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Convexification of Power Flow Equations in the
Presence of Noisy Measurements

Ramtin Madani, Javad Lavaei and Ross Baldick

Abstract—This paper is concerned with the power system
state estimation (PSSE) problem that aims to find the unknown
operating point of a power network based on a given set of
measurements. We first study the power flow (PF) problem as
an important special case of PSSE. PF is known to be non-convex
and NP-hard in the worst case. To this end, we propose a set
of semidefinite programs (SDPs) with the property that they all
solve the PF problem as long as the voltage angles are relatively
small. Associated with each SDP, we explicitly characterize the
set of all complex voltages that can be recovered via that convex
problem. As a generalization, the design of an SDP problem that
recovers multiple nominal points and a neighborhood around
each point is also cast as a convex program. The results are then
extended to the PSSE problem, where the measurements used
in the PF problem are subject to noise. A two-term objective
function is employed for each convex program developed for the
PSSE problem: (i) one term accounting for the non-convexity
of the power flow equations, (ii) another one for estimating the
noise levels. An upper bound on the estimation error is derived
with respect to the noise level and the proposed techniques are
demonstrated on multiple test systems, including a 9241-bus
European network. Although the focus of the paper is on power
networks, the developed results apply to every arbitrary state
estimation problem with quadratic measurement equations.

I. INTRODUCTION

Consider a group of generators (i.e., sources of energy),
which are connected to a group of electrical loads (i.e.,
consumers) via an electrical power network. This network
comprises a set of transmission lines connecting various nodes
to each other (e.g., a generator to a load). At each node
of the network, the associated external devices (loads and
generators) exchange a net complex electrical power with the
network, where the real and imaginary parts of this complex
power are called active and reactive powers. The active power
is a measure of the short-term average power delivered to
loads that is able to do useful work, whereas the reactive
power is a measure of the back-and-forth flow of power in
the network between electric and magnetic fields. The nodal
complex powers induce active and reactive powers over all
lines of the network, which are referred to as line flows. The
complex flow entering a line could differ from the flow leaving
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the line at the other end since transmission lines are lossy
in practice. On the other hand, each node of the network
(called a bus) is associated with a complex number, named
nodal voltage. To describe the relationship among all nodal
powers and line flows, it is possible to write each of these
parameters as a quadratic function of nodal voltages using
power flow equations. The set of all nodal complex voltages
of a power network is referred to as the state of the system.
The power flow (PF) problem involves solving power flow
equations in order to find the state of the system, given a set
of noiseless measurements. These measurements are usually
a subset of voltage magnitudes, nodal active powers, nodal
reactive powers, active line flows and reactive line flows.

A. Power Flow Problem

Power Flow equations are central to the analysis and opera-
tion of power systems, based upon which several optimization
problems are built. These problems include optimal power
flow, state estimation, security-constrained optimal power flow,
unit commitment, network reconfiguration, and transmission
switching [1]–[4]. However, it is well-known that solving
these equations, namely the PF problem, is NP-hard for both
transmission and distribution networks due to its reduction
to the subset sum problem [5], [6]. The recent paper [7]
shows the strong NP-hardness of this problem for certain types
of systems. The nonlinearity of the power flow equations is
imposed by the laws of physics, and is a major impediment to
the efficient, optimal and reliable operation of power systems.

Since 1962, several linearization and local search algorithms
have been developed for solving power flow equations, and the
current practice in the power industry relies on linearization
and/or Newton’s method (depending on the time scale and
whether the problem is solved for planning or real-time oper-
ation) [8]–[10]. Traditional methods based on the linearization
of power flow equations do not typically capture important
quantities such as voltage magnitudes, thermal losses and
reactive flows, which make these techniques less appealing for
applications such as voltage control. As a result, great effort
has been devoted to developing modified linear programming
models that incorporate reactive power and voltage magnitudes
[11], [12]. Another major focus of the existing literature for
solving power flow equations has been on homotopy continua-
tion methods that are widely applied to the PF problem [13]–
[15]. As argued in [16], earlier homotopy-based techniques
lack performance guarantees, have scalability issues, and may
not always find all solutions of the PF problem. Nevertheless,
new homotopy algorithms have been recently introduced in
[17] and [18] that are provably capable of finding all feasible
solutions and attempt to ameliorate the issue of scalability
through parallelization. Other approaches for tackling the
nonlinearity of power flow equations include Gröebner basis
techniques and interval based methods [19]–[21]. The recent
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papers [22] and [23] propose upper bounds on the number of
solutions for the PF problem based on the network topology.

In this paper, we exploit the semidefinite programming
relaxation technique to handle the non-convexity of the
PF problem. Semidefinite programming (SDP) is a subfield
of convex optimization, which has received a considerable
amount of attention in the past two decades [24]–[27]. The
SDP relaxation technique is a powerful method for tackling
quadratic nonlinearities, which has been proven to be effective
in the convexification of several hard optimization problems in
various areas, including graph theory, approximation theory,
quantum mechanics, neural networks, communication net-
works, and power systems [28]–[33]. SDP relaxation meth-
ods have been successfully used for real-world applications
such as radar code design, multiple-input and multiple-output
(MIMO) beamforming, error-correcting codes, magnetic res-
onance imaging (MRI), data training, and portfolio selection,
among many others [34]–[37]. Several papers have evaluated
the performance of SDP relaxations for various problems, by
investigating the approximation ratio and the maximum rank
of SDP solutions [38]–[42]. Moreover, different global opti-
mization techniques for polynomial optimization have been
built upon SDP relaxations [32], [43]–[46].

Our first contribution is related to the PF problem. To handle
the non-convexity of this feasibility problem, we propose a
class of convex optimization programs in the form of SDPs.
We derive an exact recovery region for each convex program
in the proposed SDP class. This means that the solution of
the PF problem can be found using SDP if and only if it
belongs to the associated recovery region. Moreover, we prove
that if the voltage angles are small enough, the classical PF
problem can be solved precisely using the proposed SDP
problems, and this result does not make any assumption on
the network topology whatsoever. Note that voltage angles are
often small in practice due to practical considerations, which
has two implications: (i) linearization would be able to find an
approximate solution, (ii) Newton’s method would converge by
initializing all voltage angles at zero. Linearization techniques
offer low-complexity approximate models that can provide
insights into power systems, whereas Newton’s method is an
attractive numerical algorithm that has been used in practice
for many years [47], [48]. Some of the advantages of the SDP
technique over the aforementioned approaches are as follows:
• A one-time linearization of the power flow equations

(known as DC modeling) solves the PF problem approx-
imately by linearizing the laws of physics. However, the
proposed SDP problem finds the correct solution (with
any arbitrary precision) as long as it belongs to the
corresponding recovery region.

• The basin of attraction of Newton’s method is chaotic and
hard to characterize in general, but the recovery region
of the proposed SDP problem is explicitly characterizable
via matrix inequalities [49].

• The SDP relaxation provides a convex model for the PF
problem, independent of what numerical algorithm will
be used to solve it.

• As will be verified on benchmark systems later in this
paper, the proposed SDP relaxation has a higher success

rate than Newton’s method.
Our approach relies on converting the feasibility PF problem

into a convex program in two steps: (i) PF is transformed into
an optimization problem by augmenting PF with a suitable
objective function, (ii) the resulting non-convex problem is
relaxed to an SDP problem. The designed objective function
is not unique and there are infinitely many choices for this
function. The question arises as to whether any of these
objective functions added to the PF problem would have a
physical meaning. To address this problem, we show that
one such function is the sum of squares of the nodal current
magnitudes, which indirectly accounts for the loss in the
network. Note that each objective function produces its own
recovery region and therefore it is not always beneficial to
use a physically meaningful objective function instead of a
synthetically designed function. In this paper, we also study
the problem of selecting the best objective function.

B. Power Systems State Estimation

Power system state estimation (PSSE) is the problem of
determining the operating point of an electrical network based
on the given model and the measurements obtained from
supervisory control and data acquisition (SCADA) systems
[50]. Notice that PSSE is built upon the PF problem by
replacing noiseless specifications with noisy measurements,
and therefore it is also a nonconvex problem. In order to
adapt the proposed approach for the PF problem to PSSE, we
adopt a penalized convex relaxation approach similar to [51],
where the measurement equations are softly penalized in the
objective as opposed to being imposed as equality constraints.
The objective function of the convex problem has two terms:
(i) the one previously used for the PF problem in the noiseless
case to deal with non-convexity, (ii) another term added to
account for the noisy measurements.

We show that the penalized convex problem precisely solves
the PSSE problem in the case of noiseless measurements as
long as the solution belongs to its associated recovery region
(the region includes solutions with small voltage angles). In
order to assess the accuracy of the proposed estimation frame-
work in the noisy case, we offer a bound on the estimation
error with respect to the noise level. In this case, the SDP
matrix solution may or may not be rank-1 due to corrupted
measurements. We employ the algorithm introduced in [41] to
estimate the solution of the PSSE problem from the penalized
SDP solution, and demonstrate the efficacy of the proposed
technique on multiple test systems, including a network with
more than 9000 nodes.

C. Related Work

Started by the papers [52] and [53], the SDP relaxation
technique has received a significant attention in the power
and optimization societies. The work [53] develops an SDP
relaxation for finding a global solution of the optimal power
flow (OPF) problem, and shows that the relaxation is exact for
IEEE test systems. The follow-up papers [54] and [29] prove
that the success of the SDP relaxation in handling the non-
convexity of the power flow equations is due in part to the
passivity of transmission lines, and moreover the relaxation
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finds a global solution under two assumptions: (i) load over-
satisfaction (by modeling loads as inequality constraints rather
than equality constraints), (ii) the presence of a phase shifting
transformer in every basic cycle of the network.

The papers [55] and [56] introduce branch-and-bound tech-
niques to obtain feasible solutions for the case where the SDP
relaxation is not exact. In order to improve the performance
of the SDP relaxation, several valid inequalities and bound
tightening techniques have been proposed in [57] and [58]. The
work [59] identifies certain classes of mesh power networks for
which the SDP relaxation finds a global solution of the OPF
problem without using any transformers. The paper [42] shows
that the graphs of real-world power networks often have a low
treewidth and, as a result, the proposed SDP would possess a
low-rank solution. The more recent paper [60] designs a linear
program to find an ε-approximation of the solution, where the
size of linear program is exponential in the treewidth of the
network. In other words, [42] and [60] relate the complexity
of the power equations to the treewidth of power networks.
In the case where the SDP relaxation fails to work, a graph-
theoretic penalized SDP framework has been developed in [59]
and [41]. This method identifies the problematic lines of the
network (sources of non-convexity) through a graph analysis
and then penalizes the loss over those lines in the objective of
the SDP relaxation in order to find a near-global solution of the
OPF problem. The proposed approach is successful in finding
near-global solutions with global optimality guarantees of at
least 99% for IEEE and Polish test systems. Inspired by the
general technique proposed in [61] and [62], recent advances
in leveraging the sparsity of power systems have made SDP
problems computationally more tractable [41], [63]–[67]. The
paper [68] develops a computationally efficient second-order
cone programming (SOCP) relaxation scheme for the OPF
problem, whose performance is empirically verified to be
close to the SDP relaxation. Further extensions of the above-
mentioned SDP relaxation to the AC transmission switching
and security-constrained OPF problem have been made in [69]
and [41]. The reader is referred to [70] and [71] for a detailed
survey of this topic.

Recently, the SDP relaxation technique has been applied
to the PSSE problem, and gained success in the case where
the number of measurements is significantly higher than the
underlying dimension of the unknown state of the system (i.e.,
twice the number of buses minus one). The papers [72] and
[73] have performed a graph decomposition in order to replace
the large-scale SDP matrix variable with smaller sub-matrices,
based on which different distributed numerical algorithms
using the alternating direction method of multipliers and La-
grange decomposition have been developed. The work [74] has
studied a variety of regularization methods to solve the PSSE
problem in presence of bad data and topology error. These
methods include weighted least square (WLS) and weighted
least absolute value (WLAV) penalty functions, together with
a nuclear norm surrogate for obtaining a low-rank solution.

In this work, our primary focus is mainly on the hard
case where the number of measurements is on the same
order as the number of unknown parameters. In order to
approach the measurement noise, in the present work, we

incorporate WLAV estimator into the objective along with a
penalty term that promotes rank-1 solutions. We will develop
theoretical results and show through simulations that the
proposed convexification approach outperforms the WLS and
WLAV estimators given in [73]–[75].
D. Notations

The symbols R, R+ and C denote the sets of real, nonneg-
ative real and complex numbers, respectively. Sn denotes the
space of n × n real symmetric matrices and Hn denotes the
space of n × n complex Hermitian matrices. Re{·}, Im{·},
rank{·}, trace{·}, det{·} and null{·} denote the real part,
imaginary part, rank, trace, determinant and null space of a
given scalar/matrix. diag{·} denotes the vector of diagonal
entries of a matrix. The symbol ‖ · ‖F denotes the Frobenius
norm of a matrix. Matrices are shown by capital and bold
letters. The symbols (·)T, (·)∗ and (·)conj denote transpose,
conjugate transpose and conjugate, respectively. Furthermore,
“i” is reserved to denote the imaginary unit. The notation
〈A,B〉 represents trace{A∗B}, which is the Frobenius inner
product of A and B. The notations ]x and |x| denote the angle
and magnitude of a complex number x. The notation W � 0
means that W is a Hermitian and positive semidefinite matrix.
Likewise, W � 0 means that W is Hermitian and positive
definite. Given a matrix W, its Moore Penrose pseudoinverse
is denoted as W+. The (i, j) entry of W is denoted as Wij .
The symbol 0n and 1n denote the n× 1 vectors of zeros and
ones, respectively. 0m×n denotes the m× n zero matrix and
In×n is the n × n identity matrix. The notation |X | denotes
the cardinality of a set X . For an m × n matrix W, the
notation W[X ,Y] denotes the submatrix of W whose rows
and columns are chosen form X and Y , respectively, for given
index sets X ⊆ {1, . . . ,m} and Y ⊆ {1, . . . , n}. Similarly,
W[X ] denotes the submatrix of W induced by those rows of
W indexed by X . The interior of a set D ∈ Cn is denoted as
int{D}.

II. PRELIMINARIES

In this section, we offer some preliminary results on the
power flow equations.
A. Voltages, Currents, and Admittance Matrices

Let N and L denote the sets of buses (nodes) and branches
(edges) of the power network under study. Moreover, let n
denote the number of buses. Define v , [v1, v2, . . . , vn]T to
be the vector complex voltages, where vk ∈ C is the complex
(phasor) voltage at node k ∈ N of the power network. Denote
the magnitude and phase of vk as |vk| and ]vk, respectively.
Let ik ∈ C denote the net injected complex current at bus k ∈
N . Given an edge l ∈ L, there are two current signals entering
the transmission line from each of its ends, respectively. We
orient the lines of the network arbitrarily and define if;l ∈ C
and it;l ∈ C to be the complex currents entering the branch
l ∈ L through its from and to (tail and head) ends, respectively,
according to the designated orientation.

Define Y ∈ Cn×n as the admittance matrix of the network,
and Yf ∈ C|L|×n and Yt ∈ C|L|×n as the from and to branch
admittance matrices, respectively, such that

i = Y × v, if = Yf × v, it = Yt × v, (1)
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where i , [i1, i2 . . . , in]T is the vector of complex nodal
current injections, and if , [if,1, if,2 . . . , if,|L|]

Tand it ,
[it,2, it,2 . . . , it,|L|]

T are the vectors of currents entering the
from and to ends of branches, respectively. Although the results
to be developed in this paper hold for a general matrix Y, we
make the following assumptions to streamline the presentation:
• The network is a connected graph.
• Every line of the network consists of a series impedance

with nonnegative resistance and inductance.
• The shunt elements are ignored for simplicity in guar-

anteeing the observability of the network, which implies
that Y × 1n = 0n.

Note that Y acts as the Laplacian of a weighted graph obtained
from the power network where the weight of each edge is
equal to the complex admittance (or inverse impedance) of
the corresponding branch of the system. Let Y = G + Bi,
where G and B are the conductance and susceptance matrices,
respectively. Before proceeding with the main results of this
work, we derive a fundamental property of the matrix B in
the next lemma.

Lemma 1. For every N ′ ⊆ N , the relation B[N ′,N ′] � 0
holds. Moreover, B[N ′,N ′] is singular if and only if N ′ = N .

Proof. Please refer to Section V for the proof.

B. Power Flow Equations

Let pk and qk represent the net active and reactive power in-
jections at every bus k ∈ N , where p , [p1 p2 · · · pn]T ∈ Rn
and q , [q1 q2 · · · qn]T ∈ Rn are the vectors containing net
injected active and reactive powers, respectively. The power
balance equations can be expressed as p+iq = diag{v× i∗}.
In addition, there are two power flows entering the transmis-
sion line from its both ends. Given a line l ∈ L from node k
to node j, define sf;l , pf;l + qf;li and st;l , pt;l + qt;li to be
the complex power flows entering the branch l ∈ L through
buses k and j, respectively. One can write:

sf;l = vk × i∗f;l , st;l = vj × i∗t;l . (2)

Define Ek , eke
∗
k, and

Yp;k ,
Y∗Ek + EkY

2
, Yq;k ,

Y∗Ek −EkY

2i
, (3a)

for every k ∈ N , where e1, . . . , en denote the standard basis
vectors in Rn. The nodal parameters |vk|2, pk and qk can
be expressed as the Frobenius inner-product of vv∗ with the
matrices Ek, Yp;k and Yq;k:

|vk|2 =〈vv∗,Ek〉, pk=〈vv∗,Yp;k〉, qk=〈vv∗,Yq;k〉, (4a)

for every k ∈ N . Moreover, let d1, . . . ,d|L| denote the
standard basis vectors in R|L|. Given a line l ∈ L from node
k to node j, define

Ypf ;l,
Y∗f dle

∗
k+ekd

∗
lYf

2
, Yqf ;l,

Y∗f dle
∗
k−ekd

∗
lYf

2i
, (5a)

Ypt;l,
Y∗t dle

∗
j+ejd

∗
lYt

2
, Yqt;l,

Y∗t dle
∗
j−ejd

∗
lYt

2i
. (5b)

The branch parameters pf;l, qf;l, pt;l and qt;l can be written as
the inner product of vv∗ with the matrices Ypf ;l, Yqf ;l, Ypt;l

and Yqt;l:

pf;l = 〈vv∗,Ypf ;l〉, qf;l = 〈vv∗,Yqf ;l〉, (6a)
pt;l = 〈vv∗,Ypt;l〉, qt;l = 〈vv∗,Yqt;l〉, (6b)

for every l ∈ L. Equations (4) and (6) offer a compact
formulation for common measurements in power networks.
In what follows, we will study a general version of the state
estimation problem with arbitrary measurements of quadratic
forms. Consider the state estimation problem of finding a
solution to the quadratic equations

xr = 〈vv∗,Mr〉+ ωr, ∀r ∈M, (7)

where
• M = {1, 2, . . . ,m} is a set of indices associated with

the available measurements (or specifications).
• x1, . . . , xm are the known measurement values.
• ω1, . . . , ωm are the unknown measurement noises, for

which some a priori statistical information may be avail-
able.

• M1, . . . ,Mm are some known n×n Hermitian matrices
(e.g., they could be any subset of the matrices defined in
(3) and (5)).

Several algorithms in different contexts, such as signal pro-
cessing, have been proposed in the literature for solving a
system of quadratic equation in the form of (7) [51], [76]–[80].
In this work, we aim to propose a convex relaxation scheme
with strong theoretical guarantees, which is tailored to power
system applications. In the case where the noises ω1, . . . , ωm
are all equal to zero, the above problem reduces to the well-
known power flow problem. It is straightforward to verify that
if v is a solution to the state estimation problem, then αv is
another solution of this problem for every complex number α
with magnitude 1. To resolve the existence of infinitely many
solutions due to a simple phase shift, we assume that ]vρ is
equal to zero at a pre-selected bus ρ, named the reference bus.
Hence, the state estimation problem with the complex variable
v amounts to 2n− 1 real variables.

C. Semidefinite Programming Relaxation

The state estimation problem, as a general case of the power
flow problem, is nonconvex due to the quadratic matrix vv∗.
Hence, it is desirable to convexify the problem. By defining
W , vv∗, the quadratic equations in (7) can be formulated
linearly in terms of W as follows:

xr = 〈W,Mr〉+ ωr, ∀r ∈M. (8)

Consider the case where the quadratic measurements
x1, . . . , x|M| are noiseless. Solving the non-convex equa-
tions in (7) is tantamount to finding a rank-1 and positive
semidefinite matrix W ∈ Hn satisfying the above linear
equations for ω1 = · · · = ω|M| = 0 (because such a
matrix W could then be decomposed as vv∗). The problem
of finding a positive semidefinite matrix W ∈ Hn satisfying
the linear equations in (8) is regarded as a convex relaxation
of (7) since it includes no restriction on the rank of W.
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Although the set of equations (7) normally has a finite number
of solutions whenever |M| ≥ 2n − 1, its SDP relaxation
(8) may have infinitely many solutions because the matrix
variable W includes O(n2) scalar variables as opposed to
2n − 1. However, under some additional assumptions, it is
known that the relaxed problem has a unique solution in some
applications such as phase retrieval if |M| ≥ 3n, and this
solution automatically has rank-1 [80]. In the case where
the relaxed problem does not have a unique solution, the
literature of compressed sensing substantiates that minimizing
trace{W} over the feasible set of (8) may yield a low-rank
matrix W under strong technical assumptions [42], [80]–[82].
One main objective of this paper is to study what objective
function should be minimized (instead of trace{W}) to attain
a rank-1 solution for the relaxed problem (8) in the noiseless
case. Another objective is to generalize the results to noisy
measurements.

D. Sensitivity Analysis

Let O denote the set of all buses of the network except the
reference bus. The operating point of the power system can
be characterized in terms of the real-valued vector

v ,
[
Re{v[N ]T} Im{v[O]T}

]T ∈ R2n−1. (9)

For every n × n Hermitian matrix X, let X denote the
following (2n−1)×(2n−1) real-valued and symmetric matrix:

X =

[
Re{X[N ,N ]} −Im{X[N ,O]}
Im{X[O,N ]} Re{X[O,O]}

]
. (10)

Definition 1. Given an index set of measurements M =
{1, 2, ...,m}, define the function fM(v) : R2n−1 → Rm as
the mapping from the real-valued state of the power network
(i.e., v) to the vector of true (noiseless) measurement values:

fM(v), [〈vv∗,M1〉, 〈vv∗,M1〉, . . . , 〈vv∗,Mm〉]T.

Define also JM(z) ∈ R(2n−1)×m to be the Jacobian of fM
at the point z ∈ R2n−1, i.e.,

JM(z) = 2
[
M1 z M2 z . . . Mm z

]
(note that Mi can be obtained from Mi via the equation (10)
for i = 1, ...,m).

According to the inverse function theorem, if JM(v) has
full row rank and |M| = 2n − 1, then the inverse of
the function f(v) exists in a neighborhood of the point v.
Similarly, it follows from the Kantorovich Theorem that, under
the assumption that JM(v) has full row rank, the equation (7)
can be solved using Newton’s method by starting from any
initial point sufficiently close to the point v, provided that the
measurements are noiseless. We will later show that the full
rank property of JM(v) is beneficial not only for Newton’s
method but also for the SDP relaxation.

Definition 2. Given an index set of measurements M, define
JM ⊆ Cn as the set of all voltage vectors v for which JM(v)
has full row rank. A vector of complex voltages v is said to be
observable through the set of measurements M if it belongs
to JM.

The point v = 1n (associated with v = 1n) is often
regarded as a nominal state for: (i) the linearization of the
quadratic power flow equations, (ii) the initialization of local
search algorithms used for nonlinear power flow equations.
Throughout this paper, we assume that JM(1n) has full row
rank.

Assumption 1. The vector of voltages 1n is observable (i.e.
1n ∈ JM).

We will later show that the above assumption holds for the
set of measurements corresponding to the classical power flow
problem.
E. Classical Power Flow Problem

The power flow (PF) problem can be defined as the noiseless
state estimation problem, i.e., by assuming that ω1 . . . , ω|M|
are all equal to zero. As a special case of the PF problem,
the classical PF problem is concerned with the case where
the number of quadratic constraints (namely |M|) is equal to
2n − 1, the measurements are all made at buses as opposed
to lines, and there is no measurement noise. To formulate the
problem, three basic types of buses are considered, depending
on the parameters that are known at each bus:
• PQ bus: pk and qk are specified.
• PV bus: pk and |vk| are specified.
• The reference bus: |vρ| is specified.

Each PQ bus represents a load bus or possibly a generator
bus, whereas each PV bus represents a generator bus. It is
also assumed that there is a unique reference bus. Given the
specified parameters at every bus of the network, the classical
PF problem aims to solve the network equations in order to
find an operating point that fits the input values.

Define P , Q and V as the sets of buses for which active
powers, reactive powers and voltage magnitudes are known,
respectively. Assume that V 6= ∅, and let P and Q be strict
subsets of N . The classical PF problem can be formalized as

find v ∈ Cn

subject to 〈vv∗,Ek〉 = |vk|2, ∀k ∈ V (11a)
〈vv∗,Yq;k〉 = qk, ∀k ∈ Q (11b)
〈vv∗,Yp;k〉 = pk, ∀k ∈ P. (11c)

The problem (11) is in the canonical form (7) after noticing
that
• M1,M2, . . . ,Mm correspond to the m matrices Ek

(∀k ∈ V), Yq;k (∀k ∈ Q), and Yp;k (∀k ∈ P) defined in
(3).

• The specifications x1, x2, . . . , xm correspond to |vk|2’s,
qk’s, and pk’s.

• The measurement noise values ω1, ω2, . . . , ωm are all
equal to zero.

Define MCPF as the set of measurements corresponding to
the classical power flow problem.

Lemma 2. If V 6= ∅ and P and Q are strict subsets of N ,
then Assumption 1 holds for the classical power flow problem,
i.e., 1n ∈ JMCPF .

Proof. Please refer to Section V for the proof.
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Remark 1. It is straightforward to verify that Lemma 2 holds
true for every arbitrary power network with shunt elements as
long as the matrix Y is generic. In other words, if JMCPF(1n)
is singular for a power network possessing shunt elements,
an infinitesimal perturbation of the susceptance values of the
existing lines makes the resulting matrix JMCPF

(1n) non-
singular.

III. CONVEXIFICATION OF POWER FLOW PROBLEM

In this section, assume that the available measurements
provided in (7) are all noiseless:

xr = 〈vv∗,Mr〉, ∀r ∈M. (12)

To solve this set of quadratic equations through a convex
relaxation, consider a family of convex programs of the form

minimize
W∈Hn

〈W,M〉 (13a)

subject to 〈W,Mr〉 = xr, ∀r ∈M, (13b)
W � 0, (13c)

where the matrix M ∈ Hn+ is to be designed. As an example,
the SDP program (13) associated with the classical PF problem
can be written as

minimize
W∈Hn

〈W,M〉 (14a)

subject to 〈W,Ek〉 = |vk|2, ∀k ∈ V (14b)
〈W,Yq;k〉 = qk, ∀k ∈ Q (14c)
〈W,Yp;k〉 = pk, ∀k ∈ P (14d)
W � 0. (14e)

We aim for systematically designing M such that the above
problem yields a unique rank-1 solution W, from which a
feasible solution v can be recovered for (12). Notice that the
existence of such a rank-1 solution depends in part on its input
specifications x = [x1, x2, . . . , x|M|]

T. It is said that the SDP
problem (13) solves the set of equations (12) for the input
x = [x1, x2, . . . , x|M|]

T if (13) has a unique rank-1 solution.

Definition 3. Given an index set of measurements M and an
objective matrix M ∈ Hn, a voltage vector v is said to be
recoverable if W = vv∗ is the unique solution of the SDP
problem (13) for some input vector x ∈ R|M|. DefineRM(M)
as the set of all recoverable vectors of voltages.

Note that the setRM(M) is indeed the collection of all pos-
sible operating points v that can be found through (13) given a
set of consistent specification values x = [x1, x2, . . . , x|M|]

T.
More precisely, a vector of voltages v belongs to RM(M) if
it can be recovered by solving the convex problem (13) with
the input x = fM(v̄). It is desirable to find out whether there
exists a matrix M for which the recoverable region RM(M)
covers a large subset of Cn that contains practical solutions
of power flow problems. Addressing this problem is central to
this section. In order to narrow the search space for the matrix
M, we impose some conditions on this matrix below.

Assumption 2. The matrix M satisfies the following proper-
ties:
• M � 0

• 0 is a simple eigenvalue of M
• The vector 1n belongs to the null space of M.

Remark 2. Assumption 2 is satisfied for the two sample
choices M = −B and M = Y∗Y considered in this paper.
If there are shunt elements, then the diagonal elements of −B
and Y∗Y may need to be modified to satisfy these conditions.
Since shunt elements cannot be ignored for the PEGASE and
IEEE systems, we have used the matrix M = αI − B in
the simulations section, where α is the smallest real number
such that αI − B � 0. Note that this choice of M does not
necessarily satisfy the third condition of Assumption 2.

The following theorem shows that if Assumptions 1 and 2
hold, then the region RM(M) contains the nominal point 1n
and a ball around it.

Theorem 1. If Assumptions 1 and 2 hold, then the region
RM(M) has a non-empty interior containing the point 1n.

Proof. Please refer to Section V for the proof.

Theorem 1 states that if 1n serves as a valid point for the
linearization of the power flow equations (i.e. JM(1n) has
full row rank), then as long as the specifications x1, . . . , x|M|
correspond to a vector of voltages with small angles, the exact
recovery of the solution of the PF problem is guaranteed
through the proposed SDP problem. Note that this result
does not require any assumption on the network topology
whatsoever. This implies that although the widely-used DC
(linearized) model of power flow equations can be used to
find an approximate solution around the nominal point, the
SDP relaxation is an exact convex model of the PF problem
(leading to a solution with an arbitrary precision).

Notice that according to Lemma 2, Assumption 1 is auto-
matically satisfied for the classical PF problem. In addition, if
M is chosen as Y∗Y, this matrix satisfies Assumption 2 due
to the equation Y×1n = 0n. In this case, the objective of the
convex problem (14) corresponds to |i1|2 + |i2|2 + · · ·+ |in|2,
where ik denotes the net current at bus k for k = 1, ..., n.
Therefore, Theorem 1 implies that as long as the voltage angles
are small enough, a solution of the feasibility PF problem can
be recovered exactly by means of an SDP relaxation whose
objective function reflects the minimization of nodal currents.
In the case where the PF problem has multiple solutions,
the one found using the SDP relaxation is likely the most
practical (desirable) solution since it indirectly corresponds to
the minimum loss (or voltage drop) in the network.

A. Region of Recoverable Voltages

Given an arbitrary matrix M ∈ Hn, the objective is to char-
acterize RM(M), i.e., the set of all voltage vectors that can
be recovered using the convex problem (13). To this end, it is
useful to analyze the vector of Lagrange multipliers λ ∈ R|M|
associated with the constraints in (13b). Some of the results
to be presented in the remainder of the paper do not require
Assumption 1 and/or Assumption 2. Whenever any of these
assumptions is needed, it will be explicitly mentioned in the
statement of the corresponding theorem/proposition/corollary.
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Definition 4. Given an index set of measurementsM, a vector
λ ∈ R|M| is regarded as a dual certificate for the voltage
vector v ∈ Cn if it satisfies the two properties:

JM(v)λ = −2Mv, (15a)
κM(M,λ) > 0, (15b)

where κM(M,λ) : Hn × R|M| → R is called observability
factor and defined as the sum of the two smallest eigenvalues
of the Hermitian matrix M+

∑
r∈M λrMr. Denote the set of

all dual certificates for the voltage vector v as DM(M,v).

Note that since the sum of the two smallest eigenvalues of a
Hermitian matrix variable is a concave function of that matrix,
κM(·, ·) is a concave function. Moreover, κM(·, ·) takes both
positive and negative values depending on the signs of the
eigenvalues of its matrix argument.

Proposition 1. Consider an arbitrary vector of voltages v ∈
JM. If there exists a dual certificate λ ∈ DM(M,v), then v
belongs to the interior of RM(M).

Proof. Please refer to Section V for the proof.

The above proposition offers a nonlinear matrix inequality
formulation to characterize the interior of the set of recoverable
voltage vectors, except for a subset of measure zero of this
interior at which the Jacobian of fM(v) loses rank (note
that the conditions in (15) can be cast as bilinear matrix
inequalities). This proposition is particularly interesting in the
special case where the number of equations is equal to the
number of unknown parameters. In that case, there exists a
unique vector λ = −2JM(v)−1M v that satisfies (15a).

Proposition 2. If |M| = 2n − 1, then the interior of the set
RM(M) can be characterized as

int{RM(M)} ∩ JM = {v ∈ JM | κ̃M(M,v) > 0},

where the function κ̃M(M,v) : Hn × Cn → R is de-
fined as sum of the two smallest eigenvalues of the matrix
M+

∑
r∈M λrMr, and λr denotes the rth entry of the vector

−2JM(v)−1M v.

Proof. Please refer to Section V for the proof.

If the matrix M satisfies Assumption 2, then κ̃M(M,v)
serves as a measure for the closeness of the true solution
v to the nominal point 1n. In particular, the vector λ =
−2JM(v)−1M v in the case |M| = 2n−1 can be arbitrarily
close to 0n if ‖v − 1n‖2 is sufficiently small, which implies
that

M +
∑
r∈M

λrMr 'M ⇒ κ̃M(M,v) ' κ̃M(M,1n) > 0,

where the last inequality is due to Assumption 2.
Multiple illustrative examples are given in [83] to show the

recovery region associated with a simple three-bus network.
B. Adjustment of Recoverable Region

Theorem 1 states that if Assumptions 1 and 2 hold, then it
is possible to recover voltage vectors that belong to a vicinity
of the nominal point 1n. However, there are cases for which
it is desirable to find a matrix M such that the corresponding

recoverable set RM(M) contains a set of neighborhoods
around multiple nominal points rather than the single generic
vector 1n. One such case is the dynamic state estimation
where the previous operating points and historical data could
be used to find the next operating point. The following theorem
aims to show that, given a set of pre-specified nominal points
v̂1, v̂2, . . . , v̂s, the problem of designing a matrix M for
which RM(M) contains all of nominal voltage vectors and
a neighborhood around each of these points can be cast as a
convex program.

Theorem 2. Assume that |M| = 2n− 1. Given an arbitrary
natural number s and arbitrary points v̂1, v̂2, . . . , v̂s ∈ JM,
consider the problem

find M ∈ Hn (16a)
subject to κ̃M(M, v̂k) ≥ ε, k = 1, 2, . . . , s, (16b)

where ε > 0 is the desired minimum observability factor. The
following statements hold:

i) The feasibility problem (16) is convex.
ii) There exists a matrix M such that the associated re-

coverable set RM(M) contains v̂1, v̂2, . . . , v̂s with the
observability factor at least ε as well as a ball around
each of these points if and only if the convex problem (16)
has a feasible solution M.

Proof. Please refer to Section V for the proof.

Theorem 2 is particularly helpful when the state estimation
problem is solved in real-time. In that case, rough predictions
of the state are often available, which can be used for the
design of the matrix M via (16). Note that if |M| > 2n −
1, then the above theorem should be used for a subset of
the measurement index M with 2n− 1 measurements (more
details will be provided in the next section).

Remark 3. If |M| is large enough to offer a level of restricted
isometry [84], then the feasible set of the relaxed problem
(13) reduces to a single point, and every vector becomes
recoverable independent of the choice of the objective function
[80]. Hence, the complexity of the problem reduces when
the number of measurements is high. However, Theorems 1
and 2 focus on more challenging instances of (12) where the
number of equations is equal to the number of unknowns (i.e.,
|M| = 2n− 1). In this case, due to computational complexity
boundaries [5], it is useful to have some prior information
about the unknown vector of voltages.

IV. CONVEXIFICATION OF STATE ESTIMATION PROBLEM

In the presence of measurement noises, the convex prob-
lem (13) may be infeasible (if |M| > 2n − 1) or result
in a poor approximate solution. To remedy this issue, a
standard approach is to estimate the noise values through some
auxiliary variables ν1, . . . , ν|M| ∈ R. This can be achieved by
incorporating a convex regularization term φM : R|M| → R
into the objective function that elevates the likelihood of the
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estimated noise:

minimize
W∈Hn

ν∈R|M|

〈W,M〉+ µ× φM(ν) (17a)

subject to 〈W,Mr〉+ νr = xr, ∀r ∈M (17b)
W � 0, (17c)

where µ > 0 is a fixed parameter, [51]. We refer to the
above convex program as the penalized convex problem. If
the noise parameters of the measurement values in M =
{1, 2, . . . , |M|} admit a zero mean Gaussian distribution
with a covariance matrix Σ = diag(σ2

1 , σ
2
2 , . . . , σ

2
|M|), then

φM(ν) = φM;WLS(ν) and φM(ν) = φM;WLAV(ν) lead to
the weighted least square (WLS) and weighted least absolute
value (WLAV) estimators, where

φM;WLS(ν),
∑
r∈M

ν2r
σ2
r

, φM;WLAV(ν) ,
∑
r∈M

|νr|
σr

. (18)

To solve the state estimation problem under study, we need to
address two questions: (i) how to deal with the nonlinearity
of the measurement equations, (ii) how to compensate for the
noisy measurements. The terms 〈W,M〉 and φM(ν) in the
objective function of the penalized convex problem (17) aim
to handle issues (i) and (ii), respectively. A question arises
as to whether a properly chosen value for µ could resolve
the non-convexity of the quadratic measurement equations and
estimate the noise values as well.

Proposition 3. Suppose that Assumptions 1 and 2 hold, and
that |M| = 2n − 1. Consider a function φ(ν) : R|M| → R+

such that
• φ(0|M|) = 0
• φ(ν) = φ(−ν) for all ν ∈ R|M|
• φ(ν) is continuous, convex, and strictly increasing with

respect to all its arguments over the region R|M|+ .
Then, there exists a region T ⊆ Cn containing 1n and a
neighborhood around this point such that, for every v ∈ T , the
penalized convex problem (17) with the input x = fM(v) has
a rank-1 solution, for every µ ∈ R+. Moreover, this solution
is unique if φ(·) is strictly convex.

Proof. Please refer to Section V for the proof.

Proposition 3 considers a large class of φ(·) functions,
including WLS and WLAV. It states that the penalized convex
problem (17) associated with the PF problem always returns
a rank-1 solution as long as the PF solution v is sufficiently
close to 1n, no matter how small or big the mixing term µ is.
A question arises as to whether this rank-1 solution is equal to
the matrix vv∗ being sought. This problem will be addressed
below.

Proposition 4. Suppose that Assumptions 1 and 2 hold. Given
an arbitrary vector of voltages v ∈ RM(M)\{1n}, consider
the penalized convex problem (17) with the noiseless input
x = fM(v). The following statements hold:

i) If φM(ν) = φM;WLS(ν) and µ ∈ R+, then vv∗ cannot
be a solution of the penalized convex problem.

ii) If φM(ν) = φM;WLAV(ν) and µ is large enough, then
vv∗ is a solution of the penalized convex problem.

Proof. Please refer to Section V for the proof.

Consider the case where the number of measurement (i.e.,
|M|) is greater than 2n−1 and all measurements are noiseless.
LetM′ ⊆M be a subset of the available measurement where
|M′| = 2n − 1 specifications. According to Proposition 2,
the vector v belongs to the recovery region of the SDP
relaxation problem (13) associated with the measurements in
M′ if κ̃M′(M,v) is positive. In this case, it can be easily
verified that the SDP relaxation problem that includes all
measurements in M (rather than only 2n − 1 specifications)
also recovers v. The next theorem generalizes the above result
to the noisy case and derives an upper bound on the estimation
error in terms of the noise level (namely φM(ω)).

Theorem 3. Consider an arbitrary index set of measurements
M and a vector of voltages v ∈ JM. Suppose that Assump-
tions 1 and 2 hold. Let λ ∈ DM(M,v) be an arbitrary dual
certificate for v (see Definition 4), and (Wopt,νopt) be an
optimal solution of the penalized convex problem (17) with the
noisy input x = fM(v)+ω. There exists a scalar α > 0 such
that

‖Wopt− αvv∗‖F ≤ 2

√
µ×φM(ω)×trace{Wopt}

κM(M,λ)
(19)

if φM(ν) is chosen as the WLAV penalty function and the
constant µ is selected appropriately to satisfy the relation

µ ≥ max
r∈M

|σrλr|. (20)

Proof. Please refer to Section V for the proof.

Theorem 3 relates an arbitrary solution of the penalized
convex problem to the unknown state v. It shows that the
estimation error depends on the noise level φM(ω) and the
observability factor κM(M,λ). In particular, the error is zero
in the noiseless case. To minimize an upper bound on the
estimation error, this theorem suggests selecting µ as small
as possible in such a way that the inequality (20) turns into
an equality. This corresponds to the worst-case scenario and
does not use any detailed information about the statistics of the
noise. However, given a particular noise realization, one may
use an adaptive technique to solve the penalized convex prob-
lem (17) for different values of µ to find a suboptimal value.
This can be carried out using cross-validation together with
the Akaike information criterion or the Bayesian information
criterion, as discussed in [85] for the classic Lasso problem.

According to Definition 4, the vector

λ+ , −2JM(v)+Mv (21)

serves as a candidate for dual certificate, and its norm can be
bounded as follows:

‖λ+‖2 ≤ 2 × ‖JM(v)+‖2 × ‖Mv‖2. (22)

Hence, ‖λ+‖2 is bounded by two factors: (i) the matrix
norm ‖JM(v)+‖2 that is related to the number of measure-
ments, and (ii) the vector norm ‖Mv‖2 that measures the
distance between the true solution v and the initial guess 1n.
Therefore, as the numbers ‖JM(v)+‖2 and ‖Mv‖2 decrease,
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the observability factor κM(M,λ+) approaches the value
κM(M,0|M|), which favors the accuracy of estimation due
to the bound (19). Observe that ‖JM(v)+‖2 = α−1min, where
αmin is the minimum singular value of JM(v), which can
tend to infinity as the number of measurements increases [86].
In light of the error bound (19), we have studied a special
case in [87] and proved that if the measurements include
voltage magnitudes at all buses as well as line flows at a
spanning subgraph of the system, then the tail probability of
the estimation error decays exponentially with respect to the
number measurements.

Corollary 1. Suppose that Assumptions 1 and 2 hold, and
that φM(ν) = φM;WLAV(ν). There is a region containing 1n
and a neighborhood around this point such that the following
statements are satisfied for every v in this region:
• The penalized convex problem (17) with the input x =
fM(v) has a rank-1 solution, for every µ ∈ R+.

• The penalized convex problem (17) with the input x =
fM(v) has the unique solution vv∗ and solves the PF
problem, for sufficiently large values µ ∈ R+.

Proof. The proof follows from Propositions 3 and 4. The
uniqueness of the solution using the WLAV penalty is due
to Theorem 3.

Corollary 1 relies on the WLAV penalty as opposed to
WLS. The underlying reason is that the exact penalty method
for the conversion of constrained optimization problems to
unconstrained optimization problems is known to work with
WLAV but not with WLS [88].

V. PROOFS

In this section, we will prove the main results of this paper.
To this end, it is useful to derive the dual of (13). The
Lagrangian function for the primal SDP problem (13) can be
expressed as follows:

L(W,λ) , 〈M +
∑
r∈M

λrMr −H,W〉 − xTλ (23)

where x = [x1 x2 · · · xm]T denotes the measurement values,
and the dual variables H ∈ Sn+ and λ ∈ R|M| are the
Lagrange multipliers associated with the constraints (13c) and
(13b), respectively. The Lagrangian function L(·,λ) has a
finite minimum if and only if

H = M +
∑
r∈M

λrMr, (24)

As a result, the dual problem can be stated as

minimize
λ∈R|M|

xTλ (25a)

subject to M +
∑
r∈M

λrMr � 0 (25b)

Definition 5. Define the matrix function HM(·, ·) : Hn ×
R|M| → Hn as

HM(M,λ) ,M +
∑
r∈M

λrMr. (26)

It can be easily observed that the condition (15a) in Defi-
nition 4 is satisfied for λ ∈ R|M| if and only if v belongs to
the null space of HM(M,λ), i.e.,

JM(v)λ = −2Mv ⇐⇒ HM(M,λ)v = 0n. (27)

Definition 6. Given an index set of measurements M with
|M| = 2n− 1, define

λM(M,v) , −2JM(v)−1M v. (28)

Note that λM(M,v) is the unique member of R|M| satisfying
(15a).

Proof of Lemma 1: Since B is symmetric, the relation
B× 1n = 0n holds according to the equation Y × 1n = 0n.
Moreover, every off-diagonal entry of B is nonnegative due to
the assumption that the inductance of each line is nonnegative.
Now, one can write:

−Bkk =
∑
j 6=k

Bkj =⇒ −Bkk ≥
∑
j 6=k

|Bkj |, (29)

for every k ∈ {1, . . . , n}. Therefore −B is diagonally
dominant and positive semidefinite. As a result, the relation
B[N ′,N ′] � 0 holds for every principal submatrix of B. Since
the network is connected by assumption and every entry of B
corresponding to an existing line of the network is positive, it
follows from the weighted matrix-tree theorem (see [89]) that
if |N ′| = n− 1, then det{B[N ′,N ′]} 6= 0 and subsequently
B[N ′,N ′] ≺ 0 due to the relation B[N ′,N ′] � 0. Now,
consider the case |N ′| < n − 1. There exists a set N ′′ ⊂ N
such that N ′ ⊂ N ′′ and |N ′′| = n − 1. Due to the Cauchy
interlacing theorem, every eigenvalue of B[N ′,N ′] is less
than or equal to the largest eigenvalue of B[N ′′,N ′′], which
implies that B[N ′,N ′] is non-singular. �

Proof of Lemma 2: For the classical PF problem, it is
straightforward to verify that

JMCPF
(1n) =

[
2In×n[N ,V] B[N ,Q] G[N ,P]
0(n−1)×|V| −G[P,Q] B[P,P]

]
.

By Gaussian elimination, JMCPF(1n) reduces to the matrix

S ,

[
B[Q,Q] G[Q,P]
−G[P,Q] B[P,P]

]
.

Hence, it suffices to prove that S is not singular. To this end,
one can write, det{S} = det{S1} × det{S2}, where S1 ,
B[P,P] is non-singular and S2 is the Schur complement of
S1 in S, i.e.,

S2 , B[Q,Q] + G[Q,P]B[P,P]−1G[P,Q].

On the other hand, S1 and S2 are both symmetric, and in
addition Lemma 1 yields that S1 ≺ 0 and B[Q,Q] ≺ 0. This
implies that S2 ≺ 0 according to the above equation, which
leads to the relation det{S} 6= 0. �

Lemma 3. Suppose that there exists a vector u ∈ JM such
that DM(M,u) 6= ∅. Strong duality holds between the primal
SDP (13) and the dual SDP (25), for every x ∈ R|M|.
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Proof. Let λ ∈ DM(M,u). The assumption JM(u)λ =
−2Mu implies that HM(M,λ)u = 0n. In addition, 0 is
a simple eigenvalue of HM(M,λ) due to the assumption
κM(M,λ) > 0. In order to show the strong duality, it suffices
to build a strictly feasible point λ̃ for the dual problem. Let ρ
represent the reference bus of the power system. With no loss
of generality, we assume that Im{uρ} = 0. The assumption
u ∈ JM implies that uT[M1u M2u . . . M|M|u] 6= 0.
Therefore, the relation u∗Mru = uTMru 6= 0 holds for at
least one index r ∈M. Let d1, . . . ,d|M| be the standard basis
vectors for R|M|. We select λ̃ as λ + c × dr, where c ∈ R
is a nonzero number with an arbitrarily small absolute value
such that c× u∗Mru > 0. Then, one can write:

H̃ ,M +
∑
r∈M

λ̃rMr = HM(M,λ) + cMr. (30)

Next, we will argue that if c is sufficiently small, then
H̃ � 0. Let HM(M,λ) admit the eigenvalue decomposition
[U u] diag{[κ 0]} [U u]∗, where κ ∈ R|V|−1 is the vector of
positive eigenvalues. It yields that

H̃ =
[
U u

][diag{κ}+c U∗MrU c U∗Mru
c u∗MrU c u∗Mru

][
U u

]∗
.

Since diag{κ} � 0, if c is small enough, then diag{κ} +
c U∗MrU � 0. Therefore, due to Schur complement, the
relation H̃ � 0 holds if and only if

c u∗Mru > c2u∗MrU(diag{κ}+c U∗MrU)−1U∗Mru,

which is satisfied when the absolute value of c is sufficiently
small. This completes the proof.

Lemma 4. Suppose that strong duality holds between the
primal SDP (13) and the dual SDP (25). Let v ∈ JM be an
optimal solution to the power flow problem (12) and λ ∈ Rm
be a feasible point for the dual SDP (25). The following two
statements are equivalent:
i) (vv∗,λ) is a pair of primal and dual optimal solutions

for the primal SDP (13) and the dual SDP (25),
ii) v ∈ null {HM(M,λ)}.

Proof. (i) ⇒ (ii): Due to the complementary slackness, one
can write

0 = 〈vv∗,HM(M,λ)〉 = trace {vv∗HM(M,λ)}
= v∗HM(M,λ)v. (31)

On the other hand, it follows from the dual feasibility that
HM(M,λ) � 0, which together with (31) implies that
HM(M,λ)v = 0.

(ii) ⇒ (i): Observe that due to the linearity of the La-
grangian function L(·,λ) in (23), it suffices to verify comple-
mentary slackness in order to prove the optimality of a feasible
primal-dual pair. Since v ∈ JM is a solution of (12), the
matrix vv∗ is a feasible point for (13). On the other hand, since
v ∈ null{HM(M,λ)}, we have 〈vv∗,HM(M,λ)〉 = 0,
which certifies the optimality of the pair (vv∗,λ).

Proof of Proposition 2: First, we show that {v ∈
JM | κ̃M(M,v) > 0} is an open set for m = 2n −

1. To this end, consider a vector v ∈ JM such that
κ̃M(M,v) > 0 and let δ denote the second smallest eigen-
value of HM(M,λM(M,v)). Due to the continuity of the
functions det{JM(·)}, λM(M, ·) and HM(M, ·), there exists
a neighborhood B ∈ Cn around v such that v′ ∈ JM and

‖HM(M,λM(M,v′))−HM(M,λM(M,v))‖F <
√
δ

for every v′ within this neighborhood. Now, through
an eigenvalue perturbation argument (see Lemma 5
in [83]), we have HM(M,λM(M,v′)) � 0 and
rank{HM(M,λM(M,v′))} = n − 1, which implies
that κ̃M(M,v′) > 0 for every v′ ∈ B. This proves that
{v ∈ JM | κ̃M(M,v) > 0} is an open set.

Now, consider a vector v ∈ JM such that κ̃M(M,v) > 0.
The objective is to show that v ∈ int{RM(M)}. Notice
that since κ̃M(M,v) > 0, we have H � 0, where H ,
HM(M,λM(M,v)). This means that the vector λM(M,v)
is a feasible point for the dual problem (25). Therefore, it
follows from Lemmas 3 and 4 that the matrix vv∗ is an
optimal solution for the primal problem (13). In addition, every
optimal solution Wopt must satisfy

〈H,W〉 = 0. (32)

According to Lemma 4, v is an eigenvector of H cor-
responding to the eigenvalue 0. Therefore, since H � 0
and rank{H} = n − 1, every positive semidefinite matrix
Wopt satisfying (32) is equal to c × vv∗ for a nonnegative
constant c. This concludes that vv∗ is the unique solution
to (13), and therefore v belongs to RM(M). Since {v ∈
JM | κ̃M(M,v) > 0} is shown to be an open set, the above
result can be translated as {v ∈ JM | κ̃M(M,v) > 0} ⊆
int{RM(M)} ∩ JM.

In order to complete the proof, it is requited to show that
int{RM(M)} ∩JM is a subset of {v ∈ JM | κ̃M(M,v) >
0}. To this end, consider a vector v ∈ int{RM(M)} ∩ JM.
This means that vv∗ is a solution to (13), and therefore H � 0
due to Lemma 4, and as a result κ̃M(M,v) ≥ 0. To prove
the aforementioned inclusion by contradiction, suppose that
κ̃M(M,v) = 0, implying that 0 is an eigenvalue of H with
multiplicity at least 2. Let v̂ denote a second eigenvector
corresponding to the eigenvalue 0 such that v∗v̂ = 0. Since
v ∈ JM, it results from the inverse function theorem that
there exists a constant ε0 > 0 with the property that for
every ε ∈ (0, ε0], there is a vector wε ∈ Cn satisfying the
relation fM(wε) = fM(v) + εfM(v̂). This means that for
every ε ∈ (0, ε0], the rank-2 matrix Wε = vv∗ + εv̂v̂∗ is a
feasible point to the problem (13) with the input x = fM(wε),
because Wε � 0 and

〈Mr,Wε〉=〈Mr,vv∗〉+ε〈Mr, v̂v̂∗〉=〈Mr,wεw
∗
ε〉 = xr.

Additionally, one can argue that Wε is an optimal solution
associated with the dual certificate λM(M,v), due to com-
plementary slackness:

〈H,Wε〉 = 〈H,vv∗+εv̂v̂∗〉 = 〈H,vv∗〉+ ε〈H, v̂v̂∗〉 = 0.

Therefore, for every ε ∈ (0, ε0], since there is a rank-2 solution
Wε, the true matrix wεw

∗
ε is not a unique solution. As a result,
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wε /∈ RM(M). This implies that one can construct a sequence
of vectors {wεk}k∈N not belonging to RM(M) such that
limk→∞wεk = v. This contradicts the previous assumption
that v ∈ int{RM(M)}. Therefore, we have κ̃M(M,v) > 0,
which completes the proof. �

Proof of Proposition 1: Given a vector of voltages v ∈ JM,
suppose that there exists λ ∈ R|M| such that

JM(v)λ = −2Mv, (33a)
κM(M,λ) > 0. (33b)

It follows from (33a) that v ∈ null{HM(M,λ)}. Therefore,
according to Lemma 4, the pair (vv∗,λ) is a set of primal
and dual optimal solutions for the primal SDP (13) and the
dual SDP (25). Let a1, . . . , a2n−1 ∈ M denote the indices
for 2n−1 linearly independent columns of JM(v) and define
M′ = {a1, . . . , a2n−1}. Let H , HM(M,λ) and consider
the following optimization problem:

minimize
W∈Hn

〈W,H〉 (34a)

subject to 〈W,Mr〉 = xr, ∀r ∈M′, (34b)
W � 0. (34c)

One can write v ∈ JM′ and v ∈ null{H}, which imply that

κ̃M′(H,v)=κM′
(
H,−2J−1M′(v)Hv

)
=κM′ (H,02n−1)>0

Hence, according to Proposition 2, every vector of voltages
in a vicinity of v can be recovered via (34). This means
that v ∈ int {RM′ (H)}. On the other hand, since additional
measurements do not prevent the recovery, every member of
RM′ (H) can be recovered by solving the following optimiza-
tion problem as well:

minimize
W∈Hn

〈W,H〉 (35a)

subject to 〈W,Mr〉 = xr, ∀r ∈M, (35b)
W � 0, (35c)

i.e., RM′ (H) ⊆ RM (H). Finally, observe that every feasible
matrix W satisfies the relation 〈W,H〉 = 〈W,M〉 + λTx,
which means that (34) and (13) are equivalent, and therefore,
RM′ (H) ⊆ RM (H) = RM (M). Hence, it follows that
v ∈ int{RM(M)}. �

Proof of Theorem 1: It can be inferred from As-
sumption 1 that 1n ∈ JM and therefore the Jacobian
JM(1n) has full row rank. Let a1, . . . , a2n−1 ∈ M de-
note the indices for 2n − 1 linearly independent columns
of JM(1n) and define M′ , {a1, . . . , a2n−1}. Observe
that RM′(M) ⊆ RM(M). On the other hand, since M ×
1n = 0, we have λM′(M,1n) = 02n−1, which implies
that HM′(M,λM′(M,v′)) = M. Therefore, it follows
from Proposition 1 that 1n ∈ int{RM′(M)} and therefore
1n ∈ int{RM(M)}. �

Proof of Theorem 2: Part (i) follows from the facts that
the sum of the two smallest eigenvalues of a matrix is a
concave function, which implies that the function κ̃M(M, v̂k)
is concave with respect to M. Part (ii) follows immediately
from Proposition 2. �

Proof of Proposition 3: Consider an arbitrary voltage vector
v. Let (Wopt,νopt) denote a solution of (17) with the input
x = fM(v). Since (W,ν) = (1n1∗n,fM(v) − fM(1n)) is
a feasible point for this problem, one can write:

〈Wopt,M〉+ µ× φ(νopt) ≤ 〈1n1∗n,M〉+
µ× φ(fM(v)− fM(1n)). (36)

On the other hand, since the inner product of every arbi-
trary pair of Hermitian positive semidefinite matrices is non-
negative, it follows from the relations M � 0 and Wopt � 0
as well as Assumption 2 that

〈Wopt,M〉 ≥ 0, 〈1n1∗n,M〉 = 0. (37)

Combining (36) and (37) leads to the inequality φ(νopt) ≤
φ(fM(v)− fM(1n)). Moreover,

‖fM(v)−νopt−fM(1n)‖F
≤ ‖νopt‖F +‖fM(v)−fM(1n)‖F
≤ ‖fM(v)− fM(1n)‖F + max{‖ν‖F |φ(ν) ≤ φ(νopt)}
≤ ‖fM(v)− fM(1n)‖F
+ max{‖ν‖F |φ(ν) ≤ φ(fM(v)− fM(1n))}.

Notice that as v approaches 1n, the right side of the above in-
equality goes towards zero and hence fM(v)−νopt becomes
arbitrarily close to fM(1n). This implies that there exists a
region T ∈ Cn containing the point 1n and a neighborhood
around it such that

fM(v)− νopt ∈ image{RM(M)}, ∀v ∈ T (39)

where image{RM(M)} denotes the image of the region
RM(M) under the mapping fM(·). In addition, the penalized
convex problem (17) can be written as

minimize
W∈Hn

〈W,M〉 (40a)

subject to 〈W,Mr〉=fM,r(v)− νopt
r , ∀r ∈M (40b)

W � 0, (40c)

where fM,r(v) denotes the rth entry of fM(v). In other
words, Wopt is a solution of the above problem. Moreover,
it follows from (39) and Theorem 1 that v(µ)v(µ)∗ is the
only solution of (40) for every v ∈ T , where v(µ) is a vector
satisfying the relation fM(v(µ)) = fM(v)−νopt. As a result,
the solution of (17) with the input x = fM(v) is rank-1 for
every v in the region T .

Now, it remains to show that v(µ)v(µ)∗ is the only solution
of (17) if φ(·) is strictly convex. Let (W̃opt, ν̃opt) be a solution
of (17) with the input x = fM(v), whose corresponding ob-
jective value is denoted as o. Observe that for every α ∈ (0, 1),
the linear combination (α̃W̃opt + αWopt, α̃ν̃opt + ανopt) is a
feasible point for (17) as well, where α̃ = 1−α. If ν̃opt 6= νopt,
then

〈M, α̃W̃opt + αWopt〉+ φ(α̃ν̃opt + ανopt) <

α̃(〈M,W̃opt〉+ φ(ν̃opt)) + α(〈M,Wopt〉+ φ(νopt)) = o,

which contradicts the optimality of (W̃opt, ν̃opt) and
(Wopt,νopt). Therefore, the vectors νopt and ν̃opt must be iden-
tical. Hence, Wopt and W̃opt must both be optimal solutions
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of (40). However, as stated earlier, v(µ)v(µ)∗ is the unique
solution of (40) whenever v ∈ T . This completes the proof. �

Proof of Proposition 4: For Part (i), assume that φM(ν) =
φM;WLS(ν) and consider the matrix (1 − ε)vv∗ + ε 1n1∗n.
Since v 6= 1n, this matrix is not rank-1. We aim to show that
the objective function of the penalized convex problem (17)
is smaller at the point W = (1 − ε)vv∗ + ε 1n1∗n than the
point W = vv∗, for a sufficiently small number ε ∈ R+. To
this end, notice that the function (17a) evaluated at W = vv∗

is equal to
〈W,M〉+ µ× φM(ν) = 〈vv∗,M〉 (41)

(note that ν is equal to 0m in this case). On the other hand,
the function (17a) at W = (1 − ε)vv∗ + ε 1n1∗n can be
calculated as

〈W,M〉+ µ×φM(ν) = (1− ε)〈vv∗,M〉

+
∑
r∈M

ε2µ

σ2
r

(〈vv∗ − 1n1∗n,Mr〉)2 . (42)

Note that since v 6= 1n, the term 〈vv∗,M〉 is strictly positive.
Therefore, when ε approaches zero, the first-order term with
respect to ε dominates the second-order term and subsequently
(42) becomes smaller than (41). This completes the proof of
Part (i).

The proof of Part (ii) is omitted because it is an immediate
consequence of Theorem 3. �

Proof of Theorem 3: The proof is an extension of the
technique developed in [87] for a special type of the PSSE
problem. Observe that the primal feasibility of the point
(Wopt,νopt) combined with the inequality (20) implies that

φM(νopt) =
∑
r∈M

σ−1r |〈Mr,W
opt − vv∗〉 − ωr|

≥ 1

µ

∑
r∈M

λr〈Mr,W
opt − vv∗〉 −

∑
r∈G

σ−1r |ωr|

=
1

µ
〈HM(M,λ)−M,Wopt−vv∗〉−φM(ω). (43)

On the other hand, evaluating the objective function of the
primal problem at (vv∗,ω) yields that

φM(νopt) ≤ − 1

µ
〈M,Wopt − vv∗〉+ φM(ω). (44)

Replacing φM(νopt) on the left side of (44) with the lower
bound offered by (43) leads to

1

µ
〈HM(M,λ),Wopt − vv∗〉 ≤ 2φM(ω). (45)

Due to the assumption λ ∈ DM(M,v), we have v ∈
null{HM(M,λ)} and therefore

〈HM(M,λ),Wopt〉 ≤ 2× µ× φM(ω). (46)

Now, consider the eigenvalue decomposition HM(M,λ) =
U diag{τ}U∗, where τ = [τn, . . . , τ2, 0]T collects the eigen-
values of HM(M,λ) in descending order and U is a unitary
matrix whose last column is equal to v/‖v‖2. Define

Ŵ =

[
W̃ w̃

w̃∗ W̃nn

]
= U∗WoptU (47)
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c
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kvopt ! vk2=
p

n

Fig. 1: This figure illustrates the convergence behavior of the error bound
(19) relative to the actual estimation error of the problem (17) for the IEEE
118-bus system with the classical PF measurements.

where W̃ ∈ Hn−1, w̃ ∈ Cn−1 and W̃nn ∈ R. Due to the
positive semidefiniteness of Wopt, we have Ŵ � 0, which
implies that the diagonal elements of Ŵ are non-negative.
Therefore, one can write:

trace{W̃}≤ 1

τ2
〈diag{τ},Ŵ〉≤ 1

τ2
〈Udiag{τ}U∗,UŴU∗〉

≤ 1

τ2
〈HM(M,λ),Wopt〉≤ 2

τ2
× µ× φM(ω).

Since W̃ � 0, according to Schur complement, we have
W̃nn × W̃ � w̃w̃∗, and therefore,

W̃nntrace{W̃} ≥ trace{w̃w̃∗}≥trace{w̃∗w̃} = ‖w̃‖22. (48)

Additionally,

‖W̃‖2F =

n∑
k=1

δ2k ≤

(
n∑
k=1

δk

)2

= trace{W̃}2, (49)

where δ1, . . . , δn are the eigenvalues of W̃. Hence, by defining
α = W̃nn/‖v‖22, it can be concluded that

‖Wopt − αvv∗‖2F =‖Ŵ − W̃nneneT
n‖2F =‖W̃‖2F + 2‖w̃‖22

≤ ‖W̃‖2F + 2W̃nn × trace{W̃}

≤ ‖W̃‖2F + 2
(

trace{Wopt} − trace{W̃}
)

trace{W̃}

≤ 2 trace{W̃} trace{Wopt} ≤ 4µ

τ2
φM(ω) trace{Wopt}.

Now, replacing τ2 with κM(M,λ) completes the proof. �

VI. SIMULATION RESULTS

In what follows, we will offer several simulations on
benchmark systems. We will use the OPF Solver for conic
optimization (see [90]) and the MATPOWER solver for New-
ton’s method [91] (note that different versions of Newton’s
method would perform slightly differently for the power flow
problem).

Motivated by the promising experiments in [59] and [41]
and in order to induce the sparsity of power systems into
the semidefinite programs (13) and (17), two choices for the
matrix M are considered in this section: (i) M = Y∗Y, and
(ii) M = −B. These choices both satisfy Assumption 2 for
networks without shunt elements. Observe that:

〈vv∗,Y∗Y〉 =
∑
k∈V

‖ik‖22, 〈vv∗,−B〉 =
∑
k∈V

qk. (50)

Therefore, choices (i) and (ii) minimize the norm of the nodal
current injection vector and the overall reactive power injection
to the network, respectively.
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Fig. 2: These figures show the probability of success for Newton’s method, the SDP relaxation, and the SDP relaxation with extra specifications for (a):
IEEE 9-bus system, (b): New England 39-bus system, and (c): IEEE 57-bus system.

A. Case Study: Power Flow Problem

In order to demonstrate the efficacy of the proposed SDP
problem (13) in solving the power flow equations, we perform
numerical simulations on the IEEE 9-bus, New England 39-
bus, and IEEE 57-bus systems [91]. Three recovery methods
are considered for each test case:

1) Newton’s method: We evaluate the probability of con-
vergence for Newton’s method (based on default MAT-
POWER 6.0 settings) in polar coordinates for the clas-
sical PF problem with 2n− 1 specifications, where the
starting point is vk = 1∠0◦ for every k ∈ N .

2) SDP relaxation: The probability of obtaining a rank-1
solution for the SDP relaxation (13) with M = Y∗Y
is evaluated, where the same set of specifications as in
Newton’s method is used.

3) SDP relaxation with extra specifications: The probability
of obtaining a rank-1 solution for the SDP relaxation
(13) with M = Y∗Y is evaluated, under extra specifi-
cations compared to the classical PF problem. Active
powers at PV and PQ buses, reactive powers at PQ
buses, and voltages magnitudes at all buses are measured
(as opposed to only PV and reference buses).

For different values of θ, we have generated 500 specification
sets (x1, . . . , x|M|) by randomly choosing voltage vectors
whose magnitudes and phases are uniformly drawn from the
intervals [0.9, 1.1] and [−θ, θ], respectively. We have then
exploited each of the three methods described above to find a
feasible voltage vector associated with each specification set.
The results are depicted in Figure 2. It can be observed that
the SDP relaxations outperform the Newton’s method.
B. Case Study: Power System State Estimation

In order to show that the penalized convex program (17)
with a nonzero matrix M significantly outperforms the classi-
cal SDP relaxation of PSSE proposed in [72]–[75], we conduct
simulations on the PEGASE 1354-bus and 9241-bus systems
from [92]. Consider a positive number c. Suppose that all
measurements are subject to zero mean Gaussian noises, where
the standard deviations for squared voltage magnitude, nodal
active/reactive power, and branch flow measurements are c,
1.5c and 2c times higher than the corresponding noiseless
values of squared voltage magnitudes, nodal active/reactive
powers, and branch flows, respectively. As pointed out in
Remark 2, we choose M equal to α×I−B, where the constant
α is the smallest value such that α×I−B � 0. This choice of
M makes the function 〈M,W〉 account for the reactive loss
in the network [41], [59].

We have performed simulations on the PEGASE 9241-bus
system with randomly generated noise values corresponding
to c = 0.01 under different numbers of extra measurements
(i.e., 1%, 1.5%, and 2% errors for squared voltage magnitudes,
nodal active/reactive powers, and branch flows, respectively).
The performance of the penalized convex problem (17) using
the two objective functions

f1(W,ν) , 〈M,W〉+ µ× φM;WLS(ν), (51a)

f2(W,ν) , 〈M,W〉+ µ× φM;WLAV(ν), (51b)

is shown in Figure 3. Each histogram shows the distribution
of the absolute differences between the actual and estimated
values of complex voltages. For these simulations, we have set
µ = 100 and M = α×I−B, where α is the smallest number
such that α×I−B � 0. In each figure, we have assumed that
the PV and PQ measurements corresponding to the classical
power flow problem are all available, in addition to the
specified numbers of additional line flow measurements. It can
be observed that the penalized convex problem obtains high-
quality estimations with both WLAV and WLS regularization
terms, while it typically works better with the WLAV estimator
rather than the WLS estimator.

In order to efficiently solve the large-scale semidefinite
programming problem (17), we have exploited the sparsity
structure of the network. More precisely, the conic constraint
of the SDP problems was replaced by a set of low-order
conic constraints (as discussed in [41]). For cases where the
resulting solution is not rank-1, a recovery algorithm from [41]
is deployed to find an approximate rank-1 SDP matrix.

Figure 1 illustrates the convergence behavior of the er-
ror bound (19) relative to the actual estimation error of
the problem (17) for the classical PF measurements as the
parameter c tends to zero. The IEEE 118-bus system is
used for this case study with M0 = Y∗Y. The function
βM(M0,v, ω) represents the right side of the error bound
(19) for λ = −2JM(v)−1M v and µ = maxr∈M |σrλr|.
Each data point represents the average of 100 experiments
with random realizations of noise based on the corresponding
value of the parameter c, and voltage vectors with magnitudes
and angles uniformly chosen from the intervals [0.9, 1.1] and
[−5◦, 5◦], respectively. Note that the error bound attenuates
to zero as expected, and that it differs from the actual error
with almost a constant factor. The reason for the discrepancy
is that the derived error bound is valid for all possible noise
realizations, and is a worst-case analysis.
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Fig. 3: Histograms of absolute differences between the actual and estimated complex voltages for the PEGASE 9241-bus system based on the penalized
convex problem equipped with the WLAV and WLS estimators are given in the first row (top) and second row (bottom), respectively. In addition to the PV
and PQ measurements for the classical PF problem, there are 10%, 15% and 20% of line flow measurements (the entries of pf , pt, qf and qt) for the
figures in the first column (left), second column (middle) and third column (right), respectively.

C. Case Study: Zero Injection Buses

Real-world power networks have intermediate buses that
do not exchange electrical powers with any external load or
generator. A PQ bus k ∈ N is called a zero injection bus if
both active and reactive power injections at bus k are equal
to zero. Define Z as the set of all zero injection buses of the
network. If v is a solution to the power flow problem (12) with
nonzero entries, then the equation vv∗Y∗ek = 0n holds for
every k ∈ Z . Therefore, for every k ∈ Z , the set of additional
valid constraints WY∗ek = 0n can be added to the SDP
problems (13) and (17) in order to strengthen the relaxations.

We have conducted simulations on 20 randomly generated
trials on the PEGASE 1354-bus system in the presence of
1436 zero injection valid constraints. Four different penalized
SDP problems of the form (17) are tested with the objective
functions (51a), (51b), f3(ν) , φM;WLS(ν) and f4(ν) ,
φM;WLAV(ν), where µ = 0.5. Consider three scenarios as
follows:
• Scenario 1: This corresponds to the classical power flow

problem, where the measurements are taken at PV and
PQ buses. The measurements are then corrupted with
Gaussian noise values with c = 0.01.

• Scenario 2: This is built upon Scenario 1 by taking
extra measurements. More precisely, 10% of the line
flow measurements (the entries of pf , pt, qf and qt) are
randomly sampled and added to the measurements used
in Scenario 1.

• Scenario 3: This is the same as Scenario 2 with the only
difference that c = 0.05.

The root mean square errors of the recovered nodal complex
voltages are plotted in Figure 4. The curves corresponding to
the objective functions φM;WLS(ν) and φM;WLS(ν) are not
shown in Figure 4(a) since they are significantly higher than
those for the functions f1 and f2 in (51).

VII. CONCLUSION

This paper aims to find a convex model for the power system
state estimation (PSSE) problem, which includes the power
flow (PF) problem as a special case. PSSE is central to the
operation of power systems, and has a high computational
complexity due to the nonlinearity of power flow equations. In
this work, we develop a family of penalized convex problems

to solve the PSSE problem. It is shown that each convex
program proposed in this paper finds the correct solution of the
PSSE problem in the case of noiseless measurements, provided
that the voltage angles are relatively small. In presence of
noisy measurements, it is proven that the penalized convex
problems are all able to find an approximate solution of the
PSSE problem, where the estimation error has an explicit
upper bound in terms of the power of the noise. The objective
function of each penalized convex problem has two terms: one
accounting for the non-convexity of the power flow equations
and another one for estimating the noise level. Simulation
results on real-world systems elucidate the superiority of the
proposed method in estimating the state of a power system
based on non-convex and noisy measurements.
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