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Spurious Local Minima in Power System State
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Abstract—The power systems state estimation problem com-
putes the set of complex voltage phasors given quadratic measure-
ments using nonlinear least squares (NLS). This is a nonconvex
optimization problem, so even in the absence of measurement
errors, local search algorithms like Newton / Gauss–Newton can
become “stuck” at local minima, which correspond to nonsensical
estimations. In this paper, we observe that local minima cease
to be an issue as redundant measurements are added. Posing
state estimation as an instance of the low-rank matrix recovery
problem, we derive a bound for the distance between the true
solution and the nearest spurious local minimum. We use the
bound to show that spurious local minima of the nonconvex least
squares objective become far-away from the true solution with
the addition of redundant information.

I. INTRODUCTION

In power systems, state estimation is the problem of recov-
ering the underlying system voltage phasors, given possibly
inaccurate SCADA (supervisory control and data acquisition)
measurements, which are typically real and reactive power line
flows and power injections, and voltage phasor amplitudes [2].
State estimation proves situational awareness by allowing the
system operator to monitor and assess the condition of the
power system at any given instant, and if needed, take action.
Operators use state estimation to identify anomalous system
conditions, to dispatch generation, and to avoid stability and
thermal limits [3]. These functions are poised to become even
more important as the penetration of wind and solar generation
increases, due to the inherent variability and uncertainty of
such resources [4].

On the other hand, a lack of situational aware-
ness—particularly in observing the voltage phasor angles over
a wide area—has been cited as a significant cause to a number
of blackouts [5], [6]. A post-mortem analysis of the August
2003 Northeast blackout revealed that the voltage phasor angle
difference between Cleveland and Michigan had been slowly
diverging for nearly an hour before the start of the actual
blackout [7]. Had the real-time state estimation been in service
during the event, the operators would have had warning of
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Figure 1: For a sufficiently large number of measurements,
Gauss–Newton always succeeds, even when starting from a
random initial point. The shade of each square represents the
success rate of Gauss–Newton state estimation on the IEEE
14-bus system over 100 trials, with a lighter shade correspond-
ing to a higher probability of success. The horizontal axis
varies the quality of the initial point, from the true system
state to a completely random vector. The vertical axis varies
the number of measurements. (See Section VI for details.)

the impending problem and an opportunity to take remedial
action [8].

A. State estimation via nonlinear least squares

To this day, variants of the nonlinear least-squares procedure
of Schweppe [2], [9] remain the most common approach for
static AC state estimation. Given an N -bus power system with
unknown voltage phasors z ∈ CN , the state estimation prob-
lem seeks to recover z from a set of SCADA measurements
b1, . . . , bm ∈ R, where each i-th measurement

bi = fi(z) + εi (1)

comprises the output of a known “model” function fi(·) and
an unknown measurement noise εi with known variance 1/wi.
The Schweppe algorithm estimates z by solving the weighted
nonlinear least squares

minimize
u∈CN

1

2

m∑
i=1

wi[fi(u)− bi]2 (SEP)

using the Gauss-Newton method with a polar parameterization
of u, starting from an initial guess u0 ∈ CN . Convergence
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to a local minimum1 is guaranteed by adjusting the step-
sizes, or by adopting a trust-region strategy, as in the Lev-
enberg–Marquardt algorithm; see e.g. [11, Sec.10.3].

B. Nonconvexity and the issue of spurious local minima

Existing software based on the Gauss–Newton method can
produce spurious state estimations. When this occurs, the
conventional wisdom is to conclude that the problem has been
unduly biased by “bad data” [12]–[15], meaning that a small
number of measurements have been tainted with a significant
amount of noise. The bad data problem is well-studied; there
are a number of mature techniques to systematically detect
and eliminate bad measurements [12], [14], [15, Sec.7].

However, it is possible to obtain spurious estimations even
in the absence of measurement noise, due to the inherent
nonconvexity of (SEP). The core issue is the existence of
spurious local minima, which can cause “greedy” local search
algorithms to become trapped at a spurious estimation. The
danger lies in spurious estimations that are physically mean-
ingful but far from the true system state. In Section III, we
illustrate this hazard on a two-bus example.

The question arises as to whether spurious local minima
present an issue for practical state estimation. Performing a
large number of numerical experiments, we obtain a surprising
finding. Using a sufficiently large number of redundant, noise-
free, randomly sampled measurements, Gauss–Newton always
succeeds in recovering the true system state, even when
starting from a random initial point (see Figure 1). To put in
another way, local search never gets stuck at a spurious local
minimum. It is as if they do not exist from the perspective of
the Gauss–Newton algorithm.

C. Main results

The goal of this paper is to offer a theoretical explanation
for the empirical success of local search for state estimation.
State estimation is a specific instance of the low-rank matrix
recovery problem in machine learning. Recently, this problem
was shown to contain no spurious local minima under variants
of the restricted isometry property (RIP) assumption [16]–[18].
In this case, local search is guaranteed to succeed starting from
any arbitrary initial point.

Can we use RIP to establish a similar global recovery guar-
antee for power system state estimation? We investigate this
question in Section IV. While power system state estimation
does satisfy a version of RIP, its associated constant is too large
for existing results to be applied. In fact, it was recently shown
that large RIP constants cannot prevent spurious local minima
from existing. In view of this negative result, establishing a
global recovery guarantee for state estimation is likely very
hard (or even impossible).

Instead, we focus our attention on establishing a local
recovery guarantee. In Section V, we prove the following
statement.

1More accurately, the line-search/trust-region Gauss-Newton method con-
verges to a second-order local minimum using a suitable randomization
strategy [10].
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Figure 2: With an increasing number of measurements, our
region with no spurious local minima (shown in white) grows
to encompass a large part of the search space.

Theorem 1 (Informal). If a power system is observable, then
the state estimation problem contains no spurious local min-
ima within a large neighborhood of the true solution. Starting
from a point within the neighborhood, gradient descent is
guaranteed to converge at a linear rate to the global solution.

A similar neighborhood of convergence can be established
using a number of classical techniques, including the Banach
and Kantorovich Theorems. The key feature of our region,
however, is that it is large enough to offer a theoretical
explanation for the empirical observations in Figure 1. For
a sufficiently large number of measurements, our region with
no spurious local minima grows to encompass a large part of
the search space, as seen in Figure 2.

Our proof of Theorem 1 is based on a framework developed
by Sun and Luo [19] for the general low-rank matrix recovery
problem. Our results are much sharper, however, because state
estimation is a symmetric rank-1 instance of matrix recovery.
In particular, this allows us to use a number of bounds that
are only valid in the rank-1 case.

D. Other approaches to state estimation

This paper considers the static AC formulation of state
estimation as originally proposed by Schweppe [2]. Other
formulations of the problem also exist, though these are not
widely used in practice. For example, the so-called static “DC”
formulation [20] linearizes the relationship between voltage
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and power, thereby making the resulting least squares problem
convex and easy to solve. However, DC estimation is accurate
only within a near-linear region of the underlying nonlinear
model, and any inaccuracies can be greatly exacerbated in the
presence of bad measurements and/or large modeling errors.

It is also possible to solve static AC state estimation to
global optimality using semidefinite programming [21], [22].
The approach is known to enjoy a number of global recovery
guarantees due to Madani et al. [23] and later Zhang et al. [24].
The primary disadvantage is the heavy computational and
memory requirements, though these can be alleviated using
chordal decomposition [25]–[28] and large-scale first-order
algorithms like ADMM [29].

Recently, phase measurement units (PMUs) have been intro-
duced into power systems, allowing for direct measurements
of phase angles associated with bus voltage phasors. However,
PMUs do not alleviate the quadratic nonconvexity inherent
in (SEP). Spurious local minima can still exist with PMU
measurements.

E. Related work on power flow

There is substantial literature and recent work on the power
flow problem [30]–[35], which can be viewed as state estima-
tion with the number of measurements m set to equal the
number of degrees of freedom n. Here, spurious solutions
exist because the equations are ambiguous: every solvable
power equation admits a correct “high-voltage” solution and at
least one spurious “low-voltage” solution [36], [37]. Recently,
several lines of work have established a neighborhood around
the true high-voltage power flow solution that contains no
spurious “low-voltage” solutions [30], [31], [34]. In the other
direction, conditions for the existence of solutions—either
high- or low-voltage—have been completely characterized for
certain classes of problems [35]. Viewing power flow as state
estimation with m = n measurements, however, both the high-
and low-voltage solutions are globally optimal, as they would
set the quadratic objective in (SEP) to zero. In this paper,
we focus on a different issue: the presence of spurious local
minima that are not globally optimal. An important future
work is to understand the link between these two distinct
but related notions. For example, it may be possible to adapt
techniques for power flow solvability to give insights into how
local search algorithms can fail, as opposed to this paper’s
emphasis on understanding when these algorithms succeed.

Notation

The sets Rn, Cn, Sn, and Hn are the real and com-
plex length-n vectors, and the real symmetric and complex
Hermitian n × n matrices. Subscripts indicate element-wise
indexing, the superscript “T ” refers to the transpose, and the
superscript “∗” refers to the Hermitian transpose. We write
i =

√
−1 as the imaginary unit, and use Re z and Im z

to refer to the real and imaginary parts, and |z| to refer to
the modulus. We use X � Y (resp. X � Y ) to mean that
X − Y is positive semidefinite (resp. positive definite). We
use λmax(X) and λmin(X) to refer to the most positive and
least positive eigenvalues. The Euclidean norm of the vector

x is ‖x‖ =
(∑n

i=1 |xi|2
)1/2

. The spectral norm of a matrix
M is ‖M‖ = max{‖Mv‖ : ‖v‖ = 1} and its Frobenius norm

is ‖M‖F =
(∑m

i=1

∑n
j=1 |Mi,j |2

)1/2
.

II. FORMULATION

In this section, we review the classical formulation of the
power system state estimation problem. We show that all
classical SCADA measurements can be written in a standard
quadratic form. Then, we characterize the local minima in
the polar formulation of state estimation, and show that these
have a one-to-one correspondence with their counterparts in
the rectangular formulation.

A. SCADA measurements as quadratics

In state estimation, the classical SCADA measurements of
nodal and branch powers, and voltage magnitudes, can all be
posed as a homogeneous quadratic form

fi(z) = z∗Miz where Mi =M∗i (2)

with respect to a Hermitian measurement matrix Mi. It is this
quadratic nature of fi(·) that makes its corresponding least
squares problem (SEP) nonconvex and strongly NP-hard in
general.

Let us illustrate this on an N -bus power system with voltage
phasors z ∈ CN . It is straightforward to see that any voltage
magnitude measurement is a quadratic measurement

z∗i zi = z∗(eie
T
i )z (3)

where ej is the j-th column of the size-N identity matrix.
Given that power is the product of voltage and current, and
that current is generally assumed to be linear with respect to
voltage, power must also be quadratic with respect to voltage.

To be more precise, let Yi,j ∈ C be the admittance of the
line or transformer from bus i to bus j, and let Yi ∈ C be the
shunt admittance at bus i. Then the current flowing from bus
i to bus j is

ci→j = Yi,j(zi − zj) = [Yi,j(ei − ej)]T z, (4)

and the current injection at bus i is

ci =

Yiei + ∑
j∈N (i)

Yi,j(ei − ej)

T z, (5)

where N (i) denotes the neighbors of bus i. The (complex)
power injection at bus i is

pi + iqi = c∗i zi = (z∗Piz) + i(z∗Qiz), (6)

where Pi = 1
2 (Si + S∗i ) and Qi = 1

2i (Si − S∗i ) are the
Hermitian splitting for

Si = Y ∗i eie
T
i +

∑
j∈N (i)

Y ∗i,j(ei − ej)eTi .

Similarly, the power “sent” from the i-th bus to the j-th bus

pi→j + iqi→j = c∗i→jzi = (z∗Pi→jz) + i(z∗Qi→jz), (7)
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and the power “received” at the i-th bus due to the j-th bus

pi←j + iqi←j = c∗j→izi = (z∗Pi←jz) + i(z∗Qi←jz), (8)

can be written as quadratics where Pi↔j = 1
2 (Si↔j + S∗i↔j),

Qi↔j =
1
2i (Si↔j − S

∗
i↔j) are the Hermitian splitting for

Si→j = Y ∗i,j(ei − ej)eTi , Si←j = Y ∗j,i(ej − ei)eTi .

B. Polar parameterization

To solve the nonlinear least-squares problem (SEP) using
the complex quadratic functions fi(·) defined in (2), it is
standard to express each complex variable in real polar form,
as in

minimize
v∈RN

θ∈0×RN−1

1

2
‖W 1/2[pol(v, θ)− b]‖2 (9)

where W = diag(w1, . . . , wm) is the diagonal weight matrix,
b = [bi]

m
i=1 is a vector, pol(v, θ) = [poli(v, θ)]

m
i=1 is a real

vector-valued function of real variables

poli(v, θ) =

 v1e
iθ1

...
vNe

iθN


∗

Mi

 v1e
iθ1

...
vNe

iθN


and Mi is the Hermitian matrix from (2). Note that we force
θ1 = 0 in (9) to remove the redundancy associated with
absolute phase. Assuming noiseless measurements, any choice
of (v, θ) satisfying

b = pol(v, θ) (10)

is a global minimum with an objective value of zero. The true
system state is obviously a global minimum, though in general
it may not be the unique global minimum.

Applying the Gauss–Newton method to (9) yields the orig-
inal Schweppe algorithm [9]. Adjusting the step-size using a
back-tracking line search guarantees convergence [11] to the
first-order optimality conditions

∇pol(v, θ)TW [pol(v, θ)− b] = 0, (11)

where ∇pol(v, θ) is the m × (2N − 1) Jacobian matrix for
pol(v, θ). Adopting a suitable randomization [10] and/or trust
region strategy [38], we can further guarantee convergence to
the second-order optimality conditions

∇pol(v, θ)TW∇pol(v, θ)+
m∑
i=1

wi∇2poli(v, θ)[poli(v, θ)− bi] � 0. (12)

A local minimum is guaranteed to satisfy (11) and (12). It is
easy to verify that a global minimum satisfying (10) must also
satisfy (11) and (12). We call a point (v, θ) satisfying (11)
with pol(v, θ) 6= b a spurious first-order critical point. We
call a point (v, θ) satisfying (11) and (12) with pol(v, θ) 6= b
a spurious second-order local minimum.

C. Rectangular parameterization

We can also solve (SEP) by expressing each complex
variable in rectangular form, as in

minimize
ξ∈RN

η∈0×RN−1

1

2
‖W 1/2[rec(ξ, η)− b]‖2, (13)

where W and b are the same as in (9), and rec(ξ, η) =
[reci(ξ, η)]

m
i=1 is defined with respect to

reci(ξ, η) =

[
ξ
η

]T [
ReMi −ImMi

ImMi ReMi

] [
ξ
η

]
. (14)

Again, we force η1 = 0 in (13) to remove the redundancy
associated with absolute phase.

The critical points and local minima of the rectangular
formulation are far easier to characterize than those of the
polar formulation. We rewrite (13) as the following

minimize
x∈Rn

g(x) ≡ 1

2

m∑
i=1

(xTAix− ci)2,

where x = [ξ1, . . . , ξN , η2, . . . , ηN ]T parameterizes the n =
2N − 1 degrees of freedom in (13), and each ci =

√
wibi and

each Ai is defined

Ai =
√
wi

IN 0
0 0
0 IN−1

T [ReMi −ImMi

ImMi ReMi

]IN 0
0 0
0 IN−1

 .
A local minimum is guaranteed to satisfy the first- and second-
order optimality conditions

∇g(x) =
m∑
i=1

Aix(x
TAix− ci) = 0, (15)

∇2g(x) =

m∑
i=1

[
Ai(x

TAix− ci) + 2Aixx
TAi

]
� 0. (16)

Again, any choice of x satisfying xTAix = ci for all i is a
global minimum. We call a point x satisfying ∇g(x) = 0 with
xTAix 6= ci a spurious first-order critical point, and a point
x satisfying ∇g(x) = 0 and ∇2g(x) � 0 with xTAix 6= ci a
spurious second-order local minimum.

The critical points and local minima of the rectangular
formulation have a one-to-one correspondence with their coun-
terparts in the polar formulation (9).

Theorem 2. Given any arbitrary u ∈ R× CN−1, define ξ, η
and v, θ to satisfy u = ξ + iη = veiθ. Then (v, θ) is a first-
order critical point (resp. second-order local minimum) for
the polar formulation (9) if and only if (ξ, η) is a first-order
optimal critical point (resp. second-order local minimum) for
the rectangular formulation (13).

Proof: The proof is a straightforward application of the
chain rule; it can be found in [1].
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Figure 3: Contour plots of the least squares objective for
the two-bus state estimation nonlinear least squares objective
function.

III. SPURIOUS LOCAL MINIMA IN A TWO-BUS SYSTEM

Even the simplest power systems with perfect, redundant
measurements can suffer from spurious local minima. In this
section, we consider a simple two-bus system whose state
estimation problem admits two physically meaningful local
minima. The problem has a unique, closed-form solution, so
the potential for spurious estimations is entirely a limitation
of local search. Some calculations reveal the spurious local
minimum to be a distinct and unrelated phenomenon to the
spurious “low-voltage” solution in the power flow problem.
We first describe the system, then, in turn, discuss spurious
solutions in state estimation and power flow.

A. Problem description

Consider a system with just two buses, connected by a single
line with admittance

Y1,2 = Y2,1 =
1

0.01 + 0.1i
per unit.

To define a power flow problem on this system, we set bus 1 as
the slack bus with voltage 1 p.u., and bus 2 as a PQ bus with
a load of 2 + 1i p.u. Solving this problem using Newton’s
method beginning with a flat start yields the following two
phasors.

z1 = 1, z2 = 0.806− 0.19i.

To define a state estimation problem on this system, we make
the following four noise-free measurements: 1) bus 1 voltage
magnitude; 2) bus 2 real power injection; 3) bus 2 reactive

power injection; 4) bus 1 real power injection. These are
explicitly written

f1(z) = z∗1z1 =+ 1 p.u.,
f2(z) = Re [(Y ∗2,1(z2 − z1)∗z2] = p2=− 2 p.u.,

f3(z) = Im [Y ∗2,1(z2 − z1)∗z2] = q2 =− 1 p.u.,

f4(z) = Re [Y ∗1,2(z1 − z2)∗z1] = p1 ≈+ 2.07 p.u.,

using the formulas in (6)-(8). Note that the first three mea-
surements coincide with the three equations in the power flow
problem described above.

B. Spurious critical points and local minima in state estima-
tion

The polar formulation of state estimation is the following
problem

minimize
v1,v2,θ2∈R

‖F (v1, v2eiθ2)− b‖2 (17)

where F (u) = [fi(u)]
4
i=1 and b = F (z). Using a variable

precision algebra toolbox to solve (15), we find the following
critical pointsv1v2

θ2

 ∈

 1

0.829
−13.2◦

 ,
 0.870

0.345
−35.7◦

 ,
 0.846

0.401
−32.0◦

 ,
00
0

 ,

(18)
that satisfy the first-order optimality condition (11) for the
four measurements specified above. These residuals vector r =
F (v1, v2e

iθ2)− b at these four critical points have values

r ∈



0
0
0
0

 ,

−0.24
+0.14
−0.06
+0.17

 ,

−0.28
+0.09
−0.08
+0.13

 ,

−1.00
+2.00
+1.00
−2.07


 ,

with associated squared norms

‖r‖2 ∈ {0, 0.11183, 0.11299, 10.297}.

The first point in (18) is clearly the global minimum, cor-
responding to the true system state. Sweeping the objective
function as in Figure 3 reveals the second critical point to be
a local minimum, the third to be a saddle point, and the last
(the zero vector) to be a local maximum.

To highlight the hazards of spurious local minima, consider
estimating v2 and θ2 using nonlinear least squares, while fixing
the slack bus at v1 = z1. The objective function has contour
plot shown in Figure 3a, and we see two local minima: the
true system state at v2 ≈ 0.8 and θ2 ≈ −10◦, and a spurious
estimate at v2 ≈ 0.2 and θ2 ≈ −40◦. A state estimator
based on local refinement could converge to either estimates
if the initial guess were set sufficiently close. Both local
minima have physically meaningful (but unacceptable) values
and small least squares residual values. Indeed, they would be
virtually indistinguishable if the measurements were tainted
with noise.



6

In this simple problem, state estimation has a unique,
closed-form solution:

z1 =
√
f1(z),

Im z2 =
f2(z)ImY1,2 + f3(z)ReY1,2

|Y1,2|2z1
,

Re z2 =
f4(z)/z1 + z1ReY1,2 + Im z2ImY1,2

ReY1,2
.

Hence, the potential for spurious estimations is entirely a
limitation of local search approach. It is not a reflection of
nonunique solutions, unobservable states, nor the inherent
“hardness” of the underlying problem.

C. Relation to low-voltage power flow solutions
The power flow problem is well-known to admit spurious

low-voltage solutions, in addition to the desired high-voltage
solution. In the case of our two-bus model, these are the
following v1v2

θ2

 ∈

 1

0.829
−13.2◦

 ,
 1
0.271
−44.5

 . (19)

The first, high-voltage solution corresponds to the true system
state, and as such satisfies all of our state estimation equations

F (v1, v2e
iθ2) = b,

where F and b are the same as in (17). The second, low-
voltage solution only satisfies the first three state estimation
equations corresponding to power flow

fi(v1, v2e
iθ2) = bi ∀i ∈ {1, 2, 3}.

This solution is spurious in the sense that it does not reflect
the true system state. (Note that the fourth state estimation
equation is not included as it would overspecify bus 1.)

The spurious local minima in state estimation are superfi-
cially similar to the spurious low-voltage solutions in power
flow. Indeed, our two-bus example admits exactly one spurious
local minimum in state estimation and one spurious low-
voltage solution in power flow. Both spurious estimations
have unacceptably low voltage magnitudes and large angle
differences. Due to the overdetermined nature of state estima-
tion, however, further numerical calculations find no concrete
relations between the two concepts.

In one direction, let us write φ(v1, v2, θ2) ≡
‖F (v1, v2eiθ2)− b‖2 as the least-squares objective function in
(17). Then, the gradient of the objective ∇φ at the low-voltage
solution is very large:

∇φ(v1, v2, θ2) =
[
4.4535 7.5595 −2.5542

]T
.

Hence, the low-voltage solution is far from being a stationary
point for state estimation. In the other direction, the power
flow mismatch r = [fi(v1, v2e

iθ2)−bi]3i=1at our three spurious
critical points in (18) are also large:

r ∈


−0.24+0.14
−0.06

 ,
−0.28+0.09
−0.08

 ,
−1.00+2.00
+1.00

 .

Hence, the spurious critical points are poor solutions to power
flow.

IV. GLOBAL RECOVERY GUARANTEES

The low-rank matrix recovery problem is one of the best
understood nonconvex problems in machine learning. The
simplest version seeks to recover a vector z ∈ Rn, given mea-
surement matrices A1, . . . , Am and quadratic measurements
bi = zTAiz, by solving the following

minimize
x∈Rn

g(x) ,
1

2

m∑
i=1

(xTAix− bi)2 (20)

using a local search algorithm starting from a random initial
point. As previously shown in Section II-C, the rectangular
formulation of state estimation is a specific instance of (20).

Recently, low-rank matrix recovery was shown to admit
no spurious local minima [17] under a δ-restricted isometry
property (δ-RIP) assumption

(1− δ)‖X‖2F ≤ C ·
m∑
i=1

[tr (AiX)]2 ≤ (1 + δ)‖X‖2F

for all X ∈ Rn×n such that rank(X) ≤ 2 (21)

with an arbitrary scaling C > 0 and a sufficiently small
constant δ < 1/5. Hence, local search is guaranteed to recover
the true solution, starting from an arbitrary initial initial point,
as if the function were convex. Similar guarantees are possible
when (21) is only partially satisfied, as in the case of the
matrix completion problem [16], [18]. If these guarantees are
applicable to the rectangular formulation of state estimation,
then they are automatically applicable to the polar formulation
by virtue of Theorem 2.

While it is NP-hard to verify that a set of matri-
ces A1, . . . , Am satisfy δ-RIP [39], computing a lower-
bound on δ is relatively easy. Specifically, we perform
a large number—say 100,000—of random trials. For the
k-th trial, we sample an n × 2 matrix U element-wise
from the standard Gaussian, and evaluate the ratio γk =∑
i[tr (AiUU

T )]2/‖UUT ‖2F . Then some algebra yields the
lower-bound

δ ≥ (γmax − γmin)/(γmax + γmin)

where γmin and γmax are the smallest and largest ratios
evaluated over all trials. In fact, this also gives a lower-bound
for the “incoherent” version of RIP used to analyze sparse
measurement matrices [16], [18].

Performing this experiment on power system matrices, we
obtain much larger RIP constants than those typically found
in machine learning. For example, the two-bus example in
Section III has an RIP constant of δ ≥ 0.9973. In fact, it was
recently shown that RIP constants of δ ≥ 1/2 are too large
to prevent spurious local minima from existing [40]. Local
search may still succeed with overwhelming probability if it
is able to avoid and escape local minima. However, it is no
longer possible to make global recovery guarantees under this
regime.

V. LOCAL RECOVERY GUARANTEES

Instead, we construct a local region about the true solution
z that is guaranteed to contain no spurious local minima. More
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precisely, we enforce a strong-convexity–like inequality (due
to Sun and Luo [19]) over this region:

∇g(x)T (x− z) ≥ µ · ‖x− z‖2 (22)

with some constant µ > 0. As such, the region must con-
tain no spurious critical points, because any x that satisfies
∇g(x) = 0 must set the left-hand side of (22) to zero. The
following gives an inner approximation for the region in terms
of a quadratic matrix inequality.

Proposition 3. Define H(x) =
∑m
i=1Aix(x + z)TAi. Then

(22) holds for some µ > 0 if H(x) +H(x)T � 0.

Proof: Let g(x) = 1
2

∑m
i=1(x

TAix − zTAiz)
2. Then,

some simple algebra shows that

∇g(x) =
m∑
i=1

Aix(x+ z)TAi(x− z) = H(x)(x− z)

∇g(x)T (x− z) = 1

2
(x− z)T [H(x) +H(x)T ](x− z).

Finally, note that if H � 0, then xTHx ≥ λmin(H)xTx.
The set of x satisfying H(x) +H(x)T � 0 coincides with

the set S1 in [1]. Their numerical results found this region to
be highly nonconservative, growing eventually to encompass
almost the entire search space.

Our main goal in this paper is to derive a local neighorhood
‖x−z‖2 < α that satisfies the strong-convexity–like inequality
(22). Gradient descent is guaranteed to converge linearly to the
global solution if initialized within the neighborhood.

Proposition 4. Suppose that (22) holds for all ‖x − z‖2 ≤
α, and let x0 satisfy ‖x0 − z‖2 ≤ α. Then gradient descent
xk+1 = xk− t∇g(xk) with a sufficiently small step-size t > 0
converges at a linear rate to z.

Proof: The function g is a quartic polynomial, and its
gradient ∇g is a cubic polynomial, so there must exist a fixed
Lipschitz constant L such that

‖∇g(x)‖ ≤ Lα‖x− z‖ holds for all ‖x− z‖2 ≤ α.

Then, standard arguments show

‖xk+1 − z‖2 = ‖xk − z‖2 − 2t∇g(xk)T (xk − z)
+ t2‖∇g(xk)‖2,

≤ (1− 2µt+ α2L2t2)‖xk − z‖2.

Hence, the sequence converges at a linear rate with step-size
t < 2µ/(α2L2).

Our first main result gives a sharp estimate for the largest
local neighborhood satisfying (22). We begin with an assump-
tion analogous to the full column rank assumption in linear
least squares.

Assumption 1. There exists a choice of y ∈ Rm such that∑m
i=1 yiAi � 0.

Without Assumption 1, there may exist z 6= 0 that gives
identically zero measurements bi = zTAiz = 0 for all i.
Such a solution lies in the “null space” of the quadratic
measurements, and can never be recovered using least-squares.

Theorem 5. Given the symmetric measurement matrices
A1, . . . , Am and the solution vector z ∈ Rn, define

α = min
‖h‖=1

∑m
i=1(z

TAih)
2∑m

i=1(h
TAih)2

. (23)

Then, under Assumption 1, all x within the open neighborhood
‖x−z‖2 < α satisfy the strong-convexity–like inequality (22).

Proof: The proof is given in Appendix A.
Theorem 5 describes a neighborhood containing no spurious

local critical points:

∇g(x) = 0, ‖x− z‖2 < α =⇒ x = z. (24)

The bound is sharp in the sense that α cannot be improved for
certain choices of A1, . . . Am. To see this, let us adopt δ-RIP
(21) to yield∑m

i=1(z
TAih)

2∑m
i=1(h

TAih)2
≥ (1− δ)‖hzT ‖2F
(1 + δ)‖hhT ‖2F

=

(
1− δ
1 + δ

)
‖z‖2.

In the perfect RIP case with δ = 0, this yields α ≥ ‖z‖2. But
α = ‖z‖2 is the largest choice of α that still satisfies (24),
because the origin is always a trivial critical point ∇g(0) = 0.
Hence, (23) attains α = ‖z‖2, and is optimal in this regime.

Nevertheless, the exact value of α is defined in terms of a
nonconvex optimization problem in (23). Below, we derive a
lower-bound on α using a convex relaxation.

Theorem 6. Let the Hessian matrix ∇2g(z) =∑m
i=1Aizz

TAi be positive definite at the solution. Then, we
have α ≥ αlb, where

αlb , 1/λmax

 m∑
i=1

Ai

 m∑
j=1

Ajzz
TAj

−1Ai
 . (25)

Proof: The proof is given in Appendix B.
In power system state estimation, the matrix ∇2g(z) =∑m
i=1Aizz

TAi is known as the gain matrix [41], and co-
incides with the Gauss–Newton matrix at the solution. It
is nonsingular (and hence positive definite) if and only if
the system is fully observable at state z [41]–[43]. Power
system measurements are placed specifically to maximize
observability, so the assumption in Theorem 6 is mild and
generally satisfied in practice.

Theorem 6 suggests prioritizing observability and diversity
in choosing state estimation measurements. This becomes
clearer in the following lower-bound:

α ≥ αlb ≥
λmin

[
∇2g(z)

]
λmax [

∑m
i=1A

2
i ]
.

As described above, we can make the numerator λmin[∇2g(z)]
grow quickly by selecting measurements Ai to maximize
observability. At the same time, we can make the denominator
λmax

[∑m
i=1A

2
i

]
grow slowly by selecting diverse measure-

ments. For example, if the measurements Ai are sampled
uniformly at random, then the denominator grows as O(m/n),
which in power systems is bounded by a fixed constant.
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Figure 4: State estimation on the IEEE 39-bus system

VI. NUMERICAL EXPERIMENTS

Finally, we perform study the empirical success rate of
state estimation, and use the theoretical results developed
throughout this paper to explain our findings. The systems
we examine are the standard IEEE 14-bus and 39-bus test
systems.

A. Problem description

Given a power flow case on an N -bus power system, we
declare the high-voltage solution to be the true system state
z, containing n = 2N − 1 degrees of freedom. We enu-
merate all SCADA measurements described in Section II-A:
nodal voltage magnitude and real/reactive power injection, and
branch real/reactive power injection/absorption. This results in
3 measurements for each node, and 4 measurements for each
branch, for a total of mmax ≈ 7N measurements. We reorder
the list of measurements to make the first n = 2N−1 coincide
with the original power flow problem, and then randomly
shuffle the remaining ≈ 5N measurements.

B. Empirical success rate

We sweep the parameter pair (m, t) over n ≤ m ≤ mmax

and 0 ≤ t ≤ 1. For each fixed (m, t), we use the Lev-
enberg–Marquardt variant of the Gauss–Newton method to
solve state estimation on the first m measurements in our list,
starting from the initial point

x0 = z + t · u+ iv

‖u+ iv‖∞
where u, v ∼ Gaussian(0, In).

With t = ‖x0 − z‖∞ ≈ 0, the starting point is close to
the true system state. This mimicks initializations used in
practice, based on a flat start or the solution to a related
problem. With t = ‖x0−z‖∞ ≈ 1, the starting point becomes
completely random. The trial is marked a “success” if the
residual Euclidean norm drops below 10−9, corresponding to
an objective function value (and duality gap) of 10−18. We
repeat this trial 100 times and record the resulting success
rate.

Results are shown in Figure 1 for the IEEE 14-bus system,
and in Figure 4 for the IEEE 39-bus system. When the number
of measurements m is small relative to the number of state
variables n, the success rates rapidly drop to zero as the quality
of the initial point deteriorates. As more redundant measure-
ments are added, the success rates generally improve. Once a
sufficiently large number of measurements are added, however,
the success rate suddenly climbs to 100%. Despite the apparent
nonconvexity, local optimization always converges to the true
global optimum, even when starting from a random initial
point.

C. Numerically evaluating the neighborhood

In Section IV, we derived a strongly-convex–like region
about the true solution z that contains no spurious critical
points. Proposition 3 gives an inner approximation for this
region, based on a quadratic matrix inequality of the form
H(x) + H(x)T � 0. In this subsection, we compute 2D
projections of this inner approximation while sweeping m over
n ≤ m ≤ mmax .

For each fixed m, we generate a 2D grid of test points x that
match the true solution z except in two elements, which vary
from −2 p.u. to +2 p.u. over 100 points in each direction. The
exact elements we chose correspond to the real and imaginary
parts of a particular voltage phasor. For each test point, we
compute H(x)+H(x)T and attempt to compute its Cholesky
factor. If it succeeds, then we mark the point as being inside
the region; otherwise, we mark it as being outside.

Results are shown in Figure 2 for the IEEE 14-bus system
and Figure 2 for the IEEE 39-bus system. As new measure-
ments are added, the region grows to fill a vast portion of the
entire space. In particular, it grows to encompass a ball of 2
p.u. radius, which is large enough to contain both a cold start
as well as a random initial point of 1 p.u. magnitude.

D. Analytically bounding the neighborhood

Finally, we evaluate αlb to lower-bound the radius of the
neighorhood. The results are shown in Figure 6. We see that
αlb generally increases with the number of measurements m,
though this is not guaranteed. Also, the actual values of αlb

are orders of magnitude smaller than the radii of the 2D
projections computed in the previous subsection. This finding
suggests conservatism in our derivation of αlb in Theorem 6.
Eliminating this conservatism is the subject of future work.

VII. DISCUSSION

Overall, our empirical results indicate that spurious crit-
ical points in state estimation are made less likely by a
diverse array of redundant measurements. Intuitively, it is
very difficult for a large number of diverse observations to
“conspire together” to point towards a spurious estimation.
This intuition has been made precise in two special cases
of the low-rank matrix recovery problem—matrix completion
and matrix sensing [16], [17]. State estimation, however,
is more complicated due to the presence of structure: the
system topology is deterministic, and not all measurements
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Figure 5: 2D projection of the region described Proposition 3
for the IEEE 39-bus test case.
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Figure 6: The value of
√
αlb for four IEEE test cases: (a)

14-bus; (b) 39-bus.

are equally “good”. Generalizing these prior arguments to the
structured state estimation problem requires revisiting many
mathematical concepts, and is left as future work.

For the most part, electric transmission systems are ex-
haustively measured, with a large number of measurements
compared to unknowns. The results in Section VI seem
to suggest that local convergence is not a significant issue
for state estimation on real power systems. However, power
system models are imprecise, with modeling errors hovering
around 3%, and SCADA measurements are often noisy and
spread out over a time interval. Measurement noise may create
spurious critical points, though existing results for the matrix
sensing problem suggest that these will not lie too far from
the global minimum [17]. Another direction of future work is

to extend our results in Section VI to the noisy case.

VIII. CONCLUSIONS

State estimation is a nonconvex, nonlinear least squares
problem, that is NP-hard to solve in the general case. However,
given a sufficiently large number of redundant, noise-free
measurements, we observe that any local search algorithm is
able to converge to the true solution, using an initial guess
that is not necessarily close to the solution. In this paper,
we develop a lower-bound on the distance between the true
solution and the nearest spurious local minimum, and use it
to numerically verify that critical points become increasing
rare and far-away from the true solution with the addition of
redundant information.

APPENDIX

A. Proof of Theorem 5

Our core approach is to convert the first- and second-order
optimality conditions into matrix inequalities. We begin by
proving three key lemmas.

Lemma 7. Given the solution vector z ∈ Rn, define the
matrix-valued function F as the following

F (h) =

[
zT

hT

]( m∑
i=1

Aihh
TAi

)[
z h

]
� 0. (26)

Then, the point x ∈ Rn is first-order optimal if it satisfies

2∇g(x)T (x− z) =
[
4 3
3 2

]
• F (x− z) = 0, (27)

where X • Y ≡ tr (XY ) is the usual matrix inner product.

Proof: For simplicity, we write h = x − z. Some linear
algebra yields

∇g(x)Th =

m∑
i=1

hTAi(z + h)(2z + h)TAih

= tr (z + h)(2z + h)T

(
m∑
i=1

Aihh
TAi

)
︸ ︷︷ ︸

W

,

=
1

2

[
4 3
3 2

]
•
[
zTWz zTWh
hTWz hTWh

]
︸ ︷︷ ︸

F (h)

.

The third line notes that W =WT and zTWh = hTWz.

Lemma 8. Under Assumption 1, there exists an absolute
constant c > 0 such that

∑m
i=1(h

TAih)
2 ≥ c‖h‖4 holds for

all h ∈ Rn.

Proof: By the Cauchy–Schwarz inequality we have(
m∑
i=1

y2i

)(
m∑
i=1

(hTAih)
2

)
≥

(
m∑
i=1

yih
TAih

)2

≥
(
γ‖h‖2

)2
where γ = λmin (

∑m
i=1 yiAi). Setting c = γ2/‖y‖2 yields the

desired bound.
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Proof: Noting that [ 4 3
3 2 ]−

[
1 0
0 −1

]
= [ 3 3

3 3 ] � 0, we have

2∇g(x)T (x− z) =
[
4 3
3 2

]
• F (h) ≥

[
1 0
0 −1

]
• F (h)

=

m∑
i=1

(zTAih)
2 −

m∑
i=1

(hTAih)
2,

≥ c
(
α/‖h‖2 − 1

)
‖h‖4.

The third line uses (23) and Lemma 8. Setting µ = 1
2c(α−ρ)

yields the desired bound.

B. Proof of Theorem 6

We will establish the following

‖h‖2/αlb ≥ min
ρ≥0

{
ρ : ρ

∑
i

Aizz
TAi �

∑
i

Aihh
TAi

}
,

which implies ‖h‖2
∑
i(h

TAiz)
2 ≥ αlb

∑
i(h

TAih)
2 by

multiplying the matrix inequality with hhT . To do this, we
factor

∑
iAizz

TAi = UUT into its Cholesky factor U , which
is invertible by hypothesis. Then, dividing by U on the left and
UT on the right yields

ρI � U−1
∑
i

Aihh
TAiU

−T ,

and the minimum value of ρ is

ρ = λmax

[
U−1

(
m∑
i=1

Aihh
TAi

)
U−T

]
= ‖

[
U−1A1h U−1A2h · · · U−1Amh

]
‖2

≤ ‖
[
U−1A1h U−1A2h · · · U−1Amh

]
‖2F

= ‖hT
[
A1U

−1 A2U
−1 · · · AmU

−1] ‖22
≤ ‖h‖2‖

[
A1U

−1 A2U
−1 · · · AmU

−1] ‖2
= ‖h‖2/αlb.

The second line uses the definition of the spectral norm as
the largest singular value. The third lind uses the Frobenius
norm to bound the spectral norm. The fourth line vectorizes
the matrix into a vector, while equating the matrix Frobenius
norm with the vector 2-norm. The fifth line uses the spectral
norm to bound the 2-norm.
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