvexity of the power flow equations and the large number

of contingency cases in practice. In this paper, we introduce a homotopy method to solve for the post-

contingency actions, which involves a series of intermediate optimization problems that gradually transform

the original OPF problem into each contingency-OPF problem. We show that given a global solution to the

original OPF problem, a global solution to the contingency problem can be obtained using this homotopy

method, under some conditions. With simulations on Polish and other European networks, we demonstrate

that the effectiveness of the proposed homotopy method is dependent on the choice of the homotopy path

and that homotopy yields an improved solution in many cases.
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1. Introduction

Optimal power flow (OPF) is a fundamental tool for power system network analysis, where the goal

is to find a low-cost production of the committed generating units while satisfying the technical

constraints of the system [2]. The main challenges in solving the OPF arise from the fact that it is

a nonconvex optimization problem on a large-scale network that must be solved every few minutes.

In order to overcome these challenges, the common practice in the electric power industry is to use

a linearized approach called the DC-OPF approximation [3, 4], as opposed to the original AC-OPF

* This work was supported by grants from ARO, ONR, AFOSR, and NSF. Parts of this paper have appeared in the

conference paper [1]. Compared with [1], the new additions to this paper are major theoretical results, analysis of

generator outages, and comprehensive case studies on large-scale networks.
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problem. However, such methods simplify important aspects of the power flow physics and cannot

guarantee attaining any optimal solution of the original problem. Improvements in interior-point

methods have also provided an effective tool for solving the OPF problem, but they only guarantee

convergence to a locally optimal solution [5, 6, 7]. Despite its difficulty, finding a global optimum

for a large-scale OPF problem modeled with AC power flow equations is crucial for the reliable

and efficient operation of power systems.

Initiated by the work [8], conic optimization has been extensively studied in recent years and

proven to be a powerful technique for solving OPF to global or near-global optimality. The paper

[8] has indeed shown that a semidefinite programming (SDP) relaxation is able to find a global

minimum of OPF for a large class of practical systems, and [9] has discovered that the success of this

method is related to the underlying physics of power systems. [10] and [11] have developed different

sufficient conditions under which the SDP relaxation provides zero duality gap. Moreover, [12] has

found an upper bound on the the rank of the minimum-rank solution of the SDP relaxation, which

is leveraged in [13] to find a near globally optimal solution of OPF via a penalized SDP technique

in the case where the SDP relaxation fails to work. These ideas have been refined in many papers

to improve the relaxations via branch-and-cut approaches, conic hierarchies, and valid inequalities

[14, 15, 16, 17]. In order to tackle the computational burden of solving large-scale SDP relaxations,

the authors of [18] proposed strong second-order cone programming (SOCP) relaxations, which

produce high-quality feasible solutions for the AC-OPF problem in a short amount of time. The

reader is referred to the survey paper [19] for more details.

Recently, there has been elevated interest in studying the robust operations of power systems

that can withstand element failures (contingencies) in the network. Power operators are required

to solve the security-constrained OPF (SCOPF) instead of an idealistic OPF problem [20, 21].

SCOPF is formulated by adding extra constraints to the classic OPF discussed above. These

constraints impose additional limits on line flows and nodal voltages for a predetermined set of

post-contingency configurations. In other words, SCOPF can be regarded as a more conservative

version of the classic OPF that leads to a higher level of system security. This means that SCOPF

inherits the challenges of classic OPF and furthermore, invites new challenges. It has been shown

in [13] that SDP relaxations are able to obtain high-quality solutions of SCOPF. However, since

SCOPF is a gigantic problem with an enormous number of variables, conic relaxations and even

simple local search methods may be ineffective for real-world systems [22]. There are two primary

methods to address the huge size of the SCOPF problem. One approach is to reduce the number of

contingencies to a subset of binding contingencies that will lead to the same solution as the full set

of contingencies [23, 24, 25]. If the number of binding contingencies is not sufficiently small enough

to satisfy computational requirements, then we must make use of the second method, which is to
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simplify the SCOPF formulation. There have been many proposed methods to simplify the model

of post-contingency states in SCOPF, such as Benders decomposition, linearization of the power

flow equations, Lagrangian relaxation, and network compression [26, 27, 28, 29]. These contingency

selection, approximation, and decomposition techniques can be combined to generate heuristic

solutions to large-scale SCOPF problems, as in [30, 31]. Additionally, recent research has applied

approaches from distributed control, stochastic programming, and machine learning to solve the

SCOPF problem [32, 33, 34, 35].

The outputs of such methods include the optimal (or approximately optimal) values of the pre-

contingency operating variables and possibly feasible values for the post-contingency variables for

each contingency. The major drawback is that the post-contingency variables are not optimized

with respect to each corresponding contingency configuration to minimize the violation of the

constraints in case there is no feasible operating point. Currently, there is a rather limited litera-

ture that attempts to optimize the post-contingency settings. In the classic work [21], the optimal

post-contingency actions were modelled as sub-problems and explicitly included in the SCOPF

formulation. In order to overcome the complexity of this two-level optimization problem, an algo-

rithm based on Bender’s decomposition was developed, for which convergence is not guaranteed for

general nonconvex problems. More recently, the work in [36] proposed an approach to determine

an optimal combination of preventive and corrective actions taking into the account the system

dynamics, while [37] introduced a hybrid computational strategy to solve the pre-contingency and

post-contingency OPF problems. To the best of our knowledge, none of the previous works have

ventured into finding the global optimum of each of the post-contingency OPF problems (from here

on called ‘contingency-OPF’), mainly because applying a computationally burdensome algorithm

(such as SDP) to each of the contingency scenarios is unrealistic.

Nevertheless, it is important to find a globally optimal solution because local solutions can

be much more costly. In this paper, we develop a computationally efficient homotopy method to

improve the quality of the contingency-OPF solution. Constraint violations in the case of a contin-

gency are very expensive to deal with, and under our formulation, a global solution corresponds to

the minimum violation. Instead of solving for the solution to a contingency-OPF problem directly,

we generate and solve (using local search algorithms) a series of intermediate optimization prob-

lems wherein we gradually remove a set of components of the power system. We show that the

effectiveness of homotopy to find a global solution of the contingency-OPF problem is dependent

on the homotopy path, and therefore, we characterize desirable homotopy paths. In doing so, we

prove that the contingency-OPF generically has a unique global minimum. Furthermore, we prove

that the complexity of implementing such homotopy scheme is on the order of solving O(log(1/ε))

convex quadratic optimization problems.
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The remainder of the paper is organized as follows. In Section 2, we provide a literature review

on homotopy methods and explain how it relates to our approach. In Section 3, we present the

formulation of the two-stage Security-constrained Optimal Power Flow that can be decomposed

into the base-OPF and contingency-OPF. Next, in Section 4, we introduce the homotopy method

that connects contingency-OPF to base-OPF via parametrization. In Section 5, we develop theo-

retical results to characterize cases when homotopy will lead to a global solution of the deformed

problem. Finally, in Section 6 we implement the homotopy method on actual test cases and verify

its effectiveness. The proofs and additional simulation results appear in the Appendix.

1.1. Notations

The symbol RN denotes the space of N -dimensional real vectors and (·)T denotes the transpose of

a matrix. Re{·} and Im{·} denote the real and imaginary parts of a given scalar or matrix. The

symbol | · | is the absolute value operator if the argument is a scalar, vector, or matrix; otherwise, it

is the cardinality of a measurable set. Given a function f(x, ·), ∇xf(x, ·) and ∇2
xf(x, ·) denote the

Jacobian and Hessian of f with respect to x, respectively. The symbol � denotes the elementwise

multiplication between two vectors. Let 1n and 0n denote the n-dimensional vectors of ones and

zeros, respectively. Furthermore, 1kn denotes an n-dimensional vector of ones except for the k-th

element that is zero. The imaginary unit is denoted by j =
√
−1. Let the power network be defined

by a graph G(V,E), where V is the node set and E is the edge set. For notational simplicity, we

assume that there is one generator at each node, but this formulation is easily generalizable to the

case when there are multiple generators at each node (the case with no generator at a bus can be

modeled by setting the upper and lower bounds on generation to zero). Each node i ∈ V has an

associated complex voltage vi, a fixed demand P d
i + jQd

i , and an unknown generation pgi + jqgi , and

we assume that the nodal shunt admittance is zero. The complex voltage vi can be expressed in

polar form, vi = |vi|ejθi , where |vi| and θi denote the voltage magnitude and phase angle at bus i,

respectively. With a slight abuse of notation, |v| denotes the vector of all voltage magnitudes. In

addition, we define θij = θi− θj. The set of neighboring nodes of node i is denoted by N (i). Each

line connecting two nodes i and j is represented by a standard Π-model with a series admittance

yij = gij + jbij and a shunt admittance ysh
ij = gsh

ij + jbsh
ij . Then, the nodal admittance matrix Y is

defined as

Yij =


∑

k∈N (i) yik + 1
2
ysh
ik for j = i

−yij for j ∈N (i)

0 otherwise

(1)

whose (i, j) element is denoted as Yij = Gij + jBij. Finally, pij and qij are the real and reactive

power flows from bus i to j, respectively.
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2. Homotopy for Optimization

Homotopy methods have been used to improve the convergence of optimization problems. The

benefit of homotopy methods compared to other iterative methods is that homotopy methods may

yield global rather than local convergence. These methods are most useful for problems where

convergence to a global solution is heavily dependent on a good initial point, which can be hard to

obtain. More recently, probability-one homotopy methods have been applied to solving optimization

problems, such as optimal control [38, 39] and statistical learning [40]. Typically, the homotopy

methods in optimization focus on parametrizing the first-order optimality conditions [41, 42] or

the objective function ([43, 44]). Homotopy methods have also been applied in the field of power

systems, primarily to solve the power flow (PF) problem for cases that do not converge [45, 46, 47,

48, 49].

While convergence to a global minimum with probability one is guaranteed for a convex opti-

mization problem [43], this is generally not true for nonconvex problems. In order to understand

when homotopy can be effective in finding a global solution for nonconvex optimization, we explore

a minimization problem of the form: minx f(x) where f : Rn → R is a nonconvex function of

x ∈ Rn. This problem is named (P o). Note that the function f(·) can incorporate exact/inexact

penalty functions to enforce constraints on x, implying that this formulation is general for both

unconstrained and constrained optimization [50]. We refer to (P o) as the “base-case” problem. A

deformed version of the base-case, which is also a nonconvex minimization problem, is denoted by

(P f ) and defined as minx f̃(x). For our application, (P o) corresponds to the base-OPF problem

and (P f ) corresponds to the contingency-OPF problem (the definition of these two problems are

provided in the next section). We consider two possible methods for solving the deformed problem

that are based on local search algorithms:

a) One-shot method: Use the solution of P o as the initial point for any descent numerical algo-

rithm to solve P f .

b) Homotopy method: Generate a (discretized) homotopy map from P o to P f . Use the solution of

P o as the initial point, but update it at each step of the homotopy by solving an intermediate

problem using local search that is initialized at the solution of the previous step. A linear (non-

discretized) homotopy map can be defined as: P (λ) = minx

{
λf̃(x) + (1−λ)f(x)

}
, 0≤ λ≤ 1,

with the property that P (0) = P o and P (1) = P f .

Depending on f(x) and f̃(x), homotopy may or may not lead to better results than solving

the deformed problem in one shot. In Figure 1, we see an example where homotopy is effective

in finding the global minimum of a deformed problem and another example where it leads to

a non-global local minimum. Knowing when homotopy will be effective is highly dependent on
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Figure 1 Evaluating the performance of homotopy on one-dimensional unconstrained minimization problems.

The figure compares two different samples (1) and (2), with two different methods (a) and (b). The

dotted lines show how the solution from the previous iteration is used in local search algorithms to solve

the next problem. The red dots show the solution at each iteration using the position of the dotted

lines as the initial point. For the one-shot method (a), the solution of P o is used as the initial point

for P f . For the homotopy method (b), the base problem P o is gradually transformed to P f over three

iterations, updating the initial point as the solution to the previous problem.

understanding how the shape of the function changes from the base-case to the deformed problem.

In the current literature, there is a lack of theoretical results to characterize the performance of

homotopy in finding a global optimum. While [43] presents algorithms that make use of homotopy

to solve nonconvex, unconstrained minimization problems, these algorithms are similar to other

stochastic search methods in that they do not guarantee convergence to the global minimum.

3. Formulation of Two-stage Security-constrained Optimal Power Flow

In this section, we present the mathematical formulation of the two-stage security-constrained OPF

which is decomposed into the base-OPF and the contingency-OPF. The base-OPF resembles the

conventional SCOPF that finds a base-case operational point which is robust against potential

contingencies. The contingency-OPF focuses on a single contingency and attempts to find an

adjusted operating point that minimizes constraint violations.

3.1. Base-case Optimal Power Flow

Recall that the classic optimal power flow problem (without security considerations) minimizes

operating costs subject to technical limits, such as the power flow equations and explicit bounds

on variables. The decision variables x= (|v|, θ, pg, qg)∈R4|V| represent the vector of voltage magni-

tudes, voltage phase angles, real power generations and reactive power generations, corresponding

to the pre-contingency base-case configuration of the network.
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Now, suppose that there is a set of possible contingencies, namely K, where each contingency

corresponds to a line or generator outage. Each contingency k ∈ K introduces a new set of vari-

ables xk, and therefore, for a network with |V| buses and |K| contingencies, the SCOPF problem

will involve optimizing over 4|V|(|K|+ 1) scalar variables. The contingencies also add operational

constraints of their own. In addition, there are physical limitations on how the post-contingency

network can adapt from the base-case, and these limits are added as constraints that are functions

of the base-case variables.

Since this extremely high-dimensional problem is cumbersome to solve, in practice the contin-

gency constraints are approximated via methods such as LODF and PTDF [51]. In essence, this

approximates the contingency variable xk as a function of the base-case variable x. Therefore, post-

contingency equality constraints for contingency k are approximated by a composite function of

the form hk(x), tk(ak(x)), where ak(x) represents the control actions that are taken in the event

of a contingency. The same goes for post-contingency inequality constraints, represented by gk(x).

Finally, another important consideration is how SCOPF performs when the problem is infeasi-

ble. Therefore, we model some operational limits using soft constraints with extra variables that

capture the amount of violation. The objective function that is minimized is the sum of real power

generation costs in the base-case as well as a weighted sum of equality constraint violation penalties

in the contingencies. The standard optimization form is presented below:

[ base-OPF ] min
x,{σk}

f(x) +

|K|∑
k=1

φk(σk)

s.t. h(x) = 0, g(x)≤ 0

hk(x) = σk, gk(x)≤ 0, ∀k ∈ {1, . . . , |K|}

(2)

where φk(·) represents the penalty functions for the violations. We denote this problem as the

base-OPF.

3.2. Post-contingency Optimal Power Flow

The base-OPF solves for the base-case operating point by taking into account the possible failures

in the network. In the process, it approximates the relationship between the contingency operation

point xk and the base-case operating point x. However, it does not actually solve for the optimal

xk’s. Therefore, for each contingency we propose to solve a contingency-OPF problem to find the

best operating point for the specific contingency scenario, given the base solution.

We model a contingency, such as a line or generator outage, by changing the system parameters

from their base values. For example, a line outage physically means that power cannot flow over that

connection, which can be modeled by setting the resistance of the line to infinity or its conductance
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to zero. In the event of a line outage, the power is re-routed through other paths and therefore the

amount of loss in the system changes. However, the difference in loss is small enough such that

there is often no need for additional participation from other generators, unlike in the scenario of

a generator outage. Therefore, we fix the real power generation to be equal to the base-case values

and solve for the remaining variables such that the violations for the bus balance equations are

small and spread out as much as possible (note that the proposed method can handle generator

participation, if needed). This is because a large concentrated violation in a few buses can result

in serious issues for the power network, whereas small power mismatches can be taken care of by

real-time feedback controllers. Taking these into consideration, each contingency-OPF under study

is given as

min
|v|,θ,qg ,σp,σq

φ(σp, σq)

s.t. P g
i −

|V|∑
j=1

|vi||vj|
(
G̃ij cosθij + B̃ij sinθij

)
= P d

i +σpi ∀i∈ V

qgi −
|V|∑
j=1

|vi||vj|
(
G̃ij sinθij − B̃ij cosθij

)
=Qd

i +σqi ∀i∈ V

|vi|= |vi|base ∀i∈ V \Vq

Qmin
i ≤ qgi ≤Qmax

i ∀i∈ V

V min
i ≤ |vi| ≤ V max

i ∀i∈ Vq

|θi− θj| ≤Θmax
ij ∀(i, j)∈ E

(3)

Here, Vq is the set of buses that hit their upper or lower reactive power generation bounds in the

base-case, and |vi|base is the voltage magnitude of bus i in the base-case. The notations G̃ij and B̃ij

reflect the potential change in the admittance matrix from the base-case values Yij =Gij + jBij.

Note that real power generation is now a fixed parameter obtained from a solution of the base-OPF

and therefore has been denoted by capital P g. In the above formulation, constraints on the power

flow over transmission lines are modeled as constraints on the angle differences between buses,

which is a common practice [12]. However, the proposed method is general and can accommodate

other types of line flow constraints.

For generator outage contingencies, there is an additional aspect to consider. A generator outage

corresponds to setting the real power generation at that generator to zero. However, in order to

compensate for the lost generation, the system operator needs to increase the power generation at

other generators that participate in the outage response. The above framework is general enough to

incorporate this difference: simply set P g = P g,f and G̃ij =Gij, B̃ij =Bij for all (i, j)∈ E , where P g,f
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is the new setpoint for the real power generation. Denoting x= [|v|, θ, qg, σp, σq] as the combined

variable, contingency-OPF in a standard optimization form would be:

[ contingency-OPF ] min
x

f(x)

s.t. h(x) = 0, g(x)≤ 0
(4)

Note that f(·) is not the same objective function used for the base-OPF but merely a simpli-

fied notation for φ(σp, σq). With no loss of generality, we focus on the case when φ(σp, σq) =∑
i{c

p
i (σ

p
i )

2 + cqi (σ
q
i )

2}, where cpi and cpi are cost coefficients. Similarly, h(·) is the not the same as

the constraint functions used for the base-OPF.

If the optimal objective value of the contingency-OPF is zero, it means that the solution of

the base-case could be modified to stay feasible in case of the contingency. However, the primary

focus of this paper is on hard instances with a nonzero optimal cost, meaning that some of the

constraints must be violated to accommodate the outage. In these cases, since taking corrective

actions to deal with nodal power violations is expensive, it is essential to find a global solution.

4. Methods

In the following subsections, we present a homotopy method that parametrizes the contingency-

OPF to model a gradual line or a generator outage.

4.1. Homotopy Method for a Line Outage

In order to solve the contingency-OPF problem, we propose a homotopy method that gradually

changes certain parameters of the problem from the base-OPF, rather than abruptly changing

the structure of the network. For a line outage contingency, we introduce an aggregate homotopy

parameter λ = [γ,β, γsh, βsh] corresponding to the series admittance and the shunt admittance,

where γ,β, γsh, βsh ∈R|E|. To be more precise, we parametrize the admittance in the contingency-

OPF as follows:
yij(λ) = gijγij + jbijβij ∀(i, j)∈ E (5a)

ysh
ij (λ) = gsh

ij γ
sh
ij + jbsh

ij β
sh
ij ∀(i, j)∈ E (5b)

which creates a family of OPF problems, named Hλ, written in the standard form of:[
homotopy-OPF

Hλ

] min
x

f(x,λ)

s.t. h(x,λ) = 0, g(x,λ)≤ 0
(6)

Now, let `∈ E be a line that connects buses i and j, and consider a contingency scenario in which

the line ` is out. Notice that λo = [1|E|,1|E|,1|E|,1|E|] corresponds to the original network before

the line outage, and λf = [1`|E|,1
`
|E|,1

`
|E|,1

`
|E|] corresponds to the post-contingency network after the

line outage. By varying λ from λo to λf , the homotopy map allows us to create fictitious power

networks that constitute a series of intermediate OPF problems.



10

4.2. Homotopy Method for a Generator Outage

For a generator outage, our proposed homotopy map gradually decreases the real power generation

at the generators that are out and gradually increases the real power generation at the generators

participating in the contingency response. For the simplicity of presentation, consider contingencies

associated with a single generator (generator k) outage. This is common practice in power systems

and is referred to as the N−1 criterion. Yet, note that the proposed method can easily be extended

to multiple generator outages and is incorporated in Algorithm 2.

Let P g,o ∈R|V| be the real power generated at all generators in the base-case. Using the partic-

ipation factors of generators that are still active in the contingency, we can compute P g,f ∈ R|V|,

the real power generated at all generators after the contingency. Since generator k is down in

this contingency scenario, P g,f
k = 0. One possible method to choose the participation factors that

determine P g,f is provided in the Appendix. Similar to what we did for line outage contingencies,

we introduce an aggregate homotopy parameter λ= [γ,β] with γ,β ∈R|V| to create the following

homotopy map:

P g(γ) = P g,o� γ+P g,f � (1|V|− γ) (7a)

Qd(β) =Qd,o�β+Qd,f � (1|V|−β) (7b)

Focusing on the first equation where we parametrize the real power generation, notice that

λo = [1|V|,1|V|] corresponds to the original network before the generator outage, and λf = [0|V|,0|V|]

corresponds to the post-contingency network after the generator outage. By varying λ from λo to

λf , the homotopy map allows us to trace a gradual generator outage. Equation (7b) parametrizes

the reactive power demand, and we will set the value Qd,f 'Qd,o. Although the justification for this

extra parametrization is not clear for the moment, we will explain later that the parametrization

needs to be of high enough dimension in order for the homotopy method to be effective. The series

of homotopy problems have the same form as those for the line outage, given by Equation (6).

4.3. Implementation of Homotopy-OPF

The global minimum of the base-OPF is also a global minimum of Hλo because at λ = λo, the

parameters of the homotopy-OPF corresponds to the pre-contingency network, for which the vio-

lations are zero. Starting with a solution to the base-OPF, we aim to iteratively solve a series of

homotopy-OPF problems along a path of λ to eventually arrive at the contingency-OPF. Our imple-

mentation of solving a series of homotopy-OPF, as presented in the previous section, can be viewed

as a one-parametric optimization problem by defining f̃(x, t) = f(x,λ(t)), h̃(x, t) = h(x,λ(t)) and

g̃(x, t) = g(x,λ(t)), where λ(t) is a continuous function in t such that λ(0) = λo and λ(1) = λf . The

trajectory of λ’s tracing from λ(0) to λ(1) is called the homotopy path. Then, the problem reduces
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to solving the following problem for a suitable discretized partition of t in the range [0,1], namely

0 = t1 ≤ t2 ≤ · · · ≤ tT = 1:[
homotopy-OPF

Ht

] min
x

f̃(x, t)

s.t. h̃(x, t) = 0, g̃(x, t)≤ 0
(8)

We make the following assumptions for the development of the results of this section:

(A1) There exists a continuous function x∗(t) : [0,1]→ R5|V| such that x∗(t) is a global minimizer

for Ht. Moreover, x∗(0) is unique and known.

(A2) There exists a neighborhood U of {(x∗(t), t)} ⊂ R5|V| × [0,1] such that for all (x, t) ∈ U , the

functions f̃ and h̃ are twice continuously differentiable with respect to x.

(A3) Linear independence constraint qualification (LICQ) and strong second-order sufficient con-

ditions (SSOC) are satisfied at x∗(t) for every t∈ [0,1].

Note that the discretization of homotopy path can also be represented by the set Λ := {Λ1, . . . ,ΛT},
where Λi = λ(ti) for i = 1, . . . , T , Λ1 = λ(t1) = λo and ΛT = λ(tT ) = λf . In other words, Hti =

HΛi . The SSOC is similar to the second-order sufficient conditions for local optimality but with

the addition of the strict complementary slackness condition and the linear independence of the

active constraints [52]. Furthermore, Assumptions (A2) and (A3) together imply that the Lagrange

multipliers associated with x∗(t) are uniquely determined for every t ∈ [0,1]. We will later discuss

that these assumptions are mild.

To begin, the first homotopy-OPF problem Ht1 is initialized as the solution to the base-OPF

problem. The series of homotopy-OPF problems are then solved sequentially, where the solution to

the previous homotopy-OPF problem Hti is utilized as the initial point for a local search algorithm

solving Hti+1 . Please refer to Algorithms 1 and 2 for complete details of the method.

In this paper, we assume that the base-OPF has a unique global minimum that is available

(known). The availability of a global minimum is a reasonable assumption because a good initial

point is usually provided for the base-OPF, and also because more time is allocated to solving it

compared to a large number of contingency-OPF problems for different outages, allowing the use

of various convex relaxation techniques for the base-OPF. If the optimal violation cost for Hλo is

nonzero, the global minimum will be unique with overwhelming probability. Furthermore, even if

the violation cost is zero, it will immediately become nonzero during the next homotopy iteration

if removing a line or generator introduces inflexibilities that the network cannot accommodate. In

fact, these near-infeasible problems where a contingency will make the system “stressed” are the

cases where homotopy can be useful and are the focus of this paper. Later in the paper, we will

present a rigorous result showing that the uniqueness of the global minimum is a generic property

for Hλ.
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Algorithm 1 Homotopy-OPF for Line Outages

Given: Contingency set K with line outages Lk ⊂E for each k ∈K

Initialize: Solve base-OPF problem to find a globally optimal solution (|v|∗, θ∗, pg∗, qg∗ ,{σk∗}).

Formulate the contingency-OPF problem:

1. Fix real power generation to base-case solution: P g := pg∗

2. Find Vq based on qg∗ .

for k ∈K do

Set up homotopy-OPF family HΛ for given line outages Lk.

Initialize (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) as the solution of base-OPF.

for i∈ {1, ..., T} do

Solve HΛi using initial point (|ṽ|, θ̃, q̃g, σ̃p, σ̃q), and obtain new solution (|v|, θ, qg, σp, σq).

Update (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|, θ, qg, σp, σq)

end for

Return (|v|, θ, qg, σp, σq) and violation cost φ(σp, σq).

end for

5. Analysis of Homotopy Paths

In Section 2, we offered two examples of nonconvex optimization: one in which the homotopy

method resulted in the global minimum and another in which the homotopy method resulted in a

non-global local minimum (see Figure 1). In this section, we describe a theoretical framework that

describes when homotopy can be used to obtain a global minimum. We apply this framework to

analyze the performance of homotopy-OPF in finding the global solution of the contingency-OPF.

The results developed in this section have implications for homotopy methods in a broad range of

optimization problems.

Theorem 1. Let x̄(ti, z) denote the stationary point of Hti that a local search algorithm converges

to when initialized at point z. Set z1 = x∗(t1) := x∗(0) and consider the sequence of points {x(ti)}Ti=1

generated by the following update rule:

x(ti) = x̄(ti, zi) (9)

zi+1 = x(ti) (10)

Moreover, define ∆t := supi=1,...,T−1(ti+1 − ti). Under Assumptions (A1), (A2) and (A3), a suffi-

ciently small ∆t will ensure that x(ti) is a global minimizer of Hti for i= 1, . . . , T .

Theorem 1 states that if we can solve each Ht exactly, then a sufficiently small stepsize in the

parameter t (or equivalently λ) can track the global minimizer from the base-OPF all the way

to the contingency-OPF. However, an exact solution to each Ht (or equivalently Hλ) is generally
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Algorithm 2 Homotopy-OPF for Generator Outages

Given: Contingency set K with generator outages Rk ⊂V for each k ∈K

Initialize: Solve base-OPF problem to find a globally optimal solution (|v|∗, θ∗, pg∗, qg∗ ,{σk∗}).

for k ∈K do

Formulate the contingency-OPF problem:

Define P g
r as the fixed real power generation at r ∈ V

Define ∆P g
k as the total lost real power generation at k: ∆P g

k :=
∑

r∈Rk
pg∗,r

1. Find Vq.

2. Remove real power generation for generators in Rk: P
g
r ← 0 ∀r ∈Rk

3. Compute participation factors αgr for r ∈ V \Rk (see Algorithm 3 in the Appendix)

4. Add real power generation for participating generators:

for r ∈ V \Rk do

if αgr > 0 then

P g
r ←max{αgr∆P

g
k , P

max
r − pg∗,r}

end if

end for

Set up homotopy-OPF family HΛ for given generator outages Rk.

Let P g,o := pg∗ and P g,f := P g

Initialize (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) as the solution of base-OPF.

for i∈ {1, ..., T} do

Solve HΛi using initial point (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) and obtain new solution (|v|, θ, qg, σp, σq)

Update (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|, θ, qg, σp, σq)

end for

Return (|v|, θ, qg, σp, σq) and violation cost φ(σp, σq)

end for

unattainable in practice. Furthermore, the interplay between the accuracy of solving each Ht and

the number of discretization contribute to the overall complexity of solving homotopy-OPF. We

will show that it suffices to find an approximate solution with not a necessarily high accuracy. This

will significantly reduce the complexity of solving the parametric homotopy-OPF.

5.1. Convergence and Complexity of Homotopy-OPF

In this subsection, we analyze the complexity of solving the contingency-OPF using the proposed

homotopy method. The results here are based on a specific local search algorithm called Wilson’s

method. However, there are many other methods, such as Robinson’s method, that can achieve the

same results [53]. Let µ and ζ denote the Lagrange multipliers for the constraints h̃(x, t) = 0 and
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g̃(x, t)≤ 0, respectively. For every instance of Ht, we determine a local minimizer and its Lagrange

multipliers, w(t) = (x(t), µ(t), ζ(t)) by using the following Wilson’s method: Start with an initial

point w0, and solve the optimization problem W (wk, t) in order to find the next iterate wk+1 for

k ∈ {0,1,2, . . .}, where the problem W (wk, t) is defined below.

W (wk, t) : min
x

∇xf̃(xk, t)T (x−xk) +
1

2
(x−xk)T∇2

xL̃(wk, t)(x−xk) (11a)

s.t. h̃i(x
k, t) +∇xh̃i(xk, t)T (x−xk) = 0, ∀i∈ I (11b)

g̃j(x
k, t) +∇xg̃j(xk, t)T (x−xk)≤ 0, ∀j ∈J (11c)

where I and J denote the set of indices for the equality constraints and inequality constraints,

respectively, and L̃(wk, t) = f̃(xk, t)+
∑

i µ
k
i h̃i(x

k, t)+
∑

i ζ
k
i g̃i(x

k, t). Furthermore, let a global min-

imizer of Ht and its corresponding Lagrange multipliers be denoted by w∗(t) = (x∗(t), µ∗(t), ζ∗(t)).

In this problem, we solve for the optimization variable x and the Lagrange multipliers associated

with (11b) and (11c) to be able to find a primal-dual solution. Let us define the function ŵ(wk, t)

as the exact solution to W (wk, t). Then, wk+1 numerically approximates ŵ(wk, t). The process is

repeated for increasing values of k until a predefined criteria is met, and the final iterate of {wk}
is returned as an approximate solution to w(t).

Theorem 2. Suppose that Assumptions (A1), (A2) and (A3) hold. Consider the following algo-

rithm for a constant number M : Given w0 = w∗(t1) := (x∗(t1), µ∗(t1), ζ∗(t1)), compute wi as the

solution to Hti using M Wilson’s iterations starting at wi−1 for i= 1, . . . , T . There exist positive

constants r̂ and ∆t such that for every sufficiently small ε > 0, the algorithm generates points

{w′
i}Ti=1 with ‖w′

i−w∗(ti)‖< ε whenever ti+1− ti ≤∆t for i= 1,2, . . . , T , provided that M is chosen

to be larger than log (r̂/ε). In particular, the Wilson complexity (total number of Wilson steps) of

finding an almost globally optimal solution with ε error for HtT is O(log(1/ε)).

The above theorem implies that given a global minimizer for the initial problem Ht1 , we can

simply solve a small number of convex quadratic programs for each Hti and keep track of its

global minimizers. In particular, the quadratic program (11) is convex because the SSOC holds

at the global minimizers. Furthermore, the number of parameter discretizations needed is upper

bounded by a constant for small values of ε. This result is aligned with the complexity analysis of

interior-point methods [54]. More insight is provided in the proof.

Remark 1. Our assumptions imply that Ht along λ(t) has a unique global solution satisfying

SSOC. In the next subsection, we argue that this is a reasonable assumption to make. In addition,

this assumption on the global solution can be replaced by the “connectivity” of the set of all global

solutions (this allows having infinitely many possible solutions for post-contingency OPF with zero

violation cost). In what follows, we show that the uniqueness of the global minimum is a generic

property for Ht.
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5.2. Genericity of Unique Global Minimizer with SSOC

Recall that a set S ⊂ Rn has (Lebesgue) measure zero if for every ε > 0, S can be covered by a

countable union of n-cubes, the sum of whose measures is less than ε. A property that holds except

on a subset whose Lebesgue measure is zero is said to be satisfied generically or hold for almost all.

In this subsection, we will show that the homotopy-OPF generically has a unique global minimizer

that satisfies SSOC .

Consider the following family of problems, which adds a linear perturbation to the objective of

the homotopy-OPF:

[
Hλ,ω

] min
x∈Ψ

f(x,λ) +ωTx

s.t. h(x,λ) = 0
(12)

where f : R5|V| × R`→ R, h : R5|V| × R`→ R2|V| are smooth functions and the parameters (λ,ω)

belong to an open set U⊂R`×R5|V|. The set Ψ⊂R5|V| is defined as below:

Ψ =

{
(|v|, θ, qg, σp, σq)

∣∣∣∣∣
Qmin

i ≤qgi ≤Q
max
i ∀i∈V

Vmin
i ≤|vi|≤Vmax

i ∀i∈Vq

|θi−θj |≤Θmax
ij ∀(i,j)∈E

|vi|=|vi|base ∀i∈V\Vq

}
(13)

This formulation is possible by noticing that the inequality constraints of homotopy-OPF are inde-

pendent of the parameter λ. We call this problem the extended homotopy-OPF. Here, ` represents

the dimension of the parameter λ, which can be equal to either 4|E| (for line contingencies) or 2|V|

(for generator contingencies). Then, using the results from [52], we can easily derive the following

lemma:

Lemma 1. Suppose that the following two conditions are satisfied:

1. The function λ→ h(x,λ) is of full rank 2|V| for all x∈Ψ at every λ 1.

2. The set Ψ is a cyrtohedron and the set U is an open set.

Then, for almost all (λ,ω) except those in a set U′ ⊂U of measure zero, Hλ,ω has a unique global

minimizer satisfying SSOC. In fact, for every (λ,ω)∈U\U′, Hλ,ω cannot achieve the same objective

value at any two distinct critical points.

The concept of a cyrtohedra was first introduced in [55] and it captures a class of sets whose

boundaries are a union of countably many smooth manifolds pieced together. A few main examples

of cyrtohedra include polyhedral convex sets, submanifolds, submanifolds with boundaries, and

manifolds with corners. In our case, the set Ψ is naturally a cyrtohedra and therefore we only have

to verify the first condition. The next lemma proves that the condition can be easily verified for

the line outage contingency.

1 The rank of a differentiable mapping is the rank of its Jacobian.
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Lemma 2. Define the matrix J =

[
J1 0
0 J2

]
∈R2|E|×2|V| as

J1
(i,j),k =

{
− 1

2
gshij |vk|2 for k= i or j, j ∈N (i)

0 otherwise

J2
(i,j),k =

{
1
2
bshij |vk|2 for k= i or j, j ∈N (i)

0 otherwise

where the column and row indices represent the lines and the nodes of the power system, respectively.

If J has full column rank, then the function λ→ h(x,λ) associated with the line outage homotopy

method is of full rank 2|V|.

A similar result holds for generator outage contingencies, as shown below.

Lemma 3. Define the matrix M =

[
M 1 0
0 M 2

]
∈R2|V|×2|V| as

M 1
i,j =

{
P g,o
i −P

g,f
i for j = i

0 otherwise

M 2
i,j =

{
Qd,o
i −Q

d,f
i for j = i

0 otherwise

where both the column and row indices represent the nodes of the power system network. If M has

full rank, then the function λ→ h(x,λ) associated with the generator outage homotopy method is

of full rank 2|V|.

The result implies that the first condition of Lemma 1 is satisfied if: (i) the pre-contingency

real power generations and the post-contingency real power generations are different and (ii) the

pre-contingency reactive power demands and the post-contingency reactive power demands are

different. Note that this does not necessarily hold true because some real power generations are

supposed to be fixed even after the contingency (same for reactive power demand). However, we

can address this issue by allowing P g,f
i (Qd,f

i ) to take on a value within a small interval around

P g,o
i (Qd,o

i ) whenever we want the two values to be close to each other.

Note that the linear perturbation term in Hλ,ω is a mathematically necessary device that allows

us to prove generic uniqueness of a family of nonlinear optimization problems. Ultimately, we will

only consider very small perturbations so that Hλ,ω closely resembles Hλ. Using the lemmas above,

we arrive at the following corollary:

Corollary 1. Let U(δ) = {(λ,ω) | λ∈ S, ω ∈B(δ)}, where S is an open set such that [0,1]m ⊂ S
and B(δ) is an open n-dimensional ball around the origin with radius δ. Suppose that J and M

have full column rank. Then, for every δ > 0, Hλ,ω has a unique global minimizer satisfying SSOC

for all (λ,ω)∈U(δ) \U′(δ), where U′(δ)⊂U(δ) is of measure zero.

In other words, the uniqueness of a global minimizer satisfying SSOC is a generic property of Hλ,

and thus supporting the assumptions made in this paper (specifically Assumptions (A1) and (A3)).
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Figure 2 An example of the set U′ (blue) and an effective homotopy path (red) that can reach the origin without

passing through a point in U′.

5.3. Geometry of the homotopy path: Two-bus example

In order to illustrate the previous ideas, we consider a simple homotopy-OPF example on a two-bus

system. The line connecting the two buses has the admittance y=Gγ− jBβ, and there is a lower

bound Qmin on the reactive power injections at both buses. In this two-bus example, we consider

the objective function (σp1)2 + c(σp2)2. Furthermore, assume that:

1. |v1|= |v2|= 1

2. −∆′ ≤ θ1− θ2 ≤∆′

3. 0<Qmin < q(∆′)

where ∆′ = tan−1(Bβ/Gγ) and q(·) denotes the reactive power injection as a function of solely the

angle difference, which is due to the fact that voltage magnitudes are fixed. Note that the second

constraint on the angle difference is reasonable for the secure operation of power systems and is

also used in [11] in order to restrict the two-bus real power injection region to be the Pareto front

of the original feasible region. Geometrically, the feasible set of the two-bus injection region is the

Pareto front of an ellipse, which is partially removed due to the reactive power constraints (the

details can be found in [11]). Let P g,b
i denote the real power generation at bus i obtained from the

base-OPF solution. The following lemma characterizes the set of homotopy parameters for which

there are at least two global solutions.

Lemma 4. Denote α = cos−1
(
−Qmin+Bβ

|y|

)
, and define two polynomial functions of λ = (γ,β) as

follows:

Ω1(γ,β) =
2Bβ

|y|
(
Bβ · sinα+α ·Gγ

)
(14)

Ω2(γ,β) = 2Gγ− 2Gγ

|y|
(
−Gγ · sinα+α ·Bβ

)
(15)



18

Then, the set of parameters leading to multiple global minimizers, U′, can be characterized as:

U′ = {λ∈R2 | (1− c) ·Ω1(γ,β) ·Ω2(γ,β)

− 2(P g,b
1 −P d

1 ) ·Ω1(γ,β) + 2c(P g,b
2 −P d

2 ) ·Ω1(γ,β) = 0}
(16)

The set U′ in Lemma 4 for a particular instance of the example is depicted in Figure 2. As we can

observe, U′ is a measure zero set in the two-dimensional parameter space, and it is possible to design

an effective homotopy path. Note that the linear perturbation term in Hλ,ω is a mathematical

device used to prove generic uniqueness of the global minimizer for a family of problems. The

characterization of U′ in Lemma 4 did not require the linear perturbation. However, this means

that particular instances of the example may not lead to the result that we desire. For instance, if

c= 1 and P g,b
1 −P d

1 = P g,b
2 −P d

2 in the above example, U′ is no longer a measure-zero set.

6. Simulations

In this section, we numerically evaluate different homotopy paths and discretizations. We present

simulations of different line and generator outage scenarios on various networks. The results from

these simulations are consistent with the notion that the final violation cost is heavily dependent

on the choice of the homotopy path.

In these simulations, we consider N − 1 contingencies wherein there is one line or generator out

as well as N − 2 and N − 3 contingencies wherein there are multiple outages. Although N − 1

contingencies occur more frequently in practice, N − 2 and N − 3 contingencies are catastrophic

events that are worth considering as they are harder to correct. Extreme weather events, attacks,

or component aging could cause these N − k (where k ≥ 2) contingency scenarios to occur [56].

Adding uncertain renewable energy sources such as wind energy to power networks increases the

probability of correlated faults and thus the possibility of N − 2 and N − 3 contingencies [57].

Additionally, these multi-contingency scenarios can capture cascading failures that occur in a short

window where corrective action is not possible between contingencies [57].

In order to implement the contingency-OPF using the MATPOWER format [58], we introduce

virtual generators that model the violations of real and reactive power balances at all nodes after

an outage occurs. These violations are penalized in a modified objective function. The benefit of

this formulation is that there always exists a feasible solution to contingency-OPF. By adding

power generation flexibility with virtual generators, we aim to find a feasible point (equivalent to a

zero objective value) or an infeasible point for the network but with the minimum violations (such

solutions could yet be implemented via corrective actions taken by real-time feedback controllers).

To solve each of the homotopy simulations, we use the MATPOWER Interior Point Solver (MIPS)

[59].

For the line outages, we consider three different homotopy paths. If we take the line connecting

buses i and j to be out, then the three homotopy paths are given by:
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Figure 3 Performance of proposed homotopy method on the 3120-bus Polish network (case3120sp with real and

reactive power demand scaled up by 10%) with a multiple line outages. Homotopy schemes 1 through

3 are tested with 10 iterations. By introducing multiple line outages, we make the contingency-OPF

problem more difficult to solve, which makes it a good candidate for the proposed homotopy method.

In the left figure, the IDs of the outed lines are 31 and 32, and in the right figure, the IDs of the outed

lines are 438, 439, and 3150.

Figure 4 Performance of proposed homotopy method on the 3120-bus Polish network (case3120sp with original

real and reactive power demand) with a single line outage (line out ID: 1602). Homotopy schemes 1

through 3 are tested with 10 iterations. In this example, homotopy schemes 1 and 2 result in an objective

value higher than that obtained by the one-shot method, while the third homotopy scheme outperforms

the one-shot method.

• Scheme 1: Uniformly decrease (γij, βij) from (1,1)→ (0,0)

• Scheme 2: Decrease γij from 1→ 0, then βij from 1→ 0

• Scheme 3: Decrease βij from 1→ 0, then γij from 1→ 0

These schemes can be applied to multiple line outages by simultaneously modifying γij and

βij for each line (i, j) ∈ E that is out. For line outage scenarios on the 3120-bus Polish network,

Figures 3 and 4 show the evolution of the violation cost over these homotopy schemes (with a

10-iteration discretization) compared to the violation cost of the one-shot method [58]. Next, we

consider changing the discretization of homotopy scheme 1 in a line outage scenario. Figure 5 shows

line outage scenarios on the 3012-bus Polish network using homotopy scheme 1 with a varying

number of iterations [58].

For generator outages, we implement a homotopy path that decreases λ from [1|V|,1|V|] to

[0|V|,0|V|] uniformly throughout the iterations. For this homotopy path, we also consider varying
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Figure 5 Performance of proposed homotopy method on the 3012-bus Polish network (case3012wp with real and

reactive power demand scaled up by 8%) with single line outages. Homotopy scheme 1 is tested with

a varying number of homotopy iterations. In the left figure (line out ID: 332), we see a case where

the one-shot and 2-iteration homotopy methods result in much higher objective values than the 5 and

10-iteration homotopy methods. In the right figure (line out ID: 1604), we see a case where the 2, 5,

and 10-iteration homotopy methods result in an objective value much lower than that obtained by the

one-shot method. For this scenario, by introducing even a 2-iteration homotopy scheme we outperform

the one-shot method.

Figure 6 Performance of proposed homotopy method for generator outages. The left figure shows a 2 generator

outage (generator out IDs: 4 and 7) in the 89-bus PEGASE network (case89pegase). The right figure

shows a 1 generator outage (generator out ID: 30) in the 1354-bus PEGASE network (case1354pegase).

the discretization of the path. Figure 6 shows generator outage scenarios on the 89-bus and 1354-

bus PEGASE networks [60, 61]. From these figures, we can see that the final violation cost obtained

using the given homotopy paths can vary significantly depending on the number of iterations (i.e.

∆λ) of homotopy-OPF.

In order to formally compare the performance of homotopy versus the one-shot method, we say

that homotopy “outperforms” the one-shot method if either of the following are true:

1. If the homotopy scheme converges and the one-shot method does not converge.

2. If the homotopy scheme converges to a value that is better than that of the one-shot method

by at least 0.01% of the optimal base-OPF cost.

For the 1354-bus PEGASE network, we tested 1, 2, and 3 line and generator outages, testing

100 simulations of each type of outage. The homotopy paths for these line and generator outages
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Table 1 Percent of simulations where 5-iteration homotopy scheme outperformed one-shot method for 1354-bus

PEGASE network

Type of Base-level 10% greater
contingency power demand power demand
1 line outage 10% 12%
2 line outage 7% 12%
3 line outage 12% 15%

1 generator outage 9% 7%
2 generator outage 10% 9%
3 generator outage 17% 12%

are the same as those described for the simulations in Figures 5 and 6. The percent of simulations

where homotopy outperformed the one-shot method is given in Table 1 for the network with base-

level demand and with demand scaled up by 10%. It can be observed that for the line outage

contingencies, the homotopy methods appear to be more useful when the demand is higher. This is

likely because the increased demand makes the problem harder, and thus homotopy is more useful.

However, the inverse appears true for the generator outage scenarios, i.e. the homotopy methods

appear to be more useful when demand is at the base-level. This could be because the removal of

a generator could lead to many possibilities for operating the post-contingency network in a lower

demand scenario, which may introduce bad local minima.

Although the percent of simulations where homotopy outperforms the one-shot method is less

than 20% for the considered cases, it is important to note that in these cases the homotopy method

can lead to a significant reduction in the violation cost during a contingency scenario. For the cases

where the proposed homotopy method does not outperform the one-shot method, the homotopy

method typically is at least as good as the one-shot method.

7. Conclusions

This paper studies the contingency-OPF problem, which is used to find an optimal operating

point in the case of a line or generator outage. Unlike the base-OPF problem that is a single

optimization problem, there are many contingency-OPF problems that should all be solved in a

short period of time. Recognizing that the contingency-OPF problem is a challenging variant of

the classical OPF problem, we introduce a new homotopy method to find the best solution of the

contingency-OPF problem. This method involves solving a series of intermediate homotopy-OPF

problems using simple local search methods, and we study conditions that guarantee convergence

to a global solution of the contingency-OPF. We perform simulations on real-world networks and

show that the proposed homotopy method can result in a lower value of the objective.
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8. Appendix

8.1. Proof of Theorem 1

Due to the continuity of λ(t), we can equivalently prove that a sufficiently small ∆λ will ensure the

desired result, where ∆λ := supi=1,...,T−1(Λi+1−Λi). Let x∗1 denote the unique global solution satis-

fying SSOC for the problem HΛ1 . Using an argument relying on the implicit function theorem [62],

it follows that for each (x∗1,Λ
1) pair, there exist a neighborhood U1 around Λ1 and a neighborhood

X1 around x∗1, and there is a differentiable function x1(λ) defined for λ∈U1 such that

1. x1(Λ1) = x∗1

2. For each λ∈U1, x1(λ) is the unique point in X1 satisfying the SSOC for Hλ.

Now, suppose that ∆λ is small enough so that Λ2 ∈U1. Then, since x1(λ) is a continuous function

and there is no λ on the path λ(t) = 0 such that Hλ has more than one global minimizer, x1(Λ2)

becomes the unique global minimizer satisfying SSOC for the next OPF problem, HΛ2 . The same

logic can be applied for all Λi, and by induction we have proved the result. �

8.2. Proof of Theorem 2

We begin by defining the radius of convergence for Wilson’s method for solving Ht in a neighbor-

hood of a local minimizer w(t).

Definition 1.

r(t,w(t)) = sup{r | for all w0 satisfying ‖w0−w(t)‖ ≤ r, starting Wilson’s method with w0

provides a sequence {wi} converging to w(t)}. (17)

The following lemma is a natural corollary of Theorem 3.2.1 in [53]. We do not state the proof of

this lemma here but the derivation uses properties of the Wilson’s method.

Lemma 5. Suppose that Assumptions (A1), (A2) and (A3) hold. Then, there exists a real number

r̂ > 0 such that

r(t,w(t))≥ r̂ for all w(t), t∈ [0,1] (18)

Let us consider the sequence {w′
i}Ti=1 such that

‖w
′
1−w∗(t1)‖< ε, (19)

‖w
′

i− ŵM(w
′

i−1, t)‖< ε
′
, i= 2, . . . , T, (20)

where 0< ε
′� ε and ŵM(w

′
k, t) denotes the true (or exact) KKT point after applying M Wilson’s

steps starting from w
′
k. The choice of w

′
1 satisfying (19) is possible because of the known initial

global minimizer assumption in (A1). From the proof of Theorem 3.2.1 in [53], we also know that
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there is a constant r̂ > 0 such that ‖ŵ(w, t)−w∗(ti)‖ ≤ 1
2
‖w−w∗(ti)‖ whenever ‖w−w∗(ti)‖ ≤ r̂.

Now, we choose ε > 0 and η > 0 such that the following condition is satisfied:

ε+ η < r̂ (21)

Due to the assumption on the continuity of the global minimizers (A1), there is a ∆t > 0 such that

‖w∗(t̃)−w∗(t)‖< η, for all t̃, t∈ [0,1] with ‖t̃− t‖ ≤∆t (22)

Given tk and w
′
k with ‖w′

k−w∗(tk)‖< ε for some k ∈ {1, . . . , T − 1}, we obtain

‖w
′

k−w∗(tk+1)‖ ≤ ‖w
′

k−w∗(tk)‖+ ‖w∗(tk)−w∗(tk+1)‖< ε+ η < r̂ (23)

Hence, the point w
′
k is in the region of convergence and therefore,

‖ŵM(w
′

k, t)−w∗(tk+1)‖ ≤
(

1

2

)M
(ε+ η) (24)

Furthermore, we obtain

‖w
′

k+1−w∗(tk+1)‖ ≤ ‖w
′

k+1− ŵM(w
′

k, t)‖+ ‖ŵM(w
′

k, t)−w∗(tk+1)‖ ≤ ε
′
+

(
1

2

)M
(ε+ η) (25)

To find M , we need to ensure that the equation (25) can be upper bounded by ε:

ε
′
+

(
1

2

)M
(ε+ η)≤ ε (26)

Solving for M , we obtain the condition

M ≥ log2

ε+ η

ε− ε′
(27)

Noting that r̂ > ε+η from equation (21) and ε
′� ε, we observe that M satisfies the condition (27)

if M ≥ log2
r̂
ε
. We can continue this logic until k = T − 1 and arrive at the conclusion that the

number of Wilson’s method that will enable the algorithm to keep track of the global minimizers

is on the order of O(log (r̂/ε)) · 1
∆t

. Finally, we claim that 1/∆t is upper bounded by a constant

for sufficiently small ε. This is because ∆t only needs to be small enough so that η satisfies

equation (21). Therefore, if we have a constant ∆t corresponding to some value η̄ satisfying the

condition for a given ε̄, the same ∆t (and equivalently η̄) will satisfy the condition for any ε smaller

than ε̄. This concludes that the overall complexity of solving homotopy-OPF is O(log (r̂/ε)), which

is equivalent to O(log (1/ε)) �
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8.3. Proof of Lemma 1

By Proposition 4 of [52], the family of optimization problems

min
x∈Ψ

f̄(x,λ,ω)

s.t. h(x,λ) = 0

has a unique global minimizer satisfying SSOC for all parameters (λ,ω) ∈ U except on a set of

measure zero if (i) for all x1 6= x2, and for all ω, the function ω→ f̄(x1, λ,ω)− f̄(x2, λ,ω) is of rank

one at all λ, (ii) the function λ→ h(x,λ) is of full rank 2|V| for all x at every ω, and (iii) the

fixed set Ψ is a cyrtohedron and U is an open set. It is straightforward to check that if f̄(x,λ,ω) =

f(x,λ) + ωTx, condition (i) is satisfied. Conditions (ii) and (iii) are given as assumptions, which

completes the proof. �

8.4. Proof of Lemma 2

The rank of the function λ→ h(x,λ) is the rank of its Jacobian (w.r.t. λ). Therefore, we analyze the

Jacobian of h(x,λ) = h(x, [γ,β, γsh, βsh]) with respect to [γ,β, γsh, βsh]. From Section 3.2 and 4.1,

we know that h consists of two types of functions, h1 and h2 (corresponding to the real power flow

equations and the reactive power flow equations, respectively), whose i-th elements are defined by:

h1
i (x, [γ,β, γ

sh, βsh]) = P g
i −P d

i −σ
p
i −

∑
j∈N (i)

gsh
ij γ

sh
ij

2
|vi|2

−
∑
j∈N (i)

gijγij(|vi|2− |vi||vj| cosθij)− bijβij|vi||vj| sinθij

h2
i (x, [γ,β, γ

sh, βsh]) = qgi −Qd
i −σ

q
i +

∑
j∈N (i)

bsh
ij β

sh
ij

2
|vi|2

+
∑
j∈N (i)

bijβij(|vi|2− |vi||vj| cosθij)− gijγij|vi||vj| sinθij

We focus on the submatrix of the Jacobian that consists only of the derivatives of h1
i and h2

i with

respect to γsh and βsh (denote this as J). This is because if this submatrix has full column rank,

then the full Jacobian also has full column rank. First, we notice that the Jacobian of h1 with

respect to βsh and the Jacobian of h2 with respect to γsh are equal to zero. Therefore, J can be

expressed as a 2× 2 block matrix of the form J =

[
J1 0
0 J2

]
∈ R2|E|×2|V|, where J1 corresponds to

the Jacobian of h1 with respect to γsh and J2 corresponds to the Jacobian of h2 with respect to

βsh.

For line outage contingencies, γsh and βsh are parameters indexed by the line number. Hereby,

let J1
((i,j),k) refer to the element of J1 that is located at the (i, j)-th row and the k-th column (the
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row index representing the line and the column index representing the bus number). For example,

J1
((i,j),k) denotes the partial derivative of the real power flow equation at bus k with respect to the

shunt susceptance parameter at line (i, j). The same goes for J2.

Then, directly from basic calculus, we can derive the following form for the matrix J :

J1
(i,j),k =

{
− 1

2
gsh
ij |vk|2 for k= i or j, j ∈N (i)

0 otherwise

J2
(i,j),k =

{
1
2
bsh
ij |vk|2 for k= i or j, j ∈N (i)

0 otherwise

Therefore, if J has full column rank, so will the Jacobian of the function λ→ h(x,λ), which

completes the proof. �

8.5. Proof of Lemma 3

Similar to the proof of Lemma 2, we analyze the Jacobian of h(x,λ) = h(x, [γ,β]) with respect

to [γ,β]. From Section 3.2 and 4.1, we know that h consists of two types of functions, h1 and h2

(corresponding to the real power flow equations and the reactive power flow equations, respectively),

whose i-th elements are defined by:

h1
i (x, [γ,β]) = P g,o

i γi +P g,f
i (1− γi)−P d

i −σ
p
i

−
∑
j∈N (i)

gijγij(|vi|2− |vi||vj| cosθij)− bijβij|vi||vj| sinθij

−
∑
j∈N (i)

gsh
ij γ

sh
ij

2
|vi|2

h2
i (x, [γ,β]) = qgi −Q

d,o
i βi−Qd,f

i (1−βi)−σqi

+
∑
j∈N (i)

bijβij(|vi|2− |vi||vj| cosθij)− gijγij|vi||vj| sinθij

+
∑
j∈N (i)

bsh
ij β

sh
ij

2
|vi|2

First, we notice that the Jacobian of h1 with respect to β and the Jacobian of h2 with respect

to γ are equal to zero. Therefore, M can be expressed as a 2× 2 block matrix of the form M =[
M 1 0
0 M 2

]
∈ R2|V|×2|V| where M 1 corresponds to the Jacobian of h1 with respect to γ and M 2

corresponds to the Jacobian of h2 with respect to β.

For generator outage contingencies, γ and β are parameters indexed by the bus number (because

we assume each bus has exactly one generator). Hereby, let M 1
i,j refer to the element of M 1 that is

located at the i-th row and the j-th column. In other words, M 1
i,j denotes the partial derivative of
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the real power flow equation at bus i with respect to the γ parameter at bus j. The same goes for

M 2.

Then, directly from basic calculus, we can derive the following form for the matrix M :

M 1
i,j =

{
P g,o
i −P

g,f
i for j = i

0 otherwise

M 2
i,j =

{
Qd,o
i −Q

d,f
i for j = i

0 otherwise

Therefore, if M has full column rank, so will the Jacobian of the function λ→ h(x,λ), which

completes the proof. �

8.6. Proof of Corollary 1

The first statement on Hλ,ω having a unique global minimizer satisfying SSOC follows directly

from applying Lemma 1. The functions λ→ h(x,λ) is of full rank 2|V| due to Lemmas 2 and 3,

and this in turn satisfies the first condition of Lemma 1. As discussed in Section 5, the set Ψ is

a cyrtohedron, and the set U is defined to be an open set for any ε > 0 by the assumptions of

this theorem. In other words, the second condition of Lemma 1 is also satisfied. Therefore, we can

conclude that for any value of ε > 0, Hλ,ω has a unique global minimizer satisfying SSOC for every

(λ,ω)∈U \U′ where U′ ⊂U is of measure zero.

8.7. Proof of Lemma 4

Let us start with the equation for the reactive power injections. Let θ1 and θ2 denote the voltage

phasor angles at buses 1 and 2, respectively. Let the real and reactive power injections at bus i be

denoted by pinj
i and qinj

i , respectively. In this two-bus example, we consider the objective function:

(σp1)2 + c(σp2)2. Then after denoting θ= θ1− θ2, we have the following:

qinj
1 =Bβ−Gγ · sinθ−Bβ · cosθ

qinj
2 =Bβ+Gγ · sinθ−Bβ · cosθ

A lower bound of Qmin on qinj
1 results in the following:

Qmin ≤Bβ−Gγ · sinθ−Bβ · cosθ

Then, after rearranging and using trigonometry, we arrive at

−Qmin +Bβ ≥Gγ · sinθ+Bβ · cosθ

=
√

(Gγ)2 + (Bβ)2 · cos (θ−∆) where ∆ = tan−1

(
Gγ

Bβ

)
.
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After dividing both sides by
√

(Gγ)2 + (Bβ)2, we have

cos (θ−∆)≤ −Qmin +Bβ√
(Gγ)2 + (Bβ)2

which implies

θ≥ cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
+ ∆ or θ≤− cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
+ ∆ (28)

From the lower bound on qinj
2 , we can perform a similar derivation and arrive at

θ≥ cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
−∆ or θ≤− cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
−∆. (29)

Therefore, combining inequalities (28) and (29) leads to

θ≥ cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
+ ∆ or θ≤− cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
−∆. (30)

Furthermore, we assume that

− tan−1

(
Bβ

Gγ

)
≤ θ≤ tan−1

(
Bβ

Gγ

)
which is equivalent to

−
(π

2
−∆

)
≤ θ≤

(π
2
−∆

)
(31)

Combining (30) and (31) and using the definition of α yields the final constraint on θ:

α+ ∆≤ θ≤

(
π

2
−∆

)
or −

(
π

2
−∆

)
≤ θ≤−α−∆. (32)

This feasible region of θ is reflected in the feasible region of the real power injections, as shown in

the bolded part of the ellipse in Figure 7. As illustrated in the figure, the two red points are real

power injections, corresponding to θ = α+ ∆ and θ =−α−∆. Let the first red point, (pinj
1 , pinj

2 ),

be generated by θ= α+ ∆. Then, one can write:

pinj
1 =Gγ+Bβ · sinθ−Gγ · cosθ

=Gγ+Bβ · sin (α+ ∆)−Gγ · cos (α+ ∆)

=Gγ+Bβ · (sinα · cos∆ +α sin∆)−Gγ · (α cos∆− sinα · sin∆)

=Gγ+
Bβ

|y|
(Bβ · sinα+α ·Gγ)− Gγ

|y|
(α ·Bβ−Gγ · sinα)

Similarly, if we let the second red point (p̄inj
1 , p̄inj

2 ), be generated by θ=−α−∆, we have

p̄inj
1 =Gγ− Bβ

|y|
(Bβ · sinα+α ·Gγ)− Gγ

|y|
(α ·Bβ−Gγ · sinα)
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Figure 7 An example of two-bus network for which there are two global solutions to an instance of the homotopy-

OPF.

Moreover, note that due to symmetry, pinj
2 = p̄inj

1 and p̄inj
2 = pinj

1 . Define the following two functions:

Ω1(γ,β)≡ pinj
1 − p̄

inj
1 =

2Bβ

|y|
(
Bβ · sinα+α ·Gγ

)
,

Ω2(γ,β)≡ pinj
1 + p̄inj

1 = 2Gγ− 2Gγ

|y|
(
−Gγ · sinα+α ·Bβ

)
.

Recall that P g,b
i denotes the real power generation at bus i obtained from the base-OPF solution.

If the two points (pinj
1 , pinj

2 ) and (p̄inj
1 , p̄inj

2 ) are both globally optimal, their objective values must be

equal. In other words,

(pinj
1 − (P g, b

1 −P d
1 ))2 + c(pinj

2 − (P g, b
2 −P d

2 ))2 = (p̄inj
1 − (P g, b

1 −P d
1 ))2 + c(p̄inj

2 − (P g, b
2 −P d

2 ))2.

Rearranging the terms leads to

(1− c){(pinj
1 )2− (p̄inj

1 )2}− 2(P g, b
1 −P d

1 )(pinj
1 − p̄

inj
1 ) + 2c(P g, b

2 −P d
2 )(pinj

1 − p̄
inj
1 ) = 0

Finally, substituting the definition of Ω1 and Ω2, we arrive at

(1− c) ·Ω1(γ,β) ·Ω2(γ,β)− 2(P g, b
1 −P d

1 ) ·Ω1(γ,β) + 2c(P g, b
2 −P d

2 ) ·Ω1(γ,β) = 0

This completes the proof. �

8.8. Computation of Participation Factors for Generator Outage

During the outage of one or more generators, a collection of other generators will increase their

power generation in order to respond to the outage and meet power demand. The “participation

factor” of a generator determines the portion of the generation response that is assigned to that

generator. There are a variety of ways to compute participation factors, including scaling the
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Algorithm 3 Calculation of Participation Factors for Power Redistribution at Contingency k

Given: (i) solution to base-OPF problem (|v|, θ, pg, qg,{σk})

(ii) generators out in contingency k: Rk ⊂V

Compute real power flow for all (i, j)∈ E in the base-case:

pij =Gij|v|2i −Gij|v|i|v|j cos(θij) +Bij|v|i|v|j sin(θij)

Generate a directed graph D(V,A) based on direction of power flow: (i, j)∈A if pij ≥ 0

Use shortest path algorithm to compute the domain of each generator

Group the buses supplied by the same set of generators into commons C (see [63])

Use algorithm in [63] to determine the contribution Crj of each generator r to common j

Remove contribution of generators that are out:

Crj← 0 ∀r ∈Rk, ∀j ∈ C

Distribute lost generation over generations that supply the same common:

for j ∈ C do

Define Cj =
∑

rCrj

if Cj 6= 0 then

for r ∈ V do

Crj←Crj/Cj

end for

end if

end for

Initialize participation factors: αgr = 0 for all r ∈ V

Define participation factors based on contribution to common:

for r ∈Rk do

for j ∈ C do

αgt ← αgt +Ctj for all generators t in common j

end for

end for

Normalize the participation factors αg so that
∑

r∈V α
g
r = 1

participation factors based on the remaining power capacity. In Algorithm 3, we present one method

for computing participation factors which is based on the topology of the network, i.e. it redirects

generation from the outed generators to generators that supply the same set of buses as the outed

generators in the base-OPF. This method is based on the work [63]. In our simulations of generator

outages, we use this method for computing participation factors with Algorithm 2.
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