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Power System State Estimation with a Limited Number of Measurements

Ramtin Madani, Morteza Ashraphijuo, Javad Lavaei and Ross Baldick

Abstract—This paper is concerned with the power system state
estimation (PSSE) problem, which aims to find the unknown
operating point of a power network based on a given set of
measurements. The measurements of the PSSE problem are
allowed to take any arbitrary combination of nodal active powers,
nodal reactive powers, nodal voltage magnitudes and line flows.
This problem is non-convex and NP-hard in the worst case. We
develop a set of convex programs with the property that they
all solve the non-convex PSSE problem in the case of noiseless
measurements as long as the voltage angles are relatively small.
This result is then extended to a general PSSE problem with
noisy measurements, and an upper bound on the estimation
error is derived. The objective function of each convex program
developed in this paper has two terms: one accounting for
the non-convexity of the power flow equations and another
one for estimating the noise levels. The proposed technique is
demonstrated on the 1354-bus European network.

I. INTRODUCTION

The power system state estimation (PSSE) is the problem
of determining the state of a power network, namely nodal
complex voltages, based on certain measurements taken at
buses and over branches of the network. This problem plays
a crucial role in control and operation of power networks
[1]. As a special case, the power flow (PF) problem aims to
find the state of the system, given noiseless measurements at
buses. This problem has been studied extensively for many
years, with the goal of designing an efficient computational
method that is able to cope with the non-convexity of the
power flow equations. Since 1962, several linearization and
local search algorithms have been developed for this classical
problem, and the current practice in the power industry relies
on linearization and/or Newton’s method (depending on the
time scale and whether this problem is solved for planning or
real-time operation) [2]–[4].

To tackle the non-convexity of the feasible region described
by the AC power flow equations, the semidefinite program-
ming (SDP) relaxation technique can be used [5], [6]. Sparked
by the papers [7] and [8], the SDP relaxation method has
received a significant attention in the power society [9], [10].
The work [8] has developed an SDP relaxation to find a global
solution of the optimal power flow (OPF) problem, and showed
that the relaxation is exact for IEEE test systems. Recent
advances in leveraging the sparsity of power systems have
made SDP problems computationally more tractable [11]–[16].
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Recently, the SDP relaxation technique has been applied
to the PSSE problem, and gained success in the case where
the number of measurements is significantly higher than the
dimension of the unknown state of the system (i.e., twice the
number of buses minus one) [17], [18]. The papers [19] and
[20] have performed a graph decomposition in order to replace
the large-scale SDP matrix variable with smaller sub-matrices,
based on which different distributed numerical algorithms
using the alternating direction method of multipliers (ADMM)
and Lagrange decomposition have been developed. Moreover,
the formulations in [17] and [18] have been extended in [19]
and [21] to accommodate PMU measurements. The work
[21] has studied a variety of regularization methods to solve
the PSSE problem in presence of bad data and topology
error. These methods include weighted least square (WLS)
and weighted least absolute value (WLAV) penalty functions,
together with a nuclear norm surrogate for obtaining a low-
rank solution.

In the recent work [22], we have investigated the non-
convex PF problem in two steps: (i) PF is transformed into
an optimization problem by augmenting PF with a suitable
objective function, (ii) the resulting non-convex problem is
relaxed to an SDP. The designed objective function is not
unique and there are infinitely many choices for this function.
It has been proven that if the PF solution belongs to the
recovery region of the SDP problem, then the solution can
be found precisely using SDP. This recovery region contains
voltage vectors with relatively small angles. Note that voltage
angles are often small in practice due to practical consider-
ations, which has two practical implications: (i) linearization
would be able to find an approximate solution, (ii) Newton’s
method would converge by initializing all voltage angles at
zero. Linearization techniques offer low-complex approximate
models that can provide insights into power systems, whereas
Newton’s method is an attractive numerical algorithm that has
been used in the power industry for many years. Some of
the advantage of the SDP technique over the aforementioned
approaches are as follows:

• A one-time linearization of the power flow equations
(known as DC modeling) solves the PF problem approx-
imately by linearizing the laws of physics. However, the
SDP problem finds the correct solution (with any arbitrary
precision) as long as it belongs to the corresponding
recovery region.

• The basin of attraction of Newton’s method is chaotic
and hard to characterize, but the recovery region of
the SDP problem is explicitly characterizable via matrix
inequalities.

• The SDP relaxation provides a convex model for the
PF problem, which can be solved by many numerical
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algorithms (such as Newton’s method).
By building upon the results developed in [22], the goal

of this paper is to solve the PSSE problem via a penalized
convex program (an SDP-type problem), where the measure-
ment equations are softly penalized in the objective function
as opposed to being imposed as equality constraints. The
objective function of the convex program developed here has
two terms: (i) the one previously used for the PF problem
in the noiseless case to deal with non-convexity, (ii) another
one added to account for the noisy measurements. We prove
that the penalized convex program precisely solves the PSSE
problem in the case of noiseless measurements as long as
the solution belongs to its associated recovery region (the
region includes solutions with small voltage angles). In the
noisy case, the SDP matrix solution of the convex program
may or may not have rank-1 due to corrupted measurements.
We design an algorithm to estimate the solution of the PSSE
problem from that of the penalized convex program, and derive
an upper bound on the estimation error. We demonstrate the
efficacy of the proposed technique on a large test system with
over 1000 buses.

A. Notations

The symbols R, R+ and C denote the sets of real, nonneg-
ative real and complex numbers, respectively. Sn denotes the
space of n × n real symmetric matrices and Hn denotes the
space of n × n complex Hermitian matrices. Re{·}, Im{·},
rank{·}, trace{·}, det{·} and null{·} denote the real part,
imaginary part, rank, trace, determinant and null space of a
given scalar/matrix. diag{·} denotes the vector of diagonal
entries of a matrix. ‖ · ‖F denotes the Frobenius norm of
a matrix. The symbol 〈·, ·〉 represents the Frobenius inner
product of matrices. Matrices are shown by capital and bold
letters. The notations (·)T and (·)∗ denote transpose and
conjugate transpose, respectively. The symbol “i” denotes the
imaginary unit. The notation 〈A,B〉 represents trace{A∗B},
which is the inner product of A and B. The notations ]x
and |x| denote the angle and magnitude of a complex number
x. The notation W � 0 means that W is a Hermitian and
positive semidefinite matrix. Similarly, W � 0 means that
W is Hermitian and positive definite. The (i, j) entry of W
is denoted as Wij . 0n and 1n denote the n × 1 vectors of
zeros and ones, respectively. 0m×n denotes the m × n zero
matrix and In×n is the n×n identity matrix. The notation |X |
denotes the cardinality of a set X . For an m×n matrix W, the
notation W[X ,Y] denotes the submatrix of W whose rows
and columns are chosen form X and Y , respectively, for given
index sets X ⊆ {1, . . . ,m} and Y ⊆ {1, . . . , n}. Similarly,
W[X ] denotes the submatrix of W induced by those rows of
W indexed by X . The interior of a set D ∈ Cn is denoted as
int{D}.

II. PRELIMINARIES

Let N and L denote the sets of buses (nodes) and branches
(edges) of the power network under study. Denote the number
of buses as n and let pk and qk represent the net active
and reactive power injections at every bus k ∈ N . Define

p = [p1 p2 · · · pn]T and q = [q1 q2 · · · qn]T as the
vectors containing net injected active and reactive powers,
respectively. The complex voltage phasor at bus k is denoted
by vk, whose magnitude and phase are shown as |vk| and
]vk, respectively. The vector of all nodal voltages is shown
as v. We orient the lines of the network arbitrarily and define
sf ;l = pf ;l+ qf ;li and st;l = pt;l+ qt;li as the complex power
injections at the from and to ends of each branch l ∈ L. Note
that pf ;l and pf ;l denote the active powers entered the line
from both ends, while qf ;l and qf ;l denote the reactive powers
over the line.

Given an edge (j, k) ∈ L, let gjk + ibjk denote the
admittance of the transmission line between nodes j and k.
Due to the passivity of the line, it is assumed that gjk ≥ 0
and bjk ≤ 0. Define Y ∈ Cn×n as the admittance matrix of
the network. Likewise, define Yf ∈ C|L|×n and Yt ∈ C|L|×n
as the from and to branch admittance matrices, respectively.
These matrices satisfy the equations

i = Yv, if = Yfv, it = Ytv, (1)

where i ∈ Cn is the complex nodal current injection, and
if ∈ C|L| and it ∈ C|L| are the vectors of currents at the from
and to ends of branches, respectively. Although the results to
be developed in this paper hold for a general matrix Y, we
make a few assumptions to streamline the presentation:
• The network is a connected graph.
• Every line of the network consists of a series impedance

with nonnegative resistance and inductance.
• The shunt elements are ignored for simplicity in guar-

anteeing the observability of the network, which ensures
that Y × 1n = 0n.

The power balance equations can be expressed as

p + iq = diag{vv∗Y∗}. (2)

Let Y = G + Bi, where G and B are the conductance and
susceptance matrices, respectively. For every k ∈ N , define

Ek , eke
∗
k, (3a)

Yp;k , (Y∗eke
∗
k + eke

∗
kY)/2, (3b)

Yq;k , (Y∗eke
∗
k − eke

∗
kY)/2i (3c)

where e1, . . . , en denote the standard basis vectors in Rn. The
nodal parameters |vk|2, pk and qk can be expressed as the
Frobenius inner-product of vv∗ with the matrices Ek, Yp;k

and Yq;k, respectively, i.e.,

|vk|2=〈vv∗,Ek〉, pk=〈vv∗,Yp;k〉, qk=〈vv∗,Yq;k〉, (4)

for every k ∈ N . Moreover, let d1, . . . ,d|L| denote the
standard basis vectors in R|L|. Given a line l ∈ L from node
i to node j, we define

Ypf ;l , (Y∗fdle
∗
i + eid

∗
lYf )/2, (5a)

Yqf ;l , (Y∗fdle
∗
i − eid

∗
lYf )/2i, (5b)

Ypt;l , (Y∗tdle
∗
j + ejd

∗
lYt)/2, (5c)

Yqt;l , (Y∗tdle
∗
j − ejd

∗
lYt)/2i (5d)
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and then write the branch parameters pf ;l, qf ;l, pt;l and qt;l
as the inner product of vv∗ with the matrices Ypf ;l, Yqf ;l,
Ypt;l and Yqt;l as follows:

pf ;l = 〈vv∗,Ypf ;l〉, qf ;l = 〈vv∗,Yqf ;l〉,
pt;l = 〈vv∗,Ypt;l〉, qt;l = 〈vv∗,Yqt;l〉,

for every l ∈ L. Equations (4) and (6) offer a compact
formulation for common measurements in power networks. A
general state estimation problem can be formulated as finding
a solution to a system of quadratic equations of the form

xr = 〈vv∗,Mr〉+ ωr, r = 1, . . . ,m, (7)

where

• x1, . . . , xm are the known measurements/specifications.
• ω1, . . . , ωm are some unknown measurement noises, with

known statistical information.
• M1, . . . ,Mm are some known n×n Hermitian matrices

(e.g., they could be any subset of the matrices defined in
(3) and (5)).

In the case where all noises ω1, . . . , ωm are equal to zero, the
above problem reduces to the well-known power flow problem.

A. Semidefinite Relaxation

The state estimation problem, as a general case of the power
flow problem, is nonconvex due to the quadratic matrix vv∗.
Hence, it is desirable to convexify the problem. By defining
W , vv∗, the quadratic equations in (7) can be linearly
formulated in terms of W:

xr = 〈W,Mr〉+ ωr, r = 1, . . . ,m. (8)

Provided that the quadratic measurements x1, . . . , xm are
noiseless, solving the non-convex equations (7) is tantamount
to finding a rank-1 and positive semidefinite matrix W ∈ Hn+
satisfying the above linear equations (because such a matrix
W could then be decomposed as vv∗). The problem of finding
a matrix W ∈ Hn+ satisfying the linear equations in (8) is
regarded as a convex relaxation of (7) since it includes no
restriction on the rank of W. Although (7) normally has a
finite number of solutions whenever m ≥ 2n − 1, its SDP
relaxation (8) is expected to have infinitely many solutions
because the matrix variable W includes O(n2) scalar variables
as opposed to O(n). Hence, it is desirable to minimize a
convex function of W subject to the SDP relaxation of
the noiseless measurement constraints to make the solution
unique.

B. Sensitivity Analysis

It is straightforward to verify that if v is a solution to the
state estimation problem, then αv is another solution of this
problem for every complex number α with magnitude 1. To
resolve the existence of infinitely many solutions due to a
simple phase shift, we assume that ]vk is equal to zero at a
pre-selected bus (named, slack bus).

Notation 1. Let O denote the set of all buses of the network
except for the slack bus. Then, the operating point of the power
system can be characterized in terms of the real-valued vector

v ,
[
Re{v[N ]T} Im{v[O]T}

]T ∈ R2n−1. (9)

In addition, for every n×n Hermitian matrix X, the notation
X represents the following (2n − 1) × (2n − 1) real-valued
and symmetric matrix:

X =

[
Re{X[N ,N ]} −Im{X[N ,O]}
Im{X[O,N ]} Re{X[O,O]}

]
. (10)

Definition 1. Define the function A(v) : R2n−1 → Rm as the
mapping from the state of the power network (i.e., v) to the
vector of noiseless specifications (i.e., x). The r-th component
of A(v) can be expressed as

Ar(v) , 〈vv∗,Mr〉, r = 1, . . . ,m.

Define also the sensitivity matrix JA(v) ∈ R(2n−1)×m as the
Jacobian of A(v) at the point v, which is equal to

JA(v) = 2
[
M1 v M2 v . . . Mm v

]
.

According to the inverse function theorem, if JA(v) has
full row rank, then the inverse of the function A(v) exists
in a neighborhood of the point v. Similarly, it follows from
the Kantorovich Theorem that, under the previous assumption,
the equation (7) can be solved using Newton’s method by
starting from any initial point sufficiently close to the point
v, provided that the measurements are noiseless. We will
show that the invertibility of JA(v) is beneficial not only for
Newton’s method but also for the SDP relaxation technique.

Definition 2. A vector of complex voltages v is said to be
observable through the system of equations (7) if JA(v) has
full row rank. Define JA ∈ Cn as the set of all such observable
voltage vectors.

The point v = 1n (associated with v = 1n) is often
regarded as a nominal state for: (i) the linearization of the
quadratic power flow equations, (ii) the initialization of local
search algorithms used for nonlinear power flow equations.
Throughout this paper, we assume that JA(1n) has full row
rank.

Assumption 1. The point 1n is observable through the system
of equations (7) (i.e., 1n ∈ JA).

We have shown in [22] that the above assumption holds for
the classical power flow problem to be stated next.

C. Classical Power Flow Problem

The power flow (PF) problem can be regarded as a noiseless
state estimation problem, for which ω1, ω2, . . . , ωm are all
equal to zero. As a special case of the PF problem, the classical
PF problem is concerned with the case where the number of
quadratic constraints (namely m) is equal to 2n− 1, the mea-
surements are all at buses as opposed to a combination of buses
and lines, and there is no measurement noise. To formulate the
problem, three basic types of buses are considered based on
the parameters known at each bus:
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• PQ bus: pk and qk are specified.
• PV bus: pk and |vk| are specified.
• The slack bus: |vk| is specified.

Each PQ bus represents a load bus or possibly a generator bus,
whereas each PV bus represents a generator bus. Given the
specified parameters at every bus of the network, the classical
PF problem aims to solve the network equations in order to
find an operating point that fits the input values. Note that
Assumption 1 holds for the classical power flow problem.

D. Noiseless Case

To be able to proceed with this paper, we present the key
results of [22] in this section. Consider the case where m =
2n− 1 and the measurements in (7) are noiseless:

xr = 〈vv∗,Mr〉, r = 1, . . . ,m. (11)

To solve this set of quadratic equations through a convex
relaxation, we aim to propose a family of convex optimization
problems of the form

minimize
W∈Hn

〈W,M〉 (12a)

subject to 〈W,Mr〉 = xr, r = 1, . . . ,m, (12b)
W � 0, (12c)

where the matrix M ∈ Hn+ is to be designed. Unlike the
compressing sensing literature that assumes M = In, it is
desirable to contrive M such that the above problem yields a
unique rank-1 solution W from which a feasible solution v
can be recovered for (11). Notice that the existence of such
a rank-1 solution depends in part on its input specifications
x1, x2, . . . , xm. It is said that the SDP problem (12) solves
the set of equations (11) for the input x = [x1, x2, . . . , xm]T

if (12) has a unique rank-1 solution.

Definition 3. Given M ∈ Hn+, a voltage vector v is said to
be recoverable if W = vv∗ is the unique solution of the SDP
problem (12) for some x1, x2 . . . , xm ∈ R. Define RA(M) as
the set of all recoverable vectors of voltages.

Note that the set RA(M) is indeed the collection of all
possible operating points v that can be found through (12)
associated with different values of x1, x2, . . . , xm. In order to
narrow the search space for the matrix M, we impose some
conditions on this matrix below.

Assumption 2. The matrix M satisfies the properties:
• M � 0
• 0 is a simple eigenvalue of M
• The vector 1n belongs to the null space of M.

Note that the matrix −B satisfies Assumption 2. The next
lemma reveals an interesting property of (12).

Lemma 1 (see [22]). If Assumptions 1 and 2 hold and v ∈
RA(M) ∩ JA, then strong duality holds between the primal
SDP (12) with the input x = A(v) and its dual. Moreover,
the vector

λA(v,M) , −2JA(v)−1M v (13)

is the unique vector of Lagrange multipliers associated with
the constraints in (12b).

Definition 4. Define Dn as the set of all n × n positive
semidefinite Hermitian matrices with the sum of two smallest
eigenvalues greater than 0.

The following theorem offers a nonlinear matrix inequality
to characterize the interior of the set of recoverable voltage
vectors, except for a subset of measure zero of this interior at
which the Jacobian of A(v) loses rank.

Theorem 1 (see [22]). If Assumptions 1 and 2 hold, then the
interior of the set RA(M) can be characterized as

int{RA(M)} ∩ JA = {v ∈ JA| FA(v,M) ∈ Dn},

where the matrix function FA :JA×Hn+ → Hn is defined as

FA(v,M) , M +

m∑
r=1

λrMr (14)

and λr denotes the rth entry of λA(v,M) defined in (13).

The following theorem shows that if Assumptions 1 and 2
hold, then the region RA(M) contains the nominal point 1n
and a ball around it.

Theorem 2 (see [22]). If Assumptions 1 and 2 hold, then the
region RA(M) has a non-empty interior containing the point
1n.

III. MAIN RESULTS

In the presence of measurement noises, the convex prob-
lem (12) may be infeasible (if m > 2n − 1) or result
in a poor approximate solution. To remedy this issue, a
standard approach is to estimate the noise values through some
auxiliary variables ν1, . . . , νm ∈ R. This can be achieved by
incorporating a regularization term φ : Rm → R into the
objective function that elevates the likelihood of the estimated
noise:

minimize
W∈Hn

ν∈Rm

〈W,M〉+ µ× φ(ν) (15a)

subject to 〈W,Mr〉+ νr = xr, r = 1, . . . ,m, (15b)
W � 0 (15c)

where µ > 0 is a fixed parameter. This problem is referred
to as the penalized convex problem. If the noise parameters
admit a zero mean Gaussian distribution with a covariance
matrix Σ = diag(σ2

1 , . . . , σ
2
m), then φ(ν) = φWLS(ν) and

φ(ν) = φWLAV(ν) lead to the weighted least square (WLS)
and weighted least absolute value (WLAV) estimators, where

φWLS(ν),
ν21
σ2
1

+· · ·+ ν2m
σ2
m

, (16a)

φWLAV(ν),
|ν1|
σ1

+· · ·+ |νm|
σm

(16b)

To solve the state estimation problem under study, we need to
address two questions: (i) how to deal with the nonlinearity
of the measurement equations, (ii) how to deal with noisy
measurements. The terms 〈W,M〉 and φ(ν) in the objective
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function of the penalized convex problem (15) aim to handle
issues (i) and (ii), respectively. In fact, it can be observed that
• If µ = 0, the objective function (15a) reduces to 〈W,M〉,

which may resolve the non-convexity of the quadratic
measurement equations by returning a rank-1 solution in
the noiseless case, due to Theorem 2.

• If µ = +∞, the objective function (15a) is equivalent to
φ(ν) (i.e., 〈W,M〉 becomes unimportant). In this case,
the resulting objective function aims to estimate the noise
values.

A question arises as to whether a finite value for µ could
integrate the benefits of the cases µ = 0 and µ = +∞.

Theorem 3. Suppose that Assumptions 1 and 2 hold, and that
m = 2n− 1. Consider a function φ(ν) : Rm → R+ such that
• φ(0m) = 0,
• φ(ν) = φ(−ν),
• φ(ν) is continuous, convex, and strictly increasing with

respect to all its arguments over the region Rm+ .
There exists a region T ⊆ Cn containing 1n and its neigh-
borhood such that, for every v ∈ T , the penalized convex
problem (15) with the input x = A(v) has a rank-1 solution,
for all finite numbers µ ∈ R+. Moreover, this solution is
unique if φ(·) is strictly convex.

Proof. Consider an arbitrary voltage vector v. Let (Wopt,νopt)
denote a solution of (15) with the input x = A(v). Since
(W,ν) = (1n1∗n,A(v)−A(1n)) is a feasible point, one can
write:

〈Wopt,M〉+ µ× φ(νopt)

≤ 〈1n1∗n,M〉+ µ× φ(A(v)−A(1n)). (17)

On the other hand, it follows from the relations M � 0 and
Wopt � 0 as well as Assumption 2 that

〈Wopt,M〉 ≥ 0 and 〈1n1∗n,M〉 = 0. (18)

Combining (17) and (18) leads to the inequality

φ(νopt) ≤ φ(A(v)−A(1n)). (19)

On the other hand,

‖(A(v)− νopt)−A(1n)‖ ≤ ‖A(v)−A(1n)‖+‖νopt‖
≤‖A(v)−A(1n)‖+max{‖ν‖ |φ(ν) ≤ φ(νopt)}
≤‖A(v)−A(1n)‖+max{‖ν‖ |φ(ν) ≤ φ(A(v)−A(1n))}.

Notice that as v approaches 1n, the right side of the above
inequality goes towards zero and hence A(v)−νopt becomes
arbitrarily close to A(1n). This implies that there exists a
region T ∈ Cn containing the point 1n and its neighborhood
such that

A(v)− νopt ∈ image{RA(M)}, ∀ v ∈ T (21)

where image{RA(M)} denotes the image of the region
RA(M) under the mapping A(·). In addition, the penalized
convex problem (15) can be written as

minimize
W∈Hn

〈W,M〉 (22a)

subject to 〈W,Mr〉=Ar(v)− νopt
r , r = 1, . . . ,m, (22b)

W � 0. (22c)

In other words, Wopt is a solution of the above problem.
Moreover, it follows from (21) and Theorem 2 that v(µ)v(µ)∗

is the only solution of (22) for every v ∈ T , where v(µ)
is a vector satisfying the relation A(v(µ)) = A(v) − νopt.
As a result, the solution of (15) with the input x = A(v)
is rank-1 for every v in the region T . Now, it remains to
show that v(µ)v(µ)∗ is the only solution of (15). To prove by
contradiction, let (W̃opt, ν̃opt) denote another solution of (15)
with the input x = A(v). Due to the strict convexity of φ(·),
the vectors ν and ν̃ must be identical. Hence, Wopt and W̃opt

must both be optimal solutions of (22). However, as stated
earlier, v(µ)v(µ)∗ is the unique solution of (22) whenever
v ∈ T . This contradiction completes the proof.

Theorem 3 considers a large class of φ(·) functions, in-
cluding WLS and WLAV. It states that the penalized convex
problem (15) associated with the PF problem always returns
a rank-1 solution as long as the PF solution v is sufficiently
close to 1n, no matter how small or big the mixing term µ is.
A question arises as to whether this rank-1 solution is equal to
the matrix vv∗ being sought. This problem will be addressed
below.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Given
an arbitrary vector of voltages v ∈ RA(M)\{1n}, consider
the penalized convex problem (15) with the input x = A(v).
The following statements hold:

i) If φ(ν) = φWLS(ν) and µ ∈ R+, then vv∗ cannot be a
solution of the penalized convex problem.

ii) If φ(ν) = φWLAV(ν) and µ is large enough, then vv∗

is a solution of the penalized convex problem.

Proof. For Part (i), assume that φ(ν) = φWLS(ν) and consider
the matrix (1 − ε)vv∗ + ε 1n1∗n. Since v 6= 1n, this matrix
is not rank-1. We aim to show that the objective function
of the penalized convex problem (15) is smaller at the point
W = (1 − ε)vv∗ + ε 1n1∗n than the point W = vv∗, for a
sufficiently small number ε ∈ R+. To this end, notice that the
function (15a) evaluated at W = vv∗ is equal to

〈W,M〉+ µ× φ(ν) = 〈vv∗,M〉 (23)

(note that ν is equal to 0m in this case). On the other hand,
the function (15a) at W = (1 − ε)vv∗ + ε 1n1∗n can be
calculated as

〈W,M〉+ µ× φ(ν) = (1− ε)〈vv∗,M〉

+

m∑
r=1

ε2µ

σ2
r

(〈vv∗ − 1n1∗n,Mr〉)2 (24)

Note that since v 6= 1n, the term 〈vv∗,M〉 is strictly positive.
Therefore, when ε approaches zero, the first-order term with
respect to ε dominates the second-order term and (24) becomes
smaller than (23). This completes the proof of Part (i).

Notice that if the constraint W � 0 were missing, Part (ii)
would have been an immediate consequence of the exact
penalty theorem. We adopt the proof of that theorem given
in [23] to prove Part (ii). Assume that φ(ν) = φWLS(ν), and
let ρ1(x) and ρ2(x) denote the optimal objective values of
the convex problems (12) and (15) as a function of the input
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vector x. Due to the convexity of these problems, ρ1(x) and
ρ2(x) are both convex. Assume for now that m = 2n − 1.
One can write:

ρ2(A(v)) = min
ν∈Rm

{
ρ1(A(v)− ν) + µ

m∑
r=1

|νr|
σr

}
(25)

On the other hand, the Gradient of ρ1(A(v) − ν) at ν =
0m is equal to the unique vector λ given in (13). For every
arbitrary vector ν, it follows from the mean-value theorem
that there exists a number α ∈ [0, 1] such that

ρ1(A(v)− ν) = ρ1(A(v)) + λTν

+
1

2
νT ×∇2ρ1(A(v)− αν)× ν, (26)

where ∇2 is the Hessian operator. Therefore, when ν is
sufficiently small, we have

ρ1(A(v)− ν) + µ

m∑
r=1

|νr|
σr

= ρ1(A(v))

+

m∑
r=1

(
µ

σr
|νr|+ λrνr +O(ν2)

) (27)

It can be inferred from the above equation that ν = 0m is a
local minimum of the function

ρ1(A(v)− ν) + µ

m∑
r=1

|νr|
σr

(28)

if µ is greater than σr|λr| for r = 1, 2, ...,m. Note that since
ρ(·) is convex, any local minimum is a global solution as well.
Now, it follow from (25) that

ρ2(A(v)) = ρ1(A(v)− 0m) + µ

m∑
r=1

|0|
σr

= ρ1(A(v)) (29)

This completes the proof for m = 2n− 1. Now, consider the
case m > 2n− 1. It can be concluded from (25) that

ρ2(A(v)) ≤ ρ1(A(v)− 0m) + µ

m∑
r=1

|0|
σr

= ρ1(A(v)) (30)

and that

ρ2(A(v)) ≥ min
ν∈Rm

{
ρ1(A(v)− ν) + µ

2n−1∑
r=1

|νr|
σr

}
(31)

(note that the sum is taken up to r = 2n − 1 as opposed
to r = m). On the other hand, we proved earlier that if
µ is large enough, the right side of the above inequality is
equal to ρ1(A(v)). This implies that ρ2(A(v)) ≥ ρ1(A(v))
in light of (31). Combining this relation with (30) concludes
that ρ1(A(v)) = ρ2(A(v)).

Corollary 1. Suppose that Assumptions 1 and 2 hold, and
that φ(ν) = φWLAV(ν). There is a region containing 1n
and a neighborhood around this point such that the following
statements are satisfied for every v in this region:
• The penalized convex problem (15) with the input x =
A(v) has a rank-1 solution, for all finite numbers µ ∈
R+.

• The penalized convex problem (15) with the input x =
A(v) has the unique solution vv∗ and solves the PF
problem, for large numbers µ ∈ R+.

Proof. The proof follows from Theorems 3 and 4.

Consider the case where the number of measurement (i.e.,
m) is greater than 2n− 1 and all measurements are noiseless.
Let K ⊆ {1, . . . ,m} be a subset of the m measurement
equations with only 2n−1 specifications. According to Theo-
rem 1, the vector v belongs to the recovery region of the SDP
relaxation problem (12) associated with the measurements in
K if the matrix FB(v,M) in (14) is positive semidefinite
and its second smallest eigenvalue is strictly positive. In this
case, it can be easily verified that the SDP relaxation problem
that includes all m measurements (rather than only 2n − 1
specifications) also recovers v. The next theorem generalizes
the above result to the noisy case and derives an upper bound
on the estimation error in terms of the energy of the noise.

Theorem 5. Suppose that Assumptions 1 and 2 hold. Consider
a vector of voltages v ∈ int{RB(M)} ∩ JA, where

B(v) =
[
〈vv∗,Mu1〉, . . . , 〈vv∗,Mu2n−1〉

]T
. (32)

and u1, . . . , u2n−1 ∈ {1, . . . ,m} correspond to an arbitrary
set of 2n − 1 linearly independent columns of JA(v). Let
(Wopt,νopt) denote an optimal solution of the penalized
convex problem (15) with the noisy input x = A(v) + ω and
φ(ν) = φWLAV(ν). There exists a scalar α > 0 such that

‖Wopt − αvv∗‖F ≤ 2

√
µ× ‖ω‖1 × trace{Wopt}

ηn−1
, (33)

where ηn−1 is the second smallest eigenvalue of FB(v,M)
defined in (14).

Proof. The proof developed in [24] can be adopted to prove
this theorem. The details are omitted due to space restrictions.

A. Rank-One Approximation Algorithm

The penalized convex problem (15) could be computation-
ally expensive for large-scale systems because of the high-
order conic constraint (15c). One method for tackling this
issue is to replace the single conic constraint (15c) with several
lower-order conic constraint as follows:

W{C1, C1}�0, W{C2, C2}�0, . . . , W{Cd, Cd}�0, (34)

where W{C1, C1},W{C2, C2}, . . . ,W{Cd, Cd} are principal
submatrices of W with rows and columns chosen from
C1, C1, . . . , Cd ⊆ N , respectively. C1, C1, . . . , Cd are some
possibly overlapping subsets of N that can be found through
a graph-theoretic analysis of the network graph, named tree
decomposition. This procedure breaks down the large-scale
conic constraint (15c) into several smaller ones. Due to the
sparsity and near planarity of power networks, the decomposed
penalized convex problem can be significantly lower dimen-
sional. This is due to the fact that all entries of W that do
not appear in any of the above principal submatrices could
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be removed from the optimization problem. These entries
of W, referred to as missing entries, can later be found
through a matrix completion algorithm, which enables a rank-
1 decomposition of W for recovering a vector of voltages.
[25].

In this work, we adopt an alternative approach for recov-
ering the vector of voltages, which does not require calcu-
lating the missing entries of W. Given an optimal solution
(Wopt{C1, C1}, . . . ,Wopt{Cd, Cd}) of the decomposed penal-
ized convex problem, we obtain an approximate solution ṽ of
the set of equations (7) as follows:

1) Set the voltage magnitude |ṽk| :=
√
W opt
kk for k =

1, . . . , n.
2) Find the phases of the entries of ṽ by solving the convex

program:

minimize
θ∈[−π,π]n

∑
(i,j)∈L

∣∣]W opt
ij − θi + θj

∣∣ (35a)

subject to θo = 0, (35b)

where o ∈ N is the slack bus.
Note that the above approximation technique is exact in the

case where there exists a positive semidefinite filling Wopt

of the known entries such that rank{Wopt} = 1. Under
that circumstance, we have ](Wopt)ij − θi + θj = 0. If
there exists a non-rank-one matrix Wopt with a dominant
nonzero eigenvalue, then the above recovery method aims
to find a vector ṽ for which the corresponding line angle
differences are as closely as possible to those proposed by
(Wopt{C1, C1}, . . . ,Wopt{Cd, Cd}).

B. Zero Injection Buses
Real-world power networks have many intermediate buses

that do not exchange electrical powers with any external load
or generator. In this subsection, we will exploit this feature of
power systems to design a number of valid inequalities that
can be used to strengthen the convex problems (12) and (15).

Definition 5. A PQ bus k ∈ N is called a zero injection bus
if both active and reactive power injections at bus k are equal
to zero. Define Z as the set of all zero injection buses of the
network.

In the PSSE problem, we seek a solution v whose entries
are all nonzero. A zero voltage is regarded as grounding the
corresponding bus, which is highly undesirable. This property
will be exploited to derive valid inequalities in the next lemma.

Lemma 2. If v is a solution to the power flow problem (11)
with nonzero entries, then the equation

vv∗Y∗ek = 0n (36)

holds for every k ∈ Z .

Proof. Observe that

vv∗Y∗ek = (v∗k)
−1(vv∗Y∗eke

∗
kv) (37a)

= (v∗k)
−1[vv∗(Yp;k + Yq;ki)v] (37b)

= (v∗k)
−1[〈vv∗,Yp;k〉+ 〈vv∗,Yq;k〉i]v (37c)

= (v∗k)
−1(pk + qki)v, (37d)

which concludes (36) since pk = qk = 0.

According to Lemma 2, the set of additional constraints

WY∗ek = 0n, k ∈ Z (38)

can be added to the convex problems (12) and (15) in order to
strengthen the relaxations. Notice that each bus k ∈ Z has only
two power constraints 〈W,Yp;k〉 = 0 and 〈W,Yq;k〉 = 0.
However, equation (38) introduces 2n valid scalar constraints
for this bus, which would significantly tighten the relaxations.
Note that a large number of buses in real-world transmission
networks are zero injection buses. As an example, more than
one fifth of buses for Polish Grid test systems are zero buses.

IV. SIMULATION RESULTS

Several papers have shown the superiority of the SDP
convex relaxation of the PSSE problem over Newton’s method
[17]–[22]. That convex relaxation is equivalent to an unpenal-
ized version of (15) by setting M = 0. We have observed in
many simulations on IEEE and Polish systems that the penal-
ized convex program with a nonzero matrix M significantly
outperforms the SDP convex relaxation of PSSE. Due to space
restrictions, we study only the PEGASE 1354-bus system in
this paper [26]. Consider a positive number c. Suppose that
all measurements are subject to zero mean Gaussian noises,
where the standard deviations for squared voltage magnitude,
nodal active/reactive power, and branch flow measurements
are c, 1.5c and 2c times the corresponding noiseless values of
squared voltage magnitudes, nodal active/reactive powers, and
branch flows, respectively.

Let M be equal to α×I−B, where the constant α is chosen
in such a way that α×I−B satisfies Assumption 2. Consider
three scenarios as follows:
• Scenario 1: This corresponds to the classical power flow

problem, where the measurements are taken at PV and
PQ buses. The measurements are then corrupted with
Gaussian noise values with c = 0.01.

• Scenario 2: This is built upon Scenario 1 by taking
extra measurements. More precisely, 10% of the line
flow parameters (the entries of pf , pt, qf and qt) are
randomly sampled and added to the measurements used
in Scenario 1.

• Scenario 3: This is the same as Scenario 2 with the only
difference that c = 0.05.

We have generated 20 random trials for each scenario and
solved the penalized convex program (15) for four objective
functions

f1(W,ν) , 〈M,W〉+ µ× φWLS(ν), (39a)

f2(W,ν) , 〈M,W〉+ µ× φWLAV(ν), (39b)

f3(W,ν) , φWLS(ν), (39c)

f4(W,ν) , φWLAV(ν), (39d)

with µ = 0.5. The root mean square errors of the recovered
nodal complex voltages are plotted in Figure 1. Note that the
curves corresponding to the objective functions f3 and f4 are
not shown in Figure 1(a) since they are significantly higher
than those for the functions f1 and f2.



8

4 8 12 16 20
0

0.01

0.02

0.03

0.04

Randomly Generated Noise Values

R
M

S
E

〈M,W〉 + µ × φ
WLAV

( )

〈M,W〉 + µ × φ
WLS

( )

(a) (b)

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Randomly Generated Noise Values

R
M

S
E

〈M,W〉 + µ × φ
WLAV

(ν)

〈M,W〉 + µ × φ
WLS

(ν) 

φ
WLAV

(ν)

φ
WLS

(ν)

(c)
Fig. 1: These plots compare the accuracy of estimated vector of voltages obtained through minimization of different objective functions for case PEGASE
1354-bus system and 20 randomly generated vector of noise values. In each case power flow measurements are available and (a): c = 0.01, (b): additional
10% of line flows are given and c = 0.01, and (c): additional 10% of line flows are given and c = 0.05.

In order to be able to solve the large-scale problem (15)
efficiently, we exploited the sparsity structure of the network.
More precisely, through a graph theoretic algorithm from [16],
the conic constraint of the penalized convex program was
replaced by a set of low-order conic constraints (as discussed
in Subsection III-A). In order to preserve the low-complex
structure of the problem, only those valid constraints in (38)
that did not change the tree decomposition of the underling
optimization problem were imposed. The total number of such
valid scalar constraints chosen from (38) and incorporated in
(15) is equal to 1436.

V. CONCLUSIONS

This paper aims to find a convex model for the power
system state estimation (PSSE) problem. PSSE is central to
the operation of power systems, and has a high computational
complexity due to the nonlinearity of power flow equations. In
this work, we develop a family of penalized convex problems
to solve the PSSE problem. It is shown that each convex
program proposed in this paper finds the correct solution of the
PSSE problem in the case of noiseless measurements, provided
that the voltage angles are relatively small. In presence of
noisy measurements, it is proven that the penalized convex
problems are all able to find an approximate solution of the
PSSE problem, where the estimation error has an explicit
upper bound in terms of the energy of the noise. The objective
function of each penalized convex problem has two terms: one
accounting for the non-convexity of the power flow equations
and another one for estimating the noise level. Simulation
results elucidate the superiority of the proposed method.
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